pmap.c revision 13908
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.74 1996/01/19 14:19:56 peter Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54/*
55 * Major modifications by John S. Dyson primarily to support
56 * pageable page tables, eliminating pmap_attributes,
57 * discontiguous memory pages, and using more efficient string
58 * instructions. Jan 13, 1994.  Further modifications on Mar 2, 1994,
59 * general clean-up and efficiency mods.
60 */
61
62/*
63 *	Manages physical address maps.
64 *
65 *	In addition to hardware address maps, this
66 *	module is called upon to provide software-use-only
67 *	maps which may or may not be stored in the same
68 *	form as hardware maps.  These pseudo-maps are
69 *	used to store intermediate results from copy
70 *	operations to and from address spaces.
71 *
72 *	Since the information managed by this module is
73 *	also stored by the logical address mapping module,
74 *	this module may throw away valid virtual-to-physical
75 *	mappings at almost any time.  However, invalidations
76 *	of virtual-to-physical mappings must be done as
77 *	requested.
78 *
79 *	In order to cope with hardware architectures which
80 *	make virtual-to-physical map invalidates expensive,
81 *	this module may delay invalidate or reduced protection
82 *	operations until such time as they are actually
83 *	necessary.  This module is given full information as
84 *	to which processors are currently using which maps,
85 *	and to when physical maps must be made correct.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/proc.h>
91#include <sys/malloc.h>
92#include <sys/msgbuf.h>
93#include <sys/queue.h>
94#include <sys/vmmeter.h>
95
96#include <vm/vm.h>
97#include <vm/vm_param.h>
98#include <vm/vm_prot.h>
99#include <vm/lock.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_extern.h>
105
106#include <machine/pcb.h>
107#include <machine/cputypes.h>
108#include <machine/md_var.h>
109
110#include <i386/isa/isa.h>
111
112#define PMAP_KEEP_PDIRS
113
114static void	init_pv_entries __P((int));
115
116/*
117 * Get PDEs and PTEs for user/kernel address space
118 */
119#define	pmap_pde(m, v)	(&((m)->pm_pdir[((vm_offset_t)(v) >> PD_SHIFT)&1023]))
120#define pdir_pde(m, v) (m[((vm_offset_t)(v) >> PD_SHIFT)&1023])
121
122#define pmap_pte_pa(pte)	(*(int *)(pte) & PG_FRAME)
123
124#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
125#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
126#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
127#define pmap_pte_u(pte)		((*(int *)pte & PG_U) != 0)
128#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
129
130#define pmap_pte_set_w(pte, v)		((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
131#define pmap_pte_set_prot(pte, v)	((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
132
133/*
134 * Given a map and a machine independent protection code,
135 * convert to a vax protection code.
136 */
137#define pte_prot(m, p)	(protection_codes[p])
138static int protection_codes[8];
139
140static struct pmap kernel_pmap_store;
141pmap_t kernel_pmap;
142
143vm_offset_t avail_start;	/* PA of first available physical page */
144vm_offset_t avail_end;		/* PA of last available physical page */
145vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
146vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
147static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
148static vm_offset_t vm_first_phys;
149
150static int nkpt;
151
152extern vm_offset_t clean_sva, clean_eva;
153extern int cpu_class;
154
155/*
156 * All those kernel PT submaps that BSD is so fond of
157 */
158pt_entry_t *CMAP1;
159static pt_entry_t *CMAP2, *ptmmap;
160static pv_entry_t pv_table;
161caddr_t CADDR1, ptvmmap;
162static caddr_t CADDR2;
163static pt_entry_t *msgbufmap;
164struct msgbuf *msgbufp;
165
166static void	free_pv_entry __P((pv_entry_t pv));
167static pt_entry_t *
168		get_pt_entry __P((pmap_t pmap));
169static pv_entry_t
170		get_pv_entry __P((void));
171static void	i386_protection_init __P((void));
172static void	pmap_alloc_pv_entry __P((void));
173static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
174static void	pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
175				      vm_offset_t pa));
176static int	pmap_is_managed __P((vm_offset_t pa));
177static void	pmap_remove_all __P((vm_offset_t pa));
178static void	pmap_remove_entry __P((struct pmap *pmap, pv_entry_t pv,
179				       vm_offset_t va));
180static vm_page_t
181		pmap_pte_vm_page __P((pmap_t pmap, vm_offset_t pt));
182static boolean_t
183		pmap_testbit __P((vm_offset_t pa, int bit));
184static void *	pmap_getpdir __P((void));
185static void	pmap_prefault __P((pmap_t pmap, vm_offset_t addra,
186				   vm_map_entry_t entry, vm_object_t object));
187
188/*
189 * The below are finer grained pmap_update routines.  These eliminate
190 * the gratuitious tlb flushes on non-i386 architectures.
191 */
192static __inline void
193pmap_update_1pg( vm_offset_t va) {
194#if defined(I386_CPU)
195	if (cpu_class == CPUCLASS_386)
196		pmap_update();
197	else
198#endif
199		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va));
200}
201
202static __inline void
203pmap_update_2pg( vm_offset_t va1, vm_offset_t va2) {
204#if defined(I386_CPU)
205	if (cpu_class == CPUCLASS_386) {
206		pmap_update();
207	} else
208#endif
209	{
210		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va1));
211		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va2));
212	}
213}
214
215/*
216 *	Routine:	pmap_pte
217 *	Function:
218 *		Extract the page table entry associated
219 *		with the given map/virtual_address pair.
220 * [ what about induced faults -wfj]
221 */
222
223__inline pt_entry_t * __pure
224pmap_pte(pmap, va)
225	register pmap_t pmap;
226	vm_offset_t va;
227{
228
229	if (pmap && *pmap_pde(pmap, va)) {
230		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
231
232		/* are we current address space or kernel? */
233		if ((pmap == kernel_pmap) || (frame == ((int) PTDpde & PG_FRAME)))
234			return ((pt_entry_t *) vtopte(va));
235		/* otherwise, we are alternate address space */
236		else {
237			if (frame != ((int) APTDpde & PG_FRAME)) {
238				APTDpde = pmap->pm_pdir[PTDPTDI];
239				pmap_update();
240			}
241			return ((pt_entry_t *) avtopte(va));
242		}
243	}
244	return (0);
245}
246
247/*
248 *	Routine:	pmap_extract
249 *	Function:
250 *		Extract the physical page address associated
251 *		with the given map/virtual_address pair.
