pmap.c revision 133292
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43/*-
44 * Copyright (c) 2003 Networks Associates Technology, Inc.
45 * All rights reserved.
46 *
47 * This software was developed for the FreeBSD Project by Jake Burkholder,
48 * Safeport Network Services, and Network Associates Laboratories, the
49 * Security Research Division of Network Associates, Inc. under
50 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
51 * CHATS research program.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 *    notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 *    notice, this list of conditions and the following disclaimer in the
60 *    documentation and/or other materials provided with the distribution.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 133292 2004-08-08 00:31:58Z alc $");
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_cpu.h"
105#include "opt_pmap.h"
106#include "opt_msgbuf.h"
107#include "opt_kstack_pages.h"
108
109#include <sys/param.h>
110#include <sys/systm.h>
111#include <sys/kernel.h>
112#include <sys/lock.h>
113#include <sys/mman.h>
114#include <sys/msgbuf.h>
115#include <sys/mutex.h>
116#include <sys/proc.h>
117#include <sys/sx.h>
118#include <sys/user.h>
119#include <sys/vmmeter.h>
120#include <sys/sched.h>
121#include <sys/sysctl.h>
122#ifdef SMP
123#include <sys/smp.h>
124#endif
125
126#include <vm/vm.h>
127#include <vm/vm_param.h>
128#include <vm/vm_kern.h>
129#include <vm/vm_page.h>
130#include <vm/vm_map.h>
131#include <vm/vm_object.h>
132#include <vm/vm_extern.h>
133#include <vm/vm_pageout.h>
134#include <vm/vm_pager.h>
135#include <vm/uma.h>
136
137#include <machine/cpu.h>
138#include <machine/cputypes.h>
139#include <machine/md_var.h>
140#include <machine/specialreg.h>
141#ifdef SMP
142#include <machine/smp.h>
143#endif
144
145#if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
146#define CPU_ENABLE_SSE
147#endif
148#if defined(CPU_DISABLE_SSE)
149#undef CPU_ENABLE_SSE
150#endif
151
152#ifndef PMAP_SHPGPERPROC
153#define PMAP_SHPGPERPROC 200
154#endif
155
156#if defined(DIAGNOSTIC)
157#define PMAP_DIAGNOSTIC
158#endif
159
160#define MINPV 2048
161
162#if !defined(PMAP_DIAGNOSTIC)
163#define PMAP_INLINE __inline
164#else
165#define PMAP_INLINE
166#endif
167
168/*
169 * Get PDEs and PTEs for user/kernel address space
170 */
171#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
172#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
173
174#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
175#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
176#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
177#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
178#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
179
180#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
181    atomic_clear_int((u_int *)(pte), PG_W))
182#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
183
184struct pmap kernel_pmap_store;
185LIST_HEAD(pmaplist, pmap);
186static struct pmaplist allpmaps;
187static struct mtx allpmaps_lock;
188
189vm_paddr_t avail_end;	/* PA of last available physical page */
190vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
191vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
192static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
193int pgeflag = 0;		/* PG_G or-in */
194int pseflag = 0;		/* PG_PS or-in */
195
196static int nkpt;
197vm_offset_t kernel_vm_end;
198extern u_int32_t KERNend;
199
200#ifdef PAE
201static uma_zone_t pdptzone;
202#endif
203
204/*
205 * Data for the pv entry allocation mechanism
206 */
207static uma_zone_t pvzone;
208static struct vm_object pvzone_obj;
209static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
210int pmap_pagedaemon_waken;
211
212/*
213 * All those kernel PT submaps that BSD is so fond of
214 */
215pt_entry_t *CMAP1 = 0;
216static pt_entry_t *CMAP2, *CMAP3;
217caddr_t CADDR1 = 0, ptvmmap = 0;
218static caddr_t CADDR2, CADDR3;
219static struct mtx CMAPCADDR12_lock;
220struct msgbuf *msgbufp = 0;
221
222/*
223 * Crashdump maps.
224 */
225static caddr_t crashdumpmap;
226
227#ifdef SMP
228extern pt_entry_t *SMPpt;
229#endif
230static pt_entry_t *PMAP1 = 0, *PMAP2;
231static pt_entry_t *PADDR1 = 0, *PADDR2;
232#ifdef SMP
233static int PMAP1cpu;
234static int PMAP1changedcpu;
235SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
236	   &PMAP1changedcpu, 0,
237	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
238#endif
239static int PMAP1changed;
240SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
241	   &PMAP1changed, 0,
242	   "Number of times pmap_pte_quick changed PMAP1");
243static int PMAP1unchanged;
244SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
245	   &PMAP1unchanged, 0,
246	   "Number of times pmap_pte_quick didn't change PMAP1");
247
248static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
249static pv_entry_t get_pv_entry(void);
250static void	pmap_clear_ptes(vm_page_t m, int bit);
251
252static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
253static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
254static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
255					vm_offset_t va);
256static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
257
258static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
259
260static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
261static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m);
262static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
263static int pmap_unuse_pt(pmap_t, vm_offset_t);
264static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
265#ifdef PAE
266static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
267#endif
268
269CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
270CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
271
272/*
273 * Move the kernel virtual free pointer to the next
274 * 4MB.  This is used to help improve performance
275 * by using a large (4MB) page for much of the kernel
276 * (.text, .data, .bss)
277 */
278static vm_offset_t
279pmap_kmem_choose(vm_offset_t addr)
280{
281	vm_offset_t newaddr = addr;
282
283#ifndef DISABLE_PSE
284	if (cpu_feature & CPUID_PSE)
285		newaddr = (addr + PDRMASK) & ~PDRMASK;
286#endif
287	return newaddr;
288}
289
290/*
291 *	Bootstrap the system enough to run with virtual memory.
292 *
293 *	On the i386 this is called after mapping has already been enabled
294 *	and just syncs the pmap module with what has already been done.
295 *	[We can't call it easily with mapping off since the kernel is not
296 *	mapped with PA == VA, hence we would have to relocate every address
297 *	from the linked base (virtual) address "KERNBASE" to the actual
298 *	(physical) address starting relative to 0]
299 */
300void
301pmap_bootstrap(firstaddr, loadaddr)
302	vm_paddr_t firstaddr;
303	vm_paddr_t loadaddr;
304{
305	vm_offset_t va;
306	pt_entry_t *pte, *unused;
307	int i;
308
309	/*
310	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
311	 * large. It should instead be correctly calculated in locore.s and
312	 * not based on 'first' (which is a physical address, not a virtual
313	 * address, for the start of unused physical memory). The kernel
314	 * page tables are NOT double mapped and thus should not be included
315	 * in this calculation.
316	 */
317	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
318	virtual_avail = pmap_kmem_choose(virtual_avail);
319
320	virtual_end = VM_MAX_KERNEL_ADDRESS;
321
322	/*
323	 * Initialize the kernel pmap (which is statically allocated).
324	 */
325	PMAP_LOCK_INIT(kernel_pmap);
326	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
327#ifdef PAE
328	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
329#endif
330	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
331	TAILQ_INIT(&kernel_pmap->pm_pvlist);
332	LIST_INIT(&allpmaps);
333	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
334	mtx_lock_spin(&allpmaps_lock);
335	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
336	mtx_unlock_spin(&allpmaps_lock);
337	nkpt = NKPT;
338
339	/*
340	 * Reserve some special page table entries/VA space for temporary
341	 * mapping of pages.
342	 */
343#define	SYSMAP(c, p, v, n)	\
344	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
345
346	va = virtual_avail;
347	pte = vtopte(va);
348
349	/*
350	 * CMAP1/CMAP2 are used for zeroing and copying pages.
351	 * CMAP3 is used for the idle process page zeroing.
352	 */
353	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
354	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
355	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
356	*CMAP3 = 0;
357
358	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
359
360	/*
361	 * Crashdump maps.
362	 */
363	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
364
365	/*
366	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
367	 */
368	SYSMAP(caddr_t, unused, ptvmmap, 1)
369
370	/*
371	 * msgbufp is used to map the system message buffer.
372	 */
373	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
374
375	/*
376	 * ptemap is used for pmap_pte_quick
377	 */
378	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
379	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
380
381	virtual_avail = va;
382
383	*CMAP1 = *CMAP2 = 0;
384	for (i = 0; i < NKPT; i++)
385		PTD[i] = 0;
386
387	/* Turn on PG_G on kernel page(s) */
388	pmap_set_pg();
389}
390
391/*
392 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
393 */
394void
395pmap_set_pg(void)
396{
397	pd_entry_t pdir;
398	pt_entry_t *pte;
399	vm_offset_t va, endva;
400	int i;
401
402	if (pgeflag == 0)
403		return;
404
405	i = KERNLOAD/NBPDR;
406	endva = KERNBASE + KERNend;
407
408	if (pseflag) {
409		va = KERNBASE + KERNLOAD;
410		while (va  < endva) {
411			pdir = kernel_pmap->pm_pdir[KPTDI+i];
412			pdir |= pgeflag;
413			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
414			invltlb();	/* Play it safe, invltlb() every time */
415			i++;
416			va += NBPDR;
417		}
418	} else {
419		va = (vm_offset_t)btext;
420		while (va < endva) {
421			pte = vtopte(va);
422			if (*pte)
423				*pte |= pgeflag;
424			invltlb();	/* Play it safe, invltlb() every time */
425			va += PAGE_SIZE;
426		}
427	}
428}
429
430#ifdef PAE
431
432static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
433
434static void *
435pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
436{
437	*flags = UMA_SLAB_PRIV;
438	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
439	    1, 0));
440}
441#endif
442
443/*
444 *	Initialize the pmap module.
445 *	Called by vm_init, to initialize any structures that the pmap
446 *	system needs to map virtual memory.
447 *	pmap_init has been enhanced to support in a fairly consistant
448 *	way, discontiguous physical memory.
449 */
450void
451pmap_init(void)
452{
453	int i;
454
455	/*
456	 * Allocate memory for random pmap data structures.  Includes the
457	 * pv_head_table.
458	 */
459
460	for(i = 0; i < vm_page_array_size; i++) {
461		vm_page_t m;
462
463		m = &vm_page_array[i];
464		TAILQ_INIT(&m->md.pv_list);
465		m->md.pv_list_count = 0;
466	}
467
468	/*
469	 * init the pv free list
470	 */
471	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
472	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
473	uma_prealloc(pvzone, MINPV);
474
475#ifdef PAE
476	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
477	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
478	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
479	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
480#endif
481
482	/*
483	 * Now it is safe to enable pv_table recording.
484	 */
485	pmap_initialized = TRUE;
486}
487
488/*
489 * Initialize the address space (zone) for the pv_entries.  Set a
490 * high water mark so that the system can recover from excessive
491 * numbers of pv entries.
