pmap.c revision 13495
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.73 1996/01/19 03:57:40 dyson Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54/*
55 * Major modifications by John S. Dyson primarily to support
56 * pageable page tables, eliminating pmap_attributes,
57 * discontiguous memory pages, and using more efficient string
58 * instructions. Jan 13, 1994.  Further modifications on Mar 2, 1994,
59 * general clean-up and efficiency mods.
60 */
61
62/*
63 *	Manages physical address maps.
64 *
65 *	In addition to hardware address maps, this
66 *	module is called upon to provide software-use-only
67 *	maps which may or may not be stored in the same
68 *	form as hardware maps.  These pseudo-maps are
69 *	used to store intermediate results from copy
70 *	operations to and from address spaces.
71 *
72 *	Since the information managed by this module is
73 *	also stored by the logical address mapping module,
74 *	this module may throw away valid virtual-to-physical
75 *	mappings at almost any time.  However, invalidations
76 *	of virtual-to-physical mappings must be done as
77 *	requested.
78 *
79 *	In order to cope with hardware architectures which
80 *	make virtual-to-physical map invalidates expensive,
81 *	this module may delay invalidate or reduced protection
82 *	operations until such time as they are actually
83 *	necessary.  This module is given full information as
84 *	to which processors are currently using which maps,
85 *	and to when physical maps must be made correct.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/proc.h>
91#include <sys/malloc.h>
92#include <sys/msgbuf.h>
93#include <sys/queue.h>
94#include <sys/vmmeter.h>
95
96#include <vm/vm.h>
97#include <vm/vm_param.h>
98#include <vm/vm_prot.h>
99#include <vm/lock.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_page.h>
102#include <vm/vm_map.h>
103#include <vm/vm_object.h>
104#include <vm/vm_extern.h>
105
106#include <machine/pcb.h>
107#include <machine/cputypes.h>
108#include <machine/md_var.h>
109
110#include <i386/isa/isa.h>
111
112#define PMAP_KEEP_PDIRS
113
114static void	init_pv_entries __P((int));
115
116/*
117 * Get PDEs and PTEs for user/kernel address space
118 */
119#define	pmap_pde(m, v)	(&((m)->pm_pdir[((vm_offset_t)(v) >> PD_SHIFT)&1023]))
120#define pdir_pde(m, v) (m[((vm_offset_t)(v) >> PD_SHIFT)&1023])
121
122#define pmap_pte_pa(pte)	(*(int *)(pte) & PG_FRAME)
123
124#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
125#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
126#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
127#define pmap_pte_u(pte)		((*(int *)pte & PG_U) != 0)
128#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
129
130#define pmap_pte_set_w(pte, v)		((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
131#define pmap_pte_set_prot(pte, v)	((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
132
133/*
134 * Given a map and a machine independent protection code,
135 * convert to a vax protection code.
136 */
137#define pte_prot(m, p)	(protection_codes[p])
138static int protection_codes[8];
139
140static struct pmap kernel_pmap_store;
141pmap_t kernel_pmap;
142
143vm_offset_t avail_start;	/* PA of first available physical page */
144vm_offset_t avail_end;		/* PA of last available physical page */
145vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
146vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
147static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
148static vm_offset_t vm_first_phys;
149
150static int nkpt;
151
152extern vm_offset_t clean_sva, clean_eva;
153extern int cpu_class;
154
155/*
156 * All those kernel PT submaps that BSD is so fond of
157 */
158pt_entry_t *CMAP1;
159static pt_entry_t *CMAP2, *ptmmap;
160static pv_entry_t pv_table;
161caddr_t CADDR1, ptvmmap;
162static caddr_t CADDR2;
163static pt_entry_t *msgbufmap;
164struct msgbuf *msgbufp;
165
166static void	free_pv_entry __P((pv_entry_t pv));
167static pt_entry_t *
168		get_pt_entry __P((pmap_t pmap));
169static pv_entry_t
170		get_pv_entry __P((void));
171static void	i386_protection_init __P((void));
172static void	pmap_alloc_pv_entry __P((void));
173static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
174static void	pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
175				      vm_offset_t pa));
176static int	pmap_is_managed __P((vm_offset_t pa));
177static void	pmap_remove_all __P((vm_offset_t pa));
178static void	pmap_remove_entry __P((struct pmap *pmap, pv_entry_t pv,
179				       vm_offset_t va));
180static vm_page_t
181		pmap_pte_vm_page __P((pmap_t pmap, vm_offset_t pt));
182static boolean_t
183		pmap_testbit __P((vm_offset_t pa, int bit));
184static void *	pmap_getpdir __P((void));
185static void	pmap_prefault __P((pmap_t pmap, vm_offset_t addra,
186				   vm_map_entry_t entry, vm_object_t object));
187
188/*
189 * The below are finer grained pmap_update routines.  These eliminate
190 * the gratuitious tlb flushes on non-i386 architectures.
191 */
192static __inline void
193pmap_update_1pg( vm_offset_t va) {
194#if defined(I386_CPU)
195	if (cpu_class == CPUCLASS_386)
196		pmap_update();
197	else
198#endif
199		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va));
200}
201
202static __inline void
203pmap_update_2pg( vm_offset_t va1, vm_offset_t va2) {
204#if defined(I386_CPU)
205	if (cpu_class == CPUCLASS_386) {
206		pmap_update();
207	} else
208#endif
209	{
210		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va1));
211		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va2));
212	}
213}
214
215/*
216 *	Routine:	pmap_pte
217 *	Function:
218 *		Extract the page table entry associated
219 *		with the given map/virtual_address pair.
220 * [ what about induced faults -wfj]
221 */
222
223__inline pt_entry_t * __pure
224pmap_pte(pmap, va)
225	register pmap_t pmap;
226	vm_offset_t va;
227{
228
229	if (pmap && *pmap_pde(pmap, va)) {
230		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
231
232		/* are we current address space or kernel? */
233		if ((pmap == kernel_pmap) || (frame == ((int) PTDpde & PG_FRAME)))
234			return ((pt_entry_t *) vtopte(va));
235		/* otherwise, we are alternate address space */
236		else {
237			if (frame != ((int) APTDpde & PG_FRAME)) {
238				APTDpde = pmap->pm_pdir[PTDPTDI];
239				pmap_update();
240			}
241			return ((pt_entry_t *) avtopte(va));
242		}
243	}
244	return (0);
245}
246
247/*
248 *	Routine:	pmap_extract
249 *	Function:
250 *		Extract the physical page address associated
251 *		with the given map/virtual_address pair.