252 */
253
254vm_offset_t
255pmap_extract(pmap, va)
256	register pmap_t pmap;
257	vm_offset_t va;
258{
259	vm_offset_t pa;
260
261	if (pmap && *pmap_pde(pmap, va)) {
262		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
263
264		/* are we current address space or kernel? */
265		if ((pmap == kernel_pmap)
266		    || (frame == ((int) PTDpde & PG_FRAME))) {
267			pa = *(int *) vtopte(va);
268			/* otherwise, we are alternate address space */
269		} else {
270			if (frame != ((int) APTDpde & PG_FRAME)) {
271				APTDpde = pmap->pm_pdir[PTDPTDI];
272				pmap_update();
273			}
274			pa = *(int *) avtopte(va);
275		}
276		return ((pa & PG_FRAME) | (va & ~PG_FRAME));
277	}
278	return 0;
279
280}
281
282/*
283 * determine if a page is managed (memory vs. device)
284 */
285static __inline int
286pmap_is_managed(pa)
287	vm_offset_t pa;
288{
289	int i;
290
291	if (!pmap_initialized)
292		return 0;
293
294	for (i = 0; phys_avail[i + 1]; i += 2) {
295		if (pa >= phys_avail[i] && pa < phys_avail[i + 1])
296			return 1;
297	}
298	return 0;
299}
300
301/*
302 * find the vm_page_t of a pte (only) given va of pte and pmap
303 */
304static __inline vm_page_t
305pmap_pte_vm_page(pmap, pt)
306	pmap_t pmap;
307	vm_offset_t pt;
308{
309	vm_page_t m;
310
311	pt = trunc_page(pt);
312	pt = (pt - UPT_MIN_ADDRESS) / PAGE_SIZE;
313	pt = ((vm_offset_t) pmap->pm_pdir[pt]) & PG_FRAME;
314	m = PHYS_TO_VM_PAGE(pt);
315	return m;
316}
317
318/*
319 * Wire a page table page
320 */
321__inline void
322pmap_use_pt(pmap, va)
323	pmap_t pmap;
324	vm_offset_t va;
325{
326	vm_offset_t pt;
327
328	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
329		return;
330
331	pt = (vm_offset_t) vtopte(va);
332	vm_page_hold(pmap_pte_vm_page(pmap, pt));
333}
334
335/*
336 * Unwire a page table page
337 */
338__inline void
339pmap_unuse_pt(pmap, va)
340	pmap_t pmap;
341	vm_offset_t va;
342{
343	vm_offset_t pt;
344	vm_page_t m;
345
346	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
347		return;
348
349	pt = (vm_offset_t) vtopte(va);
350	m = pmap_pte_vm_page(pmap, pt);
351	vm_page_unhold(m);
352	if (pmap != kernel_pmap &&
353	    (m->hold_count == 0) &&
354	    (m->wire_count == 0) &&
355	    (va < KPT_MIN_ADDRESS)) {
356/*
357 * We don't free page-table-pages anymore because it can have a negative
358 * impact on perf at times.  Now we just deactivate, and it'll get cleaned
359 * up if needed...  Also, if the page ends up getting used, it will fault
360 * back into the process address space and be reactivated.
361 */
362#ifdef PMAP_FREE_OLD_PTES
363		pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
364		vm_page_free(m);
365#else
366		m->dirty = 0;
367		vm_page_deactivate(m);
368#endif
369	}
370}
371
372/*
373 *	Bootstrap the system enough to run with virtual memory.
374 *
375 *	On the i386 this is called after mapping has already been enabled
376 *	and just syncs the pmap module with what has already been done.
377 *	[We can't call it easily with mapping off since the kernel is not
378 *	mapped with PA == VA, hence we would have to relocate every address
379 *	from the linked base (virtual) address "KERNBASE" to the actual
380 *	(physical) address starting relative to 0]
381 */
382void
383pmap_bootstrap(firstaddr, loadaddr)
384	vm_offset_t firstaddr;
385	vm_offset_t loadaddr;
386{
387	vm_offset_t va;
388	pt_entry_t *pte;
389
390	avail_start = firstaddr;
391
392	/*
393	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
394	 * large. It should instead be correctly calculated in locore.s and
395	 * not based on 'first' (which is a physical address, not a virtual
396	 * address, for the start of unused physical memory). The kernel
397	 * page tables are NOT double mapped and thus should not be included
398	 * in this calculation.
399	 */
400	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
401	virtual_end = VM_MAX_KERNEL_ADDRESS;
402
403	/*
404	 * Initialize protection array.
405	 */
406	i386_protection_init();
407
408	/*
409	 * The kernel's pmap is statically allocated so we don't have to use
410	 * pmap_create, which is unlikely to work correctly at this part of
411	 * the boot sequence (XXX and which no longer exists).
412	 */
413	kernel_pmap = &kernel_pmap_store;
414
415	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
416
417	kernel_pmap->pm_count = 1;
418	nkpt = NKPT;
419
420	/*
421	 * Reserve some special page table entries/VA space for temporary
422	 * mapping of pages.
423	 */
424#define	SYSMAP(c, p, v, n)	\
425	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
426
427	va = virtual_avail;
428	pte = pmap_pte(kernel_pmap, va);
429
430	/*
431	 * CMAP1/CMAP2 are used for zeroing and copying pages.
432	 */
433	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
434	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
435
436	/*
437	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
438	 */
439	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
440
441	/*
442	 * msgbufmap is used to map the system message buffer.
443	 */
444	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
445
446	virtual_avail = va;
447
448	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
449	pmap_update();
450}
451
452/*
453 *	Initialize the pmap module.
454 *	Called by vm_init, to initialize any structures that the pmap
455 *	system needs to map virtual memory.
456 *	pmap_init has been enhanced to support in a fairly consistant
457 *	way, discontiguous physical memory.
458 */
459void
460pmap_init(phys_start, phys_end)
461	vm_offset_t phys_start, phys_end;
462{
463	vm_offset_t addr;
464	vm_size_t npg, s;
465	int i;
466
467	/*
468	 * calculate the number of pv_entries needed
469	 */
470	vm_first_phys = phys_avail[0];
471	for (i = 0; phys_avail[i + 1]; i += 2);
472	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
473
474	/*
475	 * Allocate memory for random pmap data structures.  Includes the
476	 * pv_head_table.
477	 */
478	s = (vm_size_t) (sizeof(struct pv_entry) * npg);
479	s = round_page(s);
480	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
481	pv_table = (pv_entry_t) addr;
482
483	/*
484	 * init the pv free list
485	 */
486	init_pv_entries(npg);
487	/*
488	 * Now it is safe to enable pv_table recording.
489	 */
490	pmap_initialized = TRUE;
491}
492
493/*
494 *	Used to map a range of physical addresses into kernel
495 *	virtual address space.
496 *
497 *	For now, VM is already on, we only need to map the
498 *	specified memory.
499 */
500vm_offset_t
501pmap_map(virt, start, end, prot)
502	vm_offset_t virt;
503	vm_offset_t start;
504	vm_offset_t end;
505	int prot;
506{
507	while (start < end) {
508		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
509		virt += PAGE_SIZE;
510		start += PAGE_SIZE;
511	}
512	return (virt);
513}
514
515#ifdef PMAP_KEEP_PDIRS
516int nfreepdir;
517caddr_t *pdirlist;
518#define NFREEPDIR 3
519
520static void *
521pmap_getpdir() {
522	caddr_t *pdir;
523	if (pdirlist) {
524		--nfreepdir;
525		pdir = pdirlist;
526		pdirlist = (caddr_t *) *pdir;
527		bzero( (caddr_t) pdir, PAGE_SIZE);
528	} else {
529		pdir = (caddr_t *) kmem_alloc(kernel_map, PAGE_SIZE);
530	}
531
532	return (void *) pdir;
533}
534
535static void
536pmap_freepdir(void *pdir) {
537	if (nfreepdir > NFREEPDIR) {
538		kmem_free(kernel_map, (vm_offset_t) pdir, PAGE_SIZE);
539	} else {
540		* (caddr_t *) pdir = (caddr_t) pdirlist;
541		pdirlist = (caddr_t *) pdir;
542		++nfreepdir;
543	}
544}
545#endif
546
547/*
548 * Initialize a preallocated and zeroed pmap structure,
549 * such as one in a vmspace structure.
550 */
551void
552pmap_pinit(pmap)
553	register struct pmap *pmap;
554{
555	/*
556	 * No need to allocate page table space yet but we do need a valid
557	 * page directory table.
