pmap.c revision 14867
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.81 1996/03/13 00:39:45 dyson Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54
55/*
56 *	Manages physical address maps.
57 *
58 *	In addition to hardware address maps, this
59 *	module is called upon to provide software-use-only
60 *	maps which may or may not be stored in the same
61 *	form as hardware maps.  These pseudo-maps are
62 *	used to store intermediate results from copy
63 *	operations to and from address spaces.
64 *
65 *	Since the information managed by this module is
66 *	also stored by the logical address mapping module,
67 *	this module may throw away valid virtual-to-physical
68 *	mappings at almost any time.  However, invalidations
69 *	of virtual-to-physical mappings must be done as
70 *	requested.
71 *
72 *	In order to cope with hardware architectures which
73 *	make virtual-to-physical map invalidates expensive,
74 *	this module may delay invalidate or reduced protection
75 *	operations until such time as they are actually
76 *	necessary.  This module is given full information as
77 *	to which processors are currently using which maps,
78 *	and to when physical maps must be made correct.
79 */
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/proc.h>
84#include <sys/malloc.h>
85#include <sys/msgbuf.h>
86#include <sys/queue.h>
87#include <sys/vmmeter.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_prot.h>
92#include <vm/lock.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98
99#include <machine/pcb.h>
100#include <machine/cputypes.h>
101#include <machine/md_var.h>
102
103#include <i386/isa/isa.h>
104
105#define PMAP_KEEP_PDIRS
106
107#if defined(DIAGNOSTIC)
108#define PMAP_DIAGNOSTIC
109#endif
110
111static void	init_pv_entries __P((int));
112
113/*
114 * Get PDEs and PTEs for user/kernel address space
115 */
116#define	pmap_pde(m, v)	(&((m)->pm_pdir[((vm_offset_t)(v) >> PD_SHIFT)&1023]))
117#define pdir_pde(m, v) (m[((vm_offset_t)(v) >> PD_SHIFT)&1023])
118
119#define pmap_pte_pa(pte)	(*(int *)(pte) & PG_FRAME)
120
121#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
122#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
123#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
124#define pmap_pte_u(pte)		((*(int *)pte & PG_U) != 0)
125#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
126
127#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
128#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
129
130/*
131 * Given a map and a machine independent protection code,
132 * convert to a vax protection code.
133 */
134#define pte_prot(m, p)	(protection_codes[p])
135static int protection_codes[8];
136
137static struct pmap kernel_pmap_store;
138pmap_t kernel_pmap;
139
140vm_offset_t avail_start;	/* PA of first available physical page */
141vm_offset_t avail_end;		/* PA of last available physical page */
142vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
143vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
144static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
145static vm_offset_t vm_first_phys;
146
147static int nkpt;
148
149extern vm_offset_t clean_sva, clean_eva;
150extern int cpu_class;
151
152/*
153 * All those kernel PT submaps that BSD is so fond of
154 */
155pt_entry_t *CMAP1;
156static pt_entry_t *CMAP2, *ptmmap;
157static pv_entry_t pv_table;
158caddr_t CADDR1, ptvmmap;
159static caddr_t CADDR2;
160static pt_entry_t *msgbufmap;
161struct msgbuf *msgbufp;
162
163static void	free_pv_entry __P((pv_entry_t pv));
164pt_entry_t *
165		get_pt_entry __P((pmap_t pmap));
166static pv_entry_t
167		get_pv_entry __P((void));
168static void	i386_protection_init __P((void));
169static void	pmap_alloc_pv_entry __P((void));
170static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
171static void	pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
172				      vm_offset_t pa));
173static int	pmap_is_managed __P((vm_offset_t pa));
174static void	pmap_remove_all __P((vm_offset_t pa));
175static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
176static __inline void pmap_remove_entry __P((struct pmap *pmap, pv_entry_t pv,
177					vm_offset_t va));
178static int pmap_remove_pte __P((struct pmap *pmap, pt_entry_t *ptq,
179					vm_offset_t sva));
180static vm_page_t
181		pmap_pte_vm_page __P((pmap_t pmap, vm_offset_t pt));
182static boolean_t
183		pmap_testbit __P((vm_offset_t pa, int bit));
184static void *	pmap_getpdir __P((void));
185void	pmap_prefault __P((pmap_t pmap, vm_offset_t addra,
186				   vm_map_entry_t entry, vm_object_t object));
187
188
189#if defined(PMAP_DIAGNOSTIC)
190
191/*
192 * This code checks for non-writeable/modified pages.
193 * This should be an invalid condition.
194 */
195static int
196pmap_nw_modified(pt_entry_t ptea) {
197	int pte;
198
199	pte = (int) ptea;
200
201	if ((pte & (PG_M|PG_RW)) == PG_M)
202		return 1;
203	else
204		return 0;
205}
206#endif
207
208/*
209 * The below are finer grained pmap_update routines.  These eliminate
210 * the gratuitious tlb flushes on non-i386 architectures.
211 */
212static __inline void
213pmap_update_1pg( vm_offset_t va) {
214#if defined(I386_CPU)
215	if (cpu_class == CPUCLASS_386)
216		pmap_update();
217	else
218#endif
219		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va));
220}
221
222static __inline void
223pmap_update_2pg( vm_offset_t va1, vm_offset_t va2) {
224#if defined(I386_CPU)
225	if (cpu_class == CPUCLASS_386) {
226		pmap_update();
227	} else
228#endif
229	{
230		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va1));
231		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va2));
232	}
233}
234
235/*
236 *	Routine:	pmap_pte
237 *	Function:
238 *		Extract the page table entry associated
239 *		with the given map/virtual_address pair.
240 * [ what about induced faults -wfj]
241 */
242
243__inline pt_entry_t * __pure
244pmap_pte(pmap, va)
245	register pmap_t pmap;
246	vm_offset_t va;
247{
248
249	if (pmap && *pmap_pde(pmap, va)) {
250		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
251
252		/* are we current address space or kernel? */
253		if ((pmap == kernel_pmap) || (frame == ((int) PTDpde & PG_FRAME)))
254			return ((pt_entry_t *) vtopte(va));
255		/* otherwise, we are alternate address space */
256		else {
257			if (frame != ((int) APTDpde & PG_FRAME)) {
258				APTDpde = pmap->pm_pdir[PTDPTDI];
259				pmap_update();
260			}
261			return ((pt_entry_t *) avtopte(va));
262		}
263	}
264	return (0);
265}
266
267/*
268 *	Routine:	pmap_extract
269 *	Function:
270 *		Extract the physical page address associated
271 *		with the given map/virtual_address pair.
272 */
273
274vm_offset_t
275pmap_extract(pmap, va)
276	register pmap_t pmap;
277	vm_offset_t va;
278{
279	vm_offset_t pa;
280
281	if (pmap && *pmap_pde(pmap, va)) {
282		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
283
284		/* are we current address space or kernel? */
285		if ((pmap == kernel_pmap)
286		    || (frame == ((int) PTDpde & PG_FRAME))) {
287			pa = *(int *) vtopte(va);
288			/* otherwise, we are alternate address space */
289		} else {
290			if (frame != ((int) APTDpde & PG_FRAME)) {
291				APTDpde = pmap->pm_pdir[PTDPTDI];
292				pmap_update();
293			}
294			pa = *(int *) avtopte(va);
295		}
296		return ((pa & PG_FRAME) | (va & ~PG_FRAME));
297	}
298	return 0;
299
300}
301
302/*
303 * determine if a page is managed (memory vs. device)
304 */
305static __inline int
306pmap_is_managed(pa)
307	vm_offset_t pa;
308{
309	int i;
310
311	if (!pmap_initialized)
312		return 0;
313
314	for (i = 0; phys_avail[i + 1]; i += 2) {
315		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
316			return 1;
317	}
318	return 0;
319}
320
321vm_page_t
322pmap_use_pt(pmap, va)
323	pmap_t pmap;
324	vm_offset_t va;
325{
326	vm_offset_t ptepa;
327	vm_page_t mpte;
328
329	if (va >= UPT_MIN_ADDRESS)
330		return NULL;
331
332	ptepa = ((vm_offset_t) *pmap_pde(pmap, va)) & PG_FRAME;
333#if defined(PMAP_DIAGNOSTIC)
334	if (!ptepa)
335		panic("pmap_use_pt: pagetable page missing, va: 0x%x", va);
336#endif
337
338	mpte = PHYS_TO_VM_PAGE(ptepa);
339	++mpte->hold_count;
340	return mpte;
341}
342
343#if !defined(PMAP_DIAGNOSTIC)
344__inline
345#endif
346void
347pmap_unuse_pt(pmap, va, mpte)
348	pmap_t pmap;
349	vm_offset_t va;
350	vm_page_t mpte;
351{
352	if (va >= UPT_MIN_ADDRESS)
353		return;
354
355	if (mpte == NULL) {
356		vm_offset_t ptepa;
357		ptepa = ((vm_offset_t) *pmap_pde(pmap, va)) & PG_FRAME;
358#if defined(PMAP_DIAGNOSTIC)
359		if (!ptepa)
360			panic("pmap_unuse_pt: pagetable page missing, va: 0x%x", va);
361#endif
362		mpte = PHYS_TO_VM_PAGE(ptepa);
363	}
364
365#if defined(PMAP_DIAGNOSTIC)
366	if (mpte->hold_count == 0) {
367		panic("pmap_unuse_pt: hold count < 0, va: 0x%x", va);
368	}
369#endif
370
371	vm_page_unhold(mpte);
372
373	if ((mpte->hold_count == 0) &&
374	    (mpte->wire_count == 0) &&
375	    (pmap != kernel_pmap) &&
376	    (va < KPT_MIN_ADDRESS)) {
377/*
378 * We don't free page-table-pages anymore because it can have a negative
379 * impact on perf at times.  Now we just deactivate, and it'll get cleaned
380 * up if needed...  Also, if the page ends up getting used, it will fault
381 * back into the process address space and be reactivated.