492 */
493void
494pmap_init2()
495{
496	int shpgperproc = PMAP_SHPGPERPROC;
497
498	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
499	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
500	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
501	pv_entry_high_water = 9 * (pv_entry_max / 10);
502	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
503}
504
505
506/***************************************************
507 * Low level helper routines.....
508 ***************************************************/
509
510#if defined(PMAP_DIAGNOSTIC)
511
512/*
513 * This code checks for non-writeable/modified pages.
514 * This should be an invalid condition.
515 */
516static int
517pmap_nw_modified(pt_entry_t ptea)
518{
519	int pte;
520
521	pte = (int) ptea;
522
523	if ((pte & (PG_M|PG_RW)) == PG_M)
524		return 1;
525	else
526		return 0;
527}
528#endif
529
530
531/*
532 * this routine defines the region(s) of memory that should
533 * not be tested for the modified bit.
534 */
535static PMAP_INLINE int
536pmap_track_modified(vm_offset_t va)
537{
538	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
539		return 1;
540	else
541		return 0;
542}
543
544#ifdef I386_CPU
545/*
546 * i386 only has "invalidate everything" and no SMP to worry about.
547 */
548PMAP_INLINE void
549pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
550{
551
552	if (pmap == kernel_pmap || pmap->pm_active)
553		invltlb();
554}
555
556PMAP_INLINE void
557pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
558{
559
560	if (pmap == kernel_pmap || pmap->pm_active)
561		invltlb();
562}
563
564PMAP_INLINE void
565pmap_invalidate_all(pmap_t pmap)
566{
567
568	if (pmap == kernel_pmap || pmap->pm_active)
569		invltlb();
570}
571#else /* !I386_CPU */
572#ifdef SMP
573/*
574 * For SMP, these functions have to use the IPI mechanism for coherence.
575 */
576void
577pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
578{
579	u_int cpumask;
580	u_int other_cpus;
581
582	if (smp_started) {
583		if (!(read_eflags() & PSL_I))
584			panic("%s: interrupts disabled", __func__);
585		mtx_lock_spin(&smp_tlb_mtx);
586	} else
587		critical_enter();
588	/*
589	 * We need to disable interrupt preemption but MUST NOT have
590	 * interrupts disabled here.
591	 * XXX we may need to hold schedlock to get a coherent pm_active
592	 * XXX critical sections disable interrupts again
593	 */
594	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
595		invlpg(va);
596		smp_invlpg(va);
597	} else {
598		cpumask = PCPU_GET(cpumask);
599		other_cpus = PCPU_GET(other_cpus);
600		if (pmap->pm_active & cpumask)
601			invlpg(va);
602		if (pmap->pm_active & other_cpus)
603			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
604	}
605	if (smp_started)
606		mtx_unlock_spin(&smp_tlb_mtx);
607	else
608		critical_exit();
609}
610
611void
612pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
613{
614	u_int cpumask;
615	u_int other_cpus;
616	vm_offset_t addr;
617
618	if (smp_started) {
619		if (!(read_eflags() & PSL_I))
620			panic("%s: interrupts disabled", __func__);
621		mtx_lock_spin(&smp_tlb_mtx);
622	} else
623		critical_enter();
624	/*
625	 * We need to disable interrupt preemption but MUST NOT have
626	 * interrupts disabled here.
627	 * XXX we may need to hold schedlock to get a coherent pm_active
628	 * XXX critical sections disable interrupts again
629	 */
630	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
631		for (addr = sva; addr < eva; addr += PAGE_SIZE)
632			invlpg(addr);
633		smp_invlpg_range(sva, eva);
634	} else {
635		cpumask = PCPU_GET(cpumask);
636		other_cpus = PCPU_GET(other_cpus);
637		if (pmap->pm_active & cpumask)
638			for (addr = sva; addr < eva; addr += PAGE_SIZE)
639				invlpg(addr);
640		if (pmap->pm_active & other_cpus)
641			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
642			    sva, eva);
643	}
644	if (smp_started)
645		mtx_unlock_spin(&smp_tlb_mtx);
646	else
647		critical_exit();
648}
649
650void
651pmap_invalidate_all(pmap_t pmap)
652{
653	u_int cpumask;
654	u_int other_cpus;
655
656	if (smp_started) {
657		if (!(read_eflags() & PSL_I))
658			panic("%s: interrupts disabled", __func__);
659		mtx_lock_spin(&smp_tlb_mtx);
660	} else
661		critical_enter();
662	/*
663	 * We need to disable interrupt preemption but MUST NOT have
664	 * interrupts disabled here.
665	 * XXX we may need to hold schedlock to get a coherent pm_active
666	 * XXX critical sections disable interrupts again
667	 */
668	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
669		invltlb();
670		smp_invltlb();
671	} else {
672		cpumask = PCPU_GET(cpumask);
673		other_cpus = PCPU_GET(other_cpus);
674		if (pmap->pm_active & cpumask)
675			invltlb();
676		if (pmap->pm_active & other_cpus)
677			smp_masked_invltlb(pmap->pm_active & other_cpus);
678	}
679	if (smp_started)
680		mtx_unlock_spin(&smp_tlb_mtx);
681	else
682		critical_exit();
683}
684#else /* !SMP */
685/*
686 * Normal, non-SMP, 486+ invalidation functions.
687 * We inline these within pmap.c for speed.
688 */
689PMAP_INLINE void
690pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
691{
692
693	if (pmap == kernel_pmap || pmap->pm_active)
694		invlpg(va);
695}
696
697PMAP_INLINE void
698pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
699{
700	vm_offset_t addr;
701
702	if (pmap == kernel_pmap || pmap->pm_active)
703		for (addr = sva; addr < eva; addr += PAGE_SIZE)
704			invlpg(addr);
705}
706
707PMAP_INLINE void
708pmap_invalidate_all(pmap_t pmap)
709{
710
711	if (pmap == kernel_pmap || pmap->pm_active)
712		invltlb();
713}
714#endif /* !SMP */
715#endif /* !I386_CPU */
716
717/*
718 * Are we current address space or kernel?  N.B. We return FALSE when
719 * a pmap's page table is in use because a kernel thread is borrowing
720 * it.  The borrowed page table can change spontaneously, making any
721 * dependence on its continued use subject to a race condition.
722 */
723static __inline int
724pmap_is_current(pmap_t pmap)
725{
726
727	return (pmap == kernel_pmap ||
728		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
729	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
730}
731
732/*
733 * If the given pmap is not the current pmap, Giant must be held.
734 */
735pt_entry_t *
736pmap_pte(pmap_t pmap, vm_offset_t va)
737{
738	pd_entry_t newpf;
739	pd_entry_t *pde;
740
741	pde = pmap_pde(pmap, va);
742	if (*pde & PG_PS)
743		return (pde);
744	if (*pde != 0) {
745		/* are we current address space or kernel? */
746		if (pmap_is_current(pmap))
747			return (vtopte(va));
748		GIANT_REQUIRED;
749		newpf = *pde & PG_FRAME;
750		if ((*PMAP2 & PG_FRAME) != newpf) {
751			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
752			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
753		}
754		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
755	}
756	return (0);
757}
758
759static __inline void
760invlcaddr(void *caddr)
761{
762#ifdef I386_CPU
763	invltlb();
764#else
765	invlpg((u_int)caddr);
766#endif
767}
768
769/*
770 * Super fast pmap_pte routine best used when scanning
771 * the pv lists.  This eliminates many coarse-grained
772 * invltlb calls.  Note that many of the pv list
773 * scans are across different pmaps.  It is very wasteful
774 * to do an entire invltlb for checking a single mapping.
775 *
776 * If the given pmap is not the current pmap, vm_page_queue_mtx
777 * must be held and curthread pinned to a CPU.
778 */
779static pt_entry_t *
780pmap_pte_quick(pmap_t pmap, vm_offset_t va)
781{
782	pd_entry_t newpf;
783	pd_entry_t *pde;
784
785	pde = pmap_pde(pmap, va);
786	if (*pde & PG_PS)
787		return (pde);
788	if (*pde != 0) {
789		/* are we current address space or kernel? */
790		if (pmap_is_current(pmap))
791			return (vtopte(va));
792		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
793		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
794		newpf = *pde & PG_FRAME;
795		if ((*PMAP1 & PG_FRAME) != newpf) {
796			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
797#ifdef SMP
798			PMAP1cpu = PCPU_GET(cpuid);
799#endif
800			invlcaddr(PADDR1);
801			PMAP1changed++;
802		} else
803#ifdef SMP
804		if (PMAP1cpu != PCPU_GET(cpuid)) {
805			PMAP1cpu = PCPU_GET(cpuid);
806			invlcaddr(PADDR1);
807			PMAP1changedcpu++;
808		} else
809#endif
810			PMAP1unchanged++;
811		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
812	}
813	return (0);
814}
815
816/*
817 *	Routine:	pmap_extract
818 *	Function:
819 *		Extract the physical page address associated
820 *		with the given map/virtual_address pair.
821 */
822vm_paddr_t
823pmap_extract(pmap_t pmap, vm_offset_t va)
824{
825	vm_paddr_t rtval;
826	pt_entry_t *pte;
827	pd_entry_t pde;
828
829	rtval = 0;
830	if (pmap == NULL)
831		return (rtval);
832	PMAP_LOCK(pmap);
833	pde = pmap->pm_pdir[va >> PDRSHIFT];
834	if (pde != 0) {
835		if ((pde & PG_PS) != 0) {
836			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
837			PMAP_UNLOCK(pmap);
838			return rtval;
839		}
840		pte = pmap_pte(pmap, va);
841		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
842	}
843	PMAP_UNLOCK(pmap);
844	return (rtval);
845}
846
847/*
848 *	Routine:	pmap_extract_and_hold
849 *	Function:
850 *		Atomically extract and hold the physical page
851 *		with the given pmap and virtual address pair
852 *		if that mapping permits the given protection.
853 */
854vm_page_t
855pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
856{
857	pd_entry_t pde;
858	pt_entry_t pte;
859	vm_page_t m;
860
861	m = NULL;
862	if (pmap == NULL)
863		return (m);
864	vm_page_lock_queues();
865	PMAP_LOCK(pmap);
866	pde = *pmap_pde(pmap, va);
867	if (pde != 0) {
868		if (pde & PG_PS) {
869			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
870				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
871				    (va & PDRMASK));
872				vm_page_hold(m);
873			}
874		} else {
875			sched_pin();
876			pte = *pmap_pte_quick(pmap, va);
877			if (pte != 0 &&
878			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
879				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
880				vm_page_hold(m);
881			}
882			sched_unpin();
883		}
884	}
885	vm_page_unlock_queues();
886	PMAP_UNLOCK(pmap);
887	return (m);
888}
889
890/***************************************************
891 * Low level mapping routines.....