558	 */
559
560#ifdef PMAP_KEEP_PDIRS
561	pmap->pm_pdir = pmap_getpdir();
562#else
563	pmap->pm_pdir = (pd_entry_t *) kmem_alloc(kernel_map, PAGE_SIZE);
564#endif
565
566	/* wire in kernel global address entries */
567	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
568
569	/* install self-referential address mapping entry */
570	*(int *) (pmap->pm_pdir + PTDPTDI) =
571	    ((int) pmap_kextract((vm_offset_t) pmap->pm_pdir)) | PG_V | PG_KW;
572
573	pmap->pm_count = 1;
574}
575
576/*
577 * grow the number of kernel page table entries, if needed
578 */
579
580static vm_page_t nkpg;
581vm_offset_t kernel_vm_end;
582
583void
584pmap_growkernel(vm_offset_t addr)
585{
586	struct proc *p;
587	struct pmap *pmap;
588	int s;
589
590	s = splhigh();
591	if (kernel_vm_end == 0) {
592		kernel_vm_end = KERNBASE;
593		nkpt = 0;
594		while (pdir_pde(PTD, kernel_vm_end)) {
595			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
596			++nkpt;
597		}
598	}
599	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
600	while (kernel_vm_end < addr) {
601		if (pdir_pde(PTD, kernel_vm_end)) {
602			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
603			continue;
604		}
605		++nkpt;
606		if (!nkpg) {
607			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
608			if (!nkpg)
609				panic("pmap_growkernel: no memory to grow kernel");
610			vm_page_wire(nkpg);
611			vm_page_remove(nkpg);
612			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
613		}
614		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_KW);
615		nkpg = NULL;
616
617		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
618			if (p->p_vmspace) {
619				pmap = &p->p_vmspace->vm_pmap;
620				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
621			}
622		}
623		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
624		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
625	}
626	splx(s);
627}
628
629/*
630 *	Retire the given physical map from service.
631 *	Should only be called if the map contains
632 *	no valid mappings.
633 */
634void
635pmap_destroy(pmap)
636	register pmap_t pmap;
637{
638	int count;
639
640	if (pmap == NULL)
641		return;
642
643	count = --pmap->pm_count;
644	if (count == 0) {
645		pmap_release(pmap);
646		free((caddr_t) pmap, M_VMPMAP);
647	}
648}
649
650/*
651 * Release any resources held by the given physical map.
652 * Called when a pmap initialized by pmap_pinit is being released.
653 * Should only be called if the map contains no valid mappings.
654 */
655void
656pmap_release(pmap)
657	register struct pmap *pmap;
658{
659#ifdef PMAP_KEEP_PDIRS
660	pmap_freepdir( (void *)pmap->pm_pdir);
661#else
662	kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
663#endif
664}
665
666/*
667 *	Add a reference to the specified pmap.
668 */
669void
670pmap_reference(pmap)
671	pmap_t pmap;
672{
673	if (pmap != NULL) {
674		pmap->pm_count++;
675	}
676}
677
678#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
679
680/*
681 * Data for the pv entry allocation mechanism
682 */
683static int pv_freelistcnt;
684static pv_entry_t pv_freelist;
685static vm_offset_t pvva;
686static int npvvapg;
687
688/*
689 * free the pv_entry back to the free list
690 */
691static __inline void
692free_pv_entry(pv)
693	pv_entry_t pv;
694{
695	if (!pv)
696		return;
697	++pv_freelistcnt;
698	pv->pv_next = pv_freelist;
699	pv_freelist = pv;
700}
701
702/*
703 * get a new pv_entry, allocating a block from the system
704 * when needed.
705 * the memory allocation is performed bypassing the malloc code
706 * because of the possibility of allocations at interrupt time.
707 */
708static __inline pv_entry_t
709get_pv_entry()
710{
711	pv_entry_t tmp;
712
713	/*
714	 * get more pv_entry pages if needed
715	 */
716	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
717		pmap_alloc_pv_entry();
718	}
719	/*
720	 * get a pv_entry off of the free list
721	 */
722	--pv_freelistcnt;
723	tmp = pv_freelist;
724	pv_freelist = tmp->pv_next;
725	return tmp;
726}
727
728/*
729 * this *strange* allocation routine *statistically* eliminates the
730 * *possibility* of a malloc failure (*FATAL*) for a pv_entry_t data structure.
731 * also -- this code is MUCH MUCH faster than the malloc equiv...
732 */
733static void
734pmap_alloc_pv_entry()
735{
736	/*
737	 * do we have any pre-allocated map-pages left?
738	 */
739	if (npvvapg) {
740		vm_page_t m;
741
742		/*
743		 * we do this to keep recursion away
744		 */
745		pv_freelistcnt += PV_FREELIST_MIN;
746		/*
747		 * allocate a physical page out of the vm system
748		 */
749		m = vm_page_alloc(kernel_object,
750		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
751		    VM_ALLOC_INTERRUPT);
752		if (m) {
753			int newentries;
754			int i;
755			pv_entry_t entry;
756
757			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
758			/*
759			 * wire the page
760			 */
761			vm_page_wire(m);
762			m->flags &= ~PG_BUSY;
763			/*
764			 * let the kernel see it
765			 */
766			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
767
768			entry = (pv_entry_t) pvva;
769			/*
770			 * update the allocation pointers
771			 */
772			pvva += PAGE_SIZE;
773			--npvvapg;
774
775			/*
776			 * free the entries into the free list
777			 */
778			for (i = 0; i < newentries; i++) {
779				free_pv_entry(entry);
780				entry++;
781			}
782		}
783		pv_freelistcnt -= PV_FREELIST_MIN;
784	}
785	if (!pv_freelist)
786		panic("get_pv_entry: cannot get a pv_entry_t");
787}
788
789
790
791/*
792 * init the pv_entry allocation system
793 */
794#define PVSPERPAGE 64
795void
796init_pv_entries(npg)
797	int npg;
798{
799	/*
800	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
801	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
802	 * this is too small.)
803	 */
804	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
805		+ PAGE_SIZE - 1) / PAGE_SIZE;
806	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
807	/*
808	 * get the first batch of entries
809	 */
810	free_pv_entry(get_pv_entry());
811}
812
813static pt_entry_t *
814get_pt_entry(pmap)
815	pmap_t pmap;
816{
817	vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
818
819	/* are we current address space or kernel? */
820	if (pmap == kernel_pmap || frame == ((int) PTDpde & PG_FRAME)) {
821		return PTmap;
822	}
823	/* otherwise, we are alternate address space */
824	if (frame != ((int) APTDpde & PG_FRAME)) {
825		APTDpde = pmap->pm_pdir[PTDPTDI];
826		pmap_update();
827	}
828	return APTmap;
829}
830
831/*
832 * If it is the first entry on the list, it is actually
833 * in the header and we must copy the following entry up
834 * to the header.  Otherwise we must search the list for
835 * the entry.  In either case we free the now unused entry.
836 */
837static void
838pmap_remove_entry(pmap, pv, va)
839	struct pmap *pmap;
840	pv_entry_t pv;
841	vm_offset_t va;
842{
843	pv_entry_t npv;
844	int s;
845
846	s = splhigh();
847	if (pmap == pv->pv_pmap && va == pv->pv_va) {
848		npv = pv->pv_next;
849		if (npv) {
850			*pv = *npv;
851			free_pv_entry(npv);
852		} else {
853			pv->pv_pmap = NULL;
854		}
855	} else {
856		for (npv = pv->pv_next; npv; (pv = npv, npv = pv->pv_next)) {
857			if (pmap == npv->pv_pmap && va == npv->pv_va) {
858				break;
859			}
860		}
861		if (npv) {
862			pv->pv_next = npv->pv_next;
863			free_pv_entry(npv);
864		}
865	}
866	splx(s);
867}
868
869/*
870 *	Remove the given range of addresses from the specified map.
871 *
872 *	It is assumed that the start and end are properly
873 *	rounded to the page size.