252 */
253
254vm_offset_t
255pmap_extract(pmap, va)
256	register pmap_t pmap;
257	vm_offset_t va;
258{
259	vm_offset_t pa;
260
261	if (pmap && *pmap_pde(pmap, va)) {
262		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
263
264		/* are we current address space or kernel? */
265		if ((pmap == kernel_pmap)
266		    || (frame == ((int) PTDpde & PG_FRAME))) {
267			pa = *(int *) vtopte(va);
268			/* otherwise, we are alternate address space */
269		} else {
270			if (frame != ((int) APTDpde & PG_FRAME)) {
271				APTDpde = pmap->pm_pdir[PTDPTDI];
272				pmap_update();
273			}
274			pa = *(int *) avtopte(va);
275		}
276		return ((pa & PG_FRAME) | (va & ~PG_FRAME));
277	}
278	return 0;
279
280}
281
282/*
283 * determine if a page is managed (memory vs. device)
284 */
285static __inline int
286pmap_is_managed(pa)
287	vm_offset_t pa;
288{
289	int i;
290
291	if (!pmap_initialized)
292		return 0;
293
294	for (i = 0; phys_avail[i + 1]; i += 2) {
295		if (pa >= phys_avail[i] && pa < phys_avail[i + 1])
296			return 1;
297	}
298	return 0;
299}
300
301/*
302 * find the vm_page_t of a pte (only) given va of pte and pmap
303 */
304static __inline vm_page_t
305pmap_pte_vm_page(pmap, pt)
306	pmap_t pmap;
307	vm_offset_t pt;
308{
309	vm_page_t m;
310
311	pt = trunc_page(pt);
312	pt = (pt - UPT_MIN_ADDRESS) / PAGE_SIZE;
313	pt = ((vm_offset_t) pmap->pm_pdir[pt]) & PG_FRAME;
314	m = PHYS_TO_VM_PAGE(pt);
315	return m;
316}
317
318/*
319 * Wire a page table page
320 */
321__inline void
322pmap_use_pt(pmap, va)
323	pmap_t pmap;
324	vm_offset_t va;
325{
326	vm_offset_t pt;
327
328	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
329		return;
330
331	pt = (vm_offset_t) vtopte(va);
332	vm_page_hold(pmap_pte_vm_page(pmap, pt));
333}
334
335/*
336 * Unwire a page table page
337 */
338__inline void
339pmap_unuse_pt(pmap, va)
340	pmap_t pmap;
341	vm_offset_t va;
342{
343	vm_offset_t pt;
344	vm_page_t m;
345
346	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
347		return;
348
349	pt = (vm_offset_t) vtopte(va);
350	m = pmap_pte_vm_page(pmap, pt);
351	vm_page_unhold(m);
352	if (pmap != kernel_pmap &&
353	    (m->hold_count == 0) &&
354	    (m->wire_count == 0) &&
355	    (va < KPT_MIN_ADDRESS)) {
356/*
357 * We don't free page-table-pages anymore because it can have a negative
358 * impact on perf at times.  Now we just deactivate, and it'll get cleaned
359 * up if needed...  Also, if the page ends up getting used, it will fault
360 * back into the process address space and be reactivated.
361 */
362#ifdef PMAP_FREE_OLD_PTES
363		pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
364		vm_page_free(m);
365#else
366		m->dirty = 0;
367		vm_page_deactivate(m);
368#endif
369	}
370}
371
372/* [ macro again?, should I force kstack into user map here? -wfj ] */
373void
374pmap_activate(pmap, pcbp)
375	register pmap_t pmap;
376	struct pcb *pcbp;
377{
378	PMAP_ACTIVATE(pmap, pcbp);
379}
380
381/*
382 *	Bootstrap the system enough to run with virtual memory.
383 *
384 *	On the i386 this is called after mapping has already been enabled
385 *	and just syncs the pmap module with what has already been done.
386 *	[We can't call it easily with mapping off since the kernel is not
387 *	mapped with PA == VA, hence we would have to relocate every address
388 *	from the linked base (virtual) address "KERNBASE" to the actual
389 *	(physical) address starting relative to 0]
390 */
391void
392pmap_bootstrap(firstaddr, loadaddr)
393	vm_offset_t firstaddr;
394	vm_offset_t loadaddr;
395{
396	vm_offset_t va;
397	pt_entry_t *pte;
398
399	avail_start = firstaddr;
400
401	/*
402	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
403	 * large. It should instead be correctly calculated in locore.s and
404	 * not based on 'first' (which is a physical address, not a virtual
405	 * address, for the start of unused physical memory). The kernel
406	 * page tables are NOT double mapped and thus should not be included
407	 * in this calculation.
408	 */
409	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
410	virtual_end = VM_MAX_KERNEL_ADDRESS;
411
412	/*
413	 * Initialize protection array.
414	 */
415	i386_protection_init();
416
417	/*
418	 * The kernel's pmap is statically allocated so we don't have to use
419	 * pmap_create, which is unlikely to work correctly at this part of
420	 * the boot sequence (XXX and which no longer exists).
421	 */
422	kernel_pmap = &kernel_pmap_store;
423
424	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
425
426	kernel_pmap->pm_count = 1;
427	nkpt = NKPT;
428
429	/*
430	 * Reserve some special page table entries/VA space for temporary
431	 * mapping of pages.
432	 */
433#define	SYSMAP(c, p, v, n)	\
434	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
435
436	va = virtual_avail;
437	pte = pmap_pte(kernel_pmap, va);
438
439	/*
440	 * CMAP1/CMAP2 are used for zeroing and copying pages.
441	 */
442	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
443	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
444
445	/*
446	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
447	 */
448	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
449
450	/*
451	 * msgbufmap is used to map the system message buffer.
452	 */
453	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
454
455	virtual_avail = va;
456
457	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
458	pmap_update();
459}
460
461/*
462 *	Initialize the pmap module.
463 *	Called by vm_init, to initialize any structures that the pmap
464 *	system needs to map virtual memory.
465 *	pmap_init has been enhanced to support in a fairly consistant
466 *	way, discontiguous physical memory.
467 */
468void
469pmap_init(phys_start, phys_end)
470	vm_offset_t phys_start, phys_end;
471{
472	vm_offset_t addr;
473	vm_size_t npg, s;
474	int i;
475
476	/*
477	 * calculate the number of pv_entries needed
478	 */
479	vm_first_phys = phys_avail[0];
480	for (i = 0; phys_avail[i + 1]; i += 2);
481	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
482
483	/*
484	 * Allocate memory for random pmap data structures.  Includes the
485	 * pv_head_table.
486	 */
487	s = (vm_size_t) (sizeof(struct pv_entry) * npg);
488	s = round_page(s);
489	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
490	pv_table = (pv_entry_t) addr;
491
492	/*
493	 * init the pv free list
494	 */
495	init_pv_entries(npg);
496	/*
497	 * Now it is safe to enable pv_table recording.
498	 */
499	pmap_initialized = TRUE;
500}
501
502/*
503 *	Used to map a range of physical addresses into kernel
504 *	virtual address space.
505 *
506 *	For now, VM is already on, we only need to map the
507 *	specified memory.
508 */
509vm_offset_t
510pmap_map(virt, start, end, prot)
511	vm_offset_t virt;
512	vm_offset_t start;
513	vm_offset_t end;
514	int prot;
515{
516	while (start < end) {
517		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
518		virt += PAGE_SIZE;
519		start += PAGE_SIZE;
520	}
521	return (virt);
522}
523
524#ifdef PMAP_KEEP_PDIRS
525int nfreepdir;
526caddr_t *pdirlist;
527#define NFREEPDIR 3
528
529static void *
530pmap_getpdir() {
531	caddr_t *pdir;
532	if (pdirlist) {
533		--nfreepdir;
534		pdir = pdirlist;
535		pdirlist = (caddr_t *) *pdir;
536		bzero( (caddr_t) pdir, PAGE_SIZE);
537	} else {
538		pdir = (caddr_t *) kmem_alloc(kernel_map, PAGE_SIZE);
539	}
540
541	return (void *) pdir;
542}
543
544static void
545pmap_freepdir(void *pdir) {
546	if (nfreepdir > NFREEPDIR) {
547		kmem_free(kernel_map, (vm_offset_t) pdir, PAGE_SIZE);
548	} else {
549		* (caddr_t *) pdir = (caddr_t) pdirlist;
550		pdirlist = (caddr_t *) pdir;
551		++nfreepdir;
552	}
553}
554#endif
555
556/*
557 * Initialize a preallocated and zeroed pmap structure,
558 * such as one in a vmspace structure.
559 */
560void
561pmap_pinit(pmap)
562	register struct pmap *pmap;
563{
564	/*
565	 * No need to allocate page table space yet but we do need a valid
566	 * page directory table.