382 */
383#if defined(PMAP_FREE_OLD_PTES)
384		pmap_page_protect(VM_PAGE_TO_PHYS(mpte), VM_PROT_NONE);
385		vm_page_free(mpte);
386#else
387		mpte->dirty = 0;
388		vm_page_deactivate(mpte);
389#endif
390	}
391}
392
393/*
394 *	Bootstrap the system enough to run with virtual memory.
395 *
396 *	On the i386 this is called after mapping has already been enabled
397 *	and just syncs the pmap module with what has already been done.
398 *	[We can't call it easily with mapping off since the kernel is not
399 *	mapped with PA == VA, hence we would have to relocate every address
400 *	from the linked base (virtual) address "KERNBASE" to the actual
401 *	(physical) address starting relative to 0]
402 */
403void
404pmap_bootstrap(firstaddr, loadaddr)
405	vm_offset_t firstaddr;
406	vm_offset_t loadaddr;
407{
408	vm_offset_t va;
409	pt_entry_t *pte;
410
411	avail_start = firstaddr;
412
413	/*
414	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
415	 * large. It should instead be correctly calculated in locore.s and
416	 * not based on 'first' (which is a physical address, not a virtual
417	 * address, for the start of unused physical memory). The kernel
418	 * page tables are NOT double mapped and thus should not be included
419	 * in this calculation.
420	 */
421	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
422	virtual_end = VM_MAX_KERNEL_ADDRESS;
423
424	/*
425	 * Initialize protection array.
426	 */
427	i386_protection_init();
428
429	/*
430	 * The kernel's pmap is statically allocated so we don't have to use
431	 * pmap_create, which is unlikely to work correctly at this part of
432	 * the boot sequence (XXX and which no longer exists).
433	 */
434	kernel_pmap = &kernel_pmap_store;
435
436	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
437
438	kernel_pmap->pm_count = 1;
439	nkpt = NKPT;
440
441	/*
442	 * Reserve some special page table entries/VA space for temporary
443	 * mapping of pages.
444	 */
445#define	SYSMAP(c, p, v, n)	\
446	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
447
448	va = virtual_avail;
449	pte = pmap_pte(kernel_pmap, va);
450
451	/*
452	 * CMAP1/CMAP2 are used for zeroing and copying pages.
453	 */
454	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
455	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
456
457	/*
458	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
459	 */
460	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
461
462	/*
463	 * msgbufmap is used to map the system message buffer.
464	 */
465	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
466
467	virtual_avail = va;
468
469	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
470	pmap_update();
471}
472
473/*
474 *	Initialize the pmap module.
475 *	Called by vm_init, to initialize any structures that the pmap
476 *	system needs to map virtual memory.
477 *	pmap_init has been enhanced to support in a fairly consistant
478 *	way, discontiguous physical memory.
479 */
480void
481pmap_init(phys_start, phys_end)
482	vm_offset_t phys_start, phys_end;
483{
484	vm_offset_t addr;
485	vm_size_t npg, s;
486	int i;
487
488	/*
489	 * calculate the number of pv_entries needed
490	 */
491	vm_first_phys = phys_avail[0];
492	for (i = 0; phys_avail[i + 1]; i += 2);
493	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
494
495	/*
496	 * Allocate memory for random pmap data structures.  Includes the
497	 * pv_head_table.
498	 */
499	s = (vm_size_t) (sizeof(struct pv_entry) * npg);
500	s = round_page(s);
501	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
502	pv_table = (pv_entry_t) addr;
503
504	/*
505	 * init the pv free list
506	 */
507	init_pv_entries(npg);
508	/*
509	 * Now it is safe to enable pv_table recording.
510	 */
511	pmap_initialized = TRUE;
512}
513
514/*
515 *	Used to map a range of physical addresses into kernel
516 *	virtual address space.
517 *
518 *	For now, VM is already on, we only need to map the
519 *	specified memory.
520 */
521vm_offset_t
522pmap_map(virt, start, end, prot)
523	vm_offset_t virt;
524	vm_offset_t start;
525	vm_offset_t end;
526	int prot;
527{
528	while (start < end) {
529		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
530		virt += PAGE_SIZE;
531		start += PAGE_SIZE;
532	}
533	return (virt);
534}
535
536#if defined(PMAP_KEEP_PDIRS)
537int nfreepdir;
538caddr_t *pdirlist;
539#define NFREEPDIR 3
540
541static void *
542pmap_getpdir() {
543	caddr_t *pdir;
544	if (pdirlist) {
545		--nfreepdir;
546		pdir = pdirlist;
547		pdirlist = (caddr_t *) *pdir;
548#if 0 /* Not needed anymore */
549		bzero( (caddr_t) pdir, PAGE_SIZE);
550#endif
551	} else {
552		pdir = (caddr_t *) kmem_alloc(kernel_map, PAGE_SIZE);
553	}
554
555	return (void *) pdir;
556}
557
558static void
559pmap_freepdir(void *pdir) {
560	if (nfreepdir > NFREEPDIR) {
561		kmem_free(kernel_map, (vm_offset_t) pdir, PAGE_SIZE);
562	} else {
563		int i;
564		pt_entry_t *s;
565		s = (pt_entry_t *) pdir;
566
567		/*
568		 * remove wired in kernel mappings
569		 */
570		bzero(s + KPTDI, nkpt * PTESIZE);
571		s[APTDPTDI] = 0;
572		s[PTDPTDI] = 0;
573
574#if defined(PMAP_DIAGNOSTIC)
575		for(i=0;i<PAGE_SIZE/4;i++,s++) {
576			if (*s) {
577				printf("pmap_freepdir: index %d not zero: %lx\n", i, *s);
578			}
579		}
580#endif
581		* (caddr_t *) pdir = (caddr_t) pdirlist;
582		pdirlist = (caddr_t *) pdir;
583		++nfreepdir;
584	}
585}
586#endif
587
588/*
589 * Initialize a preallocated and zeroed pmap structure,
590 * such as one in a vmspace structure.
591 */
592void
593pmap_pinit(pmap)
594	register struct pmap *pmap;
595{
596	/*
597	 * No need to allocate page table space yet but we do need a valid
598	 * page directory table.
599	 */
600
601#if defined(PMAP_KEEP_PDIRS)
602	pmap->pm_pdir = pmap_getpdir();
603#else
604	pmap->pm_pdir = (pd_entry_t *) kmem_alloc(kernel_map, PAGE_SIZE);
605#endif
606
607	/* wire in kernel global address entries */
608	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
609
610	/* install self-referential address mapping entry */
611	*(int *) (pmap->pm_pdir + PTDPTDI) =
612	    ((int) pmap_kextract((vm_offset_t) pmap->pm_pdir)) | PG_V | PG_KW;
613
614	pmap->pm_count = 1;
615}
616
617/*
618 * grow the number of kernel page table entries, if needed
619 */
620
621static vm_page_t nkpg;
622vm_offset_t kernel_vm_end;
623
624void
625pmap_growkernel(vm_offset_t addr)
626{
627	struct proc *p;
628	struct pmap *pmap;
629	int s;
630
631	s = splhigh();
632	if (kernel_vm_end == 0) {
633		kernel_vm_end = KERNBASE;
634		nkpt = 0;
635		while (pdir_pde(PTD, kernel_vm_end)) {
636			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
637			++nkpt;
638		}
639	}
640	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
641	while (kernel_vm_end < addr) {
642		if (pdir_pde(PTD, kernel_vm_end)) {
643			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
644			continue;
645		}
646		++nkpt;
647		if (!nkpg) {
648			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
649			if (!nkpg)
650				panic("pmap_growkernel: no memory to grow kernel");
651			vm_page_wire(nkpg);
652			vm_page_remove(nkpg);
653			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
654		}
655		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_KW);
656		nkpg = NULL;
657
658		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
659			if (p->p_vmspace) {
660				pmap = &p->p_vmspace->vm_pmap;
661				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
662			}
663		}
664		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
665		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
666	}
667	splx(s);
668}
669
670/*
671 *	Retire the given physical map from service.
