pmap.c revision 15088
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.84 1996/03/31 23:00:32 davidg Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54
55/*
56 *	Manages physical address maps.
57 *
58 *	In addition to hardware address maps, this
59 *	module is called upon to provide software-use-only
60 *	maps which may or may not be stored in the same
61 *	form as hardware maps.  These pseudo-maps are
62 *	used to store intermediate results from copy
63 *	operations to and from address spaces.
64 *
65 *	Since the information managed by this module is
66 *	also stored by the logical address mapping module,
67 *	this module may throw away valid virtual-to-physical
68 *	mappings at almost any time.  However, invalidations
69 *	of virtual-to-physical mappings must be done as
70 *	requested.
71 *
72 *	In order to cope with hardware architectures which
73 *	make virtual-to-physical map invalidates expensive,
74 *	this module may delay invalidate or reduced protection
75 *	operations until such time as they are actually
76 *	necessary.  This module is given full information as
77 *	to which processors are currently using which maps,
78 *	and to when physical maps must be made correct.
79 */
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/proc.h>
84#include <sys/malloc.h>
85#include <sys/msgbuf.h>
86#include <sys/queue.h>
87#include <sys/vmmeter.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_prot.h>
92#include <vm/lock.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98
99#include <machine/pcb.h>
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102
103#include <i386/isa/isa.h>
104
105#define PMAP_KEEP_PDIRS
106
107#if defined(DIAGNOSTIC)
108#define PMAP_DIAGNOSTIC
109#endif
110
111static void	init_pv_entries __P((int));
112
113/*
114 * Get PDEs and PTEs for user/kernel address space
115 */
116#define	pmap_pde(m, v)	(&((m)->pm_pdir[((vm_offset_t)(v) >> PD_SHIFT)&1023]))
117#define pdir_pde(m, v) (m[((vm_offset_t)(v) >> PD_SHIFT)&1023])
118
119#define pmap_pte_pa(pte)	(*(int *)(pte) & PG_FRAME)
120
121#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
122#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
123#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
124#define pmap_pte_u(pte)		((*(int *)pte & PG_U) != 0)
125#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
126
127#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
128#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
129
130/*
131 * Given a map and a machine independent protection code,
132 * convert to a vax protection code.
133 */
134#define pte_prot(m, p)	(protection_codes[p])
135static int protection_codes[8];
136
137static struct pmap kernel_pmap_store;
138pmap_t kernel_pmap;
139
140vm_offset_t avail_start;	/* PA of first available physical page */
141vm_offset_t avail_end;		/* PA of last available physical page */
142vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
143vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
144static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
145static vm_offset_t vm_first_phys;
146
147static int nkpt;
148
149extern vm_offset_t clean_sva, clean_eva;
150extern int cpu_class;
151
152/*
153 * All those kernel PT submaps that BSD is so fond of
154 */
155pt_entry_t *CMAP1;
156static pt_entry_t *CMAP2, *ptmmap;
157static pv_entry_t pv_table;
158caddr_t CADDR1, ptvmmap;
159static caddr_t CADDR2;
160static pt_entry_t *msgbufmap;
161struct msgbuf *msgbufp;
162
163static void	free_pv_entry __P((pv_entry_t pv));
164pt_entry_t *
165		get_ptbase __P((pmap_t pmap));
166static pv_entry_t
167		get_pv_entry __P((void));
168static void	i386_protection_init __P((void));
169static void	pmap_alloc_pv_entry __P((void));
170static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
171static void	pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
172				      vm_offset_t pa));
173static int	pmap_is_managed __P((vm_offset_t pa));
174static void	pmap_remove_all __P((vm_offset_t pa));
175static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
176static __inline void pmap_remove_entry __P((struct pmap *pmap, pv_entry_t pv,
177					vm_offset_t va));
178static void pmap_remove_pte __P((struct pmap *pmap, pt_entry_t *ptq,
179					vm_offset_t sva));
180static vm_page_t
181		pmap_pte_vm_page __P((pmap_t pmap, vm_offset_t pt));
182static boolean_t
183		pmap_testbit __P((vm_offset_t pa, int bit));
184static void *	pmap_getpdir __P((void));
185
186
187#if defined(PMAP_DIAGNOSTIC)
188
189/*
190 * This code checks for non-writeable/modified pages.
191 * This should be an invalid condition.
192 */
193static int
194pmap_nw_modified(pt_entry_t ptea) {
195	int pte;
196
197	pte = (int) ptea;
198
199	if ((pte & (PG_M|PG_RW)) == PG_M)
200		return 1;
201	else
202		return 0;
203}
204#endif
205
206/*
207 * The below are finer grained pmap_update routines.  These eliminate
208 * the gratuitious tlb flushes on non-i386 architectures.
209 */
210static __inline void
211pmap_update_1pg( vm_offset_t va) {
212#if defined(I386_CPU)
213	if (cpu_class == CPUCLASS_386)
214		pmap_update();
215	else
216#endif
217		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va));
218}
219
220static __inline void
221pmap_update_2pg( vm_offset_t va1, vm_offset_t va2) {
222#if defined(I386_CPU)
223	if (cpu_class == CPUCLASS_386) {
224		pmap_update();
225	} else
226#endif
227	{
228		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va1));
229		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va2));
230	}
231}
232
233/*
234 *	Routine:	pmap_pte
235 *	Function:
236 *		Extract the page table entry associated
237 *		with the given map/virtual_address pair.
238 * [ what about induced faults -wfj]
239 */
240
241__inline pt_entry_t * __pure
242pmap_pte(pmap, va)
243	register pmap_t pmap;
244	vm_offset_t va;
245{
246
247	if (pmap && *pmap_pde(pmap, va)) {
248		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
249
250		/* are we current address space or kernel? */
251		if ((pmap == kernel_pmap) || (frame == ((int) PTDpde & PG_FRAME)))
252			return ((pt_entry_t *) vtopte(va));
253		/* otherwise, we are alternate address space */
254		else {
255			if (frame != ((int) APTDpde & PG_FRAME)) {
256				APTDpde = pmap->pm_pdir[PTDPTDI];
257				pmap_update();
258			}
259			return ((pt_entry_t *) avtopte(va));
260		}
261	}
262	return (0);
263}
264
265/*
266 *	Routine:	pmap_extract
267 *	Function:
268 *		Extract the physical page address associated
269 *		with the given map/virtual_address pair.
270 */
271
272vm_offset_t
273pmap_extract(pmap, va)
274	register pmap_t pmap;
275	vm_offset_t va;
276{
277	vm_offset_t pa;
278
279	if (pmap && *pmap_pde(pmap, va)) {
280		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
281
282		/* are we current address space or kernel? */
283		if ((pmap == kernel_pmap)
284		    || (frame == ((int) PTDpde & PG_FRAME))) {
285			pa = *(int *) vtopte(va);
286			/* otherwise, we are alternate address space */
287		} else {
288			if (frame != ((int) APTDpde & PG_FRAME)) {
289				APTDpde = pmap->pm_pdir[PTDPTDI];
290				pmap_update();
291			}
292			pa = *(int *) avtopte(va);
293		}
294		return ((pa & PG_FRAME) | (va & ~PG_FRAME));
295	}
296	return 0;
297
298}
299
300/*
301 * determine if a page is managed (memory vs. device)
302 */
303static __inline int
304pmap_is_managed(pa)
305	vm_offset_t pa;
306{
307	int i;
308
309	if (!pmap_initialized)
310		return 0;
311
312	for (i = 0; phys_avail[i + 1]; i += 2) {
313		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
314			return 1;
315	}
316	return 0;
317}
318
319vm_page_t
320pmap_use_pt(pmap, va)
321	pmap_t pmap;
322	vm_offset_t va;
323{
324	vm_offset_t ptepa;
325	vm_page_t mpte;
326
327	if (va >= UPT_MIN_ADDRESS)
328		return NULL;
329
330	ptepa = ((vm_offset_t) *pmap_pde(pmap, va)) & PG_FRAME;
331#if defined(PMAP_DIAGNOSTIC)
332	if (!ptepa)
333		panic("pmap_use_pt: pagetable page missing, va: 0x%x", va);
334#endif
335
336	mpte = PHYS_TO_VM_PAGE(ptepa);
337	++mpte->hold_count;
338	return mpte;
339}
340
341#if !defined(PMAP_DIAGNOSTIC)
342__inline
343#endif
344void
345pmap_unuse_pt(pmap, va, mpte)
346	pmap_t pmap;
347	vm_offset_t va;
348	vm_page_t mpte;
349{
350	if (va >= UPT_MIN_ADDRESS)
351		return;
352
353	if (mpte == NULL) {
354		vm_offset_t ptepa;
355		ptepa = ((vm_offset_t) *pmap_pde(pmap, va)) & PG_FRAME;
356#if defined(PMAP_DIAGNOSTIC)
357		if (!ptepa)
358			panic("pmap_unuse_pt: pagetable page missing, va: 0x%x", va);
359#endif
360		mpte = PHYS_TO_VM_PAGE(ptepa);
361	}
362
363#if defined(PMAP_DIAGNOSTIC)
364	if (mpte->hold_count == 0) {
365		panic("pmap_unuse_pt: hold count < 0, va: 0x%x", va);
366	}
367#endif
368
369	vm_page_unhold(mpte);
370
371	if ((mpte->hold_count == 0) &&
372	    (mpte->wire_count == 0) &&
373	    (pmap != kernel_pmap) &&
374	    (va < KPT_MIN_ADDRESS)) {
375/*
376 * We don't free page-table-pages anymore because it can have a negative
377 * impact on perf at times.  Now we just deactivate, and it'll get cleaned
378 * up if needed...  Also, if the page ends up getting used, it will fault
379 * back into the process address space and be reactivated.