567	 */
568
569#ifdef PMAP_KEEP_PDIRS
570	pmap->pm_pdir = pmap_getpdir();
571#else
572	pmap->pm_pdir = (pd_entry_t *) kmem_alloc(kernel_map, PAGE_SIZE);
573#endif
574
575	/* wire in kernel global address entries */
576	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
577
578	/* install self-referential address mapping entry */
579	*(int *) (pmap->pm_pdir + PTDPTDI) =
580	    ((int) pmap_kextract((vm_offset_t) pmap->pm_pdir)) | PG_V | PG_KW;
581
582	pmap->pm_count = 1;
583}
584
585/*
586 * grow the number of kernel page table entries, if needed
587 */
588
589static vm_page_t nkpg;
590vm_offset_t kernel_vm_end;
591
592void
593pmap_growkernel(vm_offset_t addr)
594{
595	struct proc *p;
596	struct pmap *pmap;
597	int s;
598
599	s = splhigh();
600	if (kernel_vm_end == 0) {
601		kernel_vm_end = KERNBASE;
602		nkpt = 0;
603		while (pdir_pde(PTD, kernel_vm_end)) {
604			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
605			++nkpt;
606		}
607	}
608	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
609	while (kernel_vm_end < addr) {
610		if (pdir_pde(PTD, kernel_vm_end)) {
611			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
612			continue;
613		}
614		++nkpt;
615		if (!nkpg) {
616			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
617			if (!nkpg)
618				panic("pmap_growkernel: no memory to grow kernel");
619			vm_page_wire(nkpg);
620			vm_page_remove(nkpg);
621			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
622		}
623		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_KW);
624		nkpg = NULL;
625
626		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
627			if (p->p_vmspace) {
628				pmap = &p->p_vmspace->vm_pmap;
629				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
630			}
631		}
632		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
633		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
634	}
635	splx(s);
636}
637
638/*
639 *	Retire the given physical map from service.
640 *	Should only be called if the map contains
641 *	no valid mappings.
642 */
643void
644pmap_destroy(pmap)
645	register pmap_t pmap;
646{
647	int count;
648
649	if (pmap == NULL)
650		return;
651
652	count = --pmap->pm_count;
653	if (count == 0) {
654		pmap_release(pmap);
655		free((caddr_t) pmap, M_VMPMAP);
656	}
657}
658
659/*
660 * Release any resources held by the given physical map.
661 * Called when a pmap initialized by pmap_pinit is being released.
662 * Should only be called if the map contains no valid mappings.
663 */
664void
665pmap_release(pmap)
666	register struct pmap *pmap;
667{
668#ifdef PMAP_KEEP_PDIRS
669	pmap_freepdir( (void *)pmap->pm_pdir);
670#else
671	kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
672#endif
673}
674
675/*
676 *	Add a reference to the specified pmap.
677 */
678void
679pmap_reference(pmap)
680	pmap_t pmap;
681{
682	if (pmap != NULL) {
683		pmap->pm_count++;
684	}
685}
686
687#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
688
689/*
690 * Data for the pv entry allocation mechanism
691 */
692static int pv_freelistcnt;
693static pv_entry_t pv_freelist;
694static vm_offset_t pvva;
695static int npvvapg;
696
697/*
698 * free the pv_entry back to the free list
699 */
700static __inline void
701free_pv_entry(pv)
702	pv_entry_t pv;
703{
704	if (!pv)
705		return;
706	++pv_freelistcnt;
707	pv->pv_next = pv_freelist;
708	pv_freelist = pv;
709}
710
711/*
712 * get a new pv_entry, allocating a block from the system
713 * when needed.
714 * the memory allocation is performed bypassing the malloc code
715 * because of the possibility of allocations at interrupt time.
716 */
717static __inline pv_entry_t
718get_pv_entry()
719{
720	pv_entry_t tmp;
721
722	/*
723	 * get more pv_entry pages if needed
724	 */
725	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
726		pmap_alloc_pv_entry();
727	}
728	/*
729	 * get a pv_entry off of the free list
730	 */
731	--pv_freelistcnt;
732	tmp = pv_freelist;
733	pv_freelist = tmp->pv_next;
734	return tmp;
735}
736
737/*
738 * this *strange* allocation routine *statistically* eliminates the
739 * *possibility* of a malloc failure (*FATAL*) for a pv_entry_t data structure.
740 * also -- this code is MUCH MUCH faster than the malloc equiv...
741 */
742static void
743pmap_alloc_pv_entry()
744{
745	/*
746	 * do we have any pre-allocated map-pages left?
747	 */
748	if (npvvapg) {
749		vm_page_t m;
750
751		/*
752		 * we do this to keep recursion away
753		 */
754		pv_freelistcnt += PV_FREELIST_MIN;
755		/*
756		 * allocate a physical page out of the vm system
757		 */
758		m = vm_page_alloc(kernel_object,
759		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
760		    VM_ALLOC_INTERRUPT);
761		if (m) {
762			int newentries;
763			int i;
764			pv_entry_t entry;
765
766			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
767			/*
768			 * wire the page
769			 */
770			vm_page_wire(m);
771			m->flags &= ~PG_BUSY;
772			/*
773			 * let the kernel see it
774			 */
775			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
776
777			entry = (pv_entry_t) pvva;
778			/*
779			 * update the allocation pointers
780			 */
781			pvva += PAGE_SIZE;
782			--npvvapg;
783
784			/*
785			 * free the entries into the free list
786			 */
787			for (i = 0; i < newentries; i++) {
788				free_pv_entry(entry);
789				entry++;
790			}
791		}
792		pv_freelistcnt -= PV_FREELIST_MIN;
793	}
794	if (!pv_freelist)
795		panic("get_pv_entry: cannot get a pv_entry_t");
796}
797
798
799
800/*
801 * init the pv_entry allocation system
802 */
803#define PVSPERPAGE 64
804void
805init_pv_entries(npg)
806	int npg;
807{
808	/*
809	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
810	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
811	 * this is too small.)
812	 */
813	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
814		+ PAGE_SIZE - 1) / PAGE_SIZE;
815	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
816	/*
817	 * get the first batch of entries
818	 */
819	free_pv_entry(get_pv_entry());
820}
821
822static pt_entry_t *
823get_pt_entry(pmap)
824	pmap_t pmap;
825{
826	vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
827
828	/* are we current address space or kernel? */
829	if (pmap == kernel_pmap || frame == ((int) PTDpde & PG_FRAME)) {
830		return PTmap;
831	}
832	/* otherwise, we are alternate address space */
833	if (frame != ((int) APTDpde & PG_FRAME)) {
834		APTDpde = pmap->pm_pdir[PTDPTDI];
835		pmap_update();
836	}
837	return APTmap;
838}
839
840/*
841 * If it is the first entry on the list, it is actually
842 * in the header and we must copy the following entry up
843 * to the header.  Otherwise we must search the list for
844 * the entry.  In either case we free the now unused entry.
845 */
846static void
847pmap_remove_entry(pmap, pv, va)
848	struct pmap *pmap;
849	pv_entry_t pv;
850	vm_offset_t va;
851{
852	pv_entry_t npv;
853	int s;
854
855	s = splhigh();
856	if (pmap == pv->pv_pmap && va == pv->pv_va) {
857		npv = pv->pv_next;
858		if (npv) {
859			*pv = *npv;
860			free_pv_entry(npv);
861		} else {
862			pv->pv_pmap = NULL;
863		}
864	} else {
865		for (npv = pv->pv_next; npv; (pv = npv, npv = pv->pv_next)) {
866			if (pmap == npv->pv_pmap && va == npv->pv_va) {
867				break;
868			}
869		}
870		if (npv) {
871			pv->pv_next = npv->pv_next;
872			free_pv_entry(npv);
873		}
874	}
875	splx(s);
876}
877
878/*
879 *	Remove the given range of addresses from the specified map.
880 *
881 *	It is assumed that the start and end are properly
882 *	rounded to the page size.