672 *	Should only be called if the map contains
673 *	no valid mappings.
674 */
675void
676pmap_destroy(pmap)
677	register pmap_t pmap;
678{
679	int count;
680
681	if (pmap == NULL)
682		return;
683
684	count = --pmap->pm_count;
685	if (count == 0) {
686		pmap_release(pmap);
687		free((caddr_t) pmap, M_VMPMAP);
688	}
689}
690
691/*
692 * Release any resources held by the given physical map.
693 * Called when a pmap initialized by pmap_pinit is being released.
694 * Should only be called if the map contains no valid mappings.
695 */
696void
697pmap_release(pmap)
698	register struct pmap *pmap;
699{
700#if defined(PMAP_KEEP_PDIRS)
701	pmap_freepdir( (void *)pmap->pm_pdir);
702#else
703	kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
704#endif
705}
706
707/*
708 *	Add a reference to the specified pmap.
709 */
710void
711pmap_reference(pmap)
712	pmap_t pmap;
713{
714	if (pmap != NULL) {
715		pmap->pm_count++;
716	}
717}
718
719#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
720
721/*
722 * Data for the pv entry allocation mechanism
723 */
724static int pv_freelistcnt;
725static pv_entry_t pv_freelist;
726static vm_offset_t pvva;
727static int npvvapg;
728
729/*
730 * free the pv_entry back to the free list
731 */
732static __inline void
733free_pv_entry(pv)
734	pv_entry_t pv;
735{
736	if (!pv)
737		return;
738	++pv_freelistcnt;
739	pv->pv_next = pv_freelist;
740	pv_freelist = pv;
741}
742
743/*
744 * get a new pv_entry, allocating a block from the system
745 * when needed.
746 * the memory allocation is performed bypassing the malloc code
747 * because of the possibility of allocations at interrupt time.
748 */
749static __inline pv_entry_t
750get_pv_entry()
751{
752	pv_entry_t tmp;
753
754	/*
755	 * get more pv_entry pages if needed
756	 */
757	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
758		pmap_alloc_pv_entry();
759	}
760	/*
761	 * get a pv_entry off of the free list
762	 */
763	--pv_freelistcnt;
764	tmp = pv_freelist;
765	pv_freelist = tmp->pv_next;
766	return tmp;
767}
768
769/*
770 * this *strange* allocation routine *statistically* eliminates the
771 * *possibility* of a malloc failure (*FATAL*) for a pv_entry_t data structure.
772 * also -- this code is MUCH MUCH faster than the malloc equiv...
773 */
774static void
775pmap_alloc_pv_entry()
776{
777	/*
778	 * do we have any pre-allocated map-pages left?
779	 */
780	if (npvvapg) {
781		vm_page_t m;
782
783		/*
784		 * we do this to keep recursion away
785		 */
786		pv_freelistcnt += PV_FREELIST_MIN;
787		/*
788		 * allocate a physical page out of the vm system
789		 */
790		m = vm_page_alloc(kernel_object,
791		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
792		    VM_ALLOC_INTERRUPT);
793		if (m) {
794			int newentries;
795			int i;
796			pv_entry_t entry;
797
798			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
799			/*
800			 * wire the page
801			 */
802			vm_page_wire(m);
803			m->flags &= ~PG_BUSY;
804			/*
805			 * let the kernel see it
806			 */
807			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
808
809			entry = (pv_entry_t) pvva;
810			/*
811			 * update the allocation pointers
812			 */
813			pvva += PAGE_SIZE;
814			--npvvapg;
815
816			/*
817			 * free the entries into the free list
818			 */
819			for (i = 0; i < newentries; i++) {
820				free_pv_entry(entry);
821				entry++;
822			}
823		}
824		pv_freelistcnt -= PV_FREELIST_MIN;
825	}
826	if (!pv_freelist)
827		panic("get_pv_entry: cannot get a pv_entry_t");
828}
829
830
831
832/*
833 * init the pv_entry allocation system
834 */
835#define PVSPERPAGE 64
836void
837init_pv_entries(npg)
838	int npg;
839{
840	/*
841	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
842	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
843	 * this is too small.)
844	 */
845	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
846		+ PAGE_SIZE - 1) / PAGE_SIZE;
847	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
848	/*
849	 * get the first batch of entries
850	 */
851	free_pv_entry(get_pv_entry());
852}
853
854__inline pt_entry_t *
855get_pt_entry(pmap)
856	pmap_t pmap;
857{
858	vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
859
860	/* are we current address space or kernel? */
861	if (pmap == kernel_pmap || frame == ((int) PTDpde & PG_FRAME)) {
862		return PTmap;
863	}
864	/* otherwise, we are alternate address space */
865	if (frame != ((int) APTDpde & PG_FRAME)) {
866		APTDpde = pmap->pm_pdir[PTDPTDI];
867		pmap_update();
868	}
869	return APTmap;
870}
871
872/*
873 * If it is the first entry on the list, it is actually
874 * in the header and we must copy the following entry up
875 * to the header.  Otherwise we must search the list for
876 * the entry.  In either case we free the now unused entry.
877 */
878static __inline void
879pmap_remove_entry(pmap, pv, va)
880	struct pmap *pmap;
881	pv_entry_t pv;
882	vm_offset_t va;
883{
884	pv_entry_t npv;
885	int s;
886	s = splhigh();
887	if (pmap == pv->pv_pmap && va == pv->pv_va) {
888		pmap_unuse_pt(pmap, va, pv->pv_ptem);
889		npv = pv->pv_next;
890		if (npv) {
891			*pv = *npv;
892			free_pv_entry(npv);
893		} else {
894			pv->pv_pmap = NULL;
895		}
896	} else {
897		for (npv = pv->pv_next; npv; (pv = npv, npv = pv->pv_next)) {
898			if (pmap == npv->pv_pmap && va == npv->pv_va) {
899				pmap_unuse_pt(pmap, va, npv->pv_ptem);
900				pv->pv_next = npv->pv_next;
901				free_pv_entry(npv);
902				break;
903			}
904		}
905	}
906	splx(s);
907}
908
909/*
910 * pmap_remove_pte: do the things to unmap a page to mapped into a process
911 */
912static int
913pmap_remove_pte(pmap, ptq, sva)
914	struct pmap *pmap;
915	pt_entry_t *ptq;
916	vm_offset_t sva;
917{
918	pt_entry_t oldpte;
919	vm_offset_t pa;
920	pv_entry_t pv;
921
922	oldpte = *ptq;
923	if (((int)oldpte) & PG_W)
924		pmap->pm_stats.wired_count--;
925	pmap->pm_stats.resident_count--;
926
927	pa = ((vm_offset_t)oldpte) & PG_FRAME;
928	if (pmap_is_managed(pa)) {
929		if ((int) oldpte & PG_M) {
930#if defined(PMAP_DIAGNOSTIC)
931			if (pmap_nw_modified(oldpte)) {
932				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", sva, (int) oldpte);
933			}
934#endif
935
936			if (sva < USRSTACK + (UPAGES * PAGE_SIZE) ||
937			    (sva >= KERNBASE && (sva < clean_sva || sva >= clean_eva))) {
938				PHYS_TO_VM_PAGE(pa)->dirty = VM_PAGE_BITS_ALL;
939			}
940		}
941		pv = pa_to_pvh(pa);
942		pmap_remove_entry(pmap, pv, sva);
943	} else {
944		pmap_unuse_pt(pmap, sva, NULL);
945	}
946
947	*ptq = 0;
948	return 1;
949}
950
951/*
952 * Scan pmap for non-null entry up to the entry pointed to
953 * by pdnxt.  Return the va corresponding to the entry.