380 */
381#if defined(PMAP_FREE_OLD_PTES)
382		pmap_page_protect(VM_PAGE_TO_PHYS(mpte), VM_PROT_NONE);
383		vm_page_free(mpte);
384#else
385		mpte->dirty = 0;
386		vm_page_deactivate(mpte);
387#endif
388	}
389}
390
391/*
392 *	Bootstrap the system enough to run with virtual memory.
393 *
394 *	On the i386 this is called after mapping has already been enabled
395 *	and just syncs the pmap module with what has already been done.
396 *	[We can't call it easily with mapping off since the kernel is not
397 *	mapped with PA == VA, hence we would have to relocate every address
398 *	from the linked base (virtual) address "KERNBASE" to the actual
399 *	(physical) address starting relative to 0]
400 */
401void
402pmap_bootstrap(firstaddr, loadaddr)
403	vm_offset_t firstaddr;
404	vm_offset_t loadaddr;
405{
406	vm_offset_t va;
407	pt_entry_t *pte;
408
409	avail_start = firstaddr;
410
411	/*
412	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
413	 * large. It should instead be correctly calculated in locore.s and
414	 * not based on 'first' (which is a physical address, not a virtual
415	 * address, for the start of unused physical memory). The kernel
416	 * page tables are NOT double mapped and thus should not be included
417	 * in this calculation.
418	 */
419	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
420	virtual_end = VM_MAX_KERNEL_ADDRESS;
421
422	/*
423	 * Initialize protection array.
424	 */
425	i386_protection_init();
426
427	/*
428	 * The kernel's pmap is statically allocated so we don't have to use
429	 * pmap_create, which is unlikely to work correctly at this part of
430	 * the boot sequence (XXX and which no longer exists).
431	 */
432	kernel_pmap = &kernel_pmap_store;
433
434	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
435
436	kernel_pmap->pm_count = 1;
437	nkpt = NKPT;
438
439	/*
440	 * Reserve some special page table entries/VA space for temporary
441	 * mapping of pages.
442	 */
443#define	SYSMAP(c, p, v, n)	\
444	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
445
446	va = virtual_avail;
447	pte = pmap_pte(kernel_pmap, va);
448
449	/*
450	 * CMAP1/CMAP2 are used for zeroing and copying pages.
451	 */
452	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
453	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
454
455	/*
456	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
457	 */
458	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
459
460	/*
461	 * msgbufmap is used to map the system message buffer.
462	 */
463	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
464
465	virtual_avail = va;
466
467	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
468	pmap_update();
469}
470
471/*
472 *	Initialize the pmap module.
473 *	Called by vm_init, to initialize any structures that the pmap
474 *	system needs to map virtual memory.
475 *	pmap_init has been enhanced to support in a fairly consistant
476 *	way, discontiguous physical memory.
477 */
478void
479pmap_init(phys_start, phys_end)
480	vm_offset_t phys_start, phys_end;
481{
482	vm_offset_t addr;
483	vm_size_t npg, s;
484	int i;
485
486	/*
487	 * calculate the number of pv_entries needed
488	 */
489	vm_first_phys = phys_avail[0];
490	for (i = 0; phys_avail[i + 1]; i += 2);
491	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
492
493	/*
494	 * Allocate memory for random pmap data structures.  Includes the
495	 * pv_head_table.
496	 */
497	s = (vm_size_t) (sizeof(struct pv_entry) * npg);
498	s = round_page(s);
499	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
500	pv_table = (pv_entry_t) addr;
501
502	/*
503	 * init the pv free list
504	 */
505	init_pv_entries(npg);
506	/*
507	 * Now it is safe to enable pv_table recording.
508	 */
509	pmap_initialized = TRUE;
510}
511
512/*
513 *	Used to map a range of physical addresses into kernel
514 *	virtual address space.
515 *
516 *	For now, VM is already on, we only need to map the
517 *	specified memory.
518 */
519vm_offset_t
520pmap_map(virt, start, end, prot)
521	vm_offset_t virt;
522	vm_offset_t start;
523	vm_offset_t end;
524	int prot;
525{
526	while (start < end) {
527		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
528		virt += PAGE_SIZE;
529		start += PAGE_SIZE;
530	}
531	return (virt);
532}
533
534#if defined(PMAP_KEEP_PDIRS)
535int nfreepdir;
536caddr_t *pdirlist;
537#define NFREEPDIR 3
538
539static void *
540pmap_getpdir() {
541	caddr_t *pdir;
542	if (pdirlist) {
543		--nfreepdir;
544		pdir = pdirlist;
545		pdirlist = (caddr_t *) *pdir;
546#if 0 /* Not needed anymore */
547		bzero( (caddr_t) pdir, PAGE_SIZE);
548#endif
549	} else {
550		pdir = (caddr_t *) kmem_alloc(kernel_map, PAGE_SIZE);
551	}
552
553	return (void *) pdir;
554}
555
556static void
557pmap_freepdir(void *pdir) {
558	if (nfreepdir > NFREEPDIR) {
559		kmem_free(kernel_map, (vm_offset_t) pdir, PAGE_SIZE);
560	} else {
561		int i;
562		pt_entry_t *s;
563		s = (pt_entry_t *) pdir;
564
565		/*
566		 * remove wired in kernel mappings
567		 */
568		bzero(s + KPTDI, nkpt * PTESIZE);
569		s[APTDPTDI] = 0;
570		s[PTDPTDI] = 0;
571
572#if defined(PMAP_DIAGNOSTIC)
573		for(i=0;i<PAGE_SIZE/4;i++,s++) {
574			if (*s) {
575				printf("pmap_freepdir: index %d not zero: %lx\n", i, *s);
576			}
577		}
578#endif
579		* (caddr_t *) pdir = (caddr_t) pdirlist;
580		pdirlist = (caddr_t *) pdir;
581		++nfreepdir;
582	}
583}
584#endif
585
586/*
587 * Initialize a preallocated and zeroed pmap structure,
588 * such as one in a vmspace structure.
589 */
590void
591pmap_pinit(pmap)
592	register struct pmap *pmap;
593{
594	/*
595	 * No need to allocate page table space yet but we do need a valid
596	 * page directory table.