883 */
884void
885pmap_remove(pmap, sva, eva)
886	struct pmap *pmap;
887	register vm_offset_t sva;
888	register vm_offset_t eva;
889{
890	register pt_entry_t *ptp, *ptq;
891	vm_offset_t pa;
892	register pv_entry_t pv;
893	vm_offset_t va;
894	pt_entry_t oldpte;
895
896	if (pmap == NULL)
897		return;
898
899	ptp = get_pt_entry(pmap);
900
901	/*
902	 * special handling of removing one page.  a very
903	 * common operation and easy to short circuit some
904	 * code.
905	 */
906	if ((sva + PAGE_SIZE) == eva) {
907
908		if (*pmap_pde(pmap, sva) == 0)
909			return;
910
911		ptq = ptp + i386_btop(sva);
912
913		if (!*ptq)
914			return;
915		/*
916		 * Update statistics
917		 */
918		if (pmap_pte_w(ptq))
919			pmap->pm_stats.wired_count--;
920		pmap->pm_stats.resident_count--;
921
922		pa = pmap_pte_pa(ptq);
923		oldpte = *ptq;
924		*ptq = 0;
925
926		if (pmap_is_managed(pa)) {
927			if ((int) oldpte & PG_M) {
928				if (sva < USRSTACK + (UPAGES * PAGE_SIZE) ||
929				    (sva >= KERNBASE && (sva < clean_sva || sva >= clean_eva))) {
930					PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
931				}
932			}
933			pv = pa_to_pvh(pa);
934			pmap_remove_entry(pmap, pv, sva);
935		}
936		pmap_unuse_pt(pmap, sva);
937		pmap_update_1pg(sva);
938		return;
939	}
940	sva = i386_btop(sva);
941	eva = i386_btop(eva);
942
943	while (sva < eva) {
944		/*
945		 * Weed out invalid mappings. Note: we assume that the page
946		 * directory table is always allocated, and in kernel virtual.
947		 */
948
949		if (*pmap_pde(pmap, i386_ptob(sva)) == 0) {
950			/* We can race ahead here, straight to next pde.. */
951			sva = ((sva + NPTEPG) & ~(NPTEPG - 1));
952			continue;
953		}
954		ptq = ptp + sva;
955
956		/*
957		 * search for page table entries, use string operations that
958		 * are much faster than explicitly scanning when page tables
959		 * are not fully populated.
960		 */
961		if (*ptq == 0) {
962			vm_offset_t pdnxt = ((sva + NPTEPG) & ~(NPTEPG - 1));
963			vm_offset_t nscan = pdnxt - sva;
964			int found = 0;
965
966			if ((nscan + sva) > eva)
967				nscan = eva - sva;
968
969			asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
970			    "=D"(ptq), "=a"(found) : "c"(nscan), "0"(ptq) : "cx");
971
972			if (!found) {
973				sva = pdnxt;
974				continue;
975			}
976			ptq -= 1;
977
978			sva = ptq - ptp;
979		}
980		/*
981		 * Update statistics
982		 */
983		oldpte = *ptq;
984		if (((int) oldpte) & PG_W)
985			pmap->pm_stats.wired_count--;
986		pmap->pm_stats.resident_count--;
987
988		/*
989		 * Invalidate the PTEs. XXX: should cluster them up and
990		 * invalidate as many as possible at once.
991		 */
992		*ptq = 0;
993
994		va = i386_ptob(sva);
995
996		/*
997		 * Remove from the PV table (raise IPL since we may be called
998		 * at interrupt time).
999		 */
1000		pa = ((int) oldpte) & PG_FRAME;
1001		if (!pmap_is_managed(pa)) {
1002			pmap_unuse_pt(pmap, (vm_offset_t) va);
1003			++sva;
1004			continue;
1005		}
1006		if ((int) oldpte & PG_M) {
1007			if (sva < USRSTACK + (UPAGES * PAGE_SIZE) ||
1008			    (sva >= KERNBASE && (sva < clean_sva || sva >= clean_eva))) {
1009				PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
1010			}
1011		}
1012		pv = pa_to_pvh(pa);
1013		pmap_remove_entry(pmap, pv, va);
1014		pmap_unuse_pt(pmap, va);
1015		++sva;
1016	}
1017	pmap_update();
1018}
1019
1020/*
1021 *	Routine:	pmap_remove_all
1022 *	Function:
1023 *		Removes this physical page from
1024 *		all physical maps in which it resides.
1025 *		Reflects back modify bits to the pager.
1026 *
1027 *	Notes:
1028 *		Original versions of this routine were very
1029 *		inefficient because they iteratively called
1030 *		pmap_remove (slow...)
1031 */
1032static void
1033pmap_remove_all(pa)
1034	vm_offset_t pa;
1035{
1036	register pv_entry_t pv, opv, npv;
1037	register pt_entry_t *pte, *ptp;
1038	vm_offset_t va;
1039	struct pmap *pmap;
1040	vm_page_t m;
1041	int s;
1042	int anyvalid = 0;
1043
1044	/*
1045	 * Not one of ours
1046	 */
1047	/*
1048	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1049	 * pages!
1050	 */
1051	if (!pmap_is_managed(pa))
1052		return;
1053
1054	pa = trunc_page(pa);
1055	opv = pa_to_pvh(pa);
1056	if (opv->pv_pmap == NULL)
1057		return;
1058
1059	m = PHYS_TO_VM_PAGE(pa);
1060	s = splhigh();
1061	pv = opv;
1062	while (pv && ((pmap = pv->pv_pmap) != NULL)) {
1063		ptp = get_pt_entry(pmap);
1064		va = pv->pv_va;
1065		pte = ptp + i386_btop(va);
1066		if (pmap_pte_w(pte))
1067			pmap->pm_stats.wired_count--;
1068		if (*pte) {
1069			pmap->pm_stats.resident_count--;
1070			if (curproc != pageproc)
1071				anyvalid++;
1072
1073			/*
1074			 * Update the vm_page_t clean and reference bits.
1075			 */
1076			if ((int) *pte & PG_M) {
1077				if (va < USRSTACK + (UPAGES * PAGE_SIZE) ||
1078				    (va >= KERNBASE && (va < clean_sva || va >= clean_eva))) {
1079					PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
1080				}
1081			}
1082			*pte = 0;
1083			pmap_unuse_pt(pmap, va);
1084		}
1085		pv = pv->pv_next;
1086	}
1087
1088	for (pv = opv->pv_next; pv; pv = npv) {
1089		npv = pv->pv_next;
1090		free_pv_entry(pv);
1091	}
1092
1093	opv->pv_pmap = NULL;
1094	opv->pv_next = NULL;
1095
1096	splx(s);
1097	if (anyvalid)
1098		pmap_update();
1099}
1100
1101
1102/*
1103 *	Set the physical protection on the
1104 *	specified range of this map as requested.
1105 */
1106void
1107pmap_protect(pmap, sva, eva, prot)
1108	register pmap_t pmap;
1109	vm_offset_t sva, eva;
1110	vm_prot_t prot;
1111{
1112	register pt_entry_t *pte;
1113	register vm_offset_t va;
1114	int i386prot;
1115	register pt_entry_t *ptp;
1116	int evap = i386_btop(eva);
1117	int anyvalid = 0;;
1118
1119	if (pmap == NULL)
1120		return;
1121
1122	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1123		pmap_remove(pmap, sva, eva);
1124		return;
1125	}
1126	if (prot & VM_PROT_WRITE)
1127		return;
1128
1129	ptp = get_pt_entry(pmap);
1130
1131	va = sva;
1132	while (va < eva) {
1133		int found = 0;
1134		int svap;
1135		vm_offset_t nscan;
1136
1137		/*
1138		 * Page table page is not allocated. Skip it, we don't want to
1139		 * force allocation of unnecessary PTE pages just to set the
1140		 * protection.