892 ***************************************************/
893
894/*
895 * Add a wired page to the kva.
896 * Note: not SMP coherent.
897 */
898PMAP_INLINE void
899pmap_kenter(vm_offset_t va, vm_paddr_t pa)
900{
901	pt_entry_t *pte;
902
903	pte = vtopte(va);
904	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
905}
906
907/*
908 * Remove a page from the kernel pagetables.
909 * Note: not SMP coherent.
910 */
911PMAP_INLINE void
912pmap_kremove(vm_offset_t va)
913{
914	pt_entry_t *pte;
915
916	pte = vtopte(va);
917	pte_clear(pte);
918}
919
920/*
921 *	Used to map a range of physical addresses into kernel
922 *	virtual address space.
923 *
924 *	The value passed in '*virt' is a suggested virtual address for
925 *	the mapping. Architectures which can support a direct-mapped
926 *	physical to virtual region can return the appropriate address
927 *	within that region, leaving '*virt' unchanged. Other
928 *	architectures should map the pages starting at '*virt' and
929 *	update '*virt' with the first usable address after the mapped
930 *	region.
931 */
932vm_offset_t
933pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
934{
935	vm_offset_t va, sva;
936
937	va = sva = *virt;
938	while (start < end) {
939		pmap_kenter(va, start);
940		va += PAGE_SIZE;
941		start += PAGE_SIZE;
942	}
943	pmap_invalidate_range(kernel_pmap, sva, va);
944	*virt = va;
945	return (sva);
946}
947
948
949/*
950 * Add a list of wired pages to the kva
951 * this routine is only used for temporary
952 * kernel mappings that do not need to have
953 * page modification or references recorded.
954 * Note that old mappings are simply written
955 * over.  The page *must* be wired.
956 * Note: SMP coherent.  Uses a ranged shootdown IPI.
957 */
958void
959pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
960{
961	vm_offset_t va;
962
963	va = sva;
964	while (count-- > 0) {
965		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
966		va += PAGE_SIZE;
967		m++;
968	}
969	pmap_invalidate_range(kernel_pmap, sva, va);
970}
971
972/*
973 * This routine tears out page mappings from the
974 * kernel -- it is meant only for temporary mappings.
975 * Note: SMP coherent.  Uses a ranged shootdown IPI.
976 */
977void
978pmap_qremove(vm_offset_t sva, int count)
979{
980	vm_offset_t va;
981
982	va = sva;
983	while (count-- > 0) {
984		pmap_kremove(va);
985		va += PAGE_SIZE;
986	}
987	pmap_invalidate_range(kernel_pmap, sva, va);
988}
989
990/***************************************************
991 * Page table page management routines.....
992 ***************************************************/
993
994/*
995 * This routine unholds page table pages, and if the hold count
996 * drops to zero, then it decrements the wire count.
997 */
998static PMAP_INLINE int
999pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1000{
1001
1002	vm_page_unhold(m);
1003	if (m->hold_count == 0)
1004		return _pmap_unwire_pte_hold(pmap, m);
1005	else
1006		return 0;
1007}
1008
1009static int
1010_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1011{
1012	vm_offset_t pteva;
1013
1014	/*
1015	 * unmap the page table page
1016	 */
1017	pmap->pm_pdir[m->pindex] = 0;
1018	--pmap->pm_stats.resident_count;
1019	/*
1020	 * We never unwire a kernel page table page, making a
1021	 * check for the kernel_pmap unnecessary.
1022	 */
1023	if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)) {
1024		/*
1025		 * Do an invltlb to make the invalidated mapping
1026		 * take effect immediately.
1027		 */
1028		pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1029		pmap_invalidate_page(pmap, pteva);
1030	}
1031
1032	/*
1033	 * If the page is finally unwired, simply free it.
1034	 */
1035	--m->wire_count;
1036	if (m->wire_count == 0) {
1037		vm_page_free_zero(m);
1038		atomic_subtract_int(&cnt.v_wire_count, 1);
1039	}
1040	return 1;
1041}
1042
1043/*
1044 * After removing a page table entry, this routine is used to
1045 * conditionally free the page, and manage the hold/wire counts.
1046 */
1047static int
1048pmap_unuse_pt(pmap_t pmap, vm_offset_t va)
1049{
1050	pd_entry_t ptepde;
1051	vm_page_t mpte;
1052
1053	if (va >= VM_MAXUSER_ADDRESS)
1054		return 0;
1055	ptepde = *pmap_pde(pmap, va);
1056	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1057	return pmap_unwire_pte_hold(pmap, mpte);
1058}
1059
1060void
1061pmap_pinit0(pmap)
1062	struct pmap *pmap;
1063{
1064
1065	PMAP_LOCK_INIT(pmap);
1066	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1067#ifdef PAE
1068	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1069#endif
1070	pmap->pm_active = 0;
1071	PCPU_SET(curpmap, pmap);
1072	TAILQ_INIT(&pmap->pm_pvlist);
1073	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1074	mtx_lock_spin(&allpmaps_lock);
1075	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1076	mtx_unlock_spin(&allpmaps_lock);
1077}
1078
1079/*
1080 * Initialize a preallocated and zeroed pmap structure,
1081 * such as one in a vmspace structure.
1082 */
1083void
1084pmap_pinit(pmap)
1085	register struct pmap *pmap;
1086{
1087	vm_page_t m, ptdpg[NPGPTD];
1088	vm_paddr_t pa;
1089	static int color;
1090	int i;
1091
1092	PMAP_LOCK_INIT(pmap);
1093
1094	/*
1095	 * No need to allocate page table space yet but we do need a valid
1096	 * page directory table.
1097	 */
1098	if (pmap->pm_pdir == NULL) {
1099		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1100		    NBPTD);
1101#ifdef PAE
1102		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1103		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1104		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1105		    ("pmap_pinit: pdpt misaligned"));
1106		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1107		    ("pmap_pinit: pdpt above 4g"));
1108#endif
1109	}
1110
1111	/*
1112	 * allocate the page directory page(s)
1113	 */
1114	for (i = 0; i < NPGPTD;) {
1115		m = vm_page_alloc(NULL, color++,
1116		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1117		    VM_ALLOC_ZERO);
1118		if (m == NULL)
1119			VM_WAIT;
1120		else {
1121			ptdpg[i++] = m;
1122		}
1123	}
1124
1125	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1126
1127	for (i = 0; i < NPGPTD; i++) {
1128		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1129			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1130	}
1131
1132	mtx_lock_spin(&allpmaps_lock);
1133	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1134	mtx_unlock_spin(&allpmaps_lock);
1135	/* Wire in kernel global address entries. */
1136	/* XXX copies current process, does not fill in MPPTDI */
1137	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1138#ifdef SMP
1139	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1140#endif
1141
1142	/* install self-referential address mapping entry(s) */
1143	for (i = 0; i < NPGPTD; i++) {
1144		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1145		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1146#ifdef PAE
1147		pmap->pm_pdpt[i] = pa | PG_V;
1148#endif
1149	}
1150
1151	pmap->pm_active = 0;
1152	TAILQ_INIT(&pmap->pm_pvlist);
1153	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1154}
1155
1156/*
1157 * this routine is called if the page table page is not
1158 * mapped correctly.
1159 */
1160static vm_page_t
1161_pmap_allocpte(pmap, ptepindex)
1162	pmap_t	pmap;
1163	unsigned ptepindex;
1164{
1165	vm_paddr_t ptepa;
1166	vm_page_t m;
1167
1168	/*
1169	 * Allocate a page table page.
1170	 */
1171	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1172	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1173		PMAP_UNLOCK(pmap);
1174		vm_page_unlock_queues();
1175		VM_WAIT;
1176		vm_page_lock_queues();
1177		PMAP_LOCK(pmap);
1178
1179		/*
1180		 * Indicate the need to retry.  While waiting, the page table
1181		 * page may have been allocated.
1182		 */
1183		return (NULL);
1184	}
1185	if ((m->flags & PG_ZERO) == 0)
1186		pmap_zero_page(m);
1187
1188	KASSERT(m->queue == PQ_NONE,
1189		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1190
1191	/*
1192	 * Increment the hold count for the page table page
1193	 * (denoting a new mapping.)
1194	 */
1195	m->hold_count++;
1196
1197	/*
1198	 * Map the pagetable page into the process address space, if
1199	 * it isn't already there.
1200	 */
1201
1202	pmap->pm_stats.resident_count++;
1203
1204	ptepa = VM_PAGE_TO_PHYS(m);
1205	pmap->pm_pdir[ptepindex] =
1206		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1207
1208	return m;
1209}
1210
1211static vm_page_t
1212pmap_allocpte(pmap_t pmap, vm_offset_t va)
1213{
1214	unsigned ptepindex;
1215	pd_entry_t ptepa;
1216	vm_page_t m;
1217
1218	/*
1219	 * Calculate pagetable page index
1220	 */
1221	ptepindex = va >> PDRSHIFT;
1222retry:
1223	/*
1224	 * Get the page directory entry
1225	 */
1226	ptepa = pmap->pm_pdir[ptepindex];
1227
1228	/*
1229	 * This supports switching from a 4MB page to a
1230	 * normal 4K page.
1231	 */
1232	if (ptepa & PG_PS) {
1233		pmap->pm_pdir[ptepindex] = 0;
1234		ptepa = 0;
1235		pmap_invalidate_all(kernel_pmap);
1236	}
1237
1238	/*
1239	 * If the page table page is mapped, we just increment the
1240	 * hold count, and activate it.
1241	 */
1242	if (ptepa) {
1243		m = PHYS_TO_VM_PAGE(ptepa);
1244		m->hold_count++;
1245	} else {
1246		/*
1247		 * Here if the pte page isn't mapped, or if it has
1248		 * been deallocated.
1249		 */
1250		m = _pmap_allocpte(pmap, ptepindex);
1251		if (m == NULL)
1252			goto retry;
1253	}
1254	return (m);
1255}
1256
1257
1258/***************************************************
1259* Pmap allocation/deallocation routines.
1260 ***************************************************/
1261
1262#ifdef SMP
1263/*
1264 * Deal with a SMP shootdown of other users of the pmap that we are
1265 * trying to dispose of.  This can be a bit hairy.