597	 */
598
599#if defined(PMAP_KEEP_PDIRS)
600	pmap->pm_pdir = pmap_getpdir();
601#else
602	pmap->pm_pdir = (pd_entry_t *) kmem_alloc(kernel_map, PAGE_SIZE);
603#endif
604
605	/* wire in kernel global address entries */
606	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
607
608	/* install self-referential address mapping entry */
609	*(int *) (pmap->pm_pdir + PTDPTDI) =
610	    ((int) pmap_kextract((vm_offset_t) pmap->pm_pdir)) | PG_V | PG_KW;
611
612	pmap->pm_count = 1;
613}
614
615/*
616 * grow the number of kernel page table entries, if needed
617 */
618
619static vm_page_t nkpg;
620vm_offset_t kernel_vm_end;
621
622void
623pmap_growkernel(vm_offset_t addr)
624{
625	struct proc *p;
626	struct pmap *pmap;
627	int s;
628
629	s = splhigh();
630	if (kernel_vm_end == 0) {
631		kernel_vm_end = KERNBASE;
632		nkpt = 0;
633		while (pdir_pde(PTD, kernel_vm_end)) {
634			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
635			++nkpt;
636		}
637	}
638	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
639	while (kernel_vm_end < addr) {
640		if (pdir_pde(PTD, kernel_vm_end)) {
641			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
642			continue;
643		}
644		++nkpt;
645		if (!nkpg) {
646			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
647			if (!nkpg)
648				panic("pmap_growkernel: no memory to grow kernel");
649			vm_page_wire(nkpg);
650			vm_page_remove(nkpg);
651			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
652		}
653		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_KW);
654		nkpg = NULL;
655
656		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
657			if (p->p_vmspace) {
658				pmap = &p->p_vmspace->vm_pmap;
659				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
660			}
661		}
662		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
663		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
664	}
665	splx(s);
666}
667
668/*
669 *	Retire the given physical map from service.
670 *	Should only be called if the map contains
671 *	no valid mappings.
672 */
673void
674pmap_destroy(pmap)
675	register pmap_t pmap;
676{
677	int count;
678
679	if (pmap == NULL)
680		return;
681
682	count = --pmap->pm_count;
683	if (count == 0) {
684		pmap_release(pmap);
685		free((caddr_t) pmap, M_VMPMAP);
686	}
687}
688
689/*
690 * Release any resources held by the given physical map.
691 * Called when a pmap initialized by pmap_pinit is being released.
692 * Should only be called if the map contains no valid mappings.
693 */
694void
695pmap_release(pmap)
696	register struct pmap *pmap;
697{
698#if defined(PMAP_KEEP_PDIRS)
699	pmap_freepdir( (void *)pmap->pm_pdir);
700#else
701	kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
702#endif
703}
704
705/*
706 *	Add a reference to the specified pmap.
707 */
708void
709pmap_reference(pmap)
710	pmap_t pmap;
711{
712	if (pmap != NULL) {
713		pmap->pm_count++;
714	}
715}
716
717#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
718
719/*
720 * Data for the pv entry allocation mechanism
721 */
722static int pv_freelistcnt;
723static pv_entry_t pv_freelist;
724static vm_offset_t pvva;
725static int npvvapg;
726
727/*
728 * free the pv_entry back to the free list
729 */
730static __inline void
731free_pv_entry(pv)
732	pv_entry_t pv;
733{
734	if (!pv)
735		return;
736	++pv_freelistcnt;
737	pv->pv_next = pv_freelist;
738	pv_freelist = pv;
739}
740
741/*
742 * get a new pv_entry, allocating a block from the system
743 * when needed.
744 * the memory allocation is performed bypassing the malloc code
745 * because of the possibility of allocations at interrupt time.
746 */
747static __inline pv_entry_t
748get_pv_entry()
749{
750	pv_entry_t tmp;
751
752	/*
753	 * get more pv_entry pages if needed
754	 */
755	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
756		pmap_alloc_pv_entry();
757	}
758	/*
759	 * get a pv_entry off of the free list
760	 */
761	--pv_freelistcnt;
762	tmp = pv_freelist;
763	pv_freelist = tmp->pv_next;
764	return tmp;
765}
766
767/*
768 * this *strange* allocation routine *statistically* eliminates the
769 * *possibility* of a malloc failure (*FATAL*) for a pv_entry_t data structure.
770 * also -- this code is MUCH MUCH faster than the malloc equiv...
771 */
772static void
773pmap_alloc_pv_entry()
774{
775	/*
776	 * do we have any pre-allocated map-pages left?
777	 */
778	if (npvvapg) {
779		vm_page_t m;
780
781		/*
782		 * we do this to keep recursion away
783		 */
784		pv_freelistcnt += PV_FREELIST_MIN;
785		/*
786		 * allocate a physical page out of the vm system
787		 */
788		m = vm_page_alloc(kernel_object,
789		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
790		    VM_ALLOC_INTERRUPT);
791		if (m) {
792			int newentries;
793			int i;
794			pv_entry_t entry;
795
796			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
797			/*
798			 * wire the page
799			 */
800			vm_page_wire(m);
801			m->flags &= ~PG_BUSY;
802			/*
803			 * let the kernel see it
804			 */
805			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
806
807			entry = (pv_entry_t) pvva;
808			/*
809			 * update the allocation pointers
810			 */
811			pvva += PAGE_SIZE;
812			--npvvapg;
813
814			/*
815			 * free the entries into the free list
816			 */
817			for (i = 0; i < newentries; i++) {
818				free_pv_entry(entry);
819				entry++;
820			}
821		}
822		pv_freelistcnt -= PV_FREELIST_MIN;
823	}
824	if (!pv_freelist)
825		panic("get_pv_entry: cannot get a pv_entry_t");
826}
827
828
829
830/*
831 * init the pv_entry allocation system
832 */
833#define PVSPERPAGE 64
834void
835init_pv_entries(npg)
836	int npg;
837{
838	/*
839	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
840	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
841	 * this is too small.)
842	 */
843	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
844		+ PAGE_SIZE - 1) / PAGE_SIZE;
845	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
846	/*
847	 * get the first batch of entries
848	 */
849	free_pv_entry(get_pv_entry());
850}
851
852__inline pt_entry_t *
853get_ptbase(pmap)
854	pmap_t pmap;
855{
856	vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
857
858	/* are we current address space or kernel? */
859	if (pmap == kernel_pmap || frame == ((int) PTDpde & PG_FRAME)) {
860		return PTmap;
861	}
862	/* otherwise, we are alternate address space */
863	if (frame != ((int) APTDpde & PG_FRAME)) {
864		APTDpde = pmap->pm_pdir[PTDPTDI];
865		pmap_update();
866	}
867	return APTmap;
868}
869
870/*
871 * If it is the first entry on the list, it is actually
872 * in the header and we must copy the following entry up
873 * to the header.  Otherwise we must search the list for
874 * the entry.  In either case we free the now unused entry.
875 */
876static __inline void
877pmap_remove_entry(pmap, pv, va)
878	struct pmap *pmap;
879	pv_entry_t pv;
880	vm_offset_t va;
881{
882	pv_entry_t npv;
883	int s;
884	s = splhigh();
885	if (pmap == pv->pv_pmap && va == pv->pv_va) {
886		pmap_unuse_pt(pmap, va, pv->pv_ptem);
887		npv = pv->pv_next;
888		if (npv) {
889			*pv = *npv;
890			free_pv_entry(npv);
891		} else {
892			pv->pv_pmap = NULL;
893		}
894	} else {
895		for (npv = pv->pv_next; npv; (pv = npv, npv = pv->pv_next)) {
896			if (pmap == npv->pv_pmap && va == npv->pv_va) {
897				pmap_unuse_pt(pmap, va, npv->pv_ptem);
898				pv->pv_next = npv->pv_next;
899				free_pv_entry(npv);
900				break;
901			}
902		}
903	}
904	splx(s);
905}
906
907/*
908 * pmap_remove_pte: do the things to unmap a page in a process
909 */
910static void
911pmap_remove_pte(pmap, ptq, sva)
912	struct pmap *pmap;
913	pt_entry_t *ptq;
914	vm_offset_t sva;
915{
916	pt_entry_t oldpte;
917	vm_offset_t pa;
918	pv_entry_t pv;
919
920	oldpte = *ptq;
921	if (((int)oldpte) & PG_W)
922		pmap->pm_stats.wired_count--;
923	pmap->pm_stats.resident_count--;
924
925	pa = ((vm_offset_t)oldpte) & PG_FRAME;
926	if (pmap_is_managed(pa)) {
927		if ((int) oldpte & PG_M) {
928#if defined(PMAP_DIAGNOSTIC)
929			if (pmap_nw_modified(oldpte)) {
930				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", sva, (int) oldpte);
931			}
932#endif
933
934			if (sva < USRSTACK + (UPAGES * PAGE_SIZE) ||
935			    (sva >= KERNBASE && (sva < clean_sva || sva >= clean_eva))) {
936				PHYS_TO_VM_PAGE(pa)->dirty = VM_PAGE_BITS_ALL;
937			}
938		}
939		pv = pa_to_pvh(pa);
940		pmap_remove_entry(pmap, pv, sva);
941	} else {
942		pmap_unuse_pt(pmap, sva, NULL);
943	}
944
945	*ptq = 0;
946	return;
947}
948
949/*
950 * Remove a single page from a process address space
951 */
952static __inline void
953pmap_remove_page(pmap, va)
954	struct pmap *pmap;
955	register vm_offset_t va;
956{
957	register pt_entry_t *ptbase, *ptq;
958	/*
959	 * if there is no pte for this address, just skip it!!!