1141		 */
1142		if (!*pmap_pde(pmap, va)) {
1143			/* XXX: avoid address wrap around */
1144	nextpde:
1145			if (va >= i386_trunc_pdr((vm_offset_t) - 1))
1146				break;
1147			va = i386_round_pdr(va + PAGE_SIZE);
1148			continue;
1149		}
1150		pte = ptp + i386_btop(va);
1151
1152		if (*pte == 0) {
1153			/*
1154			 * scan for a non-empty pte
1155			 */
1156			svap = pte - ptp;
1157			nscan = ((svap + NPTEPG) & ~(NPTEPG - 1)) - svap;
1158
1159			if (nscan + svap > evap)
1160				nscan = evap - svap;
1161
1162			found = 0;
1163			if (nscan)
1164				asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
1165				    "=D"(pte), "=a"(found) : "c"(nscan), "0"(pte) : "cx");
1166
1167			if (!found)
1168				goto nextpde;
1169
1170			pte -= 1;
1171			svap = pte - ptp;
1172
1173			va = i386_ptob(svap);
1174		}
1175		anyvalid++;
1176
1177		i386prot = pte_prot(pmap, prot);
1178		if (va < UPT_MAX_ADDRESS) {
1179			i386prot |= PG_u;
1180			if (va >= UPT_MIN_ADDRESS)
1181				i386prot |= PG_RW;
1182		}
1183		pmap_pte_set_prot(pte, i386prot);
1184		va += PAGE_SIZE;
1185	}
1186	if (anyvalid)
1187		pmap_update();
1188}
1189
1190/*
1191 *	Insert the given physical page (p) at
1192 *	the specified virtual address (v) in the
1193 *	target physical map with the protection requested.
1194 *
1195 *	If specified, the page will be wired down, meaning
1196 *	that the related pte can not be reclaimed.
1197 *
1198 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1199 *	or lose information.  That is, this routine must actually
1200 *	insert this page into the given map NOW.
1201 */
1202void
1203pmap_enter(pmap, va, pa, prot, wired)
1204	register pmap_t pmap;
1205	vm_offset_t va;
1206	register vm_offset_t pa;
1207	vm_prot_t prot;
1208	boolean_t wired;
1209{
1210	register pt_entry_t *pte;
1211	register pt_entry_t npte;
1212	vm_offset_t opa;
1213	int ptevalid = 0;
1214
1215	if (pmap == NULL)
1216		return;
1217
1218	va = trunc_page(va);
1219	pa = trunc_page(pa);
1220	if (va > VM_MAX_KERNEL_ADDRESS)
1221		panic("pmap_enter: toobig");
1222
1223	/*
1224	 * Page Directory table entry not valid, we need a new PT page
1225	 */
1226	if (*pmap_pde(pmap, va) == 0) {
1227		printf("kernel page directory invalid pdir=%p, va=0x%lx\n",
1228			pmap->pm_pdir[PTDPTDI], va);
1229		panic("invalid kernel page directory");
1230	}
1231	pte = pmap_pte(pmap, va);
1232	opa = pmap_pte_pa(pte);
1233
1234	/*
1235	 * Mapping has not changed, must be protection or wiring change.
1236	 */
1237	if (opa == pa) {
1238		/*
1239		 * Wiring change, just update stats. We don't worry about
1240		 * wiring PT pages as they remain resident as long as there
1241		 * are valid mappings in them. Hence, if a user page is wired,
1242		 * the PT page will be also.
1243		 */
1244		if (wired && !pmap_pte_w(pte))
1245			pmap->pm_stats.wired_count++;
1246		else if (!wired && pmap_pte_w(pte))
1247			pmap->pm_stats.wired_count--;
1248
1249		goto validate;
1250	}
1251	/*
1252	 * Mapping has changed, invalidate old range and fall through to
1253	 * handle validating new mapping.
1254	 */
1255	if (opa) {
1256		pmap_remove(pmap, va, va + PAGE_SIZE);
1257	}
1258	/*
1259	 * Enter on the PV list if part of our managed memory Note that we
1260	 * raise IPL while manipulating pv_table since pmap_enter can be
1261	 * called at interrupt time.
1262	 */
1263	if (pmap_is_managed(pa)) {
1264		register pv_entry_t pv, npv;
1265		int s;
1266
1267		pv = pa_to_pvh(pa);
1268		s = splhigh();
1269		/*
1270		 * No entries yet, use header as the first entry
1271		 */
1272		if (pv->pv_pmap == NULL) {
1273			pv->pv_va = va;
1274			pv->pv_pmap = pmap;
1275			pv->pv_next = NULL;
1276		}
1277		/*
1278		 * There is at least one other VA mapping this page. Place
1279		 * this entry after the header.
1280		 */
1281		else {
1282			npv = get_pv_entry();
1283			npv->pv_va = va;
1284			npv->pv_pmap = pmap;
1285			npv->pv_next = pv->pv_next;
1286			pv->pv_next = npv;
1287		}
1288		splx(s);
1289	}
1290
1291	/*
1292	 * Increment counters
1293	 */
1294	pmap->pm_stats.resident_count++;
1295	if (wired)
1296		pmap->pm_stats.wired_count++;
1297
1298validate:
1299	/*
1300	 * Now validate mapping with desired protection/wiring.
1301	 */
1302	npte = (pt_entry_t) ((int) (pa | pte_prot(pmap, prot) | PG_V));
1303
1304	/*
1305	 * When forking (copy-on-write, etc): A process will turn off write
1306	 * permissions for any of its writable pages.  If the data (object) is
1307	 * only referred to by one process, the processes map is modified
1308	 * directly as opposed to using the object manipulation routine.  When
1309	 * using pmap_protect, the modified bits are not kept in the vm_page_t
1310	 * data structure.  Therefore, when using pmap_enter in vm_fault to
1311	 * bring back writability of a page, there has been no memory of the
1312	 * modified or referenced bits except at the pte level.  this clause
1313	 * supports the carryover of the modified and used (referenced) bits.
1314	 */
1315	if (pa == opa)
1316		(int) npte |= (int) *pte & (PG_M | PG_U);
1317
1318	if (wired)
1319		(int) npte |= PG_W;
1320	if (va < UPT_MIN_ADDRESS)
1321		(int) npte |= PG_u;
1322	else if (va < UPT_MAX_ADDRESS)
1323		(int) npte |= PG_u | PG_RW;
1324
1325	if (*pte != npte) {
1326		if (*pte)
1327			ptevalid++;
1328		*pte = npte;
1329	}
1330	if (ptevalid) {
1331		pmap_update_1pg(va);
1332	} else {
1333		pmap_use_pt(pmap, va);
1334	}
1335}
1336
1337/*
1338 * Add a list of wired pages to the kva
1339 * this routine is only used for temporary
1340 * kernel mappings that do not need to have
1341 * page modification or references recorded.
1342 * Note that old mappings are simply written
1343 * over.  The page *must* be wired.
1344 */
1345void
1346pmap_qenter(va, m, count)
1347	vm_offset_t va;
1348	vm_page_t *m;
1349	int count;
1350{
1351	int i;
1352	int anyvalid = 0;
1353	register pt_entry_t *pte;
1354
1355	for (i = 0; i < count; i++) {
1356		vm_offset_t tva = va + i * PAGE_SIZE;
1357		pt_entry_t npte = (pt_entry_t) ((int) (VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V));
1358		pte = vtopte(tva);
1359		if (*pte && (*pte != npte))
1360			pmap_update_1pg(tva);
1361		*pte = npte;
1362	}
1363}
1364/*
1365 * this routine jerks page mappings from the
1366 * kernel -- it is meant only for temporary mappings.