954 */
955static __inline vm_offset_t
956pmap_scan( vm_offset_t sva, vm_offset_t pdnxt, pt_entry_t *ptp) {
957	pt_entry_t *ptt, *ptnxt;
958
959	ptnxt = &ptp[pdnxt];
960	ptt = &ptp[sva];
961
962loop:
963	if ((ptt != ptnxt) && (*ptt == 0)) {
964		ptt++;
965		goto loop;
966	}
967	return ptt - ptp;
968}
969
970/*
971 * Remove a single page from a process address space
972 */
973static __inline void
974pmap_remove_page(pmap, va)
975	struct pmap *pmap;
976	register vm_offset_t va;
977{
978	register pt_entry_t *ptp, *ptq;
979	/*
980	 * if there is no pte for this address, just skip it!!!
981	 */
982	if (*pmap_pde(pmap, va) == 0)
983		return;
984	/*
985	 * get a local va for mappings for this pmap.
986	 */
987	ptp = get_pt_entry(pmap);
988	ptq = ptp + i386_btop(va);
989	if ( *ptq && pmap_remove_pte( pmap, ptq, va))
990		pmap_update_1pg(va);
991	return;
992}
993
994/*
995 *	Remove the given range of addresses from the specified map.
996 *
997 *	It is assumed that the start and end are properly
998 *	rounded to the page size.
999 */
1000void
1001pmap_remove(pmap, sva, eva)
1002	struct pmap *pmap;
1003	register vm_offset_t sva;
1004	register vm_offset_t eva;
1005{
1006	register pt_entry_t *ptp;
1007	vm_offset_t va;
1008	vm_offset_t pdnxt;
1009	vm_offset_t ptepaddr;
1010	int update_needed;
1011	vm_page_t mpte;
1012
1013	if (pmap == NULL)
1014		return;
1015
1016	/*
1017	 * special handling of removing one page.  a very
1018	 * common operation and easy to short circuit some
1019	 * code.
1020	 */
1021	if ((sva + PAGE_SIZE) == eva) {
1022		pmap_remove_page(pmap, sva);
1023		return;
1024	}
1025
1026	/*
1027	 * Get a local virtual address for the mappings that are being
1028	 * worked with.
1029	 */
1030
1031	update_needed = 0;
1032	va = sva;
1033	sva = i386_btop(va);
1034
1035	pdnxt = ((sva + NPTEPG) & ~(NPTEPG - 1));
1036	ptepaddr = (vm_offset_t) *pmap_pde(pmap, va);
1037	eva = i386_btop(eva);
1038	mpte = NULL;
1039	ptp = NULL;
1040
1041	while (sva < eva) {
1042
1043		/*
1044		 * pointers for page table hold count and wire counts.
1045		 */
1046		short *hc;
1047		u_short *wc;
1048
1049		/*
1050		 * On a new page table page, we need to calculate the
1051		 * end va for that page, and it's physical address.
1052		 */
1053		if (sva >= pdnxt) {
1054			pdnxt = ((sva + NPTEPG) & ~(NPTEPG - 1));
1055			ptepaddr =
1056				(vm_offset_t) *pmap_pde(pmap, i386_ptob(sva));
1057			mpte = NULL;
1058		}
1059
1060		/*
1061		 * Weed out invalid mappings. Note: we assume that the page
1062		 * directory table is always allocated, and in kernel virtual.
1063		 */
1064		if (ptepaddr == 0) {
1065			sva = pdnxt;
1066			continue;
1067		}
1068
1069		ptepaddr &= PG_FRAME;
1070		/*
1071		 * get the vm_page_t for the page table page
1072		 */
1073		if (mpte == NULL)
1074			mpte = PHYS_TO_VM_PAGE(ptepaddr);
1075
1076		/*
1077		 * get the address of the hold and wire counts for the
1078		 * page table page.
1079		 */
1080		hc = &(mpte->hold_count);
1081		wc = &(mpte->wire_count);
1082
1083		/*
1084		 * if the pte isn't wired or held, just skip it.
1085		 */
1086		if ((*hc == 0) && (*wc == 0)) {
1087			sva = pdnxt;
1088			continue;
1089		}
1090
1091		/*
1092		 * Limit our scan to either the end of the va represented
1093		 * by the current page table page, or to the end of the
1094		 * range being removed.
1095		 */
1096		if (pdnxt > eva) {
1097			pdnxt = eva;
1098		}
1099
1100		/*
1101		 * get get the ptp only if we need to
1102		 */
1103		if (ptp == NULL)
1104			ptp = get_pt_entry(pmap);
1105quickloop:
1106		sva = pmap_scan(sva, pdnxt, ptp);
1107		if (sva == pdnxt)
1108			goto endmainloop;
1109		/*
1110		 * Remove the found entry.
1111		 */
1112		va = i386_ptob(sva);
1113quickloop1:
1114		if (pmap_remove_pte( pmap, ptp + sva, va))
1115			update_needed = 1;
1116
1117		/*
1118		 * If the wire count and the hold count for the page table page
1119		 * are both zero, then we are done.
1120		 */
1121		if ((*hc != 0) || (*wc != 0)) {
1122			++sva;
1123			if (pdnxt == sva)
1124				goto endmainloop;
1125			if (ptp[sva]) {
1126				va += PAGE_SIZE;
1127				goto quickloop1;
1128			}
1129			goto quickloop;
1130		}
1131
1132		/*
1133		 * We are done with the current page table page if we get here
1134		 */
1135		sva = pdnxt;
1136
1137endmainloop:
1138	}
1139	if (update_needed)
1140		pmap_update();
1141}
1142
1143/*
1144 *	Routine:	pmap_remove_all
1145 *	Function:
1146 *		Removes this physical page from
1147 *		all physical maps in which it resides.
1148 *		Reflects back modify bits to the pager.
1149 *
1150 *	Notes:
1151 *		Original versions of this routine were very
1152 *		inefficient because they iteratively called
1153 *		pmap_remove (slow...)
1154 */
1155static void
1156pmap_remove_all(pa)
1157	vm_offset_t pa;
1158{
1159	register pv_entry_t pv, opv, npv;
1160	register pt_entry_t *pte, *ptp;
1161	vm_offset_t va;
1162	struct pmap *pmap;
1163	vm_page_t m;
1164	int s;
1165	int anyvalid = 0;
1166
1167#if defined(PMAP_DIAGNOSTIC)
1168	/*
1169	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1170	 * pages!
1171	 */
1172	if (!pmap_is_managed(pa)) {
1173		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1174	}
1175#endif
1176
1177	pa = pa & PG_FRAME;
1178	opv = pa_to_pvh(pa);
1179	if (opv->pv_pmap == NULL)
1180		return;
1181
1182	m = PHYS_TO_VM_PAGE(pa);
1183	s = splhigh();
1184	pv = opv;
1185	while (pv && ((pmap = pv->pv_pmap) != NULL)) {
1186		int tpte;
1187		ptp = get_pt_entry(pmap);
1188		va = pv->pv_va;
1189		pte = ptp + i386_btop(va);
1190		if (tpte = ((int) *pte)) {
1191			*pte = 0;
1192			if (tpte & PG_W)
1193				pmap->pm_stats.wired_count--;
1194			pmap->pm_stats.resident_count--;
1195			anyvalid = 1;
1196
1197			/*
1198			 * Update the vm_page_t clean and reference bits.
1199			 */
1200			if ((tpte & PG_M) != 0) {
1201#if defined(PMAP_DIAGNOSTIC)
1202				if (pmap_nw_modified((pt_entry_t) tpte)) {
1203					printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, tpte);
1204				}
1205#endif
1206				if (va < USRSTACK + (UPAGES * PAGE_SIZE) ||
1207				    (va >= KERNBASE && (va < clean_sva || va >= clean_eva))) {
1208					m->dirty = VM_PAGE_BITS_ALL;
1209				}
1210			}
1211		}
1212		pv = pv->pv_next;
1213	}
1214
1215	if (opv->pv_pmap != NULL) {
1216		pmap_unuse_pt(opv->pv_pmap, opv->pv_va, opv->pv_ptem);
1217		for (pv = opv->pv_next; pv; pv = npv) {
1218			npv = pv->pv_next;
1219			pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1220			free_pv_entry(pv);
1221		}
1222	}
1223
1224	opv->pv_pmap = NULL;
1225	opv->pv_next = NULL;
1226
1227	splx(s);
1228	if (anyvalid)
1229		pmap_update();
1230}
1231
1232
1233/*
1234 *	Set the physical protection on the
1235 *	specified range of this map as requested.