1266 */
1267static u_int *lazymask;
1268static u_int lazyptd;
1269static volatile u_int lazywait;
1270
1271void pmap_lazyfix_action(void);
1272
1273void
1274pmap_lazyfix_action(void)
1275{
1276	u_int mymask = PCPU_GET(cpumask);
1277
1278	if (rcr3() == lazyptd)
1279		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1280	atomic_clear_int(lazymask, mymask);
1281	atomic_store_rel_int(&lazywait, 1);
1282}
1283
1284static void
1285pmap_lazyfix_self(u_int mymask)
1286{
1287
1288	if (rcr3() == lazyptd)
1289		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1290	atomic_clear_int(lazymask, mymask);
1291}
1292
1293
1294static void
1295pmap_lazyfix(pmap_t pmap)
1296{
1297	u_int mymask = PCPU_GET(cpumask);
1298	u_int mask;
1299	register u_int spins;
1300
1301	while ((mask = pmap->pm_active) != 0) {
1302		spins = 50000000;
1303		mask = mask & -mask;	/* Find least significant set bit */
1304		mtx_lock_spin(&smp_tlb_mtx);
1305#ifdef PAE
1306		lazyptd = vtophys(pmap->pm_pdpt);
1307#else
1308		lazyptd = vtophys(pmap->pm_pdir);
1309#endif
1310		if (mask == mymask) {
1311			lazymask = &pmap->pm_active;
1312			pmap_lazyfix_self(mymask);
1313		} else {
1314			atomic_store_rel_int((u_int *)&lazymask,
1315			    (u_int)&pmap->pm_active);
1316			atomic_store_rel_int(&lazywait, 0);
1317			ipi_selected(mask, IPI_LAZYPMAP);
1318			while (lazywait == 0) {
1319				ia32_pause();
1320				if (--spins == 0)
1321					break;
1322			}
1323		}
1324		mtx_unlock_spin(&smp_tlb_mtx);
1325		if (spins == 0)
1326			printf("pmap_lazyfix: spun for 50000000\n");
1327	}
1328}
1329
1330#else	/* SMP */
1331
1332/*
1333 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1334 * unlikely to have to even execute this code, including the fact
1335 * that the cleanup is deferred until the parent does a wait(2), which
1336 * means that another userland process has run.
1337 */
1338static void
1339pmap_lazyfix(pmap_t pmap)
1340{
1341	u_int cr3;
1342
1343	cr3 = vtophys(pmap->pm_pdir);
1344	if (cr3 == rcr3()) {
1345		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1346		pmap->pm_active &= ~(PCPU_GET(cpumask));
1347	}
1348}
1349#endif	/* SMP */
1350
1351/*
1352 * Release any resources held by the given physical map.
1353 * Called when a pmap initialized by pmap_pinit is being released.
1354 * Should only be called if the map contains no valid mappings.
1355 */
1356void
1357pmap_release(pmap_t pmap)
1358{
1359	vm_page_t m, ptdpg[NPGPTD];
1360	int i;
1361
1362	KASSERT(pmap->pm_stats.resident_count == 0,
1363	    ("pmap_release: pmap resident count %ld != 0",
1364	    pmap->pm_stats.resident_count));
1365
1366	pmap_lazyfix(pmap);
1367	mtx_lock_spin(&allpmaps_lock);
1368	LIST_REMOVE(pmap, pm_list);
1369	mtx_unlock_spin(&allpmaps_lock);
1370
1371	for (i = 0; i < NPGPTD; i++)
1372		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1373
1374	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1375	    sizeof(*pmap->pm_pdir));
1376#ifdef SMP
1377	pmap->pm_pdir[MPPTDI] = 0;
1378#endif
1379
1380	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1381
1382	vm_page_lock_queues();
1383	for (i = 0; i < NPGPTD; i++) {
1384		m = ptdpg[i];
1385#ifdef PAE
1386		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1387		    ("pmap_release: got wrong ptd page"));
1388#endif
1389		m->wire_count--;
1390		atomic_subtract_int(&cnt.v_wire_count, 1);
1391		vm_page_free_zero(m);
1392	}
1393	vm_page_unlock_queues();
1394	PMAP_LOCK_DESTROY(pmap);
1395}
1396
1397static int
1398kvm_size(SYSCTL_HANDLER_ARGS)
1399{
1400	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1401
1402	return sysctl_handle_long(oidp, &ksize, 0, req);
1403}
1404SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1405    0, 0, kvm_size, "IU", "Size of KVM");
1406
1407static int
1408kvm_free(SYSCTL_HANDLER_ARGS)
1409{
1410	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1411
1412	return sysctl_handle_long(oidp, &kfree, 0, req);
1413}
1414SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1415    0, 0, kvm_free, "IU", "Amount of KVM free");
1416
1417/*
1418 * grow the number of kernel page table entries, if needed
1419 */
1420void
1421pmap_growkernel(vm_offset_t addr)
1422{
1423	struct pmap *pmap;
1424	vm_paddr_t ptppaddr;
1425	vm_page_t nkpg;
1426	pd_entry_t newpdir;
1427	pt_entry_t *pde;
1428
1429	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1430	if (kernel_vm_end == 0) {
1431		kernel_vm_end = KERNBASE;
1432		nkpt = 0;
1433		while (pdir_pde(PTD, kernel_vm_end)) {
1434			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1435			nkpt++;
1436		}
1437	}
1438	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1439	while (kernel_vm_end < addr) {
1440		if (pdir_pde(PTD, kernel_vm_end)) {
1441			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1442			continue;
1443		}
1444
1445		/*
1446		 * This index is bogus, but out of the way
1447		 */
1448		nkpg = vm_page_alloc(NULL, nkpt,
1449		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1450		if (!nkpg)
1451			panic("pmap_growkernel: no memory to grow kernel");
1452
1453		nkpt++;
1454
1455		pmap_zero_page(nkpg);
1456		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1457		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1458		pdir_pde(PTD, kernel_vm_end) = newpdir;
1459
1460		mtx_lock_spin(&allpmaps_lock);
1461		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1462			pde = pmap_pde(pmap, kernel_vm_end);
1463			pde_store(pde, newpdir);
1464		}
1465		mtx_unlock_spin(&allpmaps_lock);
1466		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1467	}
1468}
1469
1470
1471/***************************************************
1472 * page management routines.
1473 ***************************************************/
1474
1475/*
1476 * free the pv_entry back to the free list
1477 */
1478static PMAP_INLINE void
1479free_pv_entry(pv_entry_t pv)
1480{
1481	pv_entry_count--;
1482	uma_zfree(pvzone, pv);
1483}
1484
1485/*
1486 * get a new pv_entry, allocating a block from the system
1487 * when needed.
1488 * the memory allocation is performed bypassing the malloc code
1489 * because of the possibility of allocations at interrupt time.
1490 */
1491static pv_entry_t
1492get_pv_entry(void)
1493{
1494	pv_entry_count++;
1495	if (pv_entry_high_water &&
1496		(pv_entry_count > pv_entry_high_water) &&
1497		(pmap_pagedaemon_waken == 0)) {
1498		pmap_pagedaemon_waken = 1;
1499		wakeup (&vm_pages_needed);
1500	}
1501	return uma_zalloc(pvzone, M_NOWAIT);
1502}
1503
1504
1505static int
1506pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1507{
1508	pv_entry_t pv;
1509	int rtval;
1510
1511	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1512	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1513	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1514		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1515			if (pmap == pv->pv_pmap && va == pv->pv_va)
1516				break;
1517		}
1518	} else {
1519		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1520			if (va == pv->pv_va)
1521				break;
1522		}
1523	}
1524
1525	rtval = 0;
1526	if (pv) {
1527		rtval = pmap_unuse_pt(pmap, va);
1528		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1529		m->md.pv_list_count--;
1530		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1531			vm_page_flag_clear(m, PG_WRITEABLE);
1532
1533		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1534		free_pv_entry(pv);
1535	}
1536
1537	return rtval;
1538}
1539
1540/*
1541 * Create a pv entry for page at pa for
1542 * (pmap, va).
1543 */
1544static void
1545pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1546{
1547	pv_entry_t pv;
1548
1549	pv = get_pv_entry();
1550	pv->pv_va = va;
1551	pv->pv_pmap = pmap;
1552
1553	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1554	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1555	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1556	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1557	m->md.pv_list_count++;
1558}
1559
1560/*
1561 * pmap_remove_pte: do the things to unmap a page in a process
1562 */
1563static int
1564pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1565{
1566	pt_entry_t oldpte;
1567	vm_page_t m;
1568
1569	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1570	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1571	oldpte = pte_load_clear(ptq);
1572	if (oldpte & PG_W)
1573		pmap->pm_stats.wired_count -= 1;
1574	/*
1575	 * Machines that don't support invlpg, also don't support
1576	 * PG_G.
1577	 */
1578	if (oldpte & PG_G)
1579		pmap_invalidate_page(kernel_pmap, va);
1580	pmap->pm_stats.resident_count -= 1;
1581	if (oldpte & PG_MANAGED) {
1582		m = PHYS_TO_VM_PAGE(oldpte);
1583		if (oldpte & PG_M) {
1584#if defined(PMAP_DIAGNOSTIC)
1585			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1586				printf(
1587	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1588				    va, oldpte);
1589			}
1590#endif
1591			if (pmap_track_modified(va))
1592				vm_page_dirty(m);
1593		}
1594		if (oldpte & PG_A)
1595			vm_page_flag_set(m, PG_REFERENCED);
1596		return pmap_remove_entry(pmap, m, va);
1597	} else {
1598		return pmap_unuse_pt(pmap, va);
1599	}
1600}
1601
1602/*
1603 * Remove a single page from a process address space
1604 */
1605static void
1606pmap_remove_page(pmap_t pmap, vm_offset_t va)
1607{
1608	pt_entry_t *pte;
1609
1610	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1611	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1612	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1613	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1614		return;
1615	pmap_remove_pte(pmap, pte, va);
1616	pmap_invalidate_page(pmap, va);
1617}
1618
1619/*
1620 *	Remove the given range of addresses from the specified map.
1621 *
1622 *	It is assumed that the start and end are properly
1623 *	rounded to the page size.
1624 */
1625void
1626pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1627{
1628	vm_offset_t pdnxt;
1629	pd_entry_t ptpaddr;
1630	pt_entry_t *pte;
1631	int anyvalid;
1632
1633	if (pmap == NULL)
1634		return;
1635
1636	/*
1637	 * Perform an unsynchronized read.  This is, however, safe.
1638	 */
1639	if (pmap->pm_stats.resident_count == 0)
1640		return;
1641
1642	vm_page_lock_queues();
1643	sched_pin();
1644	PMAP_LOCK(pmap);
1645
1646	/*
1647	 * special handling of removing one page.  a very
1648	 * common operation and easy to short circuit some
1649	 * code.
1650	 */
1651	if ((sva + PAGE_SIZE == eva) &&
1652	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1653		pmap_remove_page(pmap, sva);
1654		goto out;
1655	}
1656
1657	anyvalid = 0;
1658
1659	for (; sva < eva; sva = pdnxt) {
1660		unsigned pdirindex;
1661
1662		/*
1663		 * Calculate index for next page table.