960	 */
961	if (*pmap_pde(pmap, va) == 0)
962		return;
963	/*
964	 * get a local va for mappings for this pmap.
965	 */
966	ptbase = get_ptbase(pmap);
967	ptq = ptbase + i386_btop(va);
968	if (*ptq) {
969		pmap_remove_pte(pmap, ptq, va);
970		pmap_update_1pg(va);
971	}
972	return;
973}
974
975/*
976 *	Remove the given range of addresses from the specified map.
977 *
978 *	It is assumed that the start and end are properly
979 *	rounded to the page size.
980 */
981void
982pmap_remove(pmap, sva, eva)
983	struct pmap *pmap;
984	register vm_offset_t sva;
985	register vm_offset_t eva;
986{
987	register pt_entry_t *ptbase;
988	vm_offset_t va;
989	vm_offset_t pdnxt;
990	vm_offset_t ptpaddr;
991	vm_offset_t sindex, eindex;
992	vm_page_t mpte;
993
994	if (pmap == NULL)
995		return;
996
997	/*
998	 * special handling of removing one page.  a very
999	 * common operation and easy to short circuit some
1000	 * code.
1001	 */
1002	if ((sva + PAGE_SIZE) == eva) {
1003		pmap_remove_page(pmap, sva);
1004		return;
1005	}
1006
1007	/*
1008	 * Get a local virtual address for the mappings that are being
1009	 * worked with.
1010	 */
1011	ptbase = get_ptbase(pmap);
1012
1013	sindex = i386_btop(sva);
1014	eindex = i386_btop(eva);
1015
1016	for (; sindex < eindex; sindex = pdnxt) {
1017
1018		/*
1019		 * Calculate index for next page table.
1020		 */
1021		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1022		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1023
1024		/*
1025		 * Weed out invalid mappings. Note: we assume that the page
1026		 * directory table is always allocated, and in kernel virtual.
1027		 */
1028		if (ptpaddr == 0)
1029			continue;
1030
1031		/*
1032		 * get the vm_page_t for the page table page
1033		 */
1034		mpte = PHYS_TO_VM_PAGE(ptpaddr);
1035
1036		/*
1037		 * if the pte isn't wired or held, just skip it.
1038		 */
1039		if ((mpte->hold_count == 0) && (mpte->wire_count == 0))
1040			continue;
1041
1042		/*
1043		 * Limit our scan to either the end of the va represented
1044		 * by the current page table page, or to the end of the
1045		 * range being removed.
1046		 */
1047		if (pdnxt > eindex) {
1048			pdnxt = eindex;
1049		}
1050
1051		for ( ;sindex != pdnxt; sindex++) {
1052			if (ptbase[sindex] == 0)
1053				continue;
1054			pmap_remove_pte(pmap, ptbase + sindex, i386_ptob(sindex));
1055			if (mpte->hold_count == 0 && mpte->wire_count == 0)
1056				break;
1057		}
1058	}
1059	pmap_update();
1060}
1061
1062/*
1063 *	Routine:	pmap_remove_all
1064 *	Function:
1065 *		Removes this physical page from
1066 *		all physical maps in which it resides.
1067 *		Reflects back modify bits to the pager.
1068 *
1069 *	Notes:
1070 *		Original versions of this routine were very
1071 *		inefficient because they iteratively called
1072 *		pmap_remove (slow...)
1073 */
1074static void
1075pmap_remove_all(pa)
1076	vm_offset_t pa;
1077{
1078	register pv_entry_t pv, opv, npv;
1079	register pt_entry_t *pte, *ptbase;
1080	vm_offset_t va;
1081	struct pmap *pmap;
1082	vm_page_t m;
1083	int s;
1084	int anyvalid = 0;
1085
1086#if defined(PMAP_DIAGNOSTIC)
1087	/*
1088	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1089	 * pages!
1090	 */
1091	if (!pmap_is_managed(pa)) {
1092		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1093	}
1094#endif
1095
1096	pa = pa & PG_FRAME;
1097	opv = pa_to_pvh(pa);
1098	if (opv->pv_pmap == NULL)
1099		return;
1100
1101	m = PHYS_TO_VM_PAGE(pa);
1102	s = splhigh();
1103	pv = opv;
1104	while (pv && ((pmap = pv->pv_pmap) != NULL)) {
1105		int tpte;
1106		ptbase = get_ptbase(pmap);
1107		va = pv->pv_va;
1108		pte = ptbase + i386_btop(va);
1109		if (tpte = ((int) *pte)) {
1110			*pte = 0;
1111			if (tpte & PG_W)
1112				pmap->pm_stats.wired_count--;
1113			pmap->pm_stats.resident_count--;
1114			anyvalid = 1;
1115
1116			/*
1117			 * Update the vm_page_t clean and reference bits.
1118			 */
1119			if ((tpte & PG_M) != 0) {
1120#if defined(PMAP_DIAGNOSTIC)
1121				if (pmap_nw_modified((pt_entry_t) tpte)) {
1122					printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, tpte);
1123				}
1124#endif
1125				if (va < USRSTACK + (UPAGES * PAGE_SIZE) ||
1126				    (va >= KERNBASE && (va < clean_sva || va >= clean_eva))) {
1127					m->dirty = VM_PAGE_BITS_ALL;
1128				}
1129			}
1130		}
1131		pv = pv->pv_next;
1132	}
1133
1134	if (opv->pv_pmap != NULL) {
1135		pmap_unuse_pt(opv->pv_pmap, opv->pv_va, opv->pv_ptem);
1136		for (pv = opv->pv_next; pv; pv = npv) {
1137			npv = pv->pv_next;
1138			pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1139			free_pv_entry(pv);
1140		}
1141	}
1142
1143	opv->pv_pmap = NULL;
1144	opv->pv_next = NULL;
1145
1146	splx(s);
1147	if (anyvalid)
1148		pmap_update();
1149}
1150
1151
1152/*
1153 *	Set the physical protection on the
1154 *	specified range of this map as requested.
1155 */
1156void
1157pmap_protect(pmap, sva, eva, prot)
1158	register pmap_t pmap;
1159	vm_offset_t sva, eva;
1160	vm_prot_t prot;
1161{
1162	register pt_entry_t *pte;
1163	register vm_offset_t va;
1164	register pt_entry_t *ptbase;
1165	vm_offset_t pdnxt;
1166	vm_offset_t ptpaddr;
1167	vm_offset_t sindex, eindex;
1168	vm_page_t mpte;
1169	int anychanged;
1170
1171
1172	if (pmap == NULL)
1173		return;
1174
1175	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1176		pmap_remove(pmap, sva, eva);
1177		return;
1178	}
1179	if (prot & VM_PROT_WRITE)
1180		return;
1181
1182	anychanged = 0;
1183
1184	ptbase = get_ptbase(pmap);
1185
1186	sindex = i386_btop(sva);
1187	eindex = i386_btop(eva);
1188
1189	for (; sindex < eindex; sindex = pdnxt) {
1190		int pprot;
1191		int pbits;
1192
1193		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1194		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1195
1196		/*
1197		 * Weed out invalid mappings. Note: we assume that the page
1198		 * directory table is always allocated, and in kernel virtual.