874 */
875void
876pmap_remove(pmap, sva, eva)
877	struct pmap *pmap;
878	register vm_offset_t sva;
879	register vm_offset_t eva;
880{
881	register pt_entry_t *ptp, *ptq;
882	vm_offset_t pa;
883	register pv_entry_t pv;
884	vm_offset_t va;
885	pt_entry_t oldpte;
886
887	if (pmap == NULL)
888		return;
889
890	ptp = get_pt_entry(pmap);
891
892	/*
893	 * special handling of removing one page.  a very
894	 * common operation and easy to short circuit some
895	 * code.
896	 */
897	if ((sva + PAGE_SIZE) == eva) {
898
899		if (*pmap_pde(pmap, sva) == 0)
900			return;
901
902		ptq = ptp + i386_btop(sva);
903
904		if (!*ptq)
905			return;
906		/*
907		 * Update statistics
908		 */
909		if (pmap_pte_w(ptq))
910			pmap->pm_stats.wired_count--;
911		pmap->pm_stats.resident_count--;
912
913		pa = pmap_pte_pa(ptq);
914		oldpte = *ptq;
915		*ptq = 0;
916
917		if (pmap_is_managed(pa)) {
918			if ((int) oldpte & PG_M) {
919				if (sva < USRSTACK + (UPAGES * PAGE_SIZE) ||
920				    (sva >= KERNBASE && (sva < clean_sva || sva >= clean_eva))) {
921					PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
922				}
923			}
924			pv = pa_to_pvh(pa);
925			pmap_remove_entry(pmap, pv, sva);
926		}
927		pmap_unuse_pt(pmap, sva);
928		pmap_update_1pg(sva);
929		return;
930	}
931	sva = i386_btop(sva);
932	eva = i386_btop(eva);
933
934	while (sva < eva) {
935		/*
936		 * Weed out invalid mappings. Note: we assume that the page
937		 * directory table is always allocated, and in kernel virtual.
938		 */
939
940		if (*pmap_pde(pmap, i386_ptob(sva)) == 0) {
941			/* We can race ahead here, straight to next pde.. */
942			sva = ((sva + NPTEPG) & ~(NPTEPG - 1));
943			continue;
944		}
945		ptq = ptp + sva;
946
947		/*
948		 * search for page table entries, use string operations that
949		 * are much faster than explicitly scanning when page tables
950		 * are not fully populated.
951		 */
952		if (*ptq == 0) {
953			vm_offset_t pdnxt = ((sva + NPTEPG) & ~(NPTEPG - 1));
954			vm_offset_t nscan = pdnxt - sva;
955			int found = 0;
956
957			if ((nscan + sva) > eva)
958				nscan = eva - sva;
959
960			asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
961			    "=D"(ptq), "=a"(found) : "c"(nscan), "0"(ptq) : "cx");
962
963			if (!found) {
964				sva = pdnxt;
965				continue;
966			}
967			ptq -= 1;
968
969			sva = ptq - ptp;
970		}
971		/*
972		 * Update statistics
973		 */
974		oldpte = *ptq;
975		if (((int) oldpte) & PG_W)
976			pmap->pm_stats.wired_count--;
977		pmap->pm_stats.resident_count--;
978
979		/*
980		 * Invalidate the PTEs. XXX: should cluster them up and
981		 * invalidate as many as possible at once.
982		 */
983		*ptq = 0;
984
985		va = i386_ptob(sva);
986
987		/*
988		 * Remove from the PV table (raise IPL since we may be called
989		 * at interrupt time).
990		 */
991		pa = ((int) oldpte) & PG_FRAME;
992		if (!pmap_is_managed(pa)) {
993			pmap_unuse_pt(pmap, (vm_offset_t) va);
994			++sva;
995			continue;
996		}
997		if ((int) oldpte & PG_M) {
998			if (sva < USRSTACK + (UPAGES * PAGE_SIZE) ||
999			    (sva >= KERNBASE && (sva < clean_sva || sva >= clean_eva))) {
1000				PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
1001			}
1002		}
1003		pv = pa_to_pvh(pa);
1004		pmap_remove_entry(pmap, pv, va);
1005		pmap_unuse_pt(pmap, va);
1006		++sva;
1007	}
1008	pmap_update();
1009}
1010
1011/*
1012 *	Routine:	pmap_remove_all
1013 *	Function:
1014 *		Removes this physical page from
1015 *		all physical maps in which it resides.
1016 *		Reflects back modify bits to the pager.
1017 *
1018 *	Notes:
1019 *		Original versions of this routine were very
1020 *		inefficient because they iteratively called
1021 *		pmap_remove (slow...)
1022 */
1023static void
1024pmap_remove_all(pa)
1025	vm_offset_t pa;
1026{
1027	register pv_entry_t pv, opv, npv;
1028	register pt_entry_t *pte, *ptp;
1029	vm_offset_t va;
1030	struct pmap *pmap;
1031	vm_page_t m;
1032	int s;
1033	int anyvalid = 0;
1034
1035	/*
1036	 * Not one of ours
1037	 */
1038	/*
1039	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1040	 * pages!
1041	 */
1042	if (!pmap_is_managed(pa))
1043		return;
1044
1045	pa = trunc_page(pa);
1046	opv = pa_to_pvh(pa);
1047	if (opv->pv_pmap == NULL)
1048		return;
1049
1050	m = PHYS_TO_VM_PAGE(pa);
1051	s = splhigh();
1052	pv = opv;
1053	while (pv && ((pmap = pv->pv_pmap) != NULL)) {
1054		ptp = get_pt_entry(pmap);
1055		va = pv->pv_va;
1056		pte = ptp + i386_btop(va);
1057		if (pmap_pte_w(pte))
1058			pmap->pm_stats.wired_count--;
1059		if (*pte) {
1060			pmap->pm_stats.resident_count--;
1061			if (curproc != pageproc)
1062				anyvalid++;
1063
1064			/*
1065			 * Update the vm_page_t clean and reference bits.
1066			 */
1067			if ((int) *pte & PG_M) {
1068				if (va < USRSTACK + (UPAGES * PAGE_SIZE) ||
1069				    (va >= KERNBASE && (va < clean_sva || va >= clean_eva))) {
1070					PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
1071				}
1072			}
1073			*pte = 0;
1074			pmap_unuse_pt(pmap, va);
1075		}
1076		pv = pv->pv_next;
1077	}
1078
1079	for (pv = opv->pv_next; pv; pv = npv) {
1080		npv = pv->pv_next;
1081		free_pv_entry(pv);
1082	}
1083
1084	opv->pv_pmap = NULL;
1085	opv->pv_next = NULL;
1086
1087	splx(s);
1088	if (anyvalid)
1089		pmap_update();
1090}
1091
1092
1093/*
1094 *	Set the physical protection on the
1095 *	specified range of this map as requested.
1096 */
1097void
1098pmap_protect(pmap, sva, eva, prot)
1099	register pmap_t pmap;
1100	vm_offset_t sva, eva;
1101	vm_prot_t prot;
1102{
1103	register pt_entry_t *pte;
1104	register vm_offset_t va;
1105	int i386prot;
1106	register pt_entry_t *ptp;
1107	int evap = i386_btop(eva);
1108	int anyvalid = 0;;
1109
1110	if (pmap == NULL)
1111		return;
1112
1113	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1114		pmap_remove(pmap, sva, eva);
1115		return;
1116	}
1117	if (prot & VM_PROT_WRITE)
1118		return;
1119
1120	ptp = get_pt_entry(pmap);
1121
1122	va = sva;
1123	while (va < eva) {
1124		int found = 0;
1125		int svap;
1126		vm_offset_t nscan;
1127
1128		/*
1129		 * Page table page is not allocated. Skip it, we don't want to
1130		 * force allocation of unnecessary PTE pages just to set the
1131		 * protection.
