pmap.c revision 131744
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43/*-
44 * Copyright (c) 2003 Networks Associates Technology, Inc.
45 * All rights reserved.
46 *
47 * This software was developed for the FreeBSD Project by Jake Burkholder,
48 * Safeport Network Services, and Network Associates Laboratories, the
49 * Security Research Division of Network Associates, Inc. under
50 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
51 * CHATS research program.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 *    notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 *    notice, this list of conditions and the following disclaimer in the
60 *    documentation and/or other materials provided with the distribution.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 131744 2004-07-07 16:47:58Z alc $");
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_cpu.h"
105#include "opt_pmap.h"
106#include "opt_msgbuf.h"
107#include "opt_kstack_pages.h"
108
109#include <sys/param.h>
110#include <sys/systm.h>
111#include <sys/kernel.h>
112#include <sys/lock.h>
113#include <sys/mman.h>
114#include <sys/msgbuf.h>
115#include <sys/mutex.h>
116#include <sys/proc.h>
117#include <sys/sx.h>
118#include <sys/user.h>
119#include <sys/vmmeter.h>
120#include <sys/sched.h>
121#include <sys/sysctl.h>
122#ifdef SMP
123#include <sys/smp.h>
124#endif
125
126#include <vm/vm.h>
127#include <vm/vm_param.h>
128#include <vm/vm_kern.h>
129#include <vm/vm_page.h>
130#include <vm/vm_map.h>
131#include <vm/vm_object.h>
132#include <vm/vm_extern.h>
133#include <vm/vm_pageout.h>
134#include <vm/vm_pager.h>
135#include <vm/uma.h>
136
137#include <machine/cpu.h>
138#include <machine/cputypes.h>
139#include <machine/md_var.h>
140#include <machine/specialreg.h>
141#ifdef SMP
142#include <machine/smp.h>
143#endif
144
145#if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
146#define CPU_ENABLE_SSE
147#endif
148#if defined(CPU_DISABLE_SSE)
149#undef CPU_ENABLE_SSE
150#endif
151
152#ifndef PMAP_SHPGPERPROC
153#define PMAP_SHPGPERPROC 200
154#endif
155
156#if defined(DIAGNOSTIC)
157#define PMAP_DIAGNOSTIC
158#endif
159
160#define MINPV 2048
161
162#if !defined(PMAP_DIAGNOSTIC)
163#define PMAP_INLINE __inline
164#else
165#define PMAP_INLINE
166#endif
167
168/*
169 * Get PDEs and PTEs for user/kernel address space
170 */
171#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
172#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
173
174#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
175#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
176#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
177#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
178#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
179
180#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
181    atomic_clear_int((u_int *)(pte), PG_W))
182#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
183
184struct pmap kernel_pmap_store;
185LIST_HEAD(pmaplist, pmap);
186static struct pmaplist allpmaps;
187static struct mtx allpmaps_lock;
188#ifdef SMP
189static struct mtx lazypmap_lock;
190#endif
191
192vm_paddr_t avail_end;	/* PA of last available physical page */
193vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
194vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
195static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
196int pgeflag = 0;		/* PG_G or-in */
197int pseflag = 0;		/* PG_PS or-in */
198
199static int nkpt;
200vm_offset_t kernel_vm_end;
201extern u_int32_t KERNend;
202
203#ifdef PAE
204static uma_zone_t pdptzone;
205#endif
206
207/*
208 * Data for the pv entry allocation mechanism
209 */
210static uma_zone_t pvzone;
211static struct vm_object pvzone_obj;
212static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
213int pmap_pagedaemon_waken;
214
215/*
216 * All those kernel PT submaps that BSD is so fond of
217 */
218pt_entry_t *CMAP1 = 0;
219static pt_entry_t *CMAP2, *CMAP3;
220caddr_t CADDR1 = 0, ptvmmap = 0;
221static caddr_t CADDR2, CADDR3;
222static struct mtx CMAPCADDR12_lock;
223struct msgbuf *msgbufp = 0;
224
225/*
226 * Crashdump maps.
227 */
228static caddr_t crashdumpmap;
229
230#ifdef SMP
231extern pt_entry_t *SMPpt;
232#endif
233static pt_entry_t *PMAP1 = 0, *PMAP2;
234static pt_entry_t *PADDR1 = 0, *PADDR2;
235#ifdef SMP
236static int PMAP1cpu;
237static int PMAP1changedcpu;
238SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
239	   &PMAP1changedcpu, 0,
240	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
241#endif
242static int PMAP1changed;
243SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
244	   &PMAP1changed, 0,
245	   "Number of times pmap_pte_quick changed PMAP1");
246static int PMAP1unchanged;
247SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
248	   &PMAP1unchanged, 0,
249	   "Number of times pmap_pte_quick didn't change PMAP1");
250
251static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
252static pv_entry_t get_pv_entry(void);
253static void	pmap_clear_ptes(vm_page_t m, int bit);
254
255static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
256static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
257static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
258					vm_offset_t va);
259static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
260
261static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
262
263static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
264static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
265static int pmap_unuse_pt(pmap_t, vm_offset_t);
266static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
267#ifdef PAE
268static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
269#endif
270
271CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
272CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
273
274/*
275 * Move the kernel virtual free pointer to the next
276 * 4MB.  This is used to help improve performance
277 * by using a large (4MB) page for much of the kernel
278 * (.text, .data, .bss)
279 */
280static vm_offset_t
281pmap_kmem_choose(vm_offset_t addr)
282{
283	vm_offset_t newaddr = addr;
284
285#ifndef DISABLE_PSE
286	if (cpu_feature & CPUID_PSE)
287		newaddr = (addr + PDRMASK) & ~PDRMASK;
288#endif
289	return newaddr;
290}
291
292/*
293 *	Bootstrap the system enough to run with virtual memory.
294 *
295 *	On the i386 this is called after mapping has already been enabled
296 *	and just syncs the pmap module with what has already been done.
297 *	[We can't call it easily with mapping off since the kernel is not
298 *	mapped with PA == VA, hence we would have to relocate every address
299 *	from the linked base (virtual) address "KERNBASE" to the actual
300 *	(physical) address starting relative to 0]
301 */
302void
303pmap_bootstrap(firstaddr, loadaddr)
304	vm_paddr_t firstaddr;
305	vm_paddr_t loadaddr;
306{
307	vm_offset_t va;
308	pt_entry_t *pte, *unused;
309	int i;
310
311	/*
312	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
313	 * large. It should instead be correctly calculated in locore.s and
314	 * not based on 'first' (which is a physical address, not a virtual
315	 * address, for the start of unused physical memory). The kernel
316	 * page tables are NOT double mapped and thus should not be included
317	 * in this calculation.
318	 */
319	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
320	virtual_avail = pmap_kmem_choose(virtual_avail);
321
322	virtual_end = VM_MAX_KERNEL_ADDRESS;
323
324	/*
325	 * Initialize the kernel pmap (which is statically allocated).
326	 */
327	PMAP_LOCK_INIT(kernel_pmap);
328	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
329#ifdef PAE
330	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
331#endif
332	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
333	TAILQ_INIT(&kernel_pmap->pm_pvlist);
334	LIST_INIT(&allpmaps);
335#ifdef SMP
336	mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
337#endif
338	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
339	mtx_lock_spin(&allpmaps_lock);
340	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
341	mtx_unlock_spin(&allpmaps_lock);
342	nkpt = NKPT;
343
344	/*
345	 * Reserve some special page table entries/VA space for temporary
346	 * mapping of pages.
347	 */
348#define	SYSMAP(c, p, v, n)	\
349	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
350
351	va = virtual_avail;
352	pte = vtopte(va);
353
354	/*
355	 * CMAP1/CMAP2 are used for zeroing and copying pages.
356	 * CMAP3 is used for the idle process page zeroing.
357	 */
358	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
359	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
360	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
361	*CMAP3 = 0;
362
363	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
364
365	/*
366	 * Crashdump maps.
367	 */
368	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
369
370	/*
371	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
372	 */
373	SYSMAP(caddr_t, unused, ptvmmap, 1)
374
375	/*
376	 * msgbufp is used to map the system message buffer.
377	 */
378	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
379
380	/*
381	 * ptemap is used for pmap_pte_quick
382	 */
383	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
384	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
385
386	virtual_avail = va;
387
388	*CMAP1 = *CMAP2 = 0;
389	for (i = 0; i < NKPT; i++)
390		PTD[i] = 0;
391
392	/* Turn on PG_G on kernel page(s) */
393	pmap_set_pg();
394}
395
396/*
397 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
398 */
399void
400pmap_set_pg(void)
401{
402	pd_entry_t pdir;
403	pt_entry_t *pte;
404	vm_offset_t va, endva;
405	int i;
406
407	if (pgeflag == 0)
408		return;
409
410	i = KERNLOAD/NBPDR;
411	endva = KERNBASE + KERNend;
412
413	if (pseflag) {
414		va = KERNBASE + KERNLOAD;
415		while (va  < endva) {
416			pdir = kernel_pmap->pm_pdir[KPTDI+i];
417			pdir |= pgeflag;
418			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
419			invltlb();	/* Play it safe, invltlb() every time */
420			i++;
421			va += NBPDR;
422		}
423	} else {
424		va = (vm_offset_t)btext;
425		while (va < endva) {
426			pte = vtopte(va);
427			if (*pte)
428				*pte |= pgeflag;
429			invltlb();	/* Play it safe, invltlb() every time */
430			va += PAGE_SIZE;
431		}
432	}
433}
434
435#ifdef PAE
436static void *
437pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
438{
439	*flags = UMA_SLAB_PRIV;
440	return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
441}
442#endif
443
444/*
445 *	Initialize the pmap module.
446 *	Called by vm_init, to initialize any structures that the pmap
447 *	system needs to map virtual memory.
448 *	pmap_init has been enhanced to support in a fairly consistant
449 *	way, discontiguous physical memory.
450 */
451void
452pmap_init(void)
453{
454	int i;
455
456	/*
457	 * Allocate memory for random pmap data structures.  Includes the
458	 * pv_head_table.
459	 */
460
461	for(i = 0; i < vm_page_array_size; i++) {
462		vm_page_t m;
463
464		m = &vm_page_array[i];
465		TAILQ_INIT(&m->md.pv_list);
466		m->md.pv_list_count = 0;
467	}
468
469	/*
470	 * init the pv free list
471	 */
472	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
473	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
474	uma_prealloc(pvzone, MINPV);
475
476#ifdef PAE
477	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
478	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
479	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
480	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
481#endif
482
483	/*
484	 * Now it is safe to enable pv_table recording.