1199		 */
1200		if (ptpaddr == 0)
1201			continue;
1202
1203		mpte = PHYS_TO_VM_PAGE(ptpaddr);
1204
1205		if ((mpte->hold_count == 0) && (mpte->wire_count == 0))
1206			continue;
1207
1208		if (pdnxt > eindex) {
1209			pdnxt = eindex;
1210		}
1211
1212		for (; sindex != pdnxt; sindex++) {
1213			if (ptbase[sindex] == 0)
1214				continue;
1215			pte = ptbase + sindex;
1216			pbits = *(int *)pte;
1217			if (pbits & PG_RW) {
1218				if (pbits & PG_M) {
1219					vm_page_t m;
1220					vm_offset_t pa = pbits & PG_FRAME;
1221					m = PHYS_TO_VM_PAGE(pa);
1222					m->dirty = VM_PAGE_BITS_ALL;
1223				}
1224				*(int *)pte &= ~(PG_M|PG_RW);
1225				anychanged=1;
1226			}
1227		}
1228	}
1229	if (anychanged)
1230		pmap_update();
1231}
1232
1233/*
1234 *	Insert the given physical page (p) at
1235 *	the specified virtual address (v) in the
1236 *	target physical map with the protection requested.
1237 *
1238 *	If specified, the page will be wired down, meaning
1239 *	that the related pte can not be reclaimed.
1240 *
1241 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1242 *	or lose information.  That is, this routine must actually
1243 *	insert this page into the given map NOW.
1244 */
1245void
1246pmap_enter(pmap, va, pa, prot, wired)
1247	register pmap_t pmap;
1248	vm_offset_t va;
1249	register vm_offset_t pa;
1250	vm_prot_t prot;
1251	boolean_t wired;
1252{
1253	register pt_entry_t *pte;
1254	vm_offset_t opa;
1255	register pv_entry_t pv, npv;
1256	int ptevalid;
1257	vm_offset_t origpte, newpte;
1258
1259	if (pmap == NULL)
1260		return;
1261
1262	pv = NULL;
1263
1264	va = va & PG_FRAME;
1265	if (va > VM_MAX_KERNEL_ADDRESS)
1266		panic("pmap_enter: toobig");
1267
1268	/*
1269	 * In the case that a page table page is not
1270	 * resident, we are creating it here.
1271	 */
1272	if ((va < VM_MIN_KERNEL_ADDRESS) &&
1273		(curproc != NULL) &&
1274		(pmap->pm_map->pmap == pmap)) {
1275		vm_offset_t v;
1276
1277		v = (vm_offset_t) vtopte(va);
1278		/* Fault the pte only if needed: */
1279		if (*((int *)vtopte(v)) == 0)
1280			(void) vm_fault(pmap->pm_map,
1281				trunc_page(v), VM_PROT_WRITE, FALSE);
1282	}
1283
1284	/*
1285	 * Page Directory table entry not valid, we need a new PT page
1286	 */
1287	pte = pmap_pte(pmap, va);
1288	if (pte == NULL) {
1289		printf("kernel page directory invalid pdir=%p, va=0x%lx\n",
1290			pmap->pm_pdir[PTDPTDI], va);
1291		panic("invalid kernel page directory");
1292	}
1293
1294	origpte = *(vm_offset_t *)pte;
1295	opa = origpte & PG_FRAME;
1296
1297	pa = pa & PG_FRAME;
1298
1299	/*
1300	 * Mapping has not changed, must be protection or wiring change.
1301	 */
1302	if (opa == pa) {
1303		/*
1304		 * Wiring change, just update stats. We don't worry about
1305		 * wiring PT pages as they remain resident as long as there
1306		 * are valid mappings in them. Hence, if a user page is wired,
1307		 * the PT page will be also.
1308		 */
1309		if (wired && ((origpte & PG_W) == 0))
1310			pmap->pm_stats.wired_count++;
1311		else if (!wired && (origpte & PG_W))
1312			pmap->pm_stats.wired_count--;
1313
1314#if defined(PMAP_DIAGNOSTIC)
1315		if (pmap_nw_modified((pt_entry_t) origpte)) {
1316			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
1317		}
1318#endif
1319
1320		/*
1321		 * We might be turning off write access to the page,
1322		 * so we go ahead and sense modify status.
1323		 */
1324		if (origpte & PG_M) {
1325			vm_page_t m;
1326			m = PHYS_TO_VM_PAGE(pa);
1327			m->dirty = VM_PAGE_BITS_ALL;
1328		}
1329		goto validate;
1330	}
1331	/*
1332	 * Mapping has changed, invalidate old range and fall through to
1333	 * handle validating new mapping.
1334	 */
1335	if (opa) {
1336		pmap_remove_page(pmap, va);
1337		opa = 0;
1338		origpte = 0;
1339	}
1340	/*
1341	 * Enter on the PV list if part of our managed memory Note that we
1342	 * raise IPL while manipulating pv_table since pmap_enter can be
1343	 * called at interrupt time.
1344	 */
1345	if (pmap_is_managed(pa)) {
1346		int s;
1347
1348		pv = pa_to_pvh(pa);
1349		s = splhigh();
1350		/*
1351		 * No entries yet, use header as the first entry
1352		 */
1353		if (pv->pv_pmap == NULL) {
1354			pv->pv_va = va;
1355			pv->pv_pmap = pmap;
1356			pv->pv_next = NULL;
1357			pv->pv_ptem = NULL;
1358		}
1359		/*
1360		 * There is at least one other VA mapping this page. Place
1361		 * this entry after the header.
1362		 */
1363		else {
1364			npv = get_pv_entry();
1365			npv->pv_va = va;
1366			npv->pv_pmap = pmap;
1367			npv->pv_next = pv->pv_next;
1368			pv->pv_next = npv;
1369			pv = npv;
1370			pv->pv_ptem = NULL;
1371		}
1372		splx(s);
1373	}
1374
1375	/*
1376	 * Increment counters
1377	 */
1378	pmap->pm_stats.resident_count++;
1379	if (wired)
1380		pmap->pm_stats.wired_count++;
1381
1382validate:
1383	/*
1384	 * Now validate mapping with desired protection/wiring.
1385	 */
1386	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
1387
1388	if (wired)
1389		newpte |= PG_W;
1390	if (va < UPT_MIN_ADDRESS)
1391		newpte |= PG_u;
1392	else if (va < UPT_MAX_ADDRESS)
1393		newpte |= PG_u | PG_RW;
1394
1395	/*
1396	 * if the mapping or permission bits are different, we need
1397	 * to update the pte.
1398	 */
1399	if ((origpte & ~(PG_M|PG_U)) != newpte) {
1400		*pte = (pt_entry_t) newpte;
1401		if (origpte)
1402			pmap_update_1pg(va);
1403	}
1404
1405	if (origpte == 0) {
1406		vm_page_t mpte;
1407		mpte = pmap_use_pt(pmap, va);
1408		if (pv)
1409			pv->pv_ptem = mpte;
1410	}
1411}
1412
1413/*
1414 * Add a list of wired pages to the kva
1415 * this routine is only used for temporary
1416 * kernel mappings that do not need to have
1417 * page modification or references recorded.
1418 * Note that old mappings are simply written
1419 * over.  The page *must* be wired.
1420 */
1421void
1422pmap_qenter(va, m, count)
1423	vm_offset_t va;
1424	vm_page_t *m;
1425	int count;
1426{
1427	int i;
1428	int anyvalid = 0;
1429	register pt_entry_t *pte;
1430
1431	for (i = 0; i < count; i++) {
1432		vm_offset_t tva = va + i * PAGE_SIZE;
1433		pt_entry_t npte = (pt_entry_t) ((int) (VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V));
1434		pt_entry_t opte;
1435		pte = vtopte(tva);
1436		opte = *pte;
1437		*pte = npte;
1438		if (opte) pmap_update_1pg(tva);
1439	}
1440}
1441/*
1442 * this routine jerks page mappings from the
1443 * kernel -- it is meant only for temporary mappings.