1236 */
1237void
1238pmap_protect(pmap, sva, eva, prot)
1239	register pmap_t pmap;
1240	vm_offset_t sva, eva;
1241	vm_prot_t prot;
1242{
1243	register pt_entry_t *pte;
1244	register vm_offset_t va;
1245	int i386prot;
1246	register pt_entry_t *ptp;
1247	vm_offset_t pdnxt;
1248	vm_offset_t ptepaddr;
1249	vm_page_t mpte;
1250
1251	int anychanged = 0;
1252
1253	if (pmap == NULL)
1254		return;
1255
1256	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1257		pmap_remove(pmap, sva, eva);
1258		return;
1259	}
1260	if (prot & VM_PROT_WRITE)
1261		return;
1262
1263	ptp = get_pt_entry(pmap);
1264
1265	eva = i386_btop(eva);
1266
1267	sva = i386_btop(va = sva);
1268	pdnxt = ((sva + NPTEPG) & ~(NPTEPG - 1));
1269	ptepaddr = (vm_offset_t) *pmap_pde(pmap, va);
1270	mpte = NULL;
1271
1272	while (sva < eva) {
1273		int pprot;
1274		int pbits;
1275		/*
1276		 * Weed out invalid mappings. Note: we assume that the page
1277		 * directory table is always allocated, and in kernel virtual.
1278		 */
1279		if (sva >= pdnxt) {
1280			pdnxt = ((sva + NPTEPG) & ~(NPTEPG - 1));
1281			ptepaddr =
1282				(vm_offset_t) *pmap_pde(pmap, i386_ptob(sva));
1283			mpte = NULL;
1284		}
1285
1286		if (ptepaddr == 0) {
1287			sva = pdnxt;
1288			continue;
1289		}
1290
1291		ptepaddr &= PG_FRAME;
1292		if (mpte == NULL)
1293			mpte = PHYS_TO_VM_PAGE(ptepaddr);
1294
1295		if ((mpte->hold_count == 0) && (mpte->wire_count == 0)) {
1296			sva = pdnxt;
1297			continue;
1298		}
1299
1300		if (pdnxt > eva) {
1301			pdnxt = eva;
1302		}
1303
1304quickloop:
1305		sva = pmap_scan( sva, pdnxt, ptp);
1306		if (sva == pdnxt) {
1307			continue;
1308		}
1309
1310		pte = ptp + sva;
1311		pbits = *(int *)pte;
1312
1313		if (pbits & PG_RW) {
1314			if (pbits & PG_M) {
1315				vm_page_t m;
1316				vm_offset_t pa = pbits & PG_FRAME;
1317				m = PHYS_TO_VM_PAGE(pa);
1318				m->dirty = VM_PAGE_BITS_ALL;
1319			}
1320			*(int *)pte &= ~(PG_M|PG_RW);
1321			anychanged=1;
1322		}
1323		++sva;
1324		if ( sva < pdnxt)
1325			goto quickloop;
1326	}
1327	if (anychanged)
1328		pmap_update();
1329}
1330
1331/*
1332 *	Insert the given physical page (p) at
1333 *	the specified virtual address (v) in the
1334 *	target physical map with the protection requested.
1335 *
1336 *	If specified, the page will be wired down, meaning
1337 *	that the related pte can not be reclaimed.
1338 *
1339 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1340 *	or lose information.  That is, this routine must actually
1341 *	insert this page into the given map NOW.
1342 */
1343void
1344pmap_enter(pmap, va, pa, prot, wired)
1345	register pmap_t pmap;
1346	vm_offset_t va;
1347	register vm_offset_t pa;
1348	vm_prot_t prot;
1349	boolean_t wired;
1350{
1351	register pt_entry_t *pte;
1352	vm_offset_t opa;
1353	register pv_entry_t pv, npv;
1354	int ptevalid;
1355	vm_offset_t origpte, newpte;
1356
1357	if (pmap == NULL)
1358		return;
1359
1360	pv = NULL;
1361
1362	va = va & PG_FRAME;
1363	if (va > VM_MAX_KERNEL_ADDRESS)
1364		panic("pmap_enter: toobig");
1365
1366#ifdef NO_HANDLE_LOCKED_PTES
1367	/*
1368	 * Page Directory table entry not valid, we need a new PT page
1369	 */
1370	pte = pmap_pte(pmap, va);
1371	if (pte == NULL) {
1372		printf("kernel page directory invalid pdir=%p, va=0x%lx\n",
1373			pmap->pm_pdir[PTDPTDI], va);
1374		panic("invalid kernel page directory");
1375	}
1376#else
1377	/*
1378	 * This is here in the case that a page table page is not
1379	 * resident, but we are inserting a page there.
1380	 */
1381	if ((va < VM_MIN_KERNEL_ADDRESS) &&
1382		(curproc != NULL) &&
1383		(pmap == &curproc->p_vmspace->vm_pmap)) {
1384		vm_offset_t v;
1385		v = (vm_offset_t) vtopte(va);
1386
1387		/* Fault the pte only if needed: */
1388		if (*((int *)vtopte(v)) == 0)
1389			(void) vm_fault(&curproc->p_vmspace->vm_map,
1390				trunc_page(v), VM_PROT_WRITE, FALSE);
1391	}
1392
1393	/*
1394	 * Page Directory table entry not valid, we need a new PT page
1395	 */
1396	pte = pmap_pte(pmap, va);
1397	if (pte == NULL) {
1398		printf("kernel page directory invalid pdir=%p, va=0x%lx\n",
1399			pmap->pm_pdir[PTDPTDI], va);
1400		panic("invalid kernel page directory");
1401	}
1402#endif
1403
1404	origpte = *(vm_offset_t *)pte;
1405	opa = origpte & PG_FRAME;
1406
1407	pa = pa & PG_FRAME;
1408
1409	/*
1410	 * Mapping has not changed, must be protection or wiring change.
1411	 */
1412	if (opa == pa) {
1413		/*
1414		 * Wiring change, just update stats. We don't worry about
1415		 * wiring PT pages as they remain resident as long as there
1416		 * are valid mappings in them. Hence, if a user page is wired,
1417		 * the PT page will be also.
1418		 */
1419		if (wired && ((origpte & PG_W) == 0))
1420			pmap->pm_stats.wired_count++;
1421		else if (!wired && (origpte & PG_W))
1422			pmap->pm_stats.wired_count--;
1423
1424#if defined(PMAP_DIAGNOSTIC)
1425		if (pmap_nw_modified((pt_entry_t) origpte)) {
1426			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
1427		}
1428#endif
1429
1430		/*
1431		 * We might be turning off write access to the page,
1432		 * so we go ahead and sense modify status.
1433		 */
1434		if (origpte & PG_M) {
1435			vm_page_t m;
1436			m = PHYS_TO_VM_PAGE(pa);
1437			m->dirty = VM_PAGE_BITS_ALL;
1438		}
1439		goto validate;
1440	}
1441	/*
1442	 * Mapping has changed, invalidate old range and fall through to
1443	 * handle validating new mapping.
1444	 */
1445	if (opa) {
1446		pmap_remove_page(pmap, va);
1447		opa = 0;
1448		origpte = 0;
1449	}
1450	/*
1451	 * Enter on the PV list if part of our managed memory Note that we
1452	 * raise IPL while manipulating pv_table since pmap_enter can be
1453	 * called at interrupt time.
1454	 */
1455	if (pmap_is_managed(pa)) {
1456		int s;
1457
1458		pv = pa_to_pvh(pa);
1459		s = splhigh();
1460		/*
1461		 * No entries yet, use header as the first entry
1462		 */
1463		if (pv->pv_pmap == NULL) {
1464			pv->pv_va = va;
1465			pv->pv_pmap = pmap;
1466			pv->pv_next = NULL;
1467			pv->pv_ptem = NULL;
1468		}
1469		/*
1470		 * There is at least one other VA mapping this page. Place
1471		 * this entry after the header.
1472		 */
1473		else {
1474			npv = get_pv_entry();
1475			npv->pv_va = va;
1476			npv->pv_pmap = pmap;
1477			npv->pv_next = pv->pv_next;
1478			pv->pv_next = npv;
1479			pv = npv;
1480			pv->pv_ptem = NULL;
1481		}
1482		splx(s);
1483	}
1484
1485	/*
1486	 * Increment counters
1487	 */
1488	pmap->pm_stats.resident_count++;
1489	if (wired)
1490		pmap->pm_stats.wired_count++;
1491
1492validate:
1493	/*
1494	 * Now validate mapping with desired protection/wiring.
1495	 */
1496	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
1497
1498	if (wired)
1499		newpte |= PG_W;
1500	if (va < UPT_MIN_ADDRESS)
1501		newpte |= PG_u;
1502	else if (va < UPT_MAX_ADDRESS)
1503		newpte |= PG_u | PG_RW;
1504
1505	/*
1506	 * if the mapping or permission bits are different, we need
1507	 * to update the pte.