485	 */
486	pmap_initialized = TRUE;
487}
488
489/*
490 * Initialize the address space (zone) for the pv_entries.  Set a
491 * high water mark so that the system can recover from excessive
492 * numbers of pv entries.
493 */
494void
495pmap_init2()
496{
497	int shpgperproc = PMAP_SHPGPERPROC;
498
499	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
500	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
501	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
502	pv_entry_high_water = 9 * (pv_entry_max / 10);
503	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
504}
505
506
507/***************************************************
508 * Low level helper routines.....
509 ***************************************************/
510
511#if defined(PMAP_DIAGNOSTIC)
512
513/*
514 * This code checks for non-writeable/modified pages.
515 * This should be an invalid condition.
516 */
517static int
518pmap_nw_modified(pt_entry_t ptea)
519{
520	int pte;
521
522	pte = (int) ptea;
523
524	if ((pte & (PG_M|PG_RW)) == PG_M)
525		return 1;
526	else
527		return 0;
528}
529#endif
530
531
532/*
533 * this routine defines the region(s) of memory that should
534 * not be tested for the modified bit.
535 */
536static PMAP_INLINE int
537pmap_track_modified(vm_offset_t va)
538{
539	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
540		return 1;
541	else
542		return 0;
543}
544
545#ifdef I386_CPU
546/*
547 * i386 only has "invalidate everything" and no SMP to worry about.
548 */
549PMAP_INLINE void
550pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
551{
552
553	if (pmap == kernel_pmap || pmap->pm_active)
554		invltlb();
555}
556
557PMAP_INLINE void
558pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
559{
560
561	if (pmap == kernel_pmap || pmap->pm_active)
562		invltlb();
563}
564
565PMAP_INLINE void
566pmap_invalidate_all(pmap_t pmap)
567{
568
569	if (pmap == kernel_pmap || pmap->pm_active)
570		invltlb();
571}
572#else /* !I386_CPU */
573#ifdef SMP
574/*
575 * For SMP, these functions have to use the IPI mechanism for coherence.
576 */
577void
578pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
579{
580	u_int cpumask;
581	u_int other_cpus;
582
583	if (smp_started) {
584		if (!(read_eflags() & PSL_I))
585			panic("%s: interrupts disabled", __func__);
586		mtx_lock_spin(&smp_tlb_mtx);
587	} else
588		critical_enter();
589	/*
590	 * We need to disable interrupt preemption but MUST NOT have
591	 * interrupts disabled here.
592	 * XXX we may need to hold schedlock to get a coherent pm_active
593	 * XXX critical sections disable interrupts again
594	 */
595	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
596		invlpg(va);
597		smp_invlpg(va);
598	} else {
599		cpumask = PCPU_GET(cpumask);
600		other_cpus = PCPU_GET(other_cpus);
601		if (pmap->pm_active & cpumask)
602			invlpg(va);
603		if (pmap->pm_active & other_cpus)
604			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
605	}
606	if (smp_started)
607		mtx_unlock_spin(&smp_tlb_mtx);
608	else
609		critical_exit();
610}
611
612void
613pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
614{
615	u_int cpumask;
616	u_int other_cpus;
617	vm_offset_t addr;
618
619	if (smp_started) {
620		if (!(read_eflags() & PSL_I))
621			panic("%s: interrupts disabled", __func__);
622		mtx_lock_spin(&smp_tlb_mtx);
623	} else
624		critical_enter();
625	/*
626	 * We need to disable interrupt preemption but MUST NOT have
627	 * interrupts disabled here.
628	 * XXX we may need to hold schedlock to get a coherent pm_active
629	 * XXX critical sections disable interrupts again
630	 */
631	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
632		for (addr = sva; addr < eva; addr += PAGE_SIZE)
633			invlpg(addr);
634		smp_invlpg_range(sva, eva);
635	} else {
636		cpumask = PCPU_GET(cpumask);
637		other_cpus = PCPU_GET(other_cpus);
638		if (pmap->pm_active & cpumask)
639			for (addr = sva; addr < eva; addr += PAGE_SIZE)
640				invlpg(addr);
641		if (pmap->pm_active & other_cpus)
642			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
643			    sva, eva);
644	}
645	if (smp_started)
646		mtx_unlock_spin(&smp_tlb_mtx);
647	else
648		critical_exit();
649}
650
651void
652pmap_invalidate_all(pmap_t pmap)
653{
654	u_int cpumask;
655	u_int other_cpus;
656
657	if (smp_started) {
658		if (!(read_eflags() & PSL_I))
659			panic("%s: interrupts disabled", __func__);
660		mtx_lock_spin(&smp_tlb_mtx);
661	} else
662		critical_enter();
663	/*
664	 * We need to disable interrupt preemption but MUST NOT have
665	 * interrupts disabled here.
666	 * XXX we may need to hold schedlock to get a coherent pm_active
667	 * XXX critical sections disable interrupts again
668	 */
669	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
670		invltlb();
671		smp_invltlb();
672	} else {
673		cpumask = PCPU_GET(cpumask);
674		other_cpus = PCPU_GET(other_cpus);
675		if (pmap->pm_active & cpumask)
676			invltlb();
677		if (pmap->pm_active & other_cpus)
678			smp_masked_invltlb(pmap->pm_active & other_cpus);
679	}
680	if (smp_started)
681		mtx_unlock_spin(&smp_tlb_mtx);
682	else
683		critical_exit();
684}
685#else /* !SMP */
686/*
687 * Normal, non-SMP, 486+ invalidation functions.
688 * We inline these within pmap.c for speed.
689 */
690PMAP_INLINE void
691pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
692{
693
694	if (pmap == kernel_pmap || pmap->pm_active)
695		invlpg(va);
696}
697
698PMAP_INLINE void
699pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
700{
701	vm_offset_t addr;
702
703	if (pmap == kernel_pmap || pmap->pm_active)
704		for (addr = sva; addr < eva; addr += PAGE_SIZE)
705			invlpg(addr);
706}
707
708PMAP_INLINE void
709pmap_invalidate_all(pmap_t pmap)
710{
711
712	if (pmap == kernel_pmap || pmap->pm_active)
713		invltlb();
714}
715#endif /* !SMP */
716#endif /* !I386_CPU */
717
718/*
719 * Are we current address space or kernel?  N.B. We return FALSE when
720 * a pmap's page table is in use because a kernel thread is borrowing
721 * it.  The borrowed page table can change spontaneously, making any
722 * dependence on its continued use subject to a race condition.
723 */
724static __inline int
725pmap_is_current(pmap_t pmap)
726{
727
728	return (pmap == kernel_pmap ||
729		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
730	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
731}
732
733/*
734 * If the given pmap is not the current pmap, Giant must be held.
735 */
736pt_entry_t *
737pmap_pte(pmap_t pmap, vm_offset_t va)
738{
739	pd_entry_t newpf;
740	pd_entry_t *pde;
741
742	pde = pmap_pde(pmap, va);
743	if (*pde & PG_PS)
744		return (pde);
745	if (*pde != 0) {
746		/* are we current address space or kernel? */
747		if (pmap_is_current(pmap))
748			return (vtopte(va));
749		GIANT_REQUIRED;
750		newpf = *pde & PG_FRAME;
751		if ((*PMAP2 & PG_FRAME) != newpf) {
752			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
753			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
754		}
755		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
756	}
757	return (0);
758}
759
760static __inline void
761invlcaddr(void *caddr)
762{
763#ifdef I386_CPU
764	invltlb();
765#else
766	invlpg((u_int)caddr);
767#endif
768}
769
770/*
771 * Super fast pmap_pte routine best used when scanning
772 * the pv lists.  This eliminates many coarse-grained
773 * invltlb calls.  Note that many of the pv list
774 * scans are across different pmaps.  It is very wasteful
775 * to do an entire invltlb for checking a single mapping.
776 *
777 * If the given pmap is not the current pmap, vm_page_queue_mtx
778 * must be held and curthread pinned to a CPU.
779 */
780static pt_entry_t *
781pmap_pte_quick(pmap_t pmap, vm_offset_t va)
782{
783	pd_entry_t newpf;
784	pd_entry_t *pde;
785
786	pde = pmap_pde(pmap, va);
787	if (*pde & PG_PS)
788		return (pde);
789	if (*pde != 0) {
790		/* are we current address space or kernel? */
791		if (pmap_is_current(pmap))
792			return (vtopte(va));
793		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
794		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
795		newpf = *pde & PG_FRAME;
796		if ((*PMAP1 & PG_FRAME) != newpf) {
797			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
798#ifdef SMP
799			PMAP1cpu = PCPU_GET(cpuid);
800#endif
801			invlcaddr(PADDR1);
802			PMAP1changed++;
803		} else
804#ifdef SMP
805		if (PMAP1cpu != PCPU_GET(cpuid)) {
806			PMAP1cpu = PCPU_GET(cpuid);
807			invlcaddr(PADDR1);
808			PMAP1changedcpu++;
809		} else
810#endif
811			PMAP1unchanged++;
812		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
813	}
814	return (0);
815}
816
817/*
818 *	Routine:	pmap_extract
819 *	Function:
820 *		Extract the physical page address associated
821 *		with the given map/virtual_address pair.
822 */
823vm_paddr_t
824pmap_extract(pmap_t pmap, vm_offset_t va)
825{
826	vm_paddr_t rtval;
827	pt_entry_t *pte;
828	pd_entry_t pde;
829
830	rtval = 0;
831	if (pmap == NULL)
832		return (rtval);
833	PMAP_LOCK(pmap);
834	pde = pmap->pm_pdir[va >> PDRSHIFT];
835	if (pde != 0) {
836		if ((pde & PG_PS) != 0) {
837			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
838			PMAP_UNLOCK(pmap);
839			return rtval;
840		}
841		pte = pmap_pte(pmap, va);
842		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
843	}
844	PMAP_UNLOCK(pmap);
845	return (rtval);
846}
847
848/*
849 *	Routine:	pmap_extract_and_hold
850 *	Function:
851 *		Atomically extract and hold the physical page
852 *		with the given pmap and virtual address pair
853 *		if that mapping permits the given protection.
854 */
855vm_page_t
856pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
857{
858	pd_entry_t pde;
859	pt_entry_t pte;
860	vm_page_t m;
861
862	m = NULL;
863	if (pmap == NULL)
864		return (m);
865	vm_page_lock_queues();
866	PMAP_LOCK(pmap);
867	pde = *pmap_pde(pmap, va);
868	if (pde != 0) {
869		if (pde & PG_PS) {
870			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
871				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
872				    (va & PDRMASK));
873				vm_page_hold(m);
874			}
875		} else {
876			sched_pin();
877			pte = *pmap_pte_quick(pmap, va);
878			if (pte != 0 &&
879			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
880				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
881				vm_page_hold(m);
882			}
883			sched_unpin();
884		}
885	}
886	vm_page_unlock_queues();
887	PMAP_UNLOCK(pmap);
888	return (m);
889}
890
891/***************************************************
892 * Low level mapping routines.....