1444 */
1445void
1446pmap_qremove(va, count)
1447	vm_offset_t va;
1448	int count;
1449{
1450	int i;
1451	register pt_entry_t *pte;
1452
1453	for (i = 0; i < count; i++) {
1454		vm_offset_t tva = va + i * PAGE_SIZE;
1455		pte = vtopte(tva);
1456		*pte = 0;
1457		pmap_update_1pg(tva);
1458	}
1459}
1460
1461/*
1462 * add a wired page to the kva
1463 * note that in order for the mapping to take effect -- you
1464 * should do a pmap_update after doing the pmap_kenter...
1465 */
1466void
1467pmap_kenter(va, pa)
1468	vm_offset_t va;
1469	register vm_offset_t pa;
1470{
1471	register pt_entry_t *pte;
1472	pt_entry_t npte, opte;
1473
1474	npte = (pt_entry_t) ((int) (pa | PG_RW | PG_V));
1475	pte = vtopte(va);
1476	opte = *pte;
1477	*pte = npte;
1478	if (opte) pmap_update_1pg(va);
1479}
1480
1481/*
1482 * remove a page from the kernel pagetables
1483 */
1484void
1485pmap_kremove(va)
1486	vm_offset_t va;
1487{
1488	register pt_entry_t *pte;
1489
1490	pte = vtopte(va);
1491	*pte = (pt_entry_t) 0;
1492	pmap_update_1pg(va);
1493}
1494
1495/*
1496 * this code makes some *MAJOR* assumptions:
1497 * 1. Current pmap & pmap exists.
1498 * 2. Not wired.
1499 * 3. Read access.
1500 * 4. No page table pages.
1501 * 5. Tlbflush is deferred to calling procedure.
1502 * 6. Page IS managed.
1503 * but is *MUCH* faster than pmap_enter...
1504 */
1505
1506static void
1507pmap_enter_quick(pmap, va, pa)
1508	register pmap_t pmap;
1509	vm_offset_t va;
1510	register vm_offset_t pa;
1511{
1512	register pt_entry_t *pte;
1513	register pv_entry_t pv, npv;
1514	int s;
1515
1516	/*
1517	 * Enter on the PV list if part of our managed memory Note that we
1518	 * raise IPL while manipulating pv_table since pmap_enter can be
1519	 * called at interrupt time.
1520	 */
1521
1522	pte = vtopte(va);
1523	/* a fault on the page table might occur here */
1524	if (*pte) {
1525		pmap_remove_page(pmap, va);
1526	}
1527
1528	pv = pa_to_pvh(pa);
1529	s = splhigh();
1530	/*
1531	 * No entries yet, use header as the first entry
1532	 */
1533	if (pv->pv_pmap == NULL) {
1534		pv->pv_pmap = pmap;
1535		pv->pv_va = va;
1536		pv->pv_next = NULL;
1537	}
1538	/*
1539	 * There is at least one other VA mapping this page. Place this entry
1540	 * after the header.
1541	 */
1542	else {
1543		npv = get_pv_entry();
1544		npv->pv_va = va;
1545		npv->pv_pmap = pmap;
1546		npv->pv_next = pv->pv_next;
1547		pv->pv_next = npv;
1548		pv = npv;
1549	}
1550	splx(s);
1551	pv->pv_ptem = pmap_use_pt(pmap, va);
1552
1553	/*
1554	 * Increment counters
1555	 */
1556	pmap->pm_stats.resident_count++;
1557
1558	/*
1559	 * Now validate mapping with RO protection
1560	 */
1561	*pte = (pt_entry_t) ((int) (pa | PG_V | PG_u));
1562
1563	return;
1564}
1565
1566#define MAX_INIT_PT (96)
1567/*
1568 * pmap_object_init_pt preloads the ptes for a given object
1569 * into the specified pmap.  This eliminates the blast of soft
1570 * faults on process startup and immediately after an mmap.
1571 */
1572void
1573pmap_object_init_pt(pmap, addr, object, pindex, size)
1574	pmap_t pmap;
1575	vm_offset_t addr;
1576	vm_object_t object;
1577	vm_pindex_t pindex;
1578	vm_size_t size;
1579{
1580	vm_offset_t tmpidx;
1581	int psize;
1582	vm_page_t p;
1583	int objpgs;
1584
1585	psize = (size >> PAGE_SHIFT);
1586
1587	if (!pmap || (object->type != OBJT_VNODE) ||
1588		((psize > MAX_INIT_PT) &&
1589			(object->resident_page_count > MAX_INIT_PT))) {
1590		return;
1591	}
1592
1593	/*
1594	 * remove any already used mappings
1595	 */
1596	pmap_remove( pmap, trunc_page(addr), round_page(addr + size));
1597
1598	/*
1599	 * if we are processing a major portion of the object, then scan the
1600	 * entire thing.
1601	 */
1602	if (psize > (object->size >> 2)) {
1603		objpgs = psize;
1604
1605		for (p = object->memq.tqh_first;
1606		    ((objpgs > 0) && (p != NULL));
1607		    p = p->listq.tqe_next) {
1608
1609			tmpidx = p->pindex;
1610			if (tmpidx < pindex) {
1611				continue;
1612			}
1613			tmpidx -= pindex;
1614			if (tmpidx >= psize) {
1615				continue;
1616			}
1617			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1618			    (p->busy == 0) &&
1619			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1620				if (p->queue == PQ_CACHE)
1621					vm_page_deactivate(p);
1622				vm_page_hold(p);
1623				p->flags |= PG_MAPPED;
1624				pmap_enter_quick(pmap,
1625					addr + (tmpidx << PAGE_SHIFT),
1626					VM_PAGE_TO_PHYS(p));
1627				vm_page_unhold(p);
1628			}
1629			objpgs -= 1;
1630		}
1631	} else {
1632		/*
1633		 * else lookup the pages one-by-one.
1634		 */
1635		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
1636			p = vm_page_lookup(object, tmpidx + pindex);
1637			if (p && (p->busy == 0) &&
1638			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1639			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1640				if (p->queue == PQ_CACHE)
1641					vm_page_deactivate(p);
1642				vm_page_hold(p);
1643				p->flags |= PG_MAPPED;
1644				pmap_enter_quick(pmap,
1645					addr + (tmpidx << PAGE_SHIFT),
1646					VM_PAGE_TO_PHYS(p));
1647				vm_page_unhold(p);
1648			}
1649		}
1650	}
1651	return;
1652}
1653
1654/*
1655 * pmap_prefault provides a quick way of clustering
1656 * pagefaults into a processes address space.  It is a "cousin"
1657 * of pmap_object_init_pt, except it runs at page fault time instead
1658 * of mmap time.