1132		 */
1133		if (!*pmap_pde(pmap, va)) {
1134			/* XXX: avoid address wrap around */
1135	nextpde:
1136			if (va >= i386_trunc_pdr((vm_offset_t) - 1))
1137				break;
1138			va = i386_round_pdr(va + PAGE_SIZE);
1139			continue;
1140		}
1141		pte = ptp + i386_btop(va);
1142
1143		if (*pte == 0) {
1144			/*
1145			 * scan for a non-empty pte
1146			 */
1147			svap = pte - ptp;
1148			nscan = ((svap + NPTEPG) & ~(NPTEPG - 1)) - svap;
1149
1150			if (nscan + svap > evap)
1151				nscan = evap - svap;
1152
1153			found = 0;
1154			if (nscan)
1155				asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
1156				    "=D"(pte), "=a"(found) : "c"(nscan), "0"(pte) : "cx");
1157
1158			if (!found)
1159				goto nextpde;
1160
1161			pte -= 1;
1162			svap = pte - ptp;
1163
1164			va = i386_ptob(svap);
1165		}
1166		anyvalid++;
1167
1168		i386prot = pte_prot(pmap, prot);
1169		if (va < UPT_MAX_ADDRESS) {
1170			i386prot |= PG_u;
1171			if (va >= UPT_MIN_ADDRESS)
1172				i386prot |= PG_RW;
1173		}
1174		pmap_pte_set_prot(pte, i386prot);
1175		va += PAGE_SIZE;
1176	}
1177	if (anyvalid)
1178		pmap_update();
1179}
1180
1181/*
1182 *	Insert the given physical page (p) at
1183 *	the specified virtual address (v) in the
1184 *	target physical map with the protection requested.
1185 *
1186 *	If specified, the page will be wired down, meaning
1187 *	that the related pte can not be reclaimed.
1188 *
1189 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1190 *	or lose information.  That is, this routine must actually
1191 *	insert this page into the given map NOW.
1192 */
1193void
1194pmap_enter(pmap, va, pa, prot, wired)
1195	register pmap_t pmap;
1196	vm_offset_t va;
1197	register vm_offset_t pa;
1198	vm_prot_t prot;
1199	boolean_t wired;
1200{
1201	register pt_entry_t *pte;
1202	register pt_entry_t npte;
1203	vm_offset_t opa;
1204	int ptevalid = 0;
1205
1206	if (pmap == NULL)
1207		return;
1208
1209	va = trunc_page(va);
1210	pa = trunc_page(pa);
1211	if (va > VM_MAX_KERNEL_ADDRESS)
1212		panic("pmap_enter: toobig");
1213
1214	/*
1215	 * Page Directory table entry not valid, we need a new PT page
1216	 */
1217	if (*pmap_pde(pmap, va) == 0) {
1218		printf("kernel page directory invalid pdir=%p, va=0x%lx\n",
1219			pmap->pm_pdir[PTDPTDI], va);
1220		panic("invalid kernel page directory");
1221	}
1222	pte = pmap_pte(pmap, va);
1223	opa = pmap_pte_pa(pte);
1224
1225	/*
1226	 * Mapping has not changed, must be protection or wiring change.
1227	 */
1228	if (opa == pa) {
1229		/*
1230		 * Wiring change, just update stats. We don't worry about
1231		 * wiring PT pages as they remain resident as long as there
1232		 * are valid mappings in them. Hence, if a user page is wired,
1233		 * the PT page will be also.
1234		 */
1235		if (wired && !pmap_pte_w(pte))
1236			pmap->pm_stats.wired_count++;
1237		else if (!wired && pmap_pte_w(pte))
1238			pmap->pm_stats.wired_count--;
1239
1240		goto validate;
1241	}
1242	/*
1243	 * Mapping has changed, invalidate old range and fall through to
1244	 * handle validating new mapping.
1245	 */
1246	if (opa) {
1247		pmap_remove(pmap, va, va + PAGE_SIZE);
1248	}
1249	/*
1250	 * Enter on the PV list if part of our managed memory Note that we
1251	 * raise IPL while manipulating pv_table since pmap_enter can be
1252	 * called at interrupt time.
1253	 */
1254	if (pmap_is_managed(pa)) {
1255		register pv_entry_t pv, npv;
1256		int s;
1257
1258		pv = pa_to_pvh(pa);
1259		s = splhigh();
1260		/*
1261		 * No entries yet, use header as the first entry
1262		 */
1263		if (pv->pv_pmap == NULL) {
1264			pv->pv_va = va;
1265			pv->pv_pmap = pmap;
1266			pv->pv_next = NULL;
1267		}
1268		/*
1269		 * There is at least one other VA mapping this page. Place
1270		 * this entry after the header.
1271		 */
1272		else {
1273			npv = get_pv_entry();
1274			npv->pv_va = va;
1275			npv->pv_pmap = pmap;
1276			npv->pv_next = pv->pv_next;
1277			pv->pv_next = npv;
1278		}
1279		splx(s);
1280	}
1281
1282	/*
1283	 * Increment counters
1284	 */
1285	pmap->pm_stats.resident_count++;
1286	if (wired)
1287		pmap->pm_stats.wired_count++;
1288
1289validate:
1290	/*
1291	 * Now validate mapping with desired protection/wiring.
1292	 */
1293	npte = (pt_entry_t) ((int) (pa | pte_prot(pmap, prot) | PG_V));
1294
1295	/*
1296	 * When forking (copy-on-write, etc): A process will turn off write
1297	 * permissions for any of its writable pages.  If the data (object) is
1298	 * only referred to by one process, the processes map is modified
1299	 * directly as opposed to using the object manipulation routine.  When
1300	 * using pmap_protect, the modified bits are not kept in the vm_page_t
1301	 * data structure.  Therefore, when using pmap_enter in vm_fault to
1302	 * bring back writability of a page, there has been no memory of the
1303	 * modified or referenced bits except at the pte level.  this clause
1304	 * supports the carryover of the modified and used (referenced) bits.
1305	 */
1306	if (pa == opa)
1307		(int) npte |= (int) *pte & (PG_M | PG_U);
1308
1309	if (wired)
1310		(int) npte |= PG_W;
1311	if (va < UPT_MIN_ADDRESS)
1312		(int) npte |= PG_u;
1313	else if (va < UPT_MAX_ADDRESS)
1314		(int) npte |= PG_u | PG_RW;
1315
1316	if (*pte != npte) {
1317		if (*pte)
1318			ptevalid++;
1319		*pte = npte;
1320	}
1321	if (ptevalid) {
1322		pmap_update_1pg(va);
1323	} else {
1324		pmap_use_pt(pmap, va);
1325	}
1326}
1327
1328/*
1329 * Add a list of wired pages to the kva
1330 * this routine is only used for temporary
1331 * kernel mappings that do not need to have
1332 * page modification or references recorded.
1333 * Note that old mappings are simply written
1334 * over.  The page *must* be wired.
1335 */
1336void
1337pmap_qenter(va, m, count)
1338	vm_offset_t va;
1339	vm_page_t *m;
1340	int count;
1341{
1342	int i;
1343	int anyvalid = 0;
1344	register pt_entry_t *pte;
1345
1346	for (i = 0; i < count; i++) {
1347		vm_offset_t tva = va + i * PAGE_SIZE;
1348		pt_entry_t npte = (pt_entry_t) ((int) (VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V));
1349		pte = vtopte(tva);
1350		if (*pte && (*pte != npte))
1351			pmap_update_1pg(tva);
1352		*pte = npte;
1353	}
1354}
1355/*
1356 * this routine jerks page mappings from the
1357 * kernel -- it is meant only for temporary mappings.