893 ***************************************************/
894
895/*
896 * Add a wired page to the kva.
897 * Note: not SMP coherent.
898 */
899PMAP_INLINE void
900pmap_kenter(vm_offset_t va, vm_paddr_t pa)
901{
902	pt_entry_t *pte;
903
904	pte = vtopte(va);
905	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
906}
907
908/*
909 * Remove a page from the kernel pagetables.
910 * Note: not SMP coherent.
911 */
912PMAP_INLINE void
913pmap_kremove(vm_offset_t va)
914{
915	pt_entry_t *pte;
916
917	pte = vtopte(va);
918	pte_clear(pte);
919}
920
921/*
922 *	Used to map a range of physical addresses into kernel
923 *	virtual address space.
924 *
925 *	The value passed in '*virt' is a suggested virtual address for
926 *	the mapping. Architectures which can support a direct-mapped
927 *	physical to virtual region can return the appropriate address
928 *	within that region, leaving '*virt' unchanged. Other
929 *	architectures should map the pages starting at '*virt' and
930 *	update '*virt' with the first usable address after the mapped
931 *	region.
932 */
933vm_offset_t
934pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
935{
936	vm_offset_t va, sva;
937
938	va = sva = *virt;
939	while (start < end) {
940		pmap_kenter(va, start);
941		va += PAGE_SIZE;
942		start += PAGE_SIZE;
943	}
944	pmap_invalidate_range(kernel_pmap, sva, va);
945	*virt = va;
946	return (sva);
947}
948
949
950/*
951 * Add a list of wired pages to the kva
952 * this routine is only used for temporary
953 * kernel mappings that do not need to have
954 * page modification or references recorded.
955 * Note that old mappings are simply written
956 * over.  The page *must* be wired.
957 * Note: SMP coherent.  Uses a ranged shootdown IPI.
958 */
959void
960pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
961{
962	vm_offset_t va;
963
964	va = sva;
965	while (count-- > 0) {
966		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
967		va += PAGE_SIZE;
968		m++;
969	}
970	pmap_invalidate_range(kernel_pmap, sva, va);
971}
972
973/*
974 * This routine tears out page mappings from the
975 * kernel -- it is meant only for temporary mappings.
976 * Note: SMP coherent.  Uses a ranged shootdown IPI.
977 */
978void
979pmap_qremove(vm_offset_t sva, int count)
980{
981	vm_offset_t va;
982
983	va = sva;
984	while (count-- > 0) {
985		pmap_kremove(va);
986		va += PAGE_SIZE;
987	}
988	pmap_invalidate_range(kernel_pmap, sva, va);
989}
990
991/***************************************************
992 * Page table page management routines.....
993 ***************************************************/
994
995/*
996 * This routine unholds page table pages, and if the hold count
997 * drops to zero, then it decrements the wire count.
998 */
999static int
1000_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1001{
1002
1003	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1004		vm_page_lock_queues();
1005
1006	if (m->hold_count == 0) {
1007		vm_offset_t pteva;
1008		/*
1009		 * unmap the page table page
1010		 */
1011		pmap->pm_pdir[m->pindex] = 0;
1012		--pmap->pm_stats.resident_count;
1013		/*
1014		 * We never unwire a kernel page table page, making a
1015		 * check for the kernel_pmap unnecessary.
1016		 */
1017		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)) {
1018			/*
1019			 * Do an invltlb to make the invalidated mapping
1020			 * take effect immediately.
1021			 */
1022			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1023			pmap_invalidate_page(pmap, pteva);
1024		}
1025
1026		/*
1027		 * If the page is finally unwired, simply free it.
1028		 */
1029		--m->wire_count;
1030		if (m->wire_count == 0) {
1031			vm_page_busy(m);
1032			vm_page_free_zero(m);
1033			atomic_subtract_int(&cnt.v_wire_count, 1);
1034		}
1035		return 1;
1036	}
1037	return 0;
1038}
1039
1040static PMAP_INLINE int
1041pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1042{
1043	vm_page_unhold(m);
1044	if (m->hold_count == 0)
1045		return _pmap_unwire_pte_hold(pmap, m);
1046	else
1047		return 0;
1048}
1049
1050/*
1051 * After removing a page table entry, this routine is used to
1052 * conditionally free the page, and manage the hold/wire counts.
1053 */
1054static int
1055pmap_unuse_pt(pmap_t pmap, vm_offset_t va)
1056{
1057	pd_entry_t ptepde;
1058	vm_page_t mpte;
1059
1060	if (va >= VM_MAXUSER_ADDRESS)
1061		return 0;
1062	ptepde = *pmap_pde(pmap, va);
1063	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1064	return pmap_unwire_pte_hold(pmap, mpte);
1065}
1066
1067void
1068pmap_pinit0(pmap)
1069	struct pmap *pmap;
1070{
1071
1072	PMAP_LOCK_INIT(pmap);
1073	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1074#ifdef PAE
1075	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1076#endif
1077	pmap->pm_active = 0;
1078	PCPU_SET(curpmap, pmap);
1079	TAILQ_INIT(&pmap->pm_pvlist);
1080	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1081	mtx_lock_spin(&allpmaps_lock);
1082	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1083	mtx_unlock_spin(&allpmaps_lock);
1084}
1085
1086/*
1087 * Initialize a preallocated and zeroed pmap structure,
1088 * such as one in a vmspace structure.
1089 */
1090void
1091pmap_pinit(pmap)
1092	register struct pmap *pmap;
1093{
1094	vm_page_t m, ptdpg[NPGPTD];
1095	vm_paddr_t pa;
1096	static int color;
1097	int i;
1098
1099	PMAP_LOCK_INIT(pmap);
1100
1101	/*
1102	 * No need to allocate page table space yet but we do need a valid
1103	 * page directory table.
1104	 */
1105	if (pmap->pm_pdir == NULL) {
1106		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1107		    NBPTD);
1108#ifdef PAE
1109		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1110		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1111		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1112		    ("pmap_pinit: pdpt misaligned"));
1113		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1114		    ("pmap_pinit: pdpt above 4g"));
1115#endif
1116	}
1117
1118	/*
1119	 * allocate the page directory page(s)
1120	 */
1121	for (i = 0; i < NPGPTD;) {
1122		m = vm_page_alloc(NULL, color++,
1123		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1124		    VM_ALLOC_ZERO);
1125		if (m == NULL)
1126			VM_WAIT;
1127		else {
1128			ptdpg[i++] = m;
1129		}
1130	}
1131
1132	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1133
1134	for (i = 0; i < NPGPTD; i++) {
1135		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1136			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1137	}
1138
1139	mtx_lock_spin(&allpmaps_lock);
1140	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1141	mtx_unlock_spin(&allpmaps_lock);
1142	/* Wire in kernel global address entries. */
1143	/* XXX copies current process, does not fill in MPPTDI */
1144	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1145#ifdef SMP
1146	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1147#endif
1148
1149	/* install self-referential address mapping entry(s) */
1150	for (i = 0; i < NPGPTD; i++) {
1151		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1152		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1153#ifdef PAE
1154		pmap->pm_pdpt[i] = pa | PG_V;
1155#endif
1156	}
1157
1158	pmap->pm_active = 0;
1159	TAILQ_INIT(&pmap->pm_pvlist);
1160	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1161}
1162
1163/*
1164 * this routine is called if the page table page is not
1165 * mapped correctly.
1166 */
1167static vm_page_t
1168_pmap_allocpte(pmap, ptepindex)
1169	pmap_t	pmap;
1170	unsigned ptepindex;
1171{
1172	vm_paddr_t ptepa;
1173	vm_page_t m;
1174
1175	/*
1176	 * Allocate a page table page.
1177	 */
1178	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1179	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1180		VM_WAIT;
1181		/*
1182		 * Indicate the need to retry.  While waiting, the page table
1183		 * page may have been allocated.
1184		 */
1185		return (NULL);
1186	}
1187	if ((m->flags & PG_ZERO) == 0)
1188		pmap_zero_page(m);
1189
1190	KASSERT(m->queue == PQ_NONE,
1191		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1192
1193	/*
1194	 * Increment the hold count for the page table page
1195	 * (denoting a new mapping.)
1196	 */
1197	m->hold_count++;
1198
1199	/*
1200	 * Map the pagetable page into the process address space, if
1201	 * it isn't already there.
1202	 */
1203
1204	pmap->pm_stats.resident_count++;
1205
1206	ptepa = VM_PAGE_TO_PHYS(m);
1207	pmap->pm_pdir[ptepindex] =
1208		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1209
1210	return m;
1211}
1212
1213static vm_page_t
1214pmap_allocpte(pmap_t pmap, vm_offset_t va)
1215{
1216	unsigned ptepindex;
1217	pd_entry_t ptepa;
1218	vm_page_t m;
1219
1220	/*
1221	 * Calculate pagetable page index
1222	 */
1223	ptepindex = va >> PDRSHIFT;
1224retry:
1225	/*
1226	 * Get the page directory entry
1227	 */
1228	ptepa = pmap->pm_pdir[ptepindex];
1229
1230	/*
1231	 * This supports switching from a 4MB page to a
1232	 * normal 4K page.
1233	 */
1234	if (ptepa & PG_PS) {
1235		pmap->pm_pdir[ptepindex] = 0;
1236		ptepa = 0;
1237		pmap_invalidate_all(kernel_pmap);
1238	}
1239
1240	/*
1241	 * If the page table page is mapped, we just increment the
1242	 * hold count, and activate it.
1243	 */
1244	if (ptepa) {
1245		m = PHYS_TO_VM_PAGE(ptepa);
1246		m->hold_count++;
1247	} else {
1248		/*
1249		 * Here if the pte page isn't mapped, or if it has
1250		 * been deallocated.
1251		 */
1252		m = _pmap_allocpte(pmap, ptepindex);
1253		if (m == NULL)
1254			goto retry;
1255	}
1256	return (m);
1257}
1258
1259
1260/***************************************************
1261* Pmap allocation/deallocation routines.
1262 ***************************************************/
1263
1264#ifdef SMP
1265/*
1266 * Deal with a SMP shootdown of other users of the pmap that we are
1267 * trying to dispose of.  This can be a bit hairy.