1664		 */
1665		pdnxt = (sva + NBPDR) & ~PDRMASK;
1666		if (pmap->pm_stats.resident_count == 0)
1667			break;
1668
1669		pdirindex = sva >> PDRSHIFT;
1670		ptpaddr = pmap->pm_pdir[pdirindex];
1671
1672		/*
1673		 * Weed out invalid mappings. Note: we assume that the page
1674		 * directory table is always allocated, and in kernel virtual.
1675		 */
1676		if (ptpaddr == 0)
1677			continue;
1678
1679		/*
1680		 * Check for large page.
1681		 */
1682		if ((ptpaddr & PG_PS) != 0) {
1683			pmap->pm_pdir[pdirindex] = 0;
1684			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1685			anyvalid = 1;
1686			continue;
1687		}
1688
1689		/*
1690		 * Limit our scan to either the end of the va represented
1691		 * by the current page table page, or to the end of the
1692		 * range being removed.
1693		 */
1694		if (pdnxt > eva)
1695			pdnxt = eva;
1696
1697		for (; sva != pdnxt; sva += PAGE_SIZE) {
1698			if ((pte = pmap_pte_quick(pmap, sva)) == NULL ||
1699			    *pte == 0)
1700				continue;
1701			anyvalid = 1;
1702			if (pmap_remove_pte(pmap, pte, sva))
1703				break;
1704		}
1705	}
1706
1707	if (anyvalid)
1708		pmap_invalidate_all(pmap);
1709out:
1710	sched_unpin();
1711	vm_page_unlock_queues();
1712	PMAP_UNLOCK(pmap);
1713}
1714
1715/*
1716 *	Routine:	pmap_remove_all
1717 *	Function:
1718 *		Removes this physical page from
1719 *		all physical maps in which it resides.
1720 *		Reflects back modify bits to the pager.
1721 *
1722 *	Notes:
1723 *		Original versions of this routine were very
1724 *		inefficient because they iteratively called
1725 *		pmap_remove (slow...)
1726 */
1727
1728void
1729pmap_remove_all(vm_page_t m)
1730{
1731	register pv_entry_t pv;
1732	pt_entry_t *pte, tpte;
1733
1734#if defined(PMAP_DIAGNOSTIC)
1735	/*
1736	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1737	 */
1738	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1739		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1740		    VM_PAGE_TO_PHYS(m));
1741	}
1742#endif
1743	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1744	sched_pin();
1745	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1746		PMAP_LOCK(pv->pv_pmap);
1747		pv->pv_pmap->pm_stats.resident_count--;
1748		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1749		tpte = pte_load_clear(pte);
1750		if (tpte & PG_W)
1751			pv->pv_pmap->pm_stats.wired_count--;
1752		if (tpte & PG_A)
1753			vm_page_flag_set(m, PG_REFERENCED);
1754
1755		/*
1756		 * Update the vm_page_t clean and reference bits.
1757		 */
1758		if (tpte & PG_M) {
1759#if defined(PMAP_DIAGNOSTIC)
1760			if (pmap_nw_modified((pt_entry_t) tpte)) {
1761				printf(
1762	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1763				    pv->pv_va, tpte);
1764			}
1765#endif
1766			if (pmap_track_modified(pv->pv_va))
1767				vm_page_dirty(m);
1768		}
1769		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1770		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1771		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1772		m->md.pv_list_count--;
1773		pmap_unuse_pt(pv->pv_pmap, pv->pv_va);
1774		PMAP_UNLOCK(pv->pv_pmap);
1775		free_pv_entry(pv);
1776	}
1777	vm_page_flag_clear(m, PG_WRITEABLE);
1778	sched_unpin();
1779}
1780
1781/*
1782 *	Set the physical protection on the
1783 *	specified range of this map as requested.
1784 */
1785void
1786pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1787{
1788	vm_offset_t pdnxt;
1789	pd_entry_t ptpaddr;
1790	int anychanged;
1791
1792	if (pmap == NULL)
1793		return;
1794
1795	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1796		pmap_remove(pmap, sva, eva);
1797		return;
1798	}
1799
1800	if (prot & VM_PROT_WRITE)
1801		return;
1802
1803	anychanged = 0;
1804
1805	vm_page_lock_queues();
1806	sched_pin();
1807	PMAP_LOCK(pmap);
1808	for (; sva < eva; sva = pdnxt) {
1809		unsigned pdirindex;
1810
1811		pdnxt = (sva + NBPDR) & ~PDRMASK;
1812
1813		pdirindex = sva >> PDRSHIFT;
1814		ptpaddr = pmap->pm_pdir[pdirindex];
1815
1816		/*
1817		 * Weed out invalid mappings. Note: we assume that the page
1818		 * directory table is always allocated, and in kernel virtual.
1819		 */
1820		if (ptpaddr == 0)
1821			continue;
1822
1823		/*
1824		 * Check for large page.
1825		 */
1826		if ((ptpaddr & PG_PS) != 0) {
1827			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1828			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1829			anychanged = 1;
1830			continue;
1831		}
1832
1833		if (pdnxt > eva)
1834			pdnxt = eva;
1835
1836		for (; sva != pdnxt; sva += PAGE_SIZE) {
1837			pt_entry_t pbits;
1838			pt_entry_t *pte;
1839			vm_page_t m;
1840
1841			if ((pte = pmap_pte_quick(pmap, sva)) == NULL)
1842				continue;
1843			pbits = *pte;
1844			if (pbits & PG_MANAGED) {
1845				m = NULL;
1846				if (pbits & PG_A) {
1847					m = PHYS_TO_VM_PAGE(pbits);
1848					vm_page_flag_set(m, PG_REFERENCED);
1849					pbits &= ~PG_A;
1850				}
1851				if ((pbits & PG_M) != 0 &&
1852				    pmap_track_modified(sva)) {
1853					if (m == NULL)
1854						m = PHYS_TO_VM_PAGE(pbits);
1855					vm_page_dirty(m);
1856					pbits &= ~PG_M;
1857				}
1858			}
1859
1860			pbits &= ~PG_RW;
1861
1862			if (pbits != *pte) {
1863				pte_store(pte, pbits);
1864				anychanged = 1;
1865			}
1866		}
1867	}
1868	if (anychanged)
1869		pmap_invalidate_all(pmap);
1870	sched_unpin();
1871	vm_page_unlock_queues();
1872	PMAP_UNLOCK(pmap);
1873}
1874
1875/*
1876 *	Insert the given physical page (p) at
1877 *	the specified virtual address (v) in the
1878 *	target physical map with the protection requested.
1879 *
1880 *	If specified, the page will be wired down, meaning
1881 *	that the related pte can not be reclaimed.
1882 *
1883 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1884 *	or lose information.  That is, this routine must actually
1885 *	insert this page into the given map NOW.
1886 */
1887void
1888pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1889	   boolean_t wired)
1890{
1891	vm_paddr_t pa;
1892	register pt_entry_t *pte;
1893	vm_paddr_t opa;
1894	pt_entry_t origpte, newpte;
1895	vm_page_t mpte;
1896
1897	if (pmap == NULL)
1898		return;
1899
1900	va &= PG_FRAME;
1901#ifdef PMAP_DIAGNOSTIC
1902	if (va > VM_MAX_KERNEL_ADDRESS)
1903		panic("pmap_enter: toobig");
1904	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1905		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1906#endif
1907
1908	mpte = NULL;
1909
1910	vm_page_lock_queues();
1911	PMAP_LOCK(pmap);
1912	sched_pin();
1913
1914	/*
1915	 * In the case that a page table page is not
1916	 * resident, we are creating it here.
1917	 */
1918	if (va < VM_MAXUSER_ADDRESS) {
1919		mpte = pmap_allocpte(pmap, va);
1920	}
1921#if 0 && defined(PMAP_DIAGNOSTIC)
1922	else {
1923		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1924		origpte = *pdeaddr;
1925		if ((origpte & PG_V) == 0) {
1926			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1927				pmap->pm_pdir[PTDPTDI], origpte, va);
1928		}
1929	}
1930#endif
1931
1932	pte = pmap_pte_quick(pmap, va);
1933
1934	/*
1935	 * Page Directory table entry not valid, we need a new PT page
1936	 */
1937	if (pte == NULL) {
1938		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1939			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1940	}
1941
1942	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1943	origpte = *pte;
1944	opa = origpte & PG_FRAME;
1945
1946	if (origpte & PG_PS) {
1947		/*
1948		 * Yes, I know this will truncate upper address bits for PAE,
1949		 * but I'm actually more interested in the lower bits
1950		 */
1951		printf("pmap_enter: va %p, pte %p, origpte %p\n",
1952		    (void *)va, (void *)pte, (void *)(uintptr_t)origpte);
1953		panic("pmap_enter: attempted pmap_enter on 4MB page");
1954	}
1955
1956	/*
1957	 * Mapping has not changed, must be protection or wiring change.
1958	 */
1959	if (origpte && (opa == pa)) {
1960		/*
1961		 * Wiring change, just update stats. We don't worry about
1962		 * wiring PT pages as they remain resident as long as there
1963		 * are valid mappings in them. Hence, if a user page is wired,
1964		 * the PT page will be also.
1965		 */
1966		if (wired && ((origpte & PG_W) == 0))
1967			pmap->pm_stats.wired_count++;
1968		else if (!wired && (origpte & PG_W))
1969			pmap->pm_stats.wired_count--;
1970
1971#if defined(PMAP_DIAGNOSTIC)
1972		if (pmap_nw_modified((pt_entry_t) origpte)) {
1973			printf(
1974	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1975			    va, origpte);
1976		}
1977#endif
1978
1979		/*
1980		 * Remove extra pte reference
1981		 */
1982		if (mpte)
1983			mpte->hold_count--;
1984
1985		/*
1986		 * We might be turning off write access to the page,
1987		 * so we go ahead and sense modify status.
1988		 */
1989		if (origpte & PG_MANAGED) {
1990			if ((origpte & PG_M) && pmap_track_modified(va)) {
1991				vm_page_t om;
1992				om = PHYS_TO_VM_PAGE(opa);
1993				vm_page_dirty(om);
1994			}
1995			pa |= PG_MANAGED;
1996		}
1997		goto validate;
1998	}
1999	/*
2000	 * Mapping has changed, invalidate old range and fall through to
2001	 * handle validating new mapping.
2002	 */
2003	if (opa) {
2004		int err;
2005		err = pmap_remove_pte(pmap, pte, va);
2006		if (err)
2007			panic("pmap_enter: pte vanished, va: 0x%x", va);
2008	}
2009
2010	/*
2011	 * Enter on the PV list if part of our managed memory. Note that we
2012	 * raise IPL while manipulating pv_table since pmap_enter can be
2013	 * called at interrupt time.