1367 */
1368void
1369pmap_qremove(va, count)
1370	vm_offset_t va;
1371	int count;
1372{
1373	int i;
1374	register pt_entry_t *pte;
1375
1376	for (i = 0; i < count; i++) {
1377		vm_offset_t tva = va + i * PAGE_SIZE;
1378		pte = vtopte(tva);
1379		*pte = 0;
1380		pmap_update_1pg(tva);
1381	}
1382}
1383
1384/*
1385 * add a wired page to the kva
1386 * note that in order for the mapping to take effect -- you
1387 * should do a pmap_update after doing the pmap_kenter...
1388 */
1389void
1390pmap_kenter(va, pa)
1391	vm_offset_t va;
1392	register vm_offset_t pa;
1393{
1394	register pt_entry_t *pte;
1395	int wasvalid = 0;
1396
1397	pte = vtopte(va);
1398
1399	if (*pte)
1400		wasvalid++;
1401
1402	*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V));
1403
1404	if (wasvalid)
1405		pmap_update_1pg(va);
1406}
1407
1408/*
1409 * remove a page from the kernel pagetables
1410 */
1411void
1412pmap_kremove(va)
1413	vm_offset_t va;
1414{
1415	register pt_entry_t *pte;
1416
1417	pte = vtopte(va);
1418
1419	*pte = (pt_entry_t) 0;
1420	pmap_update_1pg(va);
1421}
1422
1423/*
1424 * this code makes some *MAJOR* assumptions:
1425 * 1. Current pmap & pmap exists.
1426 * 2. Not wired.
1427 * 3. Read access.
1428 * 4. No page table pages.
1429 * 5. Tlbflush is deferred to calling procedure.
1430 * 6. Page IS managed.
1431 * but is *MUCH* faster than pmap_enter...
1432 */
1433
1434static __inline void
1435pmap_enter_quick(pmap, va, pa)
1436	register pmap_t pmap;
1437	vm_offset_t va;
1438	register vm_offset_t pa;
1439{
1440	register pt_entry_t *pte;
1441	register pv_entry_t pv, npv;
1442	int s;
1443
1444	/*
1445	 * Enter on the PV list if part of our managed memory Note that we
1446	 * raise IPL while manipulating pv_table since pmap_enter can be
1447	 * called at interrupt time.
1448	 */
1449
1450	pte = vtopte(va);
1451
1452	/* a fault on the page table might occur here */
1453	if (*pte) {
1454		pmap_remove(pmap, va, va + PAGE_SIZE);
1455	}
1456	pv = pa_to_pvh(pa);
1457	s = splhigh();
1458	/*
1459	 * No entries yet, use header as the first entry
1460	 */
1461	if (pv->pv_pmap == NULL) {
1462		pv->pv_pmap = pmap;
1463		pv->pv_va = va;
1464		pv->pv_next = NULL;
1465	}
1466	/*
1467	 * There is at least one other VA mapping this page. Place this entry
1468	 * after the header.
1469	 */
1470	else {
1471		npv = get_pv_entry();
1472		npv->pv_va = va;
1473		npv->pv_pmap = pmap;
1474		npv->pv_next = pv->pv_next;
1475		pv->pv_next = npv;
1476	}
1477	splx(s);
1478
1479	/*
1480	 * Increment counters
1481	 */
1482	pmap->pm_stats.resident_count++;
1483
1484	/*
1485	 * Now validate mapping with desired protection/wiring.
1486	 */
1487	*pte = (pt_entry_t) ((int) (pa | PG_V | PG_u));
1488
1489	pmap_use_pt(pmap, va);
1490
1491	return;
1492}
1493
1494#define MAX_INIT_PT (512)
1495/*
1496 * pmap_object_init_pt preloads the ptes for a given object
1497 * into the specified pmap.  This eliminates the blast of soft
1498 * faults on process startup and immediately after an mmap.
1499 */
1500void
1501pmap_object_init_pt(pmap, addr, object, pindex, size)
1502	pmap_t pmap;
1503	vm_offset_t addr;
1504	vm_object_t object;
1505	vm_pindex_t pindex;
1506	vm_size_t size;
1507{
1508	vm_offset_t tmpidx;
1509	int psize;
1510	vm_page_t p;
1511	int objpgs;
1512
1513	psize = (size >> PAGE_SHIFT);
1514
1515	if (!pmap || ((psize > MAX_INIT_PT) &&
1516		(object->resident_page_count > MAX_INIT_PT))) {
1517		return;
1518	}
1519
1520	/*
1521	 * if we are processing a major portion of the object, then scan the
1522	 * entire thing.
1523	 */
1524	if (psize > (object->size >> 2)) {
1525		objpgs = psize;
1526
1527		for (p = object->memq.tqh_first;
1528		    ((objpgs > 0) && (p != NULL));
1529		    p = p->listq.tqe_next) {
1530
1531			tmpidx = p->pindex;
1532			if (tmpidx < pindex) {
1533				continue;
1534			}
1535			tmpidx -= pindex;
1536			if (tmpidx >= psize) {
1537				continue;
1538			}
1539			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1540			    (p->busy == 0) &&
1541			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1542				if (p->queue == PQ_CACHE)
1543					vm_page_deactivate(p);
1544				vm_page_hold(p);
1545				p->flags |= PG_MAPPED;
1546				pmap_enter_quick(pmap,
1547					addr + (tmpidx << PAGE_SHIFT),
1548					VM_PAGE_TO_PHYS(p));
1549				vm_page_unhold(p);
1550			}
1551			objpgs -= 1;
1552		}
1553	} else {
1554		/*
1555		 * else lookup the pages one-by-one.
1556		 */
1557		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
1558			p = vm_page_lookup(object, tmpidx + pindex);
1559			if (p && (p->busy == 0) &&
1560			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1561			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1562				if (p->queue == PQ_CACHE)
1563					vm_page_deactivate(p);
1564				vm_page_hold(p);
1565				p->flags |= PG_MAPPED;
1566				pmap_enter_quick(pmap,
1567					addr + (tmpidx << PAGE_SHIFT),
1568					VM_PAGE_TO_PHYS(p));
1569				vm_page_unhold(p);
1570			}
1571		}
1572	}
1573}
1574
1575/*
1576 * pmap_prefault provides a quick way of clustering
1577 * pagefaults into a processes address space.  It is a "cousin"
1578 * of pmap_object_init_pt, except it runs at page fault time instead
1579 * of mmap time.
1580 */
1581#define PFBAK 2
1582#define PFFOR 2
1583#define PAGEORDER_SIZE (PFBAK+PFFOR)
1584
1585static int pmap_prefault_pageorder[] = {
1586	-NBPG, NBPG, -2 * NBPG, 2 * NBPG
1587};
1588
1589static void
1590pmap_prefault(pmap, addra, entry, object)
1591	pmap_t pmap;
1592	vm_offset_t addra;
1593	vm_map_entry_t entry;
1594	vm_object_t object;
1595{
1596	int i;
1597	vm_offset_t starta;
1598	vm_offset_t addr;
1599	vm_pindex_t pindex;
1600	vm_page_t m;
1601	int pageorder_index;
1602
1603	if (entry->object.vm_object != object)
1604		return;
1605
1606	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
1607		return;
1608
1609	starta = addra - PFBAK * PAGE_SIZE;
1610	if (starta < entry->start) {
1611		starta = entry->start;
1612	} else if (starta > addra) {
1613		starta = 0;
1614	}
1615
1616	for (i = 0; i < PAGEORDER_SIZE; i++) {
1617		vm_object_t lobject;
1618		pt_entry_t *pte;
1619
1620		addr = addra + pmap_prefault_pageorder[i];
1621		if (addr < starta || addr >= entry->end)
1622			continue;
1623
1624		pte = vtopte(addr);
1625		if (*pte)
1626			continue;
1627
1628		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1629		lobject = object;
1630		for (m = vm_page_lookup(lobject, pindex);
1631		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
1632		    lobject = lobject->backing_object) {
1633			if (lobject->backing_object_offset & (PAGE_MASK-1))
1634				break;
1635			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
1636			m = vm_page_lookup(lobject->backing_object, pindex);
1637		}
1638
1639		/*
1640		 * give-up when a page is not in memory
1641		 */
1642		if (m == NULL)
1643			break;
1644
1645		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1646		    (m->busy == 0) &&
1647		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1648
1649			if (m->queue == PQ_CACHE) {
1650				if (cnt.v_free_count + cnt.v_cache_count <
1651					cnt.v_free_min)
1652					break;
1653				vm_page_deactivate(m);
1654			}
1655			vm_page_hold(m);
1656			m->flags |= PG_MAPPED;
1657			pmap_enter_quick(pmap, addr, VM_PAGE_TO_PHYS(m));
1658			vm_page_unhold(m);
1659		}
1660	}
1661}
1662
1663/*
1664 *	Routine:	pmap_change_wiring
1665 *	Function:	Change the wiring attribute for a map/virtual-address
1666 *			pair.