1508	 */
1509	if ((origpte & ~(PG_M|PG_U)) != newpte) {
1510		*pte = (pt_entry_t) newpte;
1511		if (origpte)
1512			pmap_update_1pg(va);
1513	}
1514
1515	if (origpte == 0) {
1516		vm_page_t mpte;
1517		mpte = pmap_use_pt(pmap, va);
1518		if (pv)
1519			pv->pv_ptem = mpte;
1520	}
1521}
1522
1523/*
1524 * Add a list of wired pages to the kva
1525 * this routine is only used for temporary
1526 * kernel mappings that do not need to have
1527 * page modification or references recorded.
1528 * Note that old mappings are simply written
1529 * over.  The page *must* be wired.
1530 */
1531void
1532pmap_qenter(va, m, count)
1533	vm_offset_t va;
1534	vm_page_t *m;
1535	int count;
1536{
1537	int i;
1538	int anyvalid = 0;
1539	register pt_entry_t *pte;
1540
1541	for (i = 0; i < count; i++) {
1542		vm_offset_t tva = va + i * PAGE_SIZE;
1543		pt_entry_t npte = (pt_entry_t) ((int) (VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V));
1544		pt_entry_t opte;
1545		pte = vtopte(tva);
1546		opte = *pte;
1547		*pte = npte;
1548		if (opte) pmap_update_1pg(tva);
1549	}
1550}
1551/*
1552 * this routine jerks page mappings from the
1553 * kernel -- it is meant only for temporary mappings.
1554 */
1555void
1556pmap_qremove(va, count)
1557	vm_offset_t va;
1558	int count;
1559{
1560	int i;
1561	register pt_entry_t *pte;
1562
1563	for (i = 0; i < count; i++) {
1564		vm_offset_t tva = va + i * PAGE_SIZE;
1565		pte = vtopte(tva);
1566		*pte = 0;
1567		pmap_update_1pg(tva);
1568	}
1569}
1570
1571/*
1572 * add a wired page to the kva
1573 * note that in order for the mapping to take effect -- you
1574 * should do a pmap_update after doing the pmap_kenter...
1575 */
1576void
1577pmap_kenter(va, pa)
1578	vm_offset_t va;
1579	register vm_offset_t pa;
1580{
1581	register pt_entry_t *pte;
1582	pt_entry_t npte, opte;
1583
1584	npte = (pt_entry_t) ((int) (pa | PG_RW | PG_V));
1585	pte = vtopte(va);
1586	opte = *pte;
1587	*pte = npte;
1588	if (opte) pmap_update_1pg(va);
1589}
1590
1591/*
1592 * remove a page from the kernel pagetables
1593 */
1594void
1595pmap_kremove(va)
1596	vm_offset_t va;
1597{
1598	register pt_entry_t *pte;
1599
1600	pte = vtopte(va);
1601	*pte = (pt_entry_t) 0;
1602	pmap_update_1pg(va);
1603}
1604
1605/*
1606 * this code makes some *MAJOR* assumptions:
1607 * 1. Current pmap & pmap exists.
1608 * 2. Not wired.
1609 * 3. Read access.
1610 * 4. No page table pages.
1611 * 5. Tlbflush is deferred to calling procedure.
1612 * 6. Page IS managed.
1613 * but is *MUCH* faster than pmap_enter...
1614 */
1615
1616static void
1617pmap_enter_quick(pmap, va, pa)
1618	register pmap_t pmap;
1619	vm_offset_t va;
1620	register vm_offset_t pa;
1621{
1622	register pt_entry_t *pte;
1623	register pv_entry_t pv, npv;
1624	int s;
1625
1626	/*
1627	 * Enter on the PV list if part of our managed memory Note that we
1628	 * raise IPL while manipulating pv_table since pmap_enter can be
1629	 * called at interrupt time.
1630	 */
1631
1632	pte = vtopte(va);
1633	/* a fault on the page table might occur here */
1634	if (*pte) {
1635		pmap_remove_page(pmap, va);
1636	}
1637
1638	pv = pa_to_pvh(pa);
1639	s = splhigh();
1640	/*
1641	 * No entries yet, use header as the first entry
1642	 */
1643	if (pv->pv_pmap == NULL) {
1644		pv->pv_pmap = pmap;
1645		pv->pv_va = va;
1646		pv->pv_next = NULL;
1647	}
1648	/*
1649	 * There is at least one other VA mapping this page. Place this entry
1650	 * after the header.
1651	 */
1652	else {
1653		npv = get_pv_entry();
1654		npv->pv_va = va;
1655		npv->pv_pmap = pmap;
1656		npv->pv_next = pv->pv_next;
1657		pv->pv_next = npv;
1658		pv = npv;
1659	}
1660	splx(s);
1661	pv->pv_ptem = pmap_use_pt(pmap, va);
1662
1663	/*
1664	 * Increment counters
1665	 */
1666	pmap->pm_stats.resident_count++;
1667
1668	/*
1669	 * Now validate mapping with RO protection
1670	 */
1671	*pte = (pt_entry_t) ((int) (pa | PG_V | PG_u));
1672
1673	return;
1674}
1675
1676#define MAX_INIT_PT (96)
1677/*
1678 * pmap_object_init_pt preloads the ptes for a given object
1679 * into the specified pmap.  This eliminates the blast of soft
1680 * faults on process startup and immediately after an mmap.
1681 */
1682void
1683pmap_object_init_pt(pmap, addr, object, pindex, size)
1684	pmap_t pmap;
1685	vm_offset_t addr;
1686	vm_object_t object;
1687	vm_pindex_t pindex;
1688	vm_size_t size;
1689{
1690	vm_offset_t tmpidx;
1691	int psize;
1692	vm_page_t p;
1693	int objpgs;
1694
1695	psize = (size >> PAGE_SHIFT);
1696
1697	if (!pmap || (object->type != OBJT_VNODE) ||
1698		((psize > MAX_INIT_PT) &&
1699			(object->resident_page_count > MAX_INIT_PT))) {
1700		return;
1701	}
1702
1703	/*
1704	 * remove any already used mappings
1705	 */
1706	pmap_remove( pmap, trunc_page(addr), round_page(addr + size));
1707
1708	/*
1709	 * if we are processing a major portion of the object, then scan the
1710	 * entire thing.
1711	 */
1712	if (psize > (object->size >> 2)) {
1713		objpgs = psize;
1714
1715		for (p = object->memq.tqh_first;
1716		    ((objpgs > 0) && (p != NULL));
1717		    p = p->listq.tqe_next) {
1718
1719			tmpidx = p->pindex;
1720			if (tmpidx < pindex) {
1721				continue;
1722			}
1723			tmpidx -= pindex;
1724			if (tmpidx >= psize) {
1725				continue;
1726			}
1727			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1728			    (p->busy == 0) &&
1729			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1730				if (p->queue == PQ_CACHE)
1731					vm_page_deactivate(p);
1732				vm_page_hold(p);
1733				p->flags |= PG_MAPPED;
1734				pmap_enter_quick(pmap,
1735					addr + (tmpidx << PAGE_SHIFT),
1736					VM_PAGE_TO_PHYS(p));
1737				vm_page_unhold(p);
1738			}
1739			objpgs -= 1;
1740		}
1741	} else {
1742		/*
1743		 * else lookup the pages one-by-one.
1744		 */
1745		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
1746			p = vm_page_lookup(object, tmpidx + pindex);
1747			if (p && (p->busy == 0) &&
1748			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1749			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1750				if (p->queue == PQ_CACHE)
1751					vm_page_deactivate(p);
1752				vm_page_hold(p);
1753				p->flags |= PG_MAPPED;
1754				pmap_enter_quick(pmap,
1755					addr + (tmpidx << PAGE_SHIFT),
1756					VM_PAGE_TO_PHYS(p));
1757				vm_page_unhold(p);
1758			}
1759		}
1760	}
1761	return;
1762}
1763
1764/*
1765 * pmap_prefault provides a quick way of clustering
1766 * pagefaults into a processes address space.  It is a "cousin"
1767 * of pmap_object_init_pt, except it runs at page fault time instead
1768 * of mmap time.