2014	 */
2015	if (pmap_initialized &&
2016	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2017		pmap_insert_entry(pmap, va, m);
2018		pa |= PG_MANAGED;
2019	}
2020
2021	/*
2022	 * Increment counters
2023	 */
2024	pmap->pm_stats.resident_count++;
2025	if (wired)
2026		pmap->pm_stats.wired_count++;
2027
2028validate:
2029	/*
2030	 * Now validate mapping with desired protection/wiring.
2031	 */
2032	newpte = (pt_entry_t)(pa | PG_V);
2033	if ((prot & VM_PROT_WRITE) != 0)
2034		newpte |= PG_RW;
2035	if (wired)
2036		newpte |= PG_W;
2037	if (va < VM_MAXUSER_ADDRESS)
2038		newpte |= PG_U;
2039	if (pmap == kernel_pmap)
2040		newpte |= pgeflag;
2041
2042	/*
2043	 * if the mapping or permission bits are different, we need
2044	 * to update the pte.
2045	 */
2046	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2047		pte_store(pte, newpte | PG_A);
2048		/*if (origpte)*/ {
2049			pmap_invalidate_page(pmap, va);
2050		}
2051	}
2052	sched_unpin();
2053	vm_page_unlock_queues();
2054	PMAP_UNLOCK(pmap);
2055}
2056
2057/*
2058 * this code makes some *MAJOR* assumptions:
2059 * 1. Current pmap & pmap exists.
2060 * 2. Not wired.
2061 * 3. Read access.
2062 * 4. No page table pages.
2063 * 5. Tlbflush is deferred to calling procedure.
2064 * 6. Page IS managed.
2065 * but is *MUCH* faster than pmap_enter...
2066 */
2067
2068vm_page_t
2069pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2070{
2071	pt_entry_t *pte;
2072	vm_paddr_t pa;
2073
2074	vm_page_lock_queues();
2075	PMAP_LOCK(pmap);
2076
2077	/*
2078	 * In the case that a page table page is not
2079	 * resident, we are creating it here.
2080	 */
2081	if (va < VM_MAXUSER_ADDRESS) {
2082		unsigned ptepindex;
2083		pd_entry_t ptepa;
2084
2085		/*
2086		 * Calculate pagetable page index
2087		 */
2088		ptepindex = va >> PDRSHIFT;
2089		if (mpte && (mpte->pindex == ptepindex)) {
2090			mpte->hold_count++;
2091		} else {
2092retry:
2093			/*
2094			 * Get the page directory entry
2095			 */
2096			ptepa = pmap->pm_pdir[ptepindex];
2097
2098			/*
2099			 * If the page table page is mapped, we just increment
2100			 * the hold count, and activate it.
2101			 */
2102			if (ptepa) {
2103				if (ptepa & PG_PS)
2104					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2105				mpte = PHYS_TO_VM_PAGE(ptepa);
2106				mpte->hold_count++;
2107			} else {
2108				mpte = _pmap_allocpte(pmap, ptepindex);
2109				if (mpte == NULL)
2110					goto retry;
2111			}
2112		}
2113	} else {
2114		mpte = NULL;
2115	}
2116
2117	/*
2118	 * This call to vtopte makes the assumption that we are
2119	 * entering the page into the current pmap.  In order to support
2120	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2121	 * But that isn't as quick as vtopte.
2122	 */
2123	pte = vtopte(va);
2124	if (*pte) {
2125		if (mpte != NULL) {
2126			pmap_unwire_pte_hold(pmap, mpte);
2127			mpte = NULL;
2128		}
2129		goto out;
2130	}
2131
2132	/*
2133	 * Enter on the PV list if part of our managed memory. Note that we
2134	 * raise IPL while manipulating pv_table since pmap_enter can be
2135	 * called at interrupt time.
2136	 */
2137	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2138		pmap_insert_entry(pmap, va, m);
2139
2140	/*
2141	 * Increment counters
2142	 */
2143	pmap->pm_stats.resident_count++;
2144
2145	pa = VM_PAGE_TO_PHYS(m);
2146
2147	/*
2148	 * Now validate mapping with RO protection
2149	 */
2150	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2151		pte_store(pte, pa | PG_V | PG_U);
2152	else
2153		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2154out:
2155	vm_page_unlock_queues();
2156	PMAP_UNLOCK(pmap);
2157	return mpte;
2158}
2159
2160/*
2161 * Make a temporary mapping for a physical address.  This is only intended
2162 * to be used for panic dumps.
2163 */
2164void *
2165pmap_kenter_temporary(vm_paddr_t pa, int i)
2166{
2167	vm_offset_t va;
2168
2169	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2170	pmap_kenter(va, pa);
2171#ifndef I386_CPU
2172	invlpg(va);
2173#else
2174	invltlb();
2175#endif
2176	return ((void *)crashdumpmap);
2177}
2178
2179/*
2180 * This code maps large physical mmap regions into the
2181 * processor address space.  Note that some shortcuts
2182 * are taken, but the code works.
2183 */
2184void
2185pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2186		    vm_object_t object, vm_pindex_t pindex,
2187		    vm_size_t size)
2188{
2189	vm_page_t p;
2190
2191	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2192	KASSERT(object->type == OBJT_DEVICE,
2193	    ("pmap_object_init_pt: non-device object"));
2194	if (pseflag &&
2195	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2196		int i;
2197		vm_page_t m[1];
2198		unsigned int ptepindex;
2199		int npdes;
2200		pd_entry_t ptepa;
2201
2202		PMAP_LOCK(pmap);
2203		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2204			goto out;
2205		PMAP_UNLOCK(pmap);
2206retry:
2207		p = vm_page_lookup(object, pindex);
2208		if (p != NULL) {
2209			vm_page_lock_queues();
2210			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2211				goto retry;
2212		} else {
2213			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2214			if (p == NULL)
2215				return;
2216			m[0] = p;
2217
2218			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2219				vm_page_lock_queues();
2220				vm_page_free(p);
2221				vm_page_unlock_queues();
2222				return;
2223			}
2224
2225			p = vm_page_lookup(object, pindex);
2226			vm_page_lock_queues();
2227			vm_page_wakeup(p);
2228		}
2229		vm_page_unlock_queues();
2230
2231		ptepa = VM_PAGE_TO_PHYS(p);
2232		if (ptepa & (NBPDR - 1))
2233			return;
2234
2235		p->valid = VM_PAGE_BITS_ALL;
2236
2237		PMAP_LOCK(pmap);
2238		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2239		npdes = size >> PDRSHIFT;
2240		for(i = 0; i < npdes; i++) {
2241			pde_store(&pmap->pm_pdir[ptepindex],
2242			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2243			ptepa += NBPDR;
2244			ptepindex += 1;
2245		}
2246		pmap_invalidate_all(pmap);
2247out:
2248		PMAP_UNLOCK(pmap);
2249	}
2250}
2251
2252/*
2253 *	Routine:	pmap_change_wiring
2254 *	Function:	Change the wiring attribute for a map/virtual-address
2255 *			pair.
2256 *	In/out conditions:
2257 *			The mapping must already exist in the pmap.
2258 */
2259void
2260pmap_change_wiring(pmap, va, wired)
2261	register pmap_t pmap;
2262	vm_offset_t va;
2263	boolean_t wired;
2264{
2265	register pt_entry_t *pte;
2266
2267	if (pmap == NULL)
2268		return;
2269
2270	PMAP_LOCK(pmap);
2271	pte = pmap_pte(pmap, va);
2272
2273	if (wired && !pmap_pte_w(pte))
2274		pmap->pm_stats.wired_count++;
2275	else if (!wired && pmap_pte_w(pte))
2276		pmap->pm_stats.wired_count--;
2277
2278	/*
2279	 * Wiring is not a hardware characteristic so there is no need to
2280	 * invalidate TLB.
2281	 */
2282	pmap_pte_set_w(pte, wired);
2283	PMAP_UNLOCK(pmap);
2284}
2285
2286
2287
2288/*
2289 *	Copy the range specified by src_addr/len
2290 *	from the source map to the range dst_addr/len
2291 *	in the destination map.
2292 *
2293 *	This routine is only advisory and need not do anything.
2294 */
2295
2296void
2297pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2298	  vm_offset_t src_addr)
2299{
2300	vm_offset_t addr;
2301	vm_offset_t end_addr = src_addr + len;
2302	vm_offset_t pdnxt;
2303	vm_page_t m;
2304
2305	if (dst_addr != src_addr)
2306		return;
2307
2308	if (!pmap_is_current(src_pmap))
2309		return;
2310
2311	vm_page_lock_queues();
2312	PMAP_LOCK(dst_pmap);
2313	sched_pin();
2314	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2315		pt_entry_t *src_pte, *dst_pte;
2316		vm_page_t dstmpte, srcmpte;
2317		pd_entry_t srcptepaddr;
2318		unsigned ptepindex;
2319
2320		if (addr >= UPT_MIN_ADDRESS)
2321			panic("pmap_copy: invalid to pmap_copy page tables");
2322
2323		/*
2324		 * Don't let optional prefaulting of pages make us go
2325		 * way below the low water mark of free pages or way
2326		 * above high water mark of used pv entries.
2327		 */
2328		if (cnt.v_free_count < cnt.v_free_reserved ||
2329		    pv_entry_count > pv_entry_high_water)
2330			break;
2331
2332		pdnxt = (addr + NBPDR) & ~PDRMASK;
2333		ptepindex = addr >> PDRSHIFT;
2334
2335		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2336		if (srcptepaddr == 0)
2337			continue;
2338
2339		if (srcptepaddr & PG_PS) {
2340			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2341				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2342				dst_pmap->pm_stats.resident_count +=
2343				    NBPDR / PAGE_SIZE;
2344			}
2345			continue;
2346		}
2347
2348		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2349		if (srcmpte->hold_count == 0)
2350			panic("pmap_copy: source page table page is unused");
2351
2352		if (pdnxt > end_addr)
2353			pdnxt = end_addr;
2354
2355		src_pte = vtopte(addr);
2356		while (addr < pdnxt) {
2357			pt_entry_t ptetemp;
2358			ptetemp = *src_pte;
2359			/*
2360			 * we only virtual copy managed pages
2361			 */
2362			if ((ptetemp & PG_MANAGED) != 0) {
2363				/*
2364				 * We have to check after allocpte for the
2365				 * pte still being around...  allocpte can
2366				 * block.
2367				 */
2368				dstmpte = pmap_allocpte(dst_pmap, addr);
2369				dst_pte = pmap_pte_quick(dst_pmap, addr);
2370				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2371					/*
2372					 * Clear the modified and
2373					 * accessed (referenced) bits
2374					 * during the copy.