1667 *	In/out conditions:
1668 *			The mapping must already exist in the pmap.
1669 */
1670void
1671pmap_change_wiring(pmap, va, wired)
1672	register pmap_t pmap;
1673	vm_offset_t va;
1674	boolean_t wired;
1675{
1676	register pt_entry_t *pte;
1677
1678	if (pmap == NULL)
1679		return;
1680
1681	pte = pmap_pte(pmap, va);
1682
1683	if (wired && !pmap_pte_w(pte))
1684		pmap->pm_stats.wired_count++;
1685	else if (!wired && pmap_pte_w(pte))
1686		pmap->pm_stats.wired_count--;
1687
1688	/*
1689	 * Wiring is not a hardware characteristic so there is no need to
1690	 * invalidate TLB.
1691	 */
1692	pmap_pte_set_w(pte, wired);
1693}
1694
1695
1696
1697/*
1698 *	Copy the range specified by src_addr/len
1699 *	from the source map to the range dst_addr/len
1700 *	in the destination map.
1701 *
1702 *	This routine is only advisory and need not do anything.
1703 */
1704void
1705pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1706	pmap_t dst_pmap, src_pmap;
1707	vm_offset_t dst_addr;
1708	vm_size_t len;
1709	vm_offset_t src_addr;
1710{
1711}
1712
1713/*
1714 *	Routine:	pmap_kernel
1715 *	Function:
1716 *		Returns the physical map handle for the kernel.
1717 */
1718pmap_t
1719pmap_kernel()
1720{
1721	return (kernel_pmap);
1722}
1723
1724/*
1725 *	pmap_zero_page zeros the specified (machine independent)
1726 *	page by mapping the page into virtual memory and using
1727 *	bzero to clear its contents, one machine dependent page
1728 *	at a time.
1729 */
1730void
1731pmap_zero_page(phys)
1732	vm_offset_t phys;
1733{
1734	if (*(int *) CMAP2)
1735		panic("pmap_zero_page: CMAP busy");
1736
1737	*(int *) CMAP2 = PG_V | PG_KW | trunc_page(phys);
1738	bzero(CADDR2, PAGE_SIZE);
1739
1740	*(int *) CMAP2 = 0;
1741	pmap_update_1pg((vm_offset_t) CADDR2);
1742}
1743
1744/*
1745 *	pmap_copy_page copies the specified (machine independent)
1746 *	page by mapping the page into virtual memory and using
1747 *	bcopy to copy the page, one machine dependent page at a
1748 *	time.
1749 */
1750void
1751pmap_copy_page(src, dst)
1752	vm_offset_t src;
1753	vm_offset_t dst;
1754{
1755	if (*(int *) CMAP1 || *(int *) CMAP2)
1756		panic("pmap_copy_page: CMAP busy");
1757
1758	*(int *) CMAP1 = PG_V | PG_KW | trunc_page(src);
1759	*(int *) CMAP2 = PG_V | PG_KW | trunc_page(dst);
1760
1761#if __GNUC__ > 1
1762	memcpy(CADDR2, CADDR1, PAGE_SIZE);
1763#else
1764	bcopy(CADDR1, CADDR2, PAGE_SIZE);
1765#endif
1766	*(int *) CMAP1 = 0;
1767	*(int *) CMAP2 = 0;
1768	pmap_update_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
1769}
1770
1771
1772/*
1773 *	Routine:	pmap_pageable
1774 *	Function:
1775 *		Make the specified pages (by pmap, offset)
1776 *		pageable (or not) as requested.
1777 *
1778 *		A page which is not pageable may not take
1779 *		a fault; therefore, its page table entry
1780 *		must remain valid for the duration.
1781 *
1782 *		This routine is merely advisory; pmap_enter
1783 *		will specify that these pages are to be wired
1784 *		down (or not) as appropriate.
1785 */
1786void
1787pmap_pageable(pmap, sva, eva, pageable)
1788	pmap_t pmap;
1789	vm_offset_t sva, eva;
1790	boolean_t pageable;
1791{
1792}
1793
1794/*
1795 * this routine returns true if a physical page resides
1796 * in the given pmap.
1797 */
1798boolean_t
1799pmap_page_exists(pmap, pa)
1800	pmap_t pmap;
1801	vm_offset_t pa;
1802{
1803	register pv_entry_t pv;
1804	int s;
1805
1806	if (!pmap_is_managed(pa))
1807		return FALSE;
1808
1809	pv = pa_to_pvh(pa);
1810	s = splhigh();
1811
1812	/*
1813	 * Not found, check current mappings returning immediately if found.
1814	 */
1815	if (pv->pv_pmap != NULL) {
1816		for (; pv; pv = pv->pv_next) {
1817			if (pv->pv_pmap == pmap) {
1818				splx(s);
1819				return TRUE;
1820			}
1821		}
1822	}
1823	splx(s);
1824	return (FALSE);
1825}
1826
1827/*
1828 * pmap_testbit tests bits in pte's
1829 * note that the testbit/changebit routines are inline,
1830 * and a lot of things compile-time evaluate.
1831 */
1832static __inline boolean_t
1833pmap_testbit(pa, bit)
1834	register vm_offset_t pa;
1835	int bit;
1836{
1837	register pv_entry_t pv;
1838	pt_entry_t *pte;
1839	int s;
1840
1841	if (!pmap_is_managed(pa))
1842		return FALSE;
1843
1844	pv = pa_to_pvh(pa);
1845	s = splhigh();
1846
1847	/*
1848	 * Not found, check current mappings returning immediately if found.
1849	 */
1850	if (pv->pv_pmap != NULL) {
1851		for (; pv; pv = pv->pv_next) {
1852			/*
1853			 * if the bit being tested is the modified bit, then
1854			 * mark UPAGES as always modified, and ptes as never
1855			 * modified.
1856			 */
1857			if (bit & (PG_U|PG_M)) {
1858				if ((pv->pv_va >= clean_sva) && (pv->pv_va < clean_eva)) {
1859					continue;
1860				}
1861			}
1862			if (!pv->pv_pmap) {
1863				printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
1864				continue;
1865			}
1866			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1867			if ((int) *pte & bit) {
1868				splx(s);
1869				return TRUE;
1870			}
1871		}
1872	}
1873	splx(s);
1874	return (FALSE);
1875}
1876
1877/*
1878 * this routine is used to modify bits in ptes
1879 */
1880static __inline void
1881pmap_changebit(pa, bit, setem)
1882	vm_offset_t pa;
1883	int bit;
1884	boolean_t setem;
1885{
1886	register pv_entry_t pv;
1887	register pt_entry_t *pte, npte;
1888	vm_offset_t va;
1889	int changed;
1890	int s;
1891
1892	if (!pmap_is_managed(pa))
1893		return;
1894
1895	pv = pa_to_pvh(pa);
1896	s = splhigh();
1897
1898	/*
1899	 * Loop over all current mappings setting/clearing as appropos If
1900	 * setting RO do we need to clear the VAC?