1769 */
1770#define PFBAK 2
1771#define PFFOR 2
1772#define PAGEORDER_SIZE (PFBAK+PFFOR)
1773
1774static int pmap_prefault_pageorder[] = {
1775	-NBPG, NBPG, -2 * NBPG, 2 * NBPG
1776};
1777
1778void
1779pmap_prefault(pmap, addra, entry, object)
1780	pmap_t pmap;
1781	vm_offset_t addra;
1782	vm_map_entry_t entry;
1783	vm_object_t object;
1784{
1785	int i;
1786	vm_offset_t starta;
1787	vm_offset_t addr;
1788	vm_pindex_t pindex;
1789	vm_page_t m;
1790	int pageorder_index;
1791
1792	if (entry->object.vm_object != object)
1793		return;
1794
1795	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
1796		return;
1797
1798	starta = addra - PFBAK * PAGE_SIZE;
1799	if (starta < entry->start) {
1800		starta = entry->start;
1801	} else if (starta > addra) {
1802		starta = 0;
1803	}
1804
1805	for (i = 0; i < PAGEORDER_SIZE; i++) {
1806		vm_object_t lobject;
1807		pt_entry_t *pte;
1808
1809		addr = addra + pmap_prefault_pageorder[i];
1810		if (addr < starta || addr >= entry->end)
1811			continue;
1812
1813		pte = vtopte(addr);
1814		if (*pte)
1815			continue;
1816
1817		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1818		lobject = object;
1819		for (m = vm_page_lookup(lobject, pindex);
1820		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
1821		    lobject = lobject->backing_object) {
1822			if (lobject->backing_object_offset & PAGE_MASK)
1823				break;
1824			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
1825			m = vm_page_lookup(lobject->backing_object, pindex);
1826		}
1827
1828		/*
1829		 * give-up when a page is not in memory
1830		 */
1831		if (m == NULL)
1832			break;
1833
1834		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1835		    (m->busy == 0) &&
1836		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1837
1838			if (m->queue == PQ_CACHE) {
1839				if ((cnt.v_free_count + cnt.v_cache_count) <
1840					cnt.v_free_min)
1841					break;
1842				vm_page_deactivate(m);
1843			}
1844			vm_page_hold(m);
1845			m->flags |= PG_MAPPED;
1846			pmap_enter_quick(pmap, addr, VM_PAGE_TO_PHYS(m));
1847			vm_page_unhold(m);
1848
1849		}
1850	}
1851}
1852
1853/*
1854 *	Routine:	pmap_change_wiring
1855 *	Function:	Change the wiring attribute for a map/virtual-address
1856 *			pair.
1857 *	In/out conditions:
1858 *			The mapping must already exist in the pmap.
1859 */
1860void
1861pmap_change_wiring(pmap, va, wired)
1862	register pmap_t pmap;
1863	vm_offset_t va;
1864	boolean_t wired;
1865{
1866	register pt_entry_t *pte;
1867
1868	if (pmap == NULL)
1869		return;
1870
1871	pte = pmap_pte(pmap, va);
1872
1873	if (wired && !pmap_pte_w(pte))
1874		pmap->pm_stats.wired_count++;
1875	else if (!wired && pmap_pte_w(pte))
1876		pmap->pm_stats.wired_count--;
1877
1878	/*
1879	 * Wiring is not a hardware characteristic so there is no need to
1880	 * invalidate TLB.
1881	 */
1882	pmap_pte_set_w(pte, wired);
1883}
1884
1885
1886
1887/*
1888 *	Copy the range specified by src_addr/len
1889 *	from the source map to the range dst_addr/len
1890 *	in the destination map.
1891 *
1892 *	This routine is only advisory and need not do anything.
1893 */
1894void
1895pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1896	pmap_t dst_pmap, src_pmap;
1897	vm_offset_t dst_addr;
1898	vm_size_t len;
1899	vm_offset_t src_addr;
1900{
1901}
1902
1903/*
1904 *	Routine:	pmap_kernel
1905 *	Function:
1906 *		Returns the physical map handle for the kernel.
1907 */
1908pmap_t
1909pmap_kernel()
1910{
1911	return (kernel_pmap);
1912}
1913
1914/*
1915 *	pmap_zero_page zeros the specified (machine independent)
1916 *	page by mapping the page into virtual memory and using
1917 *	bzero to clear its contents, one machine dependent page
1918 *	at a time.
1919 */
1920void
1921pmap_zero_page(phys)
1922	vm_offset_t phys;
1923{
1924	if (*(int *) CMAP2)
1925		panic("pmap_zero_page: CMAP busy");
1926
1927	*(int *) CMAP2 = PG_V | PG_KW | (phys & PG_FRAME);
1928	bzero(CADDR2, PAGE_SIZE);
1929
1930	*(int *) CMAP2 = 0;
1931	pmap_update_1pg((vm_offset_t) CADDR2);
1932}
1933
1934/*
1935 *	pmap_copy_page copies the specified (machine independent)
1936 *	page by mapping the page into virtual memory and using
1937 *	bcopy to copy the page, one machine dependent page at a
1938 *	time.
1939 */
1940void
1941pmap_copy_page(src, dst)
1942	vm_offset_t src;
1943	vm_offset_t dst;
1944{
1945	if (*(int *) CMAP1 || *(int *) CMAP2)
1946		panic("pmap_copy_page: CMAP busy");
1947
1948	*(int *) CMAP1 = PG_V | PG_KW | (src & PG_FRAME);
1949	*(int *) CMAP2 = PG_V | PG_KW | (dst & PG_FRAME);
1950
1951#if __GNUC__ > 1
1952	memcpy(CADDR2, CADDR1, PAGE_SIZE);
1953#else
1954	bcopy(CADDR1, CADDR2, PAGE_SIZE);
1955#endif
1956	*(int *) CMAP1 = 0;
1957	*(int *) CMAP2 = 0;
1958	pmap_update_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
1959}
1960
1961
1962/*
1963 *	Routine:	pmap_pageable
1964 *	Function:
1965 *		Make the specified pages (by pmap, offset)
1966 *		pageable (or not) as requested.
1967 *
1968 *		A page which is not pageable may not take
1969 *		a fault; therefore, its page table entry
1970 *		must remain valid for the duration.
1971 *
1972 *		This routine is merely advisory; pmap_enter
1973 *		will specify that these pages are to be wired
1974 *		down (or not) as appropriate.
1975 */
1976void
1977pmap_pageable(pmap, sva, eva, pageable)
1978	pmap_t pmap;
1979	vm_offset_t sva, eva;
1980	boolean_t pageable;
1981{
1982}
1983
1984/*
1985 * this routine returns true if a physical page resides
1986 * in the given pmap.
1987 */
1988boolean_t
1989pmap_page_exists(pmap, pa)
1990	pmap_t pmap;
1991	vm_offset_t pa;
1992{
1993	register pv_entry_t pv;
1994	int s;
1995
1996	if (!pmap_is_managed(pa))
1997		return FALSE;
1998
1999	pv = pa_to_pvh(pa);
2000	s = splhigh();
2001
2002	/*
2003	 * Not found, check current mappings returning immediately if found.
2004	 */
2005	if (pv->pv_pmap != NULL) {
2006		for (; pv; pv = pv->pv_next) {
2007			if (pv->pv_pmap == pmap) {
2008				splx(s);
2009				return TRUE;
2010			}
2011		}
2012	}
2013	splx(s);
2014	return (FALSE);
2015}
2016
2017/*
2018 * pmap_testbit tests bits in pte's
2019 * note that the testbit/changebit routines are inline,
2020 * and a lot of things compile-time evaluate.
2021 */
2022static __inline boolean_t
2023pmap_testbit(pa, bit)
2024	register vm_offset_t pa;
2025	int bit;
2026{
2027	register pv_entry_t pv;
2028	pt_entry_t *pte;
2029	int s;
2030
2031	if (!pmap_is_managed(pa))
2032		return FALSE;
2033
2034	pv = pa_to_pvh(pa);
2035	s = splhigh();
2036
2037	/*
2038	 * Not found, check current mappings returning immediately if found.
2039	 */
2040	if (pv->pv_pmap != NULL) {
2041		for (; pv; pv = pv->pv_next) {
2042			/*
2043			 * if the bit being tested is the modified bit, then
2044			 * mark UPAGES as always modified, and ptes as never
2045			 * modified.