1358 */
1359void
1360pmap_qremove(va, count)
1361	vm_offset_t va;
1362	int count;
1363{
1364	int i;
1365	register pt_entry_t *pte;
1366
1367	for (i = 0; i < count; i++) {
1368		vm_offset_t tva = va + i * PAGE_SIZE;
1369		pte = vtopte(tva);
1370		*pte = 0;
1371		pmap_update_1pg(tva);
1372	}
1373}
1374
1375/*
1376 * add a wired page to the kva
1377 * note that in order for the mapping to take effect -- you
1378 * should do a pmap_update after doing the pmap_kenter...
1379 */
1380void
1381pmap_kenter(va, pa)
1382	vm_offset_t va;
1383	register vm_offset_t pa;
1384{
1385	register pt_entry_t *pte;
1386	int wasvalid = 0;
1387
1388	pte = vtopte(va);
1389
1390	if (*pte)
1391		wasvalid++;
1392
1393	*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V));
1394
1395	if (wasvalid)
1396		pmap_update_1pg(va);
1397}
1398
1399/*
1400 * remove a page from the kernel pagetables
1401 */
1402void
1403pmap_kremove(va)
1404	vm_offset_t va;
1405{
1406	register pt_entry_t *pte;
1407
1408	pte = vtopte(va);
1409
1410	*pte = (pt_entry_t) 0;
1411	pmap_update_1pg(va);
1412}
1413
1414/*
1415 * this code makes some *MAJOR* assumptions:
1416 * 1. Current pmap & pmap exists.
1417 * 2. Not wired.
1418 * 3. Read access.
1419 * 4. No page table pages.
1420 * 5. Tlbflush is deferred to calling procedure.
1421 * 6. Page IS managed.
1422 * but is *MUCH* faster than pmap_enter...
1423 */
1424
1425static __inline void
1426pmap_enter_quick(pmap, va, pa)
1427	register pmap_t pmap;
1428	vm_offset_t va;
1429	register vm_offset_t pa;
1430{
1431	register pt_entry_t *pte;
1432	register pv_entry_t pv, npv;
1433	int s;
1434
1435	/*
1436	 * Enter on the PV list if part of our managed memory Note that we
1437	 * raise IPL while manipulating pv_table since pmap_enter can be
1438	 * called at interrupt time.
1439	 */
1440
1441	pte = vtopte(va);
1442
1443	/* a fault on the page table might occur here */
1444	if (*pte) {
1445		pmap_remove(pmap, va, va + PAGE_SIZE);
1446	}
1447	pv = pa_to_pvh(pa);
1448	s = splhigh();
1449	/*
1450	 * No entries yet, use header as the first entry
1451	 */
1452	if (pv->pv_pmap == NULL) {
1453		pv->pv_pmap = pmap;
1454		pv->pv_va = va;
1455		pv->pv_next = NULL;
1456	}
1457	/*
1458	 * There is at least one other VA mapping this page. Place this entry
1459	 * after the header.
1460	 */
1461	else {
1462		npv = get_pv_entry();
1463		npv->pv_va = va;
1464		npv->pv_pmap = pmap;
1465		npv->pv_next = pv->pv_next;
1466		pv->pv_next = npv;
1467	}
1468	splx(s);
1469
1470	/*
1471	 * Increment counters
1472	 */
1473	pmap->pm_stats.resident_count++;
1474
1475	/*
1476	 * Now validate mapping with desired protection/wiring.
1477	 */
1478	*pte = (pt_entry_t) ((int) (pa | PG_V | PG_u));
1479
1480	pmap_use_pt(pmap, va);
1481
1482	return;
1483}
1484
1485#define MAX_INIT_PT (512)
1486/*
1487 * pmap_object_init_pt preloads the ptes for a given object
1488 * into the specified pmap.  This eliminates the blast of soft
1489 * faults on process startup and immediately after an mmap.
1490 */
1491void
1492pmap_object_init_pt(pmap, addr, object, pindex, size)
1493	pmap_t pmap;
1494	vm_offset_t addr;
1495	vm_object_t object;
1496	vm_pindex_t pindex;
1497	vm_size_t size;
1498{
1499	vm_offset_t tmpidx;
1500	int psize;
1501	vm_page_t p;
1502	int objpgs;
1503
1504	psize = (size >> PAGE_SHIFT);
1505
1506	if (!pmap || ((psize > MAX_INIT_PT) &&
1507		(object->resident_page_count > MAX_INIT_PT))) {
1508		return;
1509	}
1510
1511	/*
1512	 * if we are processing a major portion of the object, then scan the
1513	 * entire thing.
1514	 */
1515	if (psize > (object->size >> 2)) {
1516		objpgs = psize;
1517
1518		for (p = object->memq.tqh_first;
1519		    ((objpgs > 0) && (p != NULL));
1520		    p = p->listq.tqe_next) {
1521
1522			tmpidx = p->pindex;
1523			if (tmpidx < pindex) {
1524				continue;
1525			}
1526			tmpidx -= pindex;
1527			if (tmpidx >= psize) {
1528				continue;
1529			}
1530			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1531			    (p->busy == 0) &&
1532			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1533				if (p->queue == PQ_CACHE)
1534					vm_page_deactivate(p);
1535				vm_page_hold(p);
1536				p->flags |= PG_MAPPED;
1537				pmap_enter_quick(pmap,
1538					addr + (tmpidx << PAGE_SHIFT),
1539					VM_PAGE_TO_PHYS(p));
1540				vm_page_unhold(p);
1541			}
1542			objpgs -= 1;
1543		}
1544	} else {
1545		/*
1546		 * else lookup the pages one-by-one.
1547		 */
1548		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
1549			p = vm_page_lookup(object, tmpidx + pindex);
1550			if (p && (p->busy == 0) &&
1551			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1552			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1553				if (p->queue == PQ_CACHE)
1554					vm_page_deactivate(p);
1555				vm_page_hold(p);
1556				p->flags |= PG_MAPPED;
1557				pmap_enter_quick(pmap,
1558					addr + (tmpidx << PAGE_SHIFT),
1559					VM_PAGE_TO_PHYS(p));
1560				vm_page_unhold(p);
1561			}
1562		}
1563	}
1564}
1565
1566/*
1567 * pmap_prefault provides a quick way of clustering
1568 * pagefaults into a processes address space.  It is a "cousin"
1569 * of pmap_object_init_pt, except it runs at page fault time instead
1570 * of mmap time.
1571 */
1572#define PFBAK 2
1573#define PFFOR 2
1574#define PAGEORDER_SIZE (PFBAK+PFFOR)
1575
1576static int pmap_prefault_pageorder[] = {
1577	-NBPG, NBPG, -2 * NBPG, 2 * NBPG
1578};
1579
1580static void
1581pmap_prefault(pmap, addra, entry, object)
1582	pmap_t pmap;
1583	vm_offset_t addra;
1584	vm_map_entry_t entry;
1585	vm_object_t object;
1586{
1587	int i;
1588	vm_offset_t starta;
1589	vm_offset_t addr;
1590	vm_pindex_t pindex;
1591	vm_page_t m;
1592	int pageorder_index;
1593
1594	if (entry->object.vm_object != object)
1595		return;
1596
1597	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
1598		return;
1599
1600	starta = addra - PFBAK * PAGE_SIZE;
1601	if (starta < entry->start) {
1602		starta = entry->start;
1603	} else if (starta > addra) {
1604		starta = 0;
1605	}
1606
1607	for (i = 0; i < PAGEORDER_SIZE; i++) {
1608		vm_object_t lobject;
1609		pt_entry_t *pte;
1610
1611		addr = addra + pmap_prefault_pageorder[i];
1612		if (addr < starta || addr >= entry->end)
1613			continue;
1614
1615		pte = vtopte(addr);
1616		if (*pte)
1617			continue;
1618
1619		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1620		lobject = object;
1621		for (m = vm_page_lookup(lobject, pindex);
1622		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
1623		    lobject = lobject->backing_object) {
1624			if (lobject->backing_object_offset & (PAGE_MASK-1))
1625				break;
1626			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
1627			m = vm_page_lookup(lobject->backing_object, pindex);
1628		}
1629
1630		/*
1631		 * give-up when a page is not in memory
1632		 */
1633		if (m == NULL)
1634			break;
1635
1636		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1637		    (m->busy == 0) &&
1638		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1639
1640			if (m->queue == PQ_CACHE) {
1641				if (cnt.v_free_count + cnt.v_cache_count <
1642					cnt.v_free_min)
1643					break;
1644				vm_page_deactivate(m);
1645			}
1646			vm_page_hold(m);
1647			m->flags |= PG_MAPPED;
1648			pmap_enter_quick(pmap, addr, VM_PAGE_TO_PHYS(m));
1649			vm_page_unhold(m);
1650		}
1651	}
1652}
1653
1654/*
1655 *	Routine:	pmap_change_wiring
1656 *	Function:	Change the wiring attribute for a map/virtual-address
1657 *			pair.