1901	 */
1902	if (pv->pv_pmap != NULL) {
1903		for (; pv; pv = pv->pv_next) {
1904			va = pv->pv_va;
1905
1906			/*
1907			 * don't write protect pager mappings
1908			 */
1909			if (!setem && (bit == PG_RW)) {
1910				if (va >= clean_sva && va < clean_eva)
1911					continue;
1912			}
1913			if (!pv->pv_pmap) {
1914				printf("Null pmap (cb) at va: 0x%lx\n", va);
1915				continue;
1916			}
1917			pte = pmap_pte(pv->pv_pmap, va);
1918			if (setem) {
1919				(int) npte = (int) *pte | bit;
1920			} else {
1921				(int) npte = (int) *pte & ~bit;
1922			}
1923			*pte = npte;
1924		}
1925	}
1926	splx(s);
1927	if (curproc != pageproc)
1928		pmap_update();
1929}
1930
1931/*
1932 *      pmap_page_protect:
1933 *
1934 *      Lower the permission for all mappings to a given page.
1935 */
1936void
1937pmap_page_protect(phys, prot)
1938	vm_offset_t phys;
1939	vm_prot_t prot;
1940{
1941	if ((prot & VM_PROT_WRITE) == 0) {
1942		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
1943			pmap_changebit(phys, PG_RW, FALSE);
1944		else
1945			pmap_remove_all(phys);
1946	}
1947}
1948
1949vm_offset_t
1950pmap_phys_address(ppn)
1951	int ppn;
1952{
1953	return (i386_ptob(ppn));
1954}
1955
1956/*
1957 *	pmap_is_referenced:
1958 *
1959 *	Return whether or not the specified physical page was referenced
1960 *	by any physical maps.
1961 */
1962boolean_t
1963pmap_is_referenced(vm_offset_t pa)
1964{
1965	return pmap_testbit((pa), PG_U);
1966}
1967
1968/*
1969 *	pmap_is_modified:
1970 *
1971 *	Return whether or not the specified physical page was modified
1972 *	in any physical maps.
1973 */
1974boolean_t
1975pmap_is_modified(vm_offset_t pa)
1976{
1977	return pmap_testbit((pa), PG_M);
1978}
1979
1980/*
1981 *	Clear the modify bits on the specified physical page.
1982 */
1983void
1984pmap_clear_modify(vm_offset_t pa)
1985{
1986	pmap_changebit((pa), PG_M, FALSE);
1987}
1988
1989/*
1990 *	pmap_clear_reference:
1991 *
1992 *	Clear the reference bit on the specified physical page.
1993 */
1994void
1995pmap_clear_reference(vm_offset_t pa)
1996{
1997	pmap_changebit((pa), PG_U, FALSE);
1998}
1999
2000/*
2001 * Miscellaneous support routines follow
2002 */
2003
2004static void
2005i386_protection_init()
2006{
2007	register int *kp, prot;
2008
2009	kp = protection_codes;
2010	for (prot = 0; prot < 8; prot++) {
2011		switch (prot) {
2012		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2013			/*
2014			 * Read access is also 0. There isn't any execute bit,
2015			 * so just make it readable.
2016			 */
2017		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2018		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2019		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2020			*kp++ = 0;
2021			break;
2022		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2023		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2024		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2025		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2026			*kp++ = PG_RW;
2027			break;
2028		}
2029	}
2030}
2031
2032/*
2033 * Map a set of physical memory pages into the kernel virtual
2034 * address space. Return a pointer to where it is mapped. This
2035 * routine is intended to be used for mapping device memory,
2036 * NOT real memory. The non-cacheable bits are set on each
2037 * mapped page.
2038 */
2039void *
2040pmap_mapdev(pa, size)
2041	vm_offset_t pa;
2042	vm_size_t size;
2043{
2044	vm_offset_t va, tmpva;
2045	pt_entry_t *pte;
2046
2047	pa = trunc_page(pa);
2048	size = roundup(size, PAGE_SIZE);
2049
2050	va = kmem_alloc_pageable(kernel_map, size);
2051	if (!va)
2052		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2053
2054	for (tmpva = va; size > 0;) {
2055		pte = vtopte(tmpva);
2056		*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_N));
2057		size -= PAGE_SIZE;
2058		tmpva += PAGE_SIZE;
2059		pa += PAGE_SIZE;
2060	}
2061	pmap_update();
2062
2063	return ((void *) va);
2064}
2065
2066#ifdef PMAP_DEBUG
2067pmap_pid_dump(int pid) {
2068	pmap_t pmap;
2069	struct proc *p;
2070	int npte = 0;
2071	int index;
2072	for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
2073		if (p->p_pid != pid)
2074			continue;
2075
2076		if (p->p_vmspace) {
2077			int i,j;
2078			index = 0;
2079			pmap = &p->p_vmspace->vm_pmap;
2080			for(i=0;i<1024;i++) {
2081				pd_entry_t *pde;
2082				pt_entry_t *pte;
2083				unsigned base = i << PD_SHIFT;
2084
2085				pde = &pmap->pm_pdir[i];
2086				if (pde && pmap_pde_v(pde)) {
2087					for(j=0;j<1024;j++) {
2088						unsigned va = base + (j << PG_SHIFT);
2089						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
2090							if (index) {
2091								index = 0;
2092								printf("\n");
2093							}
2094							return npte;
2095						}
2096						pte = pmap_pte( pmap, va);
2097						if (pte && pmap_pte_v(pte)) {
2098							vm_offset_t pa;
2099							vm_page_t m;
2100							pa = *(int *)pte;
2101							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
2102							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
2103								va, pa, m->hold_count, m->wire_count, m->flags);
2104							npte++;
2105							index++;
2106							if (index >= 2) {
2107								index = 0;
2108								printf("\n");
2109							} else {
2110								printf(" ");
2111							}
2112						}
2113					}
2114				}
2115			}
2116		}
2117	}
2118	return npte;
2119}
2120#endif
2121
2122#ifdef DEBUG
2123
2124static void	pads __P((pmap_t pm));
2125static void	pmap_pvdump __P((vm_offset_t pa));
2126
2127/* print address space of pmap*/
2128static void
2129pads(pm)
2130	pmap_t pm;
2131{
2132	unsigned va, i, j;
2133	pt_entry_t *ptep;
2134
2135	if (pm == kernel_pmap)
2136		return;
2137	for (i = 0; i < 1024; i++)
2138		if (pm->pm_pdir[i])
2139			for (j = 0; j < 1024; j++) {
2140				va = (i << PD_SHIFT) + (j << PG_SHIFT);
2141				if (pm == kernel_pmap && va < KERNBASE)
2142					continue;
2143				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2144					continue;
2145				ptep = pmap_pte(pm, va);
2146				if (pmap_pte_v(ptep))
2147					printf("%x:%x ", va, *(int *) ptep);
2148			};
2149
2150}
2151
2152static void
2153pmap_pvdump(pa)
2154	vm_offset_t pa;
2155{
2156	register pv_entry_t pv;
2157
2158	printf("pa %x", pa);
2159	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
2160#ifdef used_to_be
2161		printf(" -> pmap %x, va %x, flags %x",
2162		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
2163#endif
2164		printf(" -> pmap %x, va %x",
2165		    pv->pv_pmap, pv->pv_va);
2166		pads(pv->pv_pmap);
2167	}
2168	printf(" ");
2169}
2170#endif
2171