1268 */
1269static u_int *lazymask;
1270static u_int lazyptd;
1271static volatile u_int lazywait;
1272
1273void pmap_lazyfix_action(void);
1274
1275void
1276pmap_lazyfix_action(void)
1277{
1278	u_int mymask = PCPU_GET(cpumask);
1279
1280	if (rcr3() == lazyptd)
1281		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1282	atomic_clear_int(lazymask, mymask);
1283	atomic_store_rel_int(&lazywait, 1);
1284}
1285
1286static void
1287pmap_lazyfix_self(u_int mymask)
1288{
1289
1290	if (rcr3() == lazyptd)
1291		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1292	atomic_clear_int(lazymask, mymask);
1293}
1294
1295
1296static void
1297pmap_lazyfix(pmap_t pmap)
1298{
1299	u_int mymask = PCPU_GET(cpumask);
1300	u_int mask;
1301	register u_int spins;
1302
1303	while ((mask = pmap->pm_active) != 0) {
1304		spins = 50000000;
1305		mask = mask & -mask;	/* Find least significant set bit */
1306		mtx_lock_spin(&lazypmap_lock);
1307#ifdef PAE
1308		lazyptd = vtophys(pmap->pm_pdpt);
1309#else
1310		lazyptd = vtophys(pmap->pm_pdir);
1311#endif
1312		if (mask == mymask) {
1313			lazymask = &pmap->pm_active;
1314			pmap_lazyfix_self(mymask);
1315		} else {
1316			atomic_store_rel_int((u_int *)&lazymask,
1317			    (u_int)&pmap->pm_active);
1318			atomic_store_rel_int(&lazywait, 0);
1319			ipi_selected(mask, IPI_LAZYPMAP);
1320			while (lazywait == 0) {
1321				ia32_pause();
1322				if (--spins == 0)
1323					break;
1324			}
1325		}
1326		mtx_unlock_spin(&lazypmap_lock);
1327		if (spins == 0)
1328			printf("pmap_lazyfix: spun for 50000000\n");
1329	}
1330}
1331
1332#else	/* SMP */
1333
1334/*
1335 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1336 * unlikely to have to even execute this code, including the fact
1337 * that the cleanup is deferred until the parent does a wait(2), which
1338 * means that another userland process has run.
1339 */
1340static void
1341pmap_lazyfix(pmap_t pmap)
1342{
1343	u_int cr3;
1344
1345	cr3 = vtophys(pmap->pm_pdir);
1346	if (cr3 == rcr3()) {
1347		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1348		pmap->pm_active &= ~(PCPU_GET(cpumask));
1349	}
1350}
1351#endif	/* SMP */
1352
1353/*
1354 * Release any resources held by the given physical map.
1355 * Called when a pmap initialized by pmap_pinit is being released.
1356 * Should only be called if the map contains no valid mappings.
1357 */
1358void
1359pmap_release(pmap_t pmap)
1360{
1361	vm_page_t m, ptdpg[NPGPTD];
1362	int i;
1363
1364	KASSERT(pmap->pm_stats.resident_count == 0,
1365	    ("pmap_release: pmap resident count %ld != 0",
1366	    pmap->pm_stats.resident_count));
1367
1368	pmap_lazyfix(pmap);
1369	mtx_lock_spin(&allpmaps_lock);
1370	LIST_REMOVE(pmap, pm_list);
1371	mtx_unlock_spin(&allpmaps_lock);
1372
1373	for (i = 0; i < NPGPTD; i++)
1374		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1375
1376	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1377	    sizeof(*pmap->pm_pdir));
1378#ifdef SMP
1379	pmap->pm_pdir[MPPTDI] = 0;
1380#endif
1381
1382	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1383
1384	vm_page_lock_queues();
1385	for (i = 0; i < NPGPTD; i++) {
1386		m = ptdpg[i];
1387#ifdef PAE
1388		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1389		    ("pmap_release: got wrong ptd page"));
1390#endif
1391		m->wire_count--;
1392		atomic_subtract_int(&cnt.v_wire_count, 1);
1393		vm_page_free_zero(m);
1394	}
1395	vm_page_unlock_queues();
1396	PMAP_LOCK_DESTROY(pmap);
1397}
1398
1399static int
1400kvm_size(SYSCTL_HANDLER_ARGS)
1401{
1402	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1403
1404	return sysctl_handle_long(oidp, &ksize, 0, req);
1405}
1406SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1407    0, 0, kvm_size, "IU", "Size of KVM");
1408
1409static int
1410kvm_free(SYSCTL_HANDLER_ARGS)
1411{
1412	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1413
1414	return sysctl_handle_long(oidp, &kfree, 0, req);
1415}
1416SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1417    0, 0, kvm_free, "IU", "Amount of KVM free");
1418
1419/*
1420 * grow the number of kernel page table entries, if needed
1421 */
1422void
1423pmap_growkernel(vm_offset_t addr)
1424{
1425	struct pmap *pmap;
1426	vm_paddr_t ptppaddr;
1427	vm_page_t nkpg;
1428	pd_entry_t newpdir;
1429	pt_entry_t *pde;
1430
1431	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1432	if (kernel_vm_end == 0) {
1433		kernel_vm_end = KERNBASE;
1434		nkpt = 0;
1435		while (pdir_pde(PTD, kernel_vm_end)) {
1436			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1437			nkpt++;
1438		}
1439	}
1440	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1441	while (kernel_vm_end < addr) {
1442		if (pdir_pde(PTD, kernel_vm_end)) {
1443			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1444			continue;
1445		}
1446
1447		/*
1448		 * This index is bogus, but out of the way
1449		 */
1450		nkpg = vm_page_alloc(NULL, nkpt,
1451		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1452		if (!nkpg)
1453			panic("pmap_growkernel: no memory to grow kernel");
1454
1455		nkpt++;
1456
1457		pmap_zero_page(nkpg);
1458		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1459		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1460		pdir_pde(PTD, kernel_vm_end) = newpdir;
1461
1462		mtx_lock_spin(&allpmaps_lock);
1463		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1464			pde = pmap_pde(pmap, kernel_vm_end);
1465			pde_store(pde, newpdir);
1466		}
1467		mtx_unlock_spin(&allpmaps_lock);
1468		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1469	}
1470}
1471
1472
1473/***************************************************
1474 * page management routines.
1475 ***************************************************/
1476
1477/*
1478 * free the pv_entry back to the free list
1479 */
1480static PMAP_INLINE void
1481free_pv_entry(pv_entry_t pv)
1482{
1483	pv_entry_count--;
1484	uma_zfree(pvzone, pv);
1485}
1486
1487/*
1488 * get a new pv_entry, allocating a block from the system
1489 * when needed.
1490 * the memory allocation is performed bypassing the malloc code
1491 * because of the possibility of allocations at interrupt time.
1492 */
1493static pv_entry_t
1494get_pv_entry(void)
1495{
1496	pv_entry_count++;
1497	if (pv_entry_high_water &&
1498		(pv_entry_count > pv_entry_high_water) &&
1499		(pmap_pagedaemon_waken == 0)) {
1500		pmap_pagedaemon_waken = 1;
1501		wakeup (&vm_pages_needed);
1502	}
1503	return uma_zalloc(pvzone, M_NOWAIT);
1504}
1505
1506
1507static int
1508pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1509{
1510	pv_entry_t pv;
1511	int rtval;
1512
1513	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1514	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1515	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1516		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1517			if (pmap == pv->pv_pmap && va == pv->pv_va)
1518				break;
1519		}
1520	} else {
1521		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1522			if (va == pv->pv_va)
1523				break;
1524		}
1525	}
1526
1527	rtval = 0;
1528	if (pv) {
1529		rtval = pmap_unuse_pt(pmap, va);
1530		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1531		m->md.pv_list_count--;
1532		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1533			vm_page_flag_clear(m, PG_WRITEABLE);
1534
1535		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1536		free_pv_entry(pv);
1537	}
1538
1539	return rtval;
1540}
1541
1542/*
1543 * Create a pv entry for page at pa for
1544 * (pmap, va).
1545 */
1546static void
1547pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1548{
1549	pv_entry_t pv;
1550
1551	pv = get_pv_entry();
1552	pv->pv_va = va;
1553	pv->pv_pmap = pmap;
1554
1555	vm_page_lock_queues();
1556	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1557	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1558	m->md.pv_list_count++;
1559	vm_page_unlock_queues();
1560}
1561
1562/*
1563 * pmap_remove_pte: do the things to unmap a page in a process
1564 */
1565static int
1566pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1567{
1568	pt_entry_t oldpte;
1569	vm_page_t m;
1570
1571	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1572	oldpte = pte_load_clear(ptq);
1573	if (oldpte & PG_W)
1574		pmap->pm_stats.wired_count -= 1;
1575	/*
1576	 * Machines that don't support invlpg, also don't support
1577	 * PG_G.
1578	 */
1579	if (oldpte & PG_G)
1580		pmap_invalidate_page(kernel_pmap, va);
1581	pmap->pm_stats.resident_count -= 1;
1582	if (oldpte & PG_MANAGED) {
1583		m = PHYS_TO_VM_PAGE(oldpte);
1584		if (oldpte & PG_M) {
1585#if defined(PMAP_DIAGNOSTIC)
1586			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1587				printf(
1588	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1589				    va, oldpte);
1590			}
1591#endif
1592			if (pmap_track_modified(va))
1593				vm_page_dirty(m);
1594		}
1595		if (oldpte & PG_A)
1596			vm_page_flag_set(m, PG_REFERENCED);
1597		return pmap_remove_entry(pmap, m, va);
1598	} else {
1599		return pmap_unuse_pt(pmap, va);
1600	}
1601}
1602
1603/*
1604 * Remove a single page from a process address space
1605 */
1606static void
1607pmap_remove_page(pmap_t pmap, vm_offset_t va)
1608{
1609	pt_entry_t *pte;
1610
1611	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1612	if ((pte = pmap_pte(pmap, va)) == NULL || *pte == 0)
1613		return;
1614	pmap_remove_pte(pmap, pte, va);
1615	pmap_invalidate_page(pmap, va);
1616}
1617
1618/*
1619 *	Remove the given range of addresses from the specified map.
1620 *
1621 *	It is assumed that the start and end are properly
1622 *	rounded to the page size.
1623 */
1624void
1625pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1626{
1627	vm_offset_t pdnxt;
1628	pd_entry_t ptpaddr;
1629	pt_entry_t *pte;
1630	int anyvalid;
1631
1632	if (pmap == NULL)
1633		return;
1634
1635	/*
1636	 * Perform an unsynchronized read.  This is, however, safe.