2375					 */
2376					m = PHYS_TO_VM_PAGE(ptetemp);
2377					*dst_pte = ptetemp & ~(PG_M | PG_A);
2378					dst_pmap->pm_stats.resident_count++;
2379					pmap_insert_entry(dst_pmap, addr, m);
2380	 			} else
2381					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2382				if (dstmpte->hold_count >= srcmpte->hold_count)
2383					break;
2384			}
2385			addr += PAGE_SIZE;
2386			src_pte++;
2387		}
2388	}
2389	sched_unpin();
2390	vm_page_unlock_queues();
2391	PMAP_UNLOCK(dst_pmap);
2392}
2393
2394static __inline void
2395pagezero(void *page)
2396{
2397#if defined(I686_CPU)
2398	if (cpu_class == CPUCLASS_686) {
2399#if defined(CPU_ENABLE_SSE)
2400		if (cpu_feature & CPUID_SSE2)
2401			sse2_pagezero(page);
2402		else
2403#endif
2404			i686_pagezero(page);
2405	} else
2406#endif
2407		bzero(page, PAGE_SIZE);
2408}
2409
2410/*
2411 *	pmap_zero_page zeros the specified hardware page by mapping
2412 *	the page into KVM and using bzero to clear its contents.
2413 */
2414void
2415pmap_zero_page(vm_page_t m)
2416{
2417
2418	mtx_lock(&CMAPCADDR12_lock);
2419	if (*CMAP2)
2420		panic("pmap_zero_page: CMAP2 busy");
2421	sched_pin();
2422	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2423	invlcaddr(CADDR2);
2424	pagezero(CADDR2);
2425	*CMAP2 = 0;
2426	sched_unpin();
2427	mtx_unlock(&CMAPCADDR12_lock);
2428}
2429
2430/*
2431 *	pmap_zero_page_area zeros the specified hardware page by mapping
2432 *	the page into KVM and using bzero to clear its contents.
2433 *
2434 *	off and size may not cover an area beyond a single hardware page.
2435 */
2436void
2437pmap_zero_page_area(vm_page_t m, int off, int size)
2438{
2439
2440	mtx_lock(&CMAPCADDR12_lock);
2441	if (*CMAP2)
2442		panic("pmap_zero_page: CMAP2 busy");
2443	sched_pin();
2444	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2445	invlcaddr(CADDR2);
2446	if (off == 0 && size == PAGE_SIZE)
2447		pagezero(CADDR2);
2448	else
2449		bzero((char *)CADDR2 + off, size);
2450	*CMAP2 = 0;
2451	sched_unpin();
2452	mtx_unlock(&CMAPCADDR12_lock);
2453}
2454
2455/*
2456 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2457 *	the page into KVM and using bzero to clear its contents.  This
2458 *	is intended to be called from the vm_pagezero process only and
2459 *	outside of Giant.
2460 */
2461void
2462pmap_zero_page_idle(vm_page_t m)
2463{
2464
2465	if (*CMAP3)
2466		panic("pmap_zero_page: CMAP3 busy");
2467	sched_pin();
2468	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2469	invlcaddr(CADDR3);
2470	pagezero(CADDR3);
2471	*CMAP3 = 0;
2472	sched_unpin();
2473}
2474
2475/*
2476 *	pmap_copy_page copies the specified (machine independent)
2477 *	page by mapping the page into virtual memory and using
2478 *	bcopy to copy the page, one machine dependent page at a
2479 *	time.
2480 */
2481void
2482pmap_copy_page(vm_page_t src, vm_page_t dst)
2483{
2484
2485	mtx_lock(&CMAPCADDR12_lock);
2486	if (*CMAP1)
2487		panic("pmap_copy_page: CMAP1 busy");
2488	if (*CMAP2)
2489		panic("pmap_copy_page: CMAP2 busy");
2490	sched_pin();
2491#ifdef I386_CPU
2492	invltlb();
2493#else
2494	invlpg((u_int)CADDR1);
2495	invlpg((u_int)CADDR2);
2496#endif
2497	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2498	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2499	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2500	*CMAP1 = 0;
2501	*CMAP2 = 0;
2502	sched_unpin();
2503	mtx_unlock(&CMAPCADDR12_lock);
2504}
2505
2506/*
2507 * Returns true if the pmap's pv is one of the first
2508 * 16 pvs linked to from this page.  This count may
2509 * be changed upwards or downwards in the future; it
2510 * is only necessary that true be returned for a small
2511 * subset of pmaps for proper page aging.
2512 */
2513boolean_t
2514pmap_page_exists_quick(pmap, m)
2515	pmap_t pmap;
2516	vm_page_t m;
2517{
2518	pv_entry_t pv;
2519	int loops = 0;
2520
2521	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2522		return FALSE;
2523
2524	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2525	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2526		if (pv->pv_pmap == pmap) {
2527			return TRUE;
2528		}
2529		loops++;
2530		if (loops >= 16)
2531			break;
2532	}
2533	return (FALSE);
2534}
2535
2536#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2537/*
2538 * Remove all pages from specified address space
2539 * this aids process exit speeds.  Also, this code
2540 * is special cased for current process only, but
2541 * can have the more generic (and slightly slower)
2542 * mode enabled.  This is much faster than pmap_remove
2543 * in the case of running down an entire address space.
2544 */
2545void
2546pmap_remove_pages(pmap, sva, eva)
2547	pmap_t pmap;
2548	vm_offset_t sva, eva;
2549{
2550	pt_entry_t *pte, tpte;
2551	vm_page_t m;
2552	pv_entry_t pv, npv;
2553
2554#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2555	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2556		printf("warning: pmap_remove_pages called with non-current pmap\n");
2557		return;
2558	}
2559#endif
2560	vm_page_lock_queues();
2561	PMAP_LOCK(pmap);
2562	sched_pin();
2563	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2564
2565		if (pv->pv_va >= eva || pv->pv_va < sva) {
2566			npv = TAILQ_NEXT(pv, pv_plist);
2567			continue;
2568		}
2569
2570#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2571		pte = vtopte(pv->pv_va);
2572#else
2573		pte = pmap_pte_quick(pmap, pv->pv_va);
2574#endif
2575		tpte = *pte;
2576
2577		if (tpte == 0) {
2578			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2579							pte, pv->pv_va);
2580			panic("bad pte");
2581		}
2582
2583/*
2584 * We cannot remove wired pages from a process' mapping at this time
2585 */
2586		if (tpte & PG_W) {
2587			npv = TAILQ_NEXT(pv, pv_plist);
2588			continue;
2589		}
2590
2591		m = PHYS_TO_VM_PAGE(tpte);
2592		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2593		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2594		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2595
2596		KASSERT(m < &vm_page_array[vm_page_array_size],
2597			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2598
2599		pmap->pm_stats.resident_count--;
2600
2601		pte_clear(pte);
2602
2603		/*
2604		 * Update the vm_page_t clean and reference bits.
2605		 */
2606		if (tpte & PG_M) {
2607			vm_page_dirty(m);
2608		}
2609
2610		npv = TAILQ_NEXT(pv, pv_plist);
2611		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2612
2613		m->md.pv_list_count--;
2614		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2615		if (TAILQ_EMPTY(&m->md.pv_list))
2616			vm_page_flag_clear(m, PG_WRITEABLE);
2617
2618		pmap_unuse_pt(pmap, pv->pv_va);
2619		free_pv_entry(pv);
2620	}
2621	sched_unpin();
2622	pmap_invalidate_all(pmap);
2623	PMAP_UNLOCK(pmap);
2624	vm_page_unlock_queues();
2625}
2626
2627/*
2628 *	pmap_is_modified:
2629 *
2630 *	Return whether or not the specified physical page was modified
2631 *	in any physical maps.
2632 */
2633boolean_t
2634pmap_is_modified(vm_page_t m)
2635{
2636	pv_entry_t pv;
2637	pt_entry_t *pte;
2638	boolean_t rv;
2639
2640	rv = FALSE;
2641	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2642		return (rv);
2643
2644	sched_pin();
2645	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2646	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2647		/*
2648		 * if the bit being tested is the modified bit, then
2649		 * mark clean_map and ptes as never
2650		 * modified.
2651		 */
2652		if (!pmap_track_modified(pv->pv_va))
2653			continue;
2654#if defined(PMAP_DIAGNOSTIC)
2655		if (!pv->pv_pmap) {
2656			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2657			continue;
2658		}
2659#endif
2660		PMAP_LOCK(pv->pv_pmap);
2661		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2662		rv = (*pte & PG_M) != 0;
2663		PMAP_UNLOCK(pv->pv_pmap);
2664		if (rv)
2665			break;
2666	}
2667	sched_unpin();
2668	return (rv);
2669}
2670
2671/*
2672 *	pmap_is_prefaultable:
2673 *
2674 *	Return whether or not the specified virtual address is elgible
2675 *	for prefault.
2676 */
2677boolean_t
2678pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2679{
2680	pt_entry_t *pte;
2681	boolean_t rv;
2682
2683	rv = FALSE;
2684	PMAP_LOCK(pmap);
2685	if (*pmap_pde(pmap, addr)) {
2686		pte = vtopte(addr);
2687		rv = *pte == 0;
2688	}
2689	PMAP_UNLOCK(pmap);
2690	return (rv);
2691}
2692
2693/*
2694 *	Clear the given bit in each of the given page's ptes.
2695 */
2696static __inline void
2697pmap_clear_ptes(vm_page_t m, int bit)
2698{
2699	register pv_entry_t pv;
2700	pt_entry_t pbits, *pte;
2701
2702	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2703	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2704		return;
2705
2706	sched_pin();
2707	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2708	/*
2709	 * Loop over all current mappings setting/clearing as appropos If
2710	 * setting RO do we need to clear the VAC?
2711	 */
2712	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2713		/*
2714		 * don't write protect pager mappings
2715		 */
2716		if (bit == PG_RW) {
2717			if (!pmap_track_modified(pv->pv_va))
2718				continue;
2719		}
2720
2721#if defined(PMAP_DIAGNOSTIC)
2722		if (!pv->pv_pmap) {
2723			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2724			continue;
2725		}
2726#endif
2727
2728		PMAP_LOCK(pv->pv_pmap);
2729		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2730		pbits = *pte;
2731		if (pbits & bit) {
2732			if (bit == PG_RW) {
2733				if (pbits & PG_M) {
2734					vm_page_dirty(m);
2735				}
2736				pte_store(pte, pbits & ~(PG_M|PG_RW));
2737			} else {
2738				pte_store(pte, pbits & ~bit);
2739			}
2740			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2741		}
2742		PMAP_UNLOCK(pv->pv_pmap);
2743	}
2744	if (bit == PG_RW)
2745		vm_page_flag_clear(m, PG_WRITEABLE);
2746	sched_unpin();
2747}
2748
2749/*
2750 *      pmap_page_protect:
2751 *
2752 *      Lower the permission for all mappings to a given page.