1658 *	In/out conditions:
1659 *			The mapping must already exist in the pmap.
1660 */
1661void
1662pmap_change_wiring(pmap, va, wired)
1663	register pmap_t pmap;
1664	vm_offset_t va;
1665	boolean_t wired;
1666{
1667	register pt_entry_t *pte;
1668
1669	if (pmap == NULL)
1670		return;
1671
1672	pte = pmap_pte(pmap, va);
1673
1674	if (wired && !pmap_pte_w(pte))
1675		pmap->pm_stats.wired_count++;
1676	else if (!wired && pmap_pte_w(pte))
1677		pmap->pm_stats.wired_count--;
1678
1679	/*
1680	 * Wiring is not a hardware characteristic so there is no need to
1681	 * invalidate TLB.
1682	 */
1683	pmap_pte_set_w(pte, wired);
1684}
1685
1686
1687
1688/*
1689 *	Copy the range specified by src_addr/len
1690 *	from the source map to the range dst_addr/len
1691 *	in the destination map.
1692 *
1693 *	This routine is only advisory and need not do anything.
1694 */
1695void
1696pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1697	pmap_t dst_pmap, src_pmap;
1698	vm_offset_t dst_addr;
1699	vm_size_t len;
1700	vm_offset_t src_addr;
1701{
1702}
1703
1704/*
1705 *	Routine:	pmap_kernel
1706 *	Function:
1707 *		Returns the physical map handle for the kernel.
1708 */
1709pmap_t
1710pmap_kernel()
1711{
1712	return (kernel_pmap);
1713}
1714
1715/*
1716 *	pmap_zero_page zeros the specified (machine independent)
1717 *	page by mapping the page into virtual memory and using
1718 *	bzero to clear its contents, one machine dependent page
1719 *	at a time.
1720 */
1721void
1722pmap_zero_page(phys)
1723	vm_offset_t phys;
1724{
1725	if (*(int *) CMAP2)
1726		panic("pmap_zero_page: CMAP busy");
1727
1728	*(int *) CMAP2 = PG_V | PG_KW | trunc_page(phys);
1729	bzero(CADDR2, PAGE_SIZE);
1730
1731	*(int *) CMAP2 = 0;
1732	pmap_update_1pg((vm_offset_t) CADDR2);
1733}
1734
1735/*
1736 *	pmap_copy_page copies the specified (machine independent)
1737 *	page by mapping the page into virtual memory and using
1738 *	bcopy to copy the page, one machine dependent page at a
1739 *	time.
1740 */
1741void
1742pmap_copy_page(src, dst)
1743	vm_offset_t src;
1744	vm_offset_t dst;
1745{
1746	if (*(int *) CMAP1 || *(int *) CMAP2)
1747		panic("pmap_copy_page: CMAP busy");
1748
1749	*(int *) CMAP1 = PG_V | PG_KW | trunc_page(src);
1750	*(int *) CMAP2 = PG_V | PG_KW | trunc_page(dst);
1751
1752#if __GNUC__ > 1
1753	memcpy(CADDR2, CADDR1, PAGE_SIZE);
1754#else
1755	bcopy(CADDR1, CADDR2, PAGE_SIZE);
1756#endif
1757	*(int *) CMAP1 = 0;
1758	*(int *) CMAP2 = 0;
1759	pmap_update_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
1760}
1761
1762
1763/*
1764 *	Routine:	pmap_pageable
1765 *	Function:
1766 *		Make the specified pages (by pmap, offset)
1767 *		pageable (or not) as requested.
1768 *
1769 *		A page which is not pageable may not take
1770 *		a fault; therefore, its page table entry
1771 *		must remain valid for the duration.
1772 *
1773 *		This routine is merely advisory; pmap_enter
1774 *		will specify that these pages are to be wired
1775 *		down (or not) as appropriate.
1776 */
1777void
1778pmap_pageable(pmap, sva, eva, pageable)
1779	pmap_t pmap;
1780	vm_offset_t sva, eva;
1781	boolean_t pageable;
1782{
1783}
1784
1785/*
1786 * this routine returns true if a physical page resides
1787 * in the given pmap.
1788 */
1789boolean_t
1790pmap_page_exists(pmap, pa)
1791	pmap_t pmap;
1792	vm_offset_t pa;
1793{
1794	register pv_entry_t pv;
1795	int s;
1796
1797	if (!pmap_is_managed(pa))
1798		return FALSE;
1799
1800	pv = pa_to_pvh(pa);
1801	s = splhigh();
1802
1803	/*
1804	 * Not found, check current mappings returning immediately if found.
1805	 */
1806	if (pv->pv_pmap != NULL) {
1807		for (; pv; pv = pv->pv_next) {
1808			if (pv->pv_pmap == pmap) {
1809				splx(s);
1810				return TRUE;
1811			}
1812		}
1813	}
1814	splx(s);
1815	return (FALSE);
1816}
1817
1818/*
1819 * pmap_testbit tests bits in pte's
1820 * note that the testbit/changebit routines are inline,
1821 * and a lot of things compile-time evaluate.
1822 */
1823static __inline boolean_t
1824pmap_testbit(pa, bit)
1825	register vm_offset_t pa;
1826	int bit;
1827{
1828	register pv_entry_t pv;
1829	pt_entry_t *pte;
1830	int s;
1831
1832	if (!pmap_is_managed(pa))
1833		return FALSE;
1834
1835	pv = pa_to_pvh(pa);
1836	s = splhigh();
1837
1838	/*
1839	 * Not found, check current mappings returning immediately if found.
1840	 */
1841	if (pv->pv_pmap != NULL) {
1842		for (; pv; pv = pv->pv_next) {
1843			/*
1844			 * if the bit being tested is the modified bit, then
1845			 * mark UPAGES as always modified, and ptes as never
1846			 * modified.
1847			 */
1848			if (bit & (PG_U|PG_M)) {
1849				if ((pv->pv_va >= clean_sva) && (pv->pv_va < clean_eva)) {
1850					continue;
1851				}
1852			}
1853			if (!pv->pv_pmap) {
1854				printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
1855				continue;
1856			}
1857			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1858			if ((int) *pte & bit) {
1859				splx(s);
1860				return TRUE;
1861			}
1862		}
1863	}
1864	splx(s);
1865	return (FALSE);
1866}
1867
1868/*
1869 * this routine is used to modify bits in ptes
1870 */
1871static __inline void
1872pmap_changebit(pa, bit, setem)
1873	vm_offset_t pa;
1874	int bit;
1875	boolean_t setem;
1876{
1877	register pv_entry_t pv;
1878	register pt_entry_t *pte, npte;
1879	vm_offset_t va;
1880	int changed;
1881	int s;
1882
1883	if (!pmap_is_managed(pa))
1884		return;
1885
1886	pv = pa_to_pvh(pa);
1887	s = splhigh();
1888
1889	/*
1890	 * Loop over all current mappings setting/clearing as appropos If
1891	 * setting RO do we need to clear the VAC?