1659 */
1660#define PFBAK 2
1661#define PFFOR 2
1662#define PAGEORDER_SIZE (PFBAK+PFFOR)
1663
1664static int pmap_prefault_pageorder[] = {
1665	-NBPG, NBPG, -2 * NBPG, 2 * NBPG
1666};
1667
1668void
1669pmap_prefault(pmap, addra, entry, object)
1670	pmap_t pmap;
1671	vm_offset_t addra;
1672	vm_map_entry_t entry;
1673	vm_object_t object;
1674{
1675	int i;
1676	vm_offset_t starta;
1677	vm_offset_t addr;
1678	vm_pindex_t pindex;
1679	vm_page_t m;
1680	int pageorder_index;
1681
1682	if (entry->object.vm_object != object)
1683		return;
1684
1685	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
1686		return;
1687
1688	starta = addra - PFBAK * PAGE_SIZE;
1689	if (starta < entry->start) {
1690		starta = entry->start;
1691	} else if (starta > addra) {
1692		starta = 0;
1693	}
1694
1695	for (i = 0; i < PAGEORDER_SIZE; i++) {
1696		vm_object_t lobject;
1697		pt_entry_t *pte;
1698
1699		addr = addra + pmap_prefault_pageorder[i];
1700		if (addr < starta || addr >= entry->end)
1701			continue;
1702
1703		pte = vtopte(addr);
1704		if (*pte)
1705			continue;
1706
1707		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1708		lobject = object;
1709		for (m = vm_page_lookup(lobject, pindex);
1710		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
1711		    lobject = lobject->backing_object) {
1712			if (lobject->backing_object_offset & PAGE_MASK)
1713				break;
1714			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
1715			m = vm_page_lookup(lobject->backing_object, pindex);
1716		}
1717
1718		/*
1719		 * give-up when a page is not in memory
1720		 */
1721		if (m == NULL)
1722			break;
1723
1724		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1725		    (m->busy == 0) &&
1726		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1727
1728			if (m->queue == PQ_CACHE) {
1729				if ((cnt.v_free_count + cnt.v_cache_count) <
1730					cnt.v_free_min)
1731					break;
1732				vm_page_deactivate(m);
1733			}
1734			vm_page_hold(m);
1735			m->flags |= PG_MAPPED;
1736			pmap_enter_quick(pmap, addr, VM_PAGE_TO_PHYS(m));
1737			vm_page_unhold(m);
1738
1739		}
1740	}
1741}
1742
1743/*
1744 *	Routine:	pmap_change_wiring
1745 *	Function:	Change the wiring attribute for a map/virtual-address
1746 *			pair.
1747 *	In/out conditions:
1748 *			The mapping must already exist in the pmap.
1749 */
1750void
1751pmap_change_wiring(pmap, va, wired)
1752	register pmap_t pmap;
1753	vm_offset_t va;
1754	boolean_t wired;
1755{
1756	register pt_entry_t *pte;
1757
1758	if (pmap == NULL)
1759		return;
1760
1761	pte = pmap_pte(pmap, va);
1762
1763	if (wired && !pmap_pte_w(pte))
1764		pmap->pm_stats.wired_count++;
1765	else if (!wired && pmap_pte_w(pte))
1766		pmap->pm_stats.wired_count--;
1767
1768	/*
1769	 * Wiring is not a hardware characteristic so there is no need to
1770	 * invalidate TLB.
1771	 */
1772	pmap_pte_set_w(pte, wired);
1773}
1774
1775
1776
1777/*
1778 *	Copy the range specified by src_addr/len
1779 *	from the source map to the range dst_addr/len
1780 *	in the destination map.
1781 *
1782 *	This routine is only advisory and need not do anything.
1783 */
1784void
1785pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1786	pmap_t dst_pmap, src_pmap;
1787	vm_offset_t dst_addr;
1788	vm_size_t len;
1789	vm_offset_t src_addr;
1790{
1791}
1792
1793/*
1794 *	Routine:	pmap_kernel
1795 *	Function:
1796 *		Returns the physical map handle for the kernel.
1797 */
1798pmap_t
1799pmap_kernel()
1800{
1801	return (kernel_pmap);
1802}
1803
1804/*
1805 *	pmap_zero_page zeros the specified (machine independent)
1806 *	page by mapping the page into virtual memory and using
1807 *	bzero to clear its contents, one machine dependent page
1808 *	at a time.
1809 */
1810void
1811pmap_zero_page(phys)
1812	vm_offset_t phys;
1813{
1814	if (*(int *) CMAP2)
1815		panic("pmap_zero_page: CMAP busy");
1816
1817	*(int *) CMAP2 = PG_V | PG_KW | (phys & PG_FRAME);
1818	bzero(CADDR2, PAGE_SIZE);
1819
1820	*(int *) CMAP2 = 0;
1821	pmap_update_1pg((vm_offset_t) CADDR2);
1822}
1823
1824/*
1825 *	pmap_copy_page copies the specified (machine independent)
1826 *	page by mapping the page into virtual memory and using
1827 *	bcopy to copy the page, one machine dependent page at a
1828 *	time.
1829 */
1830void
1831pmap_copy_page(src, dst)
1832	vm_offset_t src;
1833	vm_offset_t dst;
1834{
1835	if (*(int *) CMAP1 || *(int *) CMAP2)
1836		panic("pmap_copy_page: CMAP busy");
1837
1838	*(int *) CMAP1 = PG_V | PG_KW | (src & PG_FRAME);
1839	*(int *) CMAP2 = PG_V | PG_KW | (dst & PG_FRAME);
1840
1841#if __GNUC__ > 1
1842	memcpy(CADDR2, CADDR1, PAGE_SIZE);
1843#else
1844	bcopy(CADDR1, CADDR2, PAGE_SIZE);
1845#endif
1846	*(int *) CMAP1 = 0;
1847	*(int *) CMAP2 = 0;
1848	pmap_update_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
1849}
1850
1851
1852/*
1853 *	Routine:	pmap_pageable
1854 *	Function:
1855 *		Make the specified pages (by pmap, offset)
1856 *		pageable (or not) as requested.
1857 *
1858 *		A page which is not pageable may not take
1859 *		a fault; therefore, its page table entry
1860 *		must remain valid for the duration.
1861 *
1862 *		This routine is merely advisory; pmap_enter
1863 *		will specify that these pages are to be wired
1864 *		down (or not) as appropriate.
1865 */
1866void
1867pmap_pageable(pmap, sva, eva, pageable)
1868	pmap_t pmap;
1869	vm_offset_t sva, eva;
1870	boolean_t pageable;
1871{
1872}
1873
1874/*
1875 * this routine returns true if a physical page resides
1876 * in the given pmap.
1877 */
1878boolean_t
1879pmap_page_exists(pmap, pa)
1880	pmap_t pmap;
1881	vm_offset_t pa;
1882{
1883	register pv_entry_t pv;
1884	int s;
1885
1886	if (!pmap_is_managed(pa))
1887		return FALSE;
1888
1889	pv = pa_to_pvh(pa);
1890	s = splhigh();
1891
1892	/*
1893	 * Not found, check current mappings returning immediately if found.
1894	 */
1895	if (pv->pv_pmap != NULL) {
1896		for (; pv; pv = pv->pv_next) {
1897			if (pv->pv_pmap == pmap) {
1898				splx(s);
1899				return TRUE;
1900			}
1901		}
1902	}
1903	splx(s);
1904	return (FALSE);
1905}
1906
1907/*
1908 * pmap_testbit tests bits in pte's
1909 * note that the testbit/changebit routines are inline,
1910 * and a lot of things compile-time evaluate.
1911 */
1912static __inline boolean_t
1913pmap_testbit(pa, bit)
1914	register vm_offset_t pa;
1915	int bit;
1916{
1917	register pv_entry_t pv;
1918	pt_entry_t *pte;
1919	int s;
1920
1921	if (!pmap_is_managed(pa))
1922		return FALSE;
1923
1924	pv = pa_to_pvh(pa);
1925	s = splhigh();
1926
1927	/*
1928	 * Not found, check current mappings returning immediately if found.
1929	 */
1930	if (pv->pv_pmap != NULL) {
1931		for (; pv; pv = pv->pv_next) {
1932			/*
1933			 * if the bit being tested is the modified bit, then
1934			 * mark UPAGES as always modified, and ptes as never
1935			 * modified.
1936			 */
1937			if (bit & (PG_U|PG_M)) {
1938				if ((pv->pv_va >= clean_sva) && (pv->pv_va < clean_eva)) {
1939					continue;
1940				}
1941			}
1942			if (!pv->pv_pmap) {
1943#if defined(PMAP_DIAGNOSTIC)
1944				printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
1945#endif
1946				continue;
1947			}
1948			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1949			if ((int) *pte & bit) {
1950				splx(s);
1951				return TRUE;
1952			}
1953		}
1954	}
1955	splx(s);
1956	return (FALSE);
1957}
1958
1959/*
1960 * this routine is used to modify bits in ptes
1961 */
1962static __inline void
1963pmap_changebit(pa, bit, setem)
1964	vm_offset_t pa;
1965	int bit;
1966	boolean_t setem;
1967{
1968	register pv_entry_t pv;
1969	register pt_entry_t *pte, npte;
1970	vm_offset_t va;
1971	int changed;
1972	int s;
1973
1974	if (!pmap_is_managed(pa))
1975		return;
1976
1977	pv = pa_to_pvh(pa);
1978	s = splhigh();
1979
1980	/*
1981	 * Loop over all current mappings setting/clearing as appropos If
1982	 * setting RO do we need to clear the VAC?