2753 */
2754void
2755pmap_page_protect(vm_page_t m, vm_prot_t prot)
2756{
2757	if ((prot & VM_PROT_WRITE) == 0) {
2758		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2759			pmap_clear_ptes(m, PG_RW);
2760		} else {
2761			pmap_remove_all(m);
2762		}
2763	}
2764}
2765
2766/*
2767 *	pmap_ts_referenced:
2768 *
2769 *	Return a count of reference bits for a page, clearing those bits.
2770 *	It is not necessary for every reference bit to be cleared, but it
2771 *	is necessary that 0 only be returned when there are truly no
2772 *	reference bits set.
2773 *
2774 *	XXX: The exact number of bits to check and clear is a matter that
2775 *	should be tested and standardized at some point in the future for
2776 *	optimal aging of shared pages.
2777 */
2778int
2779pmap_ts_referenced(vm_page_t m)
2780{
2781	register pv_entry_t pv, pvf, pvn;
2782	pt_entry_t *pte;
2783	pt_entry_t v;
2784	int rtval = 0;
2785
2786	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2787		return (rtval);
2788
2789	sched_pin();
2790	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2791	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2792
2793		pvf = pv;
2794
2795		do {
2796			pvn = TAILQ_NEXT(pv, pv_list);
2797
2798			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2799
2800			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2801
2802			if (!pmap_track_modified(pv->pv_va))
2803				continue;
2804
2805			PMAP_LOCK(pv->pv_pmap);
2806			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2807
2808			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2809				atomic_clear_int((u_int *)pte, PG_A);
2810				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2811
2812				rtval++;
2813				if (rtval > 4) {
2814					PMAP_UNLOCK(pv->pv_pmap);
2815					break;
2816				}
2817			}
2818			PMAP_UNLOCK(pv->pv_pmap);
2819		} while ((pv = pvn) != NULL && pv != pvf);
2820	}
2821	sched_unpin();
2822
2823	return (rtval);
2824}
2825
2826/*
2827 *	Clear the modify bits on the specified physical page.
2828 */
2829void
2830pmap_clear_modify(vm_page_t m)
2831{
2832	pmap_clear_ptes(m, PG_M);
2833}
2834
2835/*
2836 *	pmap_clear_reference:
2837 *
2838 *	Clear the reference bit on the specified physical page.
2839 */
2840void
2841pmap_clear_reference(vm_page_t m)
2842{
2843	pmap_clear_ptes(m, PG_A);
2844}
2845
2846/*
2847 * Miscellaneous support routines follow
2848 */
2849
2850/*
2851 * Map a set of physical memory pages into the kernel virtual
2852 * address space. Return a pointer to where it is mapped. This
2853 * routine is intended to be used for mapping device memory,
2854 * NOT real memory.
2855 */
2856void *
2857pmap_mapdev(pa, size)
2858	vm_paddr_t pa;
2859	vm_size_t size;
2860{
2861	vm_offset_t va, tmpva, offset;
2862
2863	offset = pa & PAGE_MASK;
2864	size = roundup(offset + size, PAGE_SIZE);
2865	pa = pa & PG_FRAME;
2866
2867	if (pa < KERNLOAD && pa + size <= KERNLOAD)
2868		va = KERNBASE + pa;
2869	else
2870		va = kmem_alloc_nofault(kernel_map, size);
2871	if (!va)
2872		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2873
2874	for (tmpva = va; size > 0; ) {
2875		pmap_kenter(tmpva, pa);
2876		size -= PAGE_SIZE;
2877		tmpva += PAGE_SIZE;
2878		pa += PAGE_SIZE;
2879	}
2880	pmap_invalidate_range(kernel_pmap, va, tmpva);
2881	return ((void *)(va + offset));
2882}
2883
2884void
2885pmap_unmapdev(va, size)
2886	vm_offset_t va;
2887	vm_size_t size;
2888{
2889	vm_offset_t base, offset, tmpva;
2890
2891	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
2892		return;
2893	base = va & PG_FRAME;
2894	offset = va & PAGE_MASK;
2895	size = roundup(offset + size, PAGE_SIZE);
2896	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2897		pmap_kremove(tmpva);
2898	pmap_invalidate_range(kernel_pmap, va, tmpva);
2899	kmem_free(kernel_map, base, size);
2900}
2901
2902/*
2903 * perform the pmap work for mincore
2904 */
2905int
2906pmap_mincore(pmap, addr)
2907	pmap_t pmap;
2908	vm_offset_t addr;
2909{
2910	pt_entry_t *ptep, pte;
2911	vm_page_t m;
2912	int val = 0;
2913
2914	PMAP_LOCK(pmap);
2915	ptep = pmap_pte(pmap, addr);
2916	pte = (ptep != NULL) ? *ptep : 0;
2917	PMAP_UNLOCK(pmap);
2918
2919	if (pte != 0) {
2920		vm_paddr_t pa;
2921
2922		val = MINCORE_INCORE;
2923		if ((pte & PG_MANAGED) == 0)
2924			return val;
2925
2926		pa = pte & PG_FRAME;
2927
2928		m = PHYS_TO_VM_PAGE(pa);
2929
2930		/*
2931		 * Modified by us
2932		 */
2933		if (pte & PG_M)
2934			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2935		else {
2936			/*
2937			 * Modified by someone else
2938			 */
2939			vm_page_lock_queues();
2940			if (m->dirty || pmap_is_modified(m))
2941				val |= MINCORE_MODIFIED_OTHER;
2942			vm_page_unlock_queues();
2943		}
2944		/*
2945		 * Referenced by us
2946		 */
2947		if (pte & PG_A)
2948			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2949		else {
2950			/*
2951			 * Referenced by someone else
2952			 */
2953			vm_page_lock_queues();
2954			if ((m->flags & PG_REFERENCED) ||
2955			    pmap_ts_referenced(m)) {
2956				val |= MINCORE_REFERENCED_OTHER;
2957				vm_page_flag_set(m, PG_REFERENCED);
2958			}
2959			vm_page_unlock_queues();
2960		}
2961	}
2962	return val;
2963}
2964
2965void
2966pmap_activate(struct thread *td)
2967{
2968	struct proc *p = td->td_proc;
2969	pmap_t	pmap, oldpmap;
2970	u_int32_t  cr3;
2971
2972	critical_enter();
2973	pmap = vmspace_pmap(td->td_proc->p_vmspace);
2974	oldpmap = PCPU_GET(curpmap);
2975#if defined(SMP)
2976	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
2977	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
2978#else
2979	oldpmap->pm_active &= ~1;
2980	pmap->pm_active |= 1;
2981#endif
2982#ifdef PAE
2983	cr3 = vtophys(pmap->pm_pdpt);
2984#else
2985	cr3 = vtophys(pmap->pm_pdir);
2986#endif
2987	/* XXXKSE this is wrong.
2988	 * pmap_activate is for the current thread on the current cpu
2989	 */
2990	if (p->p_flag & P_SA) {
2991		/* Make sure all other cr3 entries are updated. */
2992		/* what if they are running?  XXXKSE (maybe abort them) */
2993		FOREACH_THREAD_IN_PROC(p, td) {
2994			td->td_pcb->pcb_cr3 = cr3;
2995		}
2996	} else {
2997		td->td_pcb->pcb_cr3 = cr3;
2998	}
2999	load_cr3(cr3);
3000	PCPU_SET(curpmap, pmap);
3001	critical_exit();
3002}
3003
3004vm_offset_t
3005pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3006{
3007
3008	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3009		return addr;
3010	}
3011
3012	addr = (addr + PDRMASK) & ~PDRMASK;
3013	return addr;
3014}
3015
3016
3017#if defined(PMAP_DEBUG)
3018pmap_pid_dump(int pid)
3019{
3020	pmap_t pmap;
3021	struct proc *p;
3022	int npte = 0;
3023	int index;
3024
3025	sx_slock(&allproc_lock);
3026	LIST_FOREACH(p, &allproc, p_list) {
3027		if (p->p_pid != pid)
3028			continue;
3029
3030		if (p->p_vmspace) {
3031			int i,j;
3032			index = 0;
3033			pmap = vmspace_pmap(p->p_vmspace);
3034			for (i = 0; i < NPDEPTD; i++) {
3035				pd_entry_t *pde;
3036				pt_entry_t *pte;
3037				vm_offset_t base = i << PDRSHIFT;
3038
3039				pde = &pmap->pm_pdir[i];
3040				if (pde && pmap_pde_v(pde)) {
3041					for (j = 0; j < NPTEPG; j++) {
3042						vm_offset_t va = base + (j << PAGE_SHIFT);
3043						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3044							if (index) {
3045								index = 0;
3046								printf("\n");
3047							}
3048							sx_sunlock(&allproc_lock);
3049							return npte;
3050						}
3051						pte = pmap_pte(pmap, va);
3052						if (pte && pmap_pte_v(pte)) {
3053							pt_entry_t pa;
3054							vm_page_t m;
3055							pa = *pte;
3056							m = PHYS_TO_VM_PAGE(pa);
3057							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3058								va, pa, m->hold_count, m->wire_count, m->flags);
3059							npte++;
3060							index++;
3061							if (index >= 2) {
3062								index = 0;
3063								printf("\n");
3064							} else {
3065								printf(" ");
3066							}
3067						}
3068					}
3069				}
3070			}
3071		}
3072	}
3073	sx_sunlock(&allproc_lock);
3074	return npte;
3075}
3076#endif
3077
3078#if defined(DEBUG)
3079
3080static void	pads(pmap_t pm);
3081void		pmap_pvdump(vm_offset_t pa);
3082
3083/* print address space of pmap*/
3084static void
3085pads(pm)
3086	pmap_t pm;
3087{
3088	int i, j;
3089	vm_paddr_t va;
3090	pt_entry_t *ptep;
3091
3092	if (pm == kernel_pmap)
3093		return;
3094	for (i = 0; i < NPDEPTD; i++)
3095		if (pm->pm_pdir[i])
3096			for (j = 0; j < NPTEPG; j++) {
3097				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3098				if (pm == kernel_pmap && va < KERNBASE)
3099					continue;
3100				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3101					continue;
3102				ptep = pmap_pte(pm, va);
3103				if (pmap_pte_v(ptep))
3104					printf("%x:%x ", va, *ptep);
3105			};
3106
3107}
3108
3109void
3110pmap_pvdump(pa)
3111	vm_paddr_t pa;
3112{
3113	pv_entry_t pv;
3114	vm_page_t m;
3115
3116	printf("pa %x", pa);
3117	m = PHYS_TO_VM_PAGE(pa);
3118	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3119		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3120		pads(pv->pv_pmap);
3121	}
3122	printf(" ");
3123}
3124#endif
3125