1637	 */
1638	if (pmap->pm_stats.resident_count == 0)
1639		return;
1640	PMAP_LOCK(pmap);
1641
1642	/*
1643	 * special handling of removing one page.  a very
1644	 * common operation and easy to short circuit some
1645	 * code.
1646	 */
1647	if ((sva + PAGE_SIZE == eva) &&
1648	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1649		pmap_remove_page(pmap, sva);
1650		PMAP_UNLOCK(pmap);
1651		return;
1652	}
1653
1654	anyvalid = 0;
1655
1656	for (; sva < eva; sva = pdnxt) {
1657		unsigned pdirindex;
1658
1659		/*
1660		 * Calculate index for next page table.
1661		 */
1662		pdnxt = (sva + NBPDR) & ~PDRMASK;
1663		if (pmap->pm_stats.resident_count == 0)
1664			break;
1665
1666		pdirindex = sva >> PDRSHIFT;
1667		ptpaddr = pmap->pm_pdir[pdirindex];
1668
1669		/*
1670		 * Weed out invalid mappings. Note: we assume that the page
1671		 * directory table is always allocated, and in kernel virtual.
1672		 */
1673		if (ptpaddr == 0)
1674			continue;
1675
1676		/*
1677		 * Check for large page.
1678		 */
1679		if ((ptpaddr & PG_PS) != 0) {
1680			pmap->pm_pdir[pdirindex] = 0;
1681			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1682			anyvalid = 1;
1683			continue;
1684		}
1685
1686		/*
1687		 * Limit our scan to either the end of the va represented
1688		 * by the current page table page, or to the end of the
1689		 * range being removed.
1690		 */
1691		if (pdnxt > eva)
1692			pdnxt = eva;
1693
1694		for (; sva != pdnxt; sva += PAGE_SIZE) {
1695			if ((pte = pmap_pte(pmap, sva)) == NULL ||
1696			    *pte == 0)
1697				continue;
1698			anyvalid = 1;
1699			if (pmap_remove_pte(pmap, pte, sva))
1700				break;
1701		}
1702	}
1703
1704	if (anyvalid)
1705		pmap_invalidate_all(pmap);
1706	PMAP_UNLOCK(pmap);
1707}
1708
1709/*
1710 *	Routine:	pmap_remove_all
1711 *	Function:
1712 *		Removes this physical page from
1713 *		all physical maps in which it resides.
1714 *		Reflects back modify bits to the pager.
1715 *
1716 *	Notes:
1717 *		Original versions of this routine were very
1718 *		inefficient because they iteratively called
1719 *		pmap_remove (slow...)
1720 */
1721
1722void
1723pmap_remove_all(vm_page_t m)
1724{
1725	register pv_entry_t pv;
1726	pt_entry_t *pte, tpte;
1727
1728#if defined(PMAP_DIAGNOSTIC)
1729	/*
1730	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1731	 */
1732	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1733		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1734		    VM_PAGE_TO_PHYS(m));
1735	}
1736#endif
1737	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1738	sched_pin();
1739	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1740		PMAP_LOCK(pv->pv_pmap);
1741		pv->pv_pmap->pm_stats.resident_count--;
1742		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1743		tpte = pte_load_clear(pte);
1744		if (tpte & PG_W)
1745			pv->pv_pmap->pm_stats.wired_count--;
1746		if (tpte & PG_A)
1747			vm_page_flag_set(m, PG_REFERENCED);
1748
1749		/*
1750		 * Update the vm_page_t clean and reference bits.
1751		 */
1752		if (tpte & PG_M) {
1753#if defined(PMAP_DIAGNOSTIC)
1754			if (pmap_nw_modified((pt_entry_t) tpte)) {
1755				printf(
1756	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1757				    pv->pv_va, tpte);
1758			}
1759#endif
1760			if (pmap_track_modified(pv->pv_va))
1761				vm_page_dirty(m);
1762		}
1763		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1764		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1765		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1766		m->md.pv_list_count--;
1767		pmap_unuse_pt(pv->pv_pmap, pv->pv_va);
1768		PMAP_UNLOCK(pv->pv_pmap);
1769		free_pv_entry(pv);
1770	}
1771	vm_page_flag_clear(m, PG_WRITEABLE);
1772	sched_unpin();
1773}
1774
1775/*
1776 *	Set the physical protection on the
1777 *	specified range of this map as requested.
1778 */
1779void
1780pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1781{
1782	vm_offset_t pdnxt;
1783	pd_entry_t ptpaddr;
1784	int anychanged;
1785
1786	if (pmap == NULL)
1787		return;
1788
1789	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1790		pmap_remove(pmap, sva, eva);
1791		return;
1792	}
1793
1794	if (prot & VM_PROT_WRITE)
1795		return;
1796
1797	anychanged = 0;
1798
1799	PMAP_LOCK(pmap);
1800	for (; sva < eva; sva = pdnxt) {
1801		unsigned pdirindex;
1802
1803		pdnxt = (sva + NBPDR) & ~PDRMASK;
1804
1805		pdirindex = sva >> PDRSHIFT;
1806		ptpaddr = pmap->pm_pdir[pdirindex];
1807
1808		/*
1809		 * Weed out invalid mappings. Note: we assume that the page
1810		 * directory table is always allocated, and in kernel virtual.
1811		 */
1812		if (ptpaddr == 0)
1813			continue;
1814
1815		/*
1816		 * Check for large page.
1817		 */
1818		if ((ptpaddr & PG_PS) != 0) {
1819			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1820			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1821			anychanged = 1;
1822			continue;
1823		}
1824
1825		if (pdnxt > eva)
1826			pdnxt = eva;
1827
1828		for (; sva != pdnxt; sva += PAGE_SIZE) {
1829			pt_entry_t pbits;
1830			pt_entry_t *pte;
1831			vm_page_t m;
1832
1833			if ((pte = pmap_pte(pmap, sva)) == NULL)
1834				continue;
1835			pbits = *pte;
1836			if (pbits & PG_MANAGED) {
1837				m = NULL;
1838				if (pbits & PG_A) {
1839					m = PHYS_TO_VM_PAGE(pbits);
1840					vm_page_flag_set(m, PG_REFERENCED);
1841					pbits &= ~PG_A;
1842				}
1843				if ((pbits & PG_M) != 0 &&
1844				    pmap_track_modified(sva)) {
1845					if (m == NULL)
1846						m = PHYS_TO_VM_PAGE(pbits);
1847					vm_page_dirty(m);
1848					pbits &= ~PG_M;
1849				}
1850			}
1851
1852			pbits &= ~PG_RW;
1853
1854			if (pbits != *pte) {
1855				pte_store(pte, pbits);
1856				anychanged = 1;
1857			}
1858		}
1859	}
1860	if (anychanged)
1861		pmap_invalidate_all(pmap);
1862	PMAP_UNLOCK(pmap);
1863}
1864
1865/*
1866 *	Insert the given physical page (p) at
1867 *	the specified virtual address (v) in the
1868 *	target physical map with the protection requested.
1869 *
1870 *	If specified, the page will be wired down, meaning
1871 *	that the related pte can not be reclaimed.
1872 *
1873 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1874 *	or lose information.  That is, this routine must actually
1875 *	insert this page into the given map NOW.
1876 */
1877void
1878pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1879	   boolean_t wired)
1880{
1881	vm_paddr_t pa;
1882	register pt_entry_t *pte;
1883	vm_paddr_t opa;
1884	pt_entry_t origpte, newpte;
1885	vm_page_t mpte;
1886
1887	if (pmap == NULL)
1888		return;
1889
1890	va &= PG_FRAME;
1891#ifdef PMAP_DIAGNOSTIC
1892	if (va > VM_MAX_KERNEL_ADDRESS)
1893		panic("pmap_enter: toobig");
1894	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1895		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1896#endif
1897
1898	mpte = NULL;
1899	/*
1900	 * In the case that a page table page is not
1901	 * resident, we are creating it here.
1902	 */
1903	if (va < VM_MAXUSER_ADDRESS) {
1904		mpte = pmap_allocpte(pmap, va);
1905	}
1906#if 0 && defined(PMAP_DIAGNOSTIC)
1907	else {
1908		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1909		origpte = *pdeaddr;
1910		if ((origpte & PG_V) == 0) {
1911			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1912				pmap->pm_pdir[PTDPTDI], origpte, va);
1913		}
1914	}
1915#endif
1916
1917	pte = pmap_pte(pmap, va);
1918
1919	/*
1920	 * Page Directory table entry not valid, we need a new PT page
1921	 */
1922	if (pte == NULL) {
1923		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1924			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1925	}
1926
1927	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1928	origpte = *pte;
1929	opa = origpte & PG_FRAME;
1930
1931	if (origpte & PG_PS) {
1932		/*
1933		 * Yes, I know this will truncate upper address bits for PAE,
1934		 * but I'm actually more interested in the lower bits
1935		 */
1936		printf("pmap_enter: va %p, pte %p, origpte %p\n",
1937		    (void *)va, (void *)pte, (void *)(uintptr_t)origpte);
1938		panic("pmap_enter: attempted pmap_enter on 4MB page");
1939	}
1940
1941	/*
1942	 * Mapping has not changed, must be protection or wiring change.
1943	 */
1944	if (origpte && (opa == pa)) {
1945		/*
1946		 * Wiring change, just update stats. We don't worry about
1947		 * wiring PT pages as they remain resident as long as there
1948		 * are valid mappings in them. Hence, if a user page is wired,
1949		 * the PT page will be also.
1950		 */
1951		if (wired && ((origpte & PG_W) == 0))
1952			pmap->pm_stats.wired_count++;
1953		else if (!wired && (origpte & PG_W))
1954			pmap->pm_stats.wired_count--;
1955
1956#if defined(PMAP_DIAGNOSTIC)
1957		if (pmap_nw_modified((pt_entry_t) origpte)) {
1958			printf(
1959	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1960			    va, origpte);
1961		}
1962#endif
1963
1964		/*
1965		 * Remove extra pte reference
1966		 */
1967		if (mpte)
1968			mpte->hold_count--;
1969
1970		/*
1971		 * We might be turning off write access to the page,
1972		 * so we go ahead and sense modify status.
1973		 */
1974		if (origpte & PG_MANAGED) {
1975			if ((origpte & PG_M) && pmap_track_modified(va)) {
1976				vm_page_t om;
1977				om = PHYS_TO_VM_PAGE(opa);
1978				vm_page_dirty(om);
1979			}
1980			pa |= PG_MANAGED;
1981		}
1982		goto validate;
1983	}
1984	/*
1985	 * Mapping has changed, invalidate old range and fall through to
1986	 * handle validating new mapping.