1983	 */
1984	if (pv->pv_pmap != NULL) {
1985		for (; pv; pv = pv->pv_next) {
1986			va = pv->pv_va;
1987
1988			/*
1989			 * don't write protect pager mappings
1990			 */
1991			if (!setem && (bit == PG_RW)) {
1992				if (va >= clean_sva && va < clean_eva)
1993					continue;
1994			}
1995			if (!pv->pv_pmap) {
1996#if defined(PMAP_DIAGNOSTIC)
1997				printf("Null pmap (cb) at va: 0x%lx\n", va);
1998#endif
1999				continue;
2000			}
2001
2002			pte = pmap_pte(pv->pv_pmap, va);
2003			if (setem) {
2004				*(int *)pte |= bit;
2005			} else {
2006				if (bit == PG_RW) {
2007					vm_offset_t pbits = *(vm_offset_t *)pte;
2008					if (pbits & PG_M) {
2009						vm_page_t m;
2010						vm_offset_t pa = pbits & PG_FRAME;
2011						m = PHYS_TO_VM_PAGE(pa);
2012						m->dirty = VM_PAGE_BITS_ALL;
2013					}
2014					*(int *)pte &= ~(PG_M|PG_RW);
2015				} else {
2016					*(int *)pte &= ~bit;
2017				}
2018			}
2019		}
2020	}
2021	splx(s);
2022	pmap_update();
2023}
2024
2025/*
2026 *      pmap_page_protect:
2027 *
2028 *      Lower the permission for all mappings to a given page.
2029 */
2030void
2031pmap_page_protect(phys, prot)
2032	vm_offset_t phys;
2033	vm_prot_t prot;
2034{
2035	if ((prot & VM_PROT_WRITE) == 0) {
2036		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
2037			pmap_changebit(phys, PG_RW, FALSE);
2038		else
2039			pmap_remove_all(phys);
2040	}
2041}
2042
2043vm_offset_t
2044pmap_phys_address(ppn)
2045	int ppn;
2046{
2047	return (i386_ptob(ppn));
2048}
2049
2050/*
2051 *	pmap_is_referenced:
2052 *
2053 *	Return whether or not the specified physical page was referenced
2054 *	by any physical maps.
2055 */
2056boolean_t
2057pmap_is_referenced(vm_offset_t pa)
2058{
2059	return pmap_testbit((pa), PG_U);
2060}
2061
2062/*
2063 *	pmap_is_modified:
2064 *
2065 *	Return whether or not the specified physical page was modified
2066 *	in any physical maps.
2067 */
2068boolean_t
2069pmap_is_modified(vm_offset_t pa)
2070{
2071	return pmap_testbit((pa), PG_M);
2072}
2073
2074/*
2075 *	Clear the modify bits on the specified physical page.
2076 */
2077void
2078pmap_clear_modify(vm_offset_t pa)
2079{
2080	pmap_changebit((pa), PG_M, FALSE);
2081}
2082
2083/*
2084 *	pmap_clear_reference:
2085 *
2086 *	Clear the reference bit on the specified physical page.
2087 */
2088void
2089pmap_clear_reference(vm_offset_t pa)
2090{
2091	pmap_changebit((pa), PG_U, FALSE);
2092}
2093
2094/*
2095 * Miscellaneous support routines follow
2096 */
2097
2098static void
2099i386_protection_init()
2100{
2101	register int *kp, prot;
2102
2103	kp = protection_codes;
2104	for (prot = 0; prot < 8; prot++) {
2105		switch (prot) {
2106		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2107			/*
2108			 * Read access is also 0. There isn't any execute bit,
2109			 * so just make it readable.
2110			 */
2111		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2112		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2113		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2114			*kp++ = 0;
2115			break;
2116		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2117		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2118		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2119		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2120			*kp++ = PG_RW;
2121			break;
2122		}
2123	}
2124}
2125
2126/*
2127 * Map a set of physical memory pages into the kernel virtual
2128 * address space. Return a pointer to where it is mapped. This
2129 * routine is intended to be used for mapping device memory,
2130 * NOT real memory. The non-cacheable bits are set on each
2131 * mapped page.
2132 */
2133void *
2134pmap_mapdev(pa, size)
2135	vm_offset_t pa;
2136	vm_size_t size;
2137{
2138	vm_offset_t va, tmpva;
2139	pt_entry_t *pte;
2140
2141	size = roundup(size, PAGE_SIZE);
2142
2143	va = kmem_alloc_pageable(kernel_map, size);
2144	if (!va)
2145		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2146
2147	pa = pa & PG_FRAME;
2148	for (tmpva = va; size > 0;) {
2149		pte = vtopte(tmpva);
2150		*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_N));
2151		size -= PAGE_SIZE;
2152		tmpva += PAGE_SIZE;
2153		pa += PAGE_SIZE;
2154	}
2155	pmap_update();
2156
2157	return ((void *) va);
2158}
2159
2160#if defined(PMAP_DEBUG)
2161pmap_pid_dump(int pid) {
2162	pmap_t pmap;
2163	struct proc *p;
2164	int npte = 0;
2165	int index;
2166	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
2167		if (p->p_pid != pid)
2168			continue;
2169
2170		if (p->p_vmspace) {
2171			int i,j;
2172			index = 0;
2173			pmap = &p->p_vmspace->vm_pmap;
2174			for(i=0;i<1024;i++) {
2175				pd_entry_t *pde;
2176				pt_entry_t *pte;
2177				unsigned base = i << PD_SHIFT;
2178
2179				pde = &pmap->pm_pdir[i];
2180				if (pde && pmap_pde_v(pde)) {
2181					for(j=0;j<1024;j++) {
2182						unsigned va = base + (j << PG_SHIFT);
2183						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
2184							if (index) {
2185								index = 0;
2186								printf("\n");
2187							}
2188							return npte;
2189						}
2190						pte = pmap_pte( pmap, va);
2191						if (pte && pmap_pte_v(pte)) {
2192							vm_offset_t pa;
2193							vm_page_t m;
2194							pa = *(int *)pte;
2195							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
2196							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
2197								va, pa, m->hold_count, m->wire_count, m->flags);
2198							npte++;
2199							index++;
2200							if (index >= 2) {
2201								index = 0;
2202								printf("\n");
2203							} else {
2204								printf(" ");
2205							}
2206						}
2207					}
2208				}
2209			}
2210		}
2211	}
2212	return npte;
2213}
2214#endif
2215
2216#if defined(DEBUG)
2217
2218static void	pads __P((pmap_t pm));
2219static void	pmap_pvdump __P((vm_offset_t pa));
2220
2221/* print address space of pmap*/
2222static void
2223pads(pm)
2224	pmap_t pm;
2225{
2226	unsigned va, i, j;
2227	pt_entry_t *ptep;
2228
2229	if (pm == kernel_pmap)
2230		return;
2231	for (i = 0; i < 1024; i++)
2232		if (pm->pm_pdir[i])
2233			for (j = 0; j < 1024; j++) {
2234				va = (i << PD_SHIFT) + (j << PG_SHIFT);
2235				if (pm == kernel_pmap && va < KERNBASE)
2236					continue;
2237				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2238					continue;
2239				ptep = pmap_pte(pm, va);
2240				if (pmap_pte_v(ptep))
2241					printf("%x:%x ", va, *(int *) ptep);
2242			};
2243
2244}
2245
2246static void
2247pmap_pvdump(pa)
2248	vm_offset_t pa;
2249{
2250	register pv_entry_t pv;
2251
2252	printf("pa %x", pa);
2253	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
2254#ifdef used_to_be
2255		printf(" -> pmap %x, va %x, flags %x",
2256		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
2257#endif
2258		printf(" -> pmap %x, va %x",
2259		    pv->pv_pmap, pv->pv_va);
2260		pads(pv->pv_pmap);
2261	}
2262	printf(" ");
2263}
2264#endif
2265