1892	 */
1893	if (pv->pv_pmap != NULL) {
1894		for (; pv; pv = pv->pv_next) {
1895			va = pv->pv_va;
1896
1897			/*
1898			 * don't write protect pager mappings
1899			 */
1900			if (!setem && (bit == PG_RW)) {
1901				if (va >= clean_sva && va < clean_eva)
1902					continue;
1903			}
1904			if (!pv->pv_pmap) {
1905				printf("Null pmap (cb) at va: 0x%lx\n", va);
1906				continue;
1907			}
1908			pte = pmap_pte(pv->pv_pmap, va);
1909			if (setem) {
1910				(int) npte = (int) *pte | bit;
1911			} else {
1912				(int) npte = (int) *pte & ~bit;
1913			}
1914			*pte = npte;
1915		}
1916	}
1917	splx(s);
1918	if (curproc != pageproc)
1919		pmap_update();
1920}
1921
1922/*
1923 *      pmap_page_protect:
1924 *
1925 *      Lower the permission for all mappings to a given page.
1926 */
1927void
1928pmap_page_protect(phys, prot)
1929	vm_offset_t phys;
1930	vm_prot_t prot;
1931{
1932	if ((prot & VM_PROT_WRITE) == 0) {
1933		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
1934			pmap_changebit(phys, PG_RW, FALSE);
1935		else
1936			pmap_remove_all(phys);
1937	}
1938}
1939
1940vm_offset_t
1941pmap_phys_address(ppn)
1942	int ppn;
1943{
1944	return (i386_ptob(ppn));
1945}
1946
1947/*
1948 *	pmap_is_referenced:
1949 *
1950 *	Return whether or not the specified physical page was referenced
1951 *	by any physical maps.
1952 */
1953boolean_t
1954pmap_is_referenced(vm_offset_t pa)
1955{
1956	return pmap_testbit((pa), PG_U);
1957}
1958
1959/*
1960 *	pmap_is_modified:
1961 *
1962 *	Return whether or not the specified physical page was modified
1963 *	in any physical maps.
1964 */
1965boolean_t
1966pmap_is_modified(vm_offset_t pa)
1967{
1968	return pmap_testbit((pa), PG_M);
1969}
1970
1971/*
1972 *	Clear the modify bits on the specified physical page.
1973 */
1974void
1975pmap_clear_modify(vm_offset_t pa)
1976{
1977	pmap_changebit((pa), PG_M, FALSE);
1978}
1979
1980/*
1981 *	pmap_clear_reference:
1982 *
1983 *	Clear the reference bit on the specified physical page.
1984 */
1985void
1986pmap_clear_reference(vm_offset_t pa)
1987{
1988	pmap_changebit((pa), PG_U, FALSE);
1989}
1990
1991/*
1992 * Miscellaneous support routines follow
1993 */
1994
1995static void
1996i386_protection_init()
1997{
1998	register int *kp, prot;
1999
2000	kp = protection_codes;
2001	for (prot = 0; prot < 8; prot++) {
2002		switch (prot) {
2003		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2004			/*
2005			 * Read access is also 0. There isn't any execute bit,
2006			 * so just make it readable.
2007			 */
2008		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2009		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2010		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2011			*kp++ = 0;
2012			break;
2013		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2014		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2015		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2016		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2017			*kp++ = PG_RW;
2018			break;
2019		}
2020	}
2021}
2022
2023/*
2024 * Map a set of physical memory pages into the kernel virtual
2025 * address space. Return a pointer to where it is mapped. This
2026 * routine is intended to be used for mapping device memory,
2027 * NOT real memory. The non-cacheable bits are set on each
2028 * mapped page.
2029 */
2030void *
2031pmap_mapdev(pa, size)
2032	vm_offset_t pa;
2033	vm_size_t size;
2034{
2035	vm_offset_t va, tmpva;
2036	pt_entry_t *pte;
2037
2038	pa = trunc_page(pa);
2039	size = roundup(size, PAGE_SIZE);
2040
2041	va = kmem_alloc_pageable(kernel_map, size);
2042	if (!va)
2043		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2044
2045	for (tmpva = va; size > 0;) {
2046		pte = vtopte(tmpva);
2047		*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_N));
2048		size -= PAGE_SIZE;
2049		tmpva += PAGE_SIZE;
2050		pa += PAGE_SIZE;
2051	}
2052	pmap_update();
2053
2054	return ((void *) va);
2055}
2056
2057#ifdef PMAP_DEBUG
2058pmap_pid_dump(int pid) {
2059	pmap_t pmap;
2060	struct proc *p;
2061	int npte = 0;
2062	int index;
2063	for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
2064		if (p->p_pid != pid)
2065			continue;
2066
2067		if (p->p_vmspace) {
2068			int i,j;
2069			index = 0;
2070			pmap = &p->p_vmspace->vm_pmap;
2071			for(i=0;i<1024;i++) {
2072				pd_entry_t *pde;
2073				pt_entry_t *pte;
2074				unsigned base = i << PD_SHIFT;
2075
2076				pde = &pmap->pm_pdir[i];
2077				if (pde && pmap_pde_v(pde)) {
2078					for(j=0;j<1024;j++) {
2079						unsigned va = base + (j << PG_SHIFT);
2080						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
2081							if (index) {
2082								index = 0;
2083								printf("\n");
2084							}
2085							return npte;
2086						}
2087						pte = pmap_pte( pmap, va);
2088						if (pte && pmap_pte_v(pte)) {
2089							vm_offset_t pa;
2090							vm_page_t m;
2091							pa = *(int *)pte;
2092							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
2093							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
2094								va, pa, m->hold_count, m->wire_count, m->flags);
2095							npte++;
2096							index++;
2097							if (index >= 2) {
2098								index = 0;
2099								printf("\n");
2100							} else {
2101								printf(" ");
2102							}
2103						}
2104					}
2105				}
2106			}
2107		}
2108	}
2109	return npte;
2110}
2111#endif
2112
2113#ifdef DEBUG
2114
2115static void	pads __P((pmap_t pm));
2116static void	pmap_pvdump __P((vm_offset_t pa));
2117
2118/* print address space of pmap*/
2119static void
2120pads(pm)
2121	pmap_t pm;
2122{
2123	unsigned va, i, j;
2124	pt_entry_t *ptep;
2125
2126	if (pm == kernel_pmap)
2127		return;
2128	for (i = 0; i < 1024; i++)
2129		if (pm->pm_pdir[i])
2130			for (j = 0; j < 1024; j++) {
2131				va = (i << PD_SHIFT) + (j << PG_SHIFT);
2132				if (pm == kernel_pmap && va < KERNBASE)
2133					continue;
2134				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2135					continue;
2136				ptep = pmap_pte(pm, va);
2137				if (pmap_pte_v(ptep))
2138					printf("%x:%x ", va, *(int *) ptep);
2139			};
2140
2141}
2142
2143static void
2144pmap_pvdump(pa)
2145	vm_offset_t pa;
2146{
2147	register pv_entry_t pv;
2148
2149	printf("pa %x", pa);
2150	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
2151#ifdef used_to_be
2152		printf(" -> pmap %x, va %x, flags %x",
2153		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
2154#endif
2155		printf(" -> pmap %x, va %x",
2156		    pv->pv_pmap, pv->pv_va);
2157		pads(pv->pv_pmap);
2158	}
2159	printf(" ");
2160}
2161#endif
2162