1987	 */
1988	if (opa) {
1989		int err;
1990		vm_page_lock_queues();
1991		PMAP_LOCK(pmap);
1992		err = pmap_remove_pte(pmap, pte, va);
1993		PMAP_UNLOCK(pmap);
1994		vm_page_unlock_queues();
1995		if (err)
1996			panic("pmap_enter: pte vanished, va: 0x%x", va);
1997	}
1998
1999	/*
2000	 * Enter on the PV list if part of our managed memory. Note that we
2001	 * raise IPL while manipulating pv_table since pmap_enter can be
2002	 * called at interrupt time.
2003	 */
2004	if (pmap_initialized &&
2005	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2006		pmap_insert_entry(pmap, va, m);
2007		pa |= PG_MANAGED;
2008	}
2009
2010	/*
2011	 * Increment counters
2012	 */
2013	pmap->pm_stats.resident_count++;
2014	if (wired)
2015		pmap->pm_stats.wired_count++;
2016
2017validate:
2018	/*
2019	 * Now validate mapping with desired protection/wiring.
2020	 */
2021	newpte = (pt_entry_t)(pa | PG_V);
2022	if ((prot & VM_PROT_WRITE) != 0)
2023		newpte |= PG_RW;
2024	if (wired)
2025		newpte |= PG_W;
2026	if (va < VM_MAXUSER_ADDRESS)
2027		newpte |= PG_U;
2028	if (pmap == kernel_pmap)
2029		newpte |= pgeflag;
2030
2031	/*
2032	 * if the mapping or permission bits are different, we need
2033	 * to update the pte.
2034	 */
2035	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2036		pte_store(pte, newpte | PG_A);
2037		/*if (origpte)*/ {
2038			pmap_invalidate_page(pmap, va);
2039		}
2040	}
2041}
2042
2043/*
2044 * this code makes some *MAJOR* assumptions:
2045 * 1. Current pmap & pmap exists.
2046 * 2. Not wired.
2047 * 3. Read access.
2048 * 4. No page table pages.
2049 * 5. Tlbflush is deferred to calling procedure.
2050 * 6. Page IS managed.
2051 * but is *MUCH* faster than pmap_enter...
2052 */
2053
2054vm_page_t
2055pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2056{
2057	pt_entry_t *pte;
2058	vm_paddr_t pa;
2059
2060	/*
2061	 * In the case that a page table page is not
2062	 * resident, we are creating it here.
2063	 */
2064	if (va < VM_MAXUSER_ADDRESS) {
2065		unsigned ptepindex;
2066		pd_entry_t ptepa;
2067
2068		/*
2069		 * Calculate pagetable page index
2070		 */
2071		ptepindex = va >> PDRSHIFT;
2072		if (mpte && (mpte->pindex == ptepindex)) {
2073			mpte->hold_count++;
2074		} else {
2075retry:
2076			/*
2077			 * Get the page directory entry
2078			 */
2079			ptepa = pmap->pm_pdir[ptepindex];
2080
2081			/*
2082			 * If the page table page is mapped, we just increment
2083			 * the hold count, and activate it.
2084			 */
2085			if (ptepa) {
2086				if (ptepa & PG_PS)
2087					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2088				mpte = PHYS_TO_VM_PAGE(ptepa);
2089				mpte->hold_count++;
2090			} else {
2091				mpte = _pmap_allocpte(pmap, ptepindex);
2092				if (mpte == NULL)
2093					goto retry;
2094			}
2095		}
2096	} else {
2097		mpte = NULL;
2098	}
2099
2100	/*
2101	 * This call to vtopte makes the assumption that we are
2102	 * entering the page into the current pmap.  In order to support
2103	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2104	 * But that isn't as quick as vtopte.
2105	 */
2106	pte = vtopte(va);
2107	if (*pte) {
2108		if (mpte != NULL) {
2109			vm_page_lock_queues();
2110			pmap_unwire_pte_hold(pmap, mpte);
2111			vm_page_unlock_queues();
2112		}
2113		return 0;
2114	}
2115
2116	/*
2117	 * Enter on the PV list if part of our managed memory. Note that we
2118	 * raise IPL while manipulating pv_table since pmap_enter can be
2119	 * called at interrupt time.
2120	 */
2121	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2122		pmap_insert_entry(pmap, va, m);
2123
2124	/*
2125	 * Increment counters
2126	 */
2127	pmap->pm_stats.resident_count++;
2128
2129	pa = VM_PAGE_TO_PHYS(m);
2130
2131	/*
2132	 * Now validate mapping with RO protection
2133	 */
2134	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2135		pte_store(pte, pa | PG_V | PG_U);
2136	else
2137		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2138
2139	return mpte;
2140}
2141
2142/*
2143 * Make a temporary mapping for a physical address.  This is only intended
2144 * to be used for panic dumps.
2145 */
2146void *
2147pmap_kenter_temporary(vm_paddr_t pa, int i)
2148{
2149	vm_offset_t va;
2150
2151	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2152	pmap_kenter(va, pa);
2153#ifndef I386_CPU
2154	invlpg(va);
2155#else
2156	invltlb();
2157#endif
2158	return ((void *)crashdumpmap);
2159}
2160
2161/*
2162 * This code maps large physical mmap regions into the
2163 * processor address space.  Note that some shortcuts
2164 * are taken, but the code works.
2165 */
2166void
2167pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2168		    vm_object_t object, vm_pindex_t pindex,
2169		    vm_size_t size)
2170{
2171	vm_page_t p;
2172
2173	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2174	KASSERT(object->type == OBJT_DEVICE,
2175	    ("pmap_object_init_pt: non-device object"));
2176	if (pseflag &&
2177	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2178		int i;
2179		vm_page_t m[1];
2180		unsigned int ptepindex;
2181		int npdes;
2182		pd_entry_t ptepa;
2183
2184		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2185			return;
2186retry:
2187		p = vm_page_lookup(object, pindex);
2188		if (p != NULL) {
2189			vm_page_lock_queues();
2190			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2191				goto retry;
2192		} else {
2193			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2194			if (p == NULL)
2195				return;
2196			m[0] = p;
2197
2198			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2199				vm_page_lock_queues();
2200				vm_page_free(p);
2201				vm_page_unlock_queues();
2202				return;
2203			}
2204
2205			p = vm_page_lookup(object, pindex);
2206			vm_page_lock_queues();
2207			vm_page_wakeup(p);
2208		}
2209		vm_page_unlock_queues();
2210
2211		ptepa = VM_PAGE_TO_PHYS(p);
2212		if (ptepa & (NBPDR - 1))
2213			return;
2214
2215		p->valid = VM_PAGE_BITS_ALL;
2216
2217		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2218		npdes = size >> PDRSHIFT;
2219		for(i = 0; i < npdes; i++) {
2220			pde_store(&pmap->pm_pdir[ptepindex],
2221			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2222			ptepa += NBPDR;
2223			ptepindex += 1;
2224		}
2225		pmap_invalidate_all(pmap);
2226	}
2227}
2228
2229/*
2230 *	Routine:	pmap_change_wiring
2231 *	Function:	Change the wiring attribute for a map/virtual-address
2232 *			pair.
2233 *	In/out conditions:
2234 *			The mapping must already exist in the pmap.
2235 */
2236void
2237pmap_change_wiring(pmap, va, wired)
2238	register pmap_t pmap;
2239	vm_offset_t va;
2240	boolean_t wired;
2241{
2242	register pt_entry_t *pte;
2243
2244	if (pmap == NULL)
2245		return;
2246
2247	PMAP_LOCK(pmap);
2248	pte = pmap_pte(pmap, va);
2249
2250	if (wired && !pmap_pte_w(pte))
2251		pmap->pm_stats.wired_count++;
2252	else if (!wired && pmap_pte_w(pte))
2253		pmap->pm_stats.wired_count--;
2254
2255	/*
2256	 * Wiring is not a hardware characteristic so there is no need to
2257	 * invalidate TLB.
2258	 */
2259	pmap_pte_set_w(pte, wired);
2260	PMAP_UNLOCK(pmap);
2261}
2262
2263
2264
2265/*
2266 *	Copy the range specified by src_addr/len
2267 *	from the source map to the range dst_addr/len
2268 *	in the destination map.
2269 *
2270 *	This routine is only advisory and need not do anything.
2271 */
2272
2273void
2274pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2275	  vm_offset_t src_addr)
2276{
2277	vm_offset_t addr;
2278	vm_offset_t end_addr = src_addr + len;
2279	vm_offset_t pdnxt;
2280	vm_page_t m;
2281
2282	if (dst_addr != src_addr)
2283		return;
2284
2285	if (!pmap_is_current(src_pmap))
2286		return;
2287
2288	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2289		pt_entry_t *src_pte, *dst_pte;
2290		vm_page_t dstmpte, srcmpte;
2291		pd_entry_t srcptepaddr;
2292		unsigned ptepindex;
2293
2294		if (addr >= UPT_MIN_ADDRESS)
2295			panic("pmap_copy: invalid to pmap_copy page tables\n");
2296
2297		/*
2298		 * Don't let optional prefaulting of pages make us go
2299		 * way below the low water mark of free pages or way
2300		 * above high water mark of used pv entries.
2301		 */
2302		if (cnt.v_free_count < cnt.v_free_reserved ||
2303		    pv_entry_count > pv_entry_high_water)
2304			break;
2305
2306		pdnxt = (addr + NBPDR) & ~PDRMASK;
2307		ptepindex = addr >> PDRSHIFT;
2308
2309		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2310		if (srcptepaddr == 0)
2311			continue;
2312
2313		if (srcptepaddr & PG_PS) {
2314			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2315				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2316				dst_pmap->pm_stats.resident_count +=
2317				    NBPDR / PAGE_SIZE;
2318			}
2319			continue;
2320		}
2321
2322		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2323		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2324			continue;
2325
2326		if (pdnxt > end_addr)
2327			pdnxt = end_addr;
2328
2329		src_pte = vtopte(addr);
2330		while (addr < pdnxt) {
2331			pt_entry_t ptetemp;
2332			ptetemp = *src_pte;
2333			/*
2334			 * we only virtual copy managed pages
2335			 */
2336			if ((ptetemp & PG_MANAGED) != 0) {
2337				/*
2338				 * We have to check after allocpte for the
2339				 * pte still being around...  allocpte can
2340				 * block.
2341				 */
2342				dstmpte = pmap_allocpte(dst_pmap, addr);
2343				dst_pte = pmap_pte(dst_pmap, addr);
2344				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2345					/*
2346					 * Clear the modified and
2347					 * accessed (referenced) bits
2348					 * during the copy.