2046			 */
2047			if (bit & (PG_U|PG_M)) {
2048				if ((pv->pv_va >= clean_sva) && (pv->pv_va < clean_eva)) {
2049					continue;
2050				}
2051			}
2052			if (!pv->pv_pmap) {
2053#if defined(PMAP_DIAGNOSTIC)
2054				printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2055#endif
2056				continue;
2057			}
2058			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2059			if ((int) *pte & bit) {
2060				splx(s);
2061				return TRUE;
2062			}
2063		}
2064	}
2065	splx(s);
2066	return (FALSE);
2067}
2068
2069/*
2070 * this routine is used to modify bits in ptes
2071 */
2072static __inline void
2073pmap_changebit(pa, bit, setem)
2074	vm_offset_t pa;
2075	int bit;
2076	boolean_t setem;
2077{
2078	register pv_entry_t pv;
2079	register pt_entry_t *pte, npte;
2080	vm_offset_t va;
2081	int changed;
2082	int s;
2083
2084	if (!pmap_is_managed(pa))
2085		return;
2086
2087	pv = pa_to_pvh(pa);
2088	s = splhigh();
2089
2090	/*
2091	 * Loop over all current mappings setting/clearing as appropos If
2092	 * setting RO do we need to clear the VAC?
2093	 */
2094	if (pv->pv_pmap != NULL) {
2095		for (; pv; pv = pv->pv_next) {
2096			va = pv->pv_va;
2097
2098			/*
2099			 * don't write protect pager mappings
2100			 */
2101			if (!setem && (bit == PG_RW)) {
2102				if (va >= clean_sva && va < clean_eva)
2103					continue;
2104			}
2105			if (!pv->pv_pmap) {
2106#if defined(PMAP_DIAGNOSTIC)
2107				printf("Null pmap (cb) at va: 0x%lx\n", va);
2108#endif
2109				continue;
2110			}
2111
2112			pte = pmap_pte(pv->pv_pmap, va);
2113			if (setem) {
2114				*(int *)pte |= bit;
2115			} else {
2116				if (bit == PG_RW) {
2117					vm_offset_t pbits = *(vm_offset_t *)pte;
2118					if (pbits & PG_M) {
2119						vm_page_t m;
2120						vm_offset_t pa = pbits & PG_FRAME;
2121						m = PHYS_TO_VM_PAGE(pa);
2122						m->dirty = VM_PAGE_BITS_ALL;
2123					}
2124					*(int *)pte &= ~(PG_M|PG_RW);
2125				} else {
2126					*(int *)pte &= ~bit;
2127				}
2128			}
2129		}
2130	}
2131	splx(s);
2132	pmap_update();
2133}
2134
2135/*
2136 *      pmap_page_protect:
2137 *
2138 *      Lower the permission for all mappings to a given page.
2139 */
2140void
2141pmap_page_protect(phys, prot)
2142	vm_offset_t phys;
2143	vm_prot_t prot;
2144{
2145	if ((prot & VM_PROT_WRITE) == 0) {
2146		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
2147			pmap_changebit(phys, PG_RW, FALSE);
2148		else
2149			pmap_remove_all(phys);
2150	}
2151}
2152
2153vm_offset_t
2154pmap_phys_address(ppn)
2155	int ppn;
2156{
2157	return (i386_ptob(ppn));
2158}
2159
2160/*
2161 *	pmap_is_referenced:
2162 *
2163 *	Return whether or not the specified physical page was referenced
2164 *	by any physical maps.
2165 */
2166boolean_t
2167pmap_is_referenced(vm_offset_t pa)
2168{
2169	return pmap_testbit((pa), PG_U);
2170}
2171
2172/*
2173 *	pmap_is_modified:
2174 *
2175 *	Return whether or not the specified physical page was modified
2176 *	in any physical maps.
2177 */
2178boolean_t
2179pmap_is_modified(vm_offset_t pa)
2180{
2181	return pmap_testbit((pa), PG_M);
2182}
2183
2184/*
2185 *	Clear the modify bits on the specified physical page.
2186 */
2187void
2188pmap_clear_modify(vm_offset_t pa)
2189{
2190	pmap_changebit((pa), PG_M, FALSE);
2191}
2192
2193/*
2194 *	pmap_clear_reference:
2195 *
2196 *	Clear the reference bit on the specified physical page.
2197 */
2198void
2199pmap_clear_reference(vm_offset_t pa)
2200{
2201	pmap_changebit((pa), PG_U, FALSE);
2202}
2203
2204/*
2205 * Miscellaneous support routines follow
2206 */
2207
2208static void
2209i386_protection_init()
2210{
2211	register int *kp, prot;
2212
2213	kp = protection_codes;
2214	for (prot = 0; prot < 8; prot++) {
2215		switch (prot) {
2216		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2217			/*
2218			 * Read access is also 0. There isn't any execute bit,
2219			 * so just make it readable.
2220			 */
2221		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2222		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2223		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2224			*kp++ = 0;
2225			break;
2226		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2227		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2228		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2229		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2230			*kp++ = PG_RW;
2231			break;
2232		}
2233	}
2234}
2235
2236/*
2237 * Map a set of physical memory pages into the kernel virtual
2238 * address space. Return a pointer to where it is mapped. This
2239 * routine is intended to be used for mapping device memory,
2240 * NOT real memory. The non-cacheable bits are set on each
2241 * mapped page.
2242 */
2243void *
2244pmap_mapdev(pa, size)
2245	vm_offset_t pa;
2246	vm_size_t size;
2247{
2248	vm_offset_t va, tmpva;
2249	pt_entry_t *pte;
2250
2251	size = roundup(size, PAGE_SIZE);
2252
2253	va = kmem_alloc_pageable(kernel_map, size);
2254	if (!va)
2255		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2256
2257	pa = pa & PG_FRAME;
2258	for (tmpva = va; size > 0;) {
2259		pte = vtopte(tmpva);
2260		*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_N));
2261		size -= PAGE_SIZE;
2262		tmpva += PAGE_SIZE;
2263		pa += PAGE_SIZE;
2264	}
2265	pmap_update();
2266
2267	return ((void *) va);
2268}
2269
2270#if defined(PMAP_DEBUG)
2271pmap_pid_dump(int pid) {
2272	pmap_t pmap;
2273	struct proc *p;
2274	int npte = 0;
2275	int index;
2276	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
2277		if (p->p_pid != pid)
2278			continue;
2279
2280		if (p->p_vmspace) {
2281			int i,j;
2282			index = 0;
2283			pmap = &p->p_vmspace->vm_pmap;
2284			for(i=0;i<1024;i++) {
2285				pd_entry_t *pde;
2286				pt_entry_t *pte;
2287				unsigned base = i << PD_SHIFT;
2288
2289				pde = &pmap->pm_pdir[i];
2290				if (pde && pmap_pde_v(pde)) {
2291					for(j=0;j<1024;j++) {
2292						unsigned va = base + (j << PG_SHIFT);
2293						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
2294							if (index) {
2295								index = 0;
2296								printf("\n");
2297							}
2298							return npte;
2299						}
2300						pte = pmap_pte( pmap, va);
2301						if (pte && pmap_pte_v(pte)) {
2302							vm_offset_t pa;
2303							vm_page_t m;
2304							pa = *(int *)pte;
2305							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
2306							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
2307								va, pa, m->hold_count, m->wire_count, m->flags);
2308							npte++;
2309							index++;
2310							if (index >= 2) {
2311								index = 0;
2312								printf("\n");
2313							} else {
2314								printf(" ");
2315							}
2316						}
2317					}
2318				}
2319			}
2320		}
2321	}
2322	return npte;
2323}
2324#endif
2325
2326#if defined(DEBUG)
2327
2328static void	pads __P((pmap_t pm));
2329static void	pmap_pvdump __P((vm_offset_t pa));
2330
2331/* print address space of pmap*/
2332static void
2333pads(pm)
2334	pmap_t pm;
2335{
2336	unsigned va, i, j;
2337	pt_entry_t *ptep;
2338
2339	if (pm == kernel_pmap)
2340		return;
2341	for (i = 0; i < 1024; i++)
2342		if (pm->pm_pdir[i])
2343			for (j = 0; j < 1024; j++) {
2344				va = (i << PD_SHIFT) + (j << PG_SHIFT);
2345				if (pm == kernel_pmap && va < KERNBASE)
2346					continue;
2347				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2348					continue;
2349				ptep = pmap_pte(pm, va);
2350				if (pmap_pte_v(ptep))
2351					printf("%x:%x ", va, *(int *) ptep);
2352			};
2353
2354}
2355
2356static void
2357pmap_pvdump(pa)
2358	vm_offset_t pa;
2359{
2360	register pv_entry_t pv;
2361
2362	printf("pa %x", pa);
2363	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
2364#ifdef used_to_be
2365		printf(" -> pmap %x, va %x, flags %x",
2366		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
2367#endif
2368		printf(" -> pmap %x, va %x",
2369		    pv->pv_pmap, pv->pv_va);
2370		pads(pv->pv_pmap);
2371	}
2372	printf(" ");
2373}
2374#endif
2375