2349					 */
2350					m = PHYS_TO_VM_PAGE(ptetemp);
2351					*dst_pte = ptetemp & ~(PG_M | PG_A);
2352					dst_pmap->pm_stats.resident_count++;
2353					pmap_insert_entry(dst_pmap, addr, m);
2354	 			} else {
2355					vm_page_lock_queues();
2356					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2357					vm_page_unlock_queues();
2358				}
2359				if (dstmpte->hold_count >= srcmpte->hold_count)
2360					break;
2361			}
2362			addr += PAGE_SIZE;
2363			src_pte++;
2364		}
2365	}
2366}
2367
2368static __inline void
2369pagezero(void *page)
2370{
2371#if defined(I686_CPU)
2372	if (cpu_class == CPUCLASS_686) {
2373#if defined(CPU_ENABLE_SSE)
2374		if (cpu_feature & CPUID_SSE2)
2375			sse2_pagezero(page);
2376		else
2377#endif
2378			i686_pagezero(page);
2379	} else
2380#endif
2381		bzero(page, PAGE_SIZE);
2382}
2383
2384/*
2385 *	pmap_zero_page zeros the specified hardware page by mapping
2386 *	the page into KVM and using bzero to clear its contents.
2387 */
2388void
2389pmap_zero_page(vm_page_t m)
2390{
2391
2392	mtx_lock(&CMAPCADDR12_lock);
2393	if (*CMAP2)
2394		panic("pmap_zero_page: CMAP2 busy");
2395	sched_pin();
2396	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2397	invlcaddr(CADDR2);
2398	pagezero(CADDR2);
2399	*CMAP2 = 0;
2400	sched_unpin();
2401	mtx_unlock(&CMAPCADDR12_lock);
2402}
2403
2404/*
2405 *	pmap_zero_page_area zeros the specified hardware page by mapping
2406 *	the page into KVM and using bzero to clear its contents.
2407 *
2408 *	off and size may not cover an area beyond a single hardware page.
2409 */
2410void
2411pmap_zero_page_area(vm_page_t m, int off, int size)
2412{
2413
2414	mtx_lock(&CMAPCADDR12_lock);
2415	if (*CMAP2)
2416		panic("pmap_zero_page: CMAP2 busy");
2417	sched_pin();
2418	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2419	invlcaddr(CADDR2);
2420	if (off == 0 && size == PAGE_SIZE)
2421		pagezero(CADDR2);
2422	else
2423		bzero((char *)CADDR2 + off, size);
2424	*CMAP2 = 0;
2425	sched_unpin();
2426	mtx_unlock(&CMAPCADDR12_lock);
2427}
2428
2429/*
2430 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2431 *	the page into KVM and using bzero to clear its contents.  This
2432 *	is intended to be called from the vm_pagezero process only and
2433 *	outside of Giant.
2434 */
2435void
2436pmap_zero_page_idle(vm_page_t m)
2437{
2438
2439	if (*CMAP3)
2440		panic("pmap_zero_page: CMAP3 busy");
2441	sched_pin();
2442	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2443	invlcaddr(CADDR3);
2444	pagezero(CADDR3);
2445	*CMAP3 = 0;
2446	sched_unpin();
2447}
2448
2449/*
2450 *	pmap_copy_page copies the specified (machine independent)
2451 *	page by mapping the page into virtual memory and using
2452 *	bcopy to copy the page, one machine dependent page at a
2453 *	time.
2454 */
2455void
2456pmap_copy_page(vm_page_t src, vm_page_t dst)
2457{
2458
2459	mtx_lock(&CMAPCADDR12_lock);
2460	if (*CMAP1)
2461		panic("pmap_copy_page: CMAP1 busy");
2462	if (*CMAP2)
2463		panic("pmap_copy_page: CMAP2 busy");
2464	sched_pin();
2465#ifdef I386_CPU
2466	invltlb();
2467#else
2468	invlpg((u_int)CADDR1);
2469	invlpg((u_int)CADDR2);
2470#endif
2471	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2472	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2473	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2474	*CMAP1 = 0;
2475	*CMAP2 = 0;
2476	sched_unpin();
2477	mtx_unlock(&CMAPCADDR12_lock);
2478}
2479
2480/*
2481 * Returns true if the pmap's pv is one of the first
2482 * 16 pvs linked to from this page.  This count may
2483 * be changed upwards or downwards in the future; it
2484 * is only necessary that true be returned for a small
2485 * subset of pmaps for proper page aging.
2486 */
2487boolean_t
2488pmap_page_exists_quick(pmap, m)
2489	pmap_t pmap;
2490	vm_page_t m;
2491{
2492	pv_entry_t pv;
2493	int loops = 0;
2494
2495	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2496		return FALSE;
2497
2498	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2499	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2500		if (pv->pv_pmap == pmap) {
2501			return TRUE;
2502		}
2503		loops++;
2504		if (loops >= 16)
2505			break;
2506	}
2507	return (FALSE);
2508}
2509
2510#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2511/*
2512 * Remove all pages from specified address space
2513 * this aids process exit speeds.  Also, this code
2514 * is special cased for current process only, but
2515 * can have the more generic (and slightly slower)
2516 * mode enabled.  This is much faster than pmap_remove
2517 * in the case of running down an entire address space.
2518 */
2519void
2520pmap_remove_pages(pmap, sva, eva)
2521	pmap_t pmap;
2522	vm_offset_t sva, eva;
2523{
2524	pt_entry_t *pte, tpte;
2525	vm_page_t m;
2526	pv_entry_t pv, npv;
2527
2528#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2529	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2530		printf("warning: pmap_remove_pages called with non-current pmap\n");
2531		return;
2532	}
2533#endif
2534	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2535	PMAP_LOCK(pmap);
2536	sched_pin();
2537	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2538
2539		if (pv->pv_va >= eva || pv->pv_va < sva) {
2540			npv = TAILQ_NEXT(pv, pv_plist);
2541			continue;
2542		}
2543
2544#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2545		pte = vtopte(pv->pv_va);
2546#else
2547		pte = pmap_pte_quick(pmap, pv->pv_va);
2548#endif
2549		tpte = *pte;
2550
2551		if (tpte == 0) {
2552			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2553							pte, pv->pv_va);
2554			panic("bad pte");
2555		}
2556
2557/*
2558 * We cannot remove wired pages from a process' mapping at this time
2559 */
2560		if (tpte & PG_W) {
2561			npv = TAILQ_NEXT(pv, pv_plist);
2562			continue;
2563		}
2564
2565		m = PHYS_TO_VM_PAGE(tpte);
2566		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2567		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2568		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2569
2570		KASSERT(m < &vm_page_array[vm_page_array_size],
2571			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2572
2573		pmap->pm_stats.resident_count--;
2574
2575		pte_clear(pte);
2576
2577		/*
2578		 * Update the vm_page_t clean and reference bits.
2579		 */
2580		if (tpte & PG_M) {
2581			vm_page_dirty(m);
2582		}
2583
2584		npv = TAILQ_NEXT(pv, pv_plist);
2585		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2586
2587		m->md.pv_list_count--;
2588		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2589		if (TAILQ_EMPTY(&m->md.pv_list))
2590			vm_page_flag_clear(m, PG_WRITEABLE);
2591
2592		pmap_unuse_pt(pmap, pv->pv_va);
2593		free_pv_entry(pv);
2594	}
2595	sched_unpin();
2596	pmap_invalidate_all(pmap);
2597	PMAP_UNLOCK(pmap);
2598}
2599
2600/*
2601 *	pmap_is_modified:
2602 *
2603 *	Return whether or not the specified physical page was modified
2604 *	in any physical maps.
2605 */
2606boolean_t
2607pmap_is_modified(vm_page_t m)
2608{
2609	pv_entry_t pv;
2610	pt_entry_t *pte;
2611	boolean_t rv;
2612
2613	rv = FALSE;
2614	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2615		return (rv);
2616
2617	sched_pin();
2618	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2619	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2620		/*
2621		 * if the bit being tested is the modified bit, then
2622		 * mark clean_map and ptes as never
2623		 * modified.
2624		 */
2625		if (!pmap_track_modified(pv->pv_va))
2626			continue;
2627#if defined(PMAP_DIAGNOSTIC)
2628		if (!pv->pv_pmap) {
2629			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2630			continue;
2631		}
2632#endif
2633		PMAP_LOCK(pv->pv_pmap);
2634		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2635		rv = (*pte & PG_M) != 0;
2636		PMAP_UNLOCK(pv->pv_pmap);
2637		if (rv)
2638			break;
2639	}
2640	sched_unpin();
2641	return (rv);
2642}
2643
2644/*
2645 *	pmap_is_prefaultable:
2646 *
2647 *	Return whether or not the specified virtual address is elgible
2648 *	for prefault.
2649 */
2650boolean_t
2651pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2652{
2653	pt_entry_t *pte;
2654	boolean_t rv;
2655
2656	rv = FALSE;
2657	PMAP_LOCK(pmap);
2658	if (*pmap_pde(pmap, addr)) {
2659		pte = vtopte(addr);
2660		rv = *pte == 0;
2661	}
2662	PMAP_UNLOCK(pmap);
2663	return (rv);
2664}
2665
2666/*
2667 *	Clear the given bit in each of the given page's ptes.
2668 */
2669static __inline void
2670pmap_clear_ptes(vm_page_t m, int bit)
2671{
2672	register pv_entry_t pv;
2673	pt_entry_t pbits, *pte;
2674
2675	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2676	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2677		return;
2678
2679	sched_pin();
2680	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2681	/*
2682	 * Loop over all current mappings setting/clearing as appropos If
2683	 * setting RO do we need to clear the VAC?
2684	 */
2685	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2686		/*
2687		 * don't write protect pager mappings
2688		 */
2689		if (bit == PG_RW) {
2690			if (!pmap_track_modified(pv->pv_va))
2691				continue;
2692		}
2693
2694#if defined(PMAP_DIAGNOSTIC)
2695		if (!pv->pv_pmap) {
2696			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2697			continue;
2698		}
2699#endif
2700
2701		PMAP_LOCK(pv->pv_pmap);
2702		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2703		pbits = *pte;
2704		if (pbits & bit) {
2705			if (bit == PG_RW) {
2706				if (pbits & PG_M) {
2707					vm_page_dirty(m);
2708				}
2709				pte_store(pte, pbits & ~(PG_M|PG_RW));
2710			} else {
2711				pte_store(pte, pbits & ~bit);
2712			}
2713			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2714		}
2715		PMAP_UNLOCK(pv->pv_pmap);
2716	}
2717	if (bit == PG_RW)
2718		vm_page_flag_clear(m, PG_WRITEABLE);
2719	sched_unpin();
2720}
2721
2722/*
2723 *      pmap_page_protect:
2724 *
2725 *      Lower the permission for all mappings to a given page.
2726 */
2727void
2728pmap_page_protect(vm_page_t m, vm_prot_t prot)
2729{
2730	if ((prot & VM_PROT_WRITE) == 0) {
2731		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2732			pmap_clear_ptes(m, PG_RW);
2733		} else {
2734			pmap_remove_all(m);
2735		}
2736	}
2737}
2738
2739/*
2740 *	pmap_ts_referenced:
2741 *
2742 *	Return a count of reference bits for a page, clearing those bits.
2743 *	It is not necessary for every reference bit to be cleared, but it
2744 *	is necessary that 0 only be returned when there are truly no
2745 *	reference bits set.
2746 *
2747 *	XXX: The exact number of bits to check and clear is a matter that
2748 *	should be tested and standardized at some point in the future for
2749 *	optimal aging of shared pages.
2750 */
2751int
2752pmap_ts_referenced(vm_page_t m)
2753{
2754	register pv_entry_t pv, pvf, pvn;
2755	pt_entry_t *pte;
2756	pt_entry_t v;
2757	int rtval = 0;
2758
2759	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2760		return (rtval);
2761
2762	sched_pin();
2763	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2764	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2765
2766		pvf = pv;
2767
2768		do {
2769			pvn = TAILQ_NEXT(pv, pv_list);
2770
2771			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2772
2773			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2774
2775			if (!pmap_track_modified(pv->pv_va))
2776				continue;
2777
2778			PMAP_LOCK(pv->pv_pmap);
2779			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2780
2781			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2782				atomic_clear_int((u_int *)pte, PG_A);
2783				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2784
2785				rtval++;
2786				if (rtval > 4) {
2787					PMAP_UNLOCK(pv->pv_pmap);
2788					break;
2789				}
2790			}
2791			PMAP_UNLOCK(pv->pv_pmap);
2792		} while ((pv = pvn) != NULL && pv != pvf);
2793	}
2794	sched_unpin();
2795
2796	return (rtval);
2797}
2798
2799/*
2800 *	Clear the modify bits on the specified physical page.
2801 */
2802void
2803pmap_clear_modify(vm_page_t m)
2804{
2805	pmap_clear_ptes(m, PG_M);
2806}
2807
2808/*
2809 *	pmap_clear_reference:
2810 *
2811 *	Clear the reference bit on the specified physical page.
2812 */
2813void
2814pmap_clear_reference(vm_page_t m)
2815{
2816	pmap_clear_ptes(m, PG_A);
2817}
2818
2819/*
2820 * Miscellaneous support routines follow
2821 */
2822
2823/*
2824 * Map a set of physical memory pages into the kernel virtual
2825 * address space. Return a pointer to where it is mapped. This
2826 * routine is intended to be used for mapping device memory,
2827 * NOT real memory.
2828 */
2829void *
2830pmap_mapdev(pa, size)
2831	vm_paddr_t pa;
2832	vm_size_t size;
2833{
2834	vm_offset_t va, tmpva, offset;
2835
2836	offset = pa & PAGE_MASK;
2837	size = roundup(offset + size, PAGE_SIZE);
2838	pa = pa & PG_FRAME;
2839
2840	if (pa < KERNLOAD && pa + size <= KERNLOAD)
2841		va = KERNBASE + pa;
2842	else
2843		va = kmem_alloc_nofault(kernel_map, size);
2844	if (!va)
2845		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2846
2847	for (tmpva = va; size > 0; ) {
2848		pmap_kenter(tmpva, pa);
2849		size -= PAGE_SIZE;
2850		tmpva += PAGE_SIZE;
2851		pa += PAGE_SIZE;
2852	}
2853	pmap_invalidate_range(kernel_pmap, va, tmpva);
2854	return ((void *)(va + offset));
2855}
2856
2857void
2858pmap_unmapdev(va, size)
2859	vm_offset_t va;
2860	vm_size_t size;
2861{
2862	vm_offset_t base, offset, tmpva;
2863
2864	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
2865		return;
2866	base = va & PG_FRAME;
2867	offset = va & PAGE_MASK;
2868	size = roundup(offset + size, PAGE_SIZE);
2869	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2870		pmap_kremove(tmpva);
2871	pmap_invalidate_range(kernel_pmap, va, tmpva);
2872	kmem_free(kernel_map, base, size);
2873}
2874
2875/*
2876 * perform the pmap work for mincore
2877 */
2878int
2879pmap_mincore(pmap, addr)
2880	pmap_t pmap;
2881	vm_offset_t addr;
2882{
2883	pt_entry_t *ptep, pte;
2884	vm_page_t m;
2885	int val = 0;
2886
2887	PMAP_LOCK(pmap);
2888	ptep = pmap_pte(pmap, addr);
2889	pte = (ptep != NULL) ? *ptep : 0;
2890	PMAP_UNLOCK(pmap);
2891
2892	if (pte != 0) {
2893		vm_paddr_t pa;
2894
2895		val = MINCORE_INCORE;
2896		if ((pte & PG_MANAGED) == 0)
2897			return val;
2898
2899		pa = pte & PG_FRAME;
2900
2901		m = PHYS_TO_VM_PAGE(pa);
2902
2903		/*
2904		 * Modified by us
2905		 */
2906		if (pte & PG_M)
2907			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2908		else {
2909			/*
2910			 * Modified by someone else
2911			 */
2912			vm_page_lock_queues();
2913			if (m->dirty || pmap_is_modified(m))
2914				val |= MINCORE_MODIFIED_OTHER;
2915			vm_page_unlock_queues();
2916		}
2917		/*
2918		 * Referenced by us
2919		 */
2920		if (pte & PG_A)
2921			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2922		else {
2923			/*
2924			 * Referenced by someone else
2925			 */
2926			vm_page_lock_queues();
2927			if ((m->flags & PG_REFERENCED) ||
2928			    pmap_ts_referenced(m)) {
2929				val |= MINCORE_REFERENCED_OTHER;
2930				vm_page_flag_set(m, PG_REFERENCED);
2931			}
2932			vm_page_unlock_queues();
2933		}
2934	}
2935	return val;
2936}
2937
2938void
2939pmap_activate(struct thread *td)
2940{
2941	struct proc *p = td->td_proc;
2942	pmap_t	pmap, oldpmap;
2943	u_int32_t  cr3;
2944
2945	critical_enter();
2946	pmap = vmspace_pmap(td->td_proc->p_vmspace);
2947	oldpmap = PCPU_GET(curpmap);
2948#if defined(SMP)
2949	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
2950	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
2951#else
2952	oldpmap->pm_active &= ~1;
2953	pmap->pm_active |= 1;
2954#endif
2955#ifdef PAE
2956	cr3 = vtophys(pmap->pm_pdpt);
2957#else
2958	cr3 = vtophys(pmap->pm_pdir);
2959#endif
2960	/* XXXKSE this is wrong.
2961	 * pmap_activate is for the current thread on the current cpu
2962	 */
2963	if (p->p_flag & P_SA) {
2964		/* Make sure all other cr3 entries are updated. */
2965		/* what if they are running?  XXXKSE (maybe abort them) */
2966		FOREACH_THREAD_IN_PROC(p, td) {
2967			td->td_pcb->pcb_cr3 = cr3;
2968		}
2969	} else {
2970		td->td_pcb->pcb_cr3 = cr3;
2971	}
2972	load_cr3(cr3);
2973	PCPU_SET(curpmap, pmap);
2974	critical_exit();
2975}
2976
2977vm_offset_t
2978pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
2979{
2980
2981	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
2982		return addr;
2983	}
2984
2985	addr = (addr + PDRMASK) & ~PDRMASK;
2986	return addr;
2987}
2988
2989
2990#if defined(PMAP_DEBUG)
2991pmap_pid_dump(int pid)
2992{
2993	pmap_t pmap;
2994	struct proc *p;
2995	int npte = 0;
2996	int index;
2997
2998	sx_slock(&allproc_lock);
2999	LIST_FOREACH(p, &allproc, p_list) {
3000		if (p->p_pid != pid)
3001			continue;
3002
3003		if (p->p_vmspace) {
3004			int i,j;
3005			index = 0;
3006			pmap = vmspace_pmap(p->p_vmspace);
3007			for (i = 0; i < NPDEPTD; i++) {
3008				pd_entry_t *pde;
3009				pt_entry_t *pte;
3010				vm_offset_t base = i << PDRSHIFT;
3011
3012				pde = &pmap->pm_pdir[i];
3013				if (pde && pmap_pde_v(pde)) {
3014					for (j = 0; j < NPTEPG; j++) {
3015						vm_offset_t va = base + (j << PAGE_SHIFT);
3016						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3017							if (index) {
3018								index = 0;
3019								printf("\n");
3020							}
3021							sx_sunlock(&allproc_lock);
3022							return npte;
3023						}
3024						pte = pmap_pte(pmap, va);
3025						if (pte && pmap_pte_v(pte)) {
3026							pt_entry_t pa;
3027							vm_page_t m;
3028							pa = *pte;
3029							m = PHYS_TO_VM_PAGE(pa);
3030							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3031								va, pa, m->hold_count, m->wire_count, m->flags);
3032							npte++;
3033							index++;
3034							if (index >= 2) {
3035								index = 0;
3036								printf("\n");
3037							} else {
3038								printf(" ");
3039							}
3040						}
3041					}
3042				}
3043			}
3044		}
3045	}
3046	sx_sunlock(&allproc_lock);
3047	return npte;
3048}
3049#endif
3050
3051#if defined(DEBUG)
3052
3053static void	pads(pmap_t pm);
3054void		pmap_pvdump(vm_offset_t pa);
3055
3056/* print address space of pmap*/
3057static void
3058pads(pm)
3059	pmap_t pm;
3060{
3061	int i, j;
3062	vm_paddr_t va;
3063	pt_entry_t *ptep;
3064
3065	if (pm == kernel_pmap)
3066		return;
3067	for (i = 0; i < NPDEPTD; i++)
3068		if (pm->pm_pdir[i])
3069			for (j = 0; j < NPTEPG; j++) {
3070				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3071				if (pm == kernel_pmap && va < KERNBASE)
3072					continue;
3073				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3074					continue;
3075				ptep = pmap_pte(pm, va);
3076				if (pmap_pte_v(ptep))
3077					printf("%x:%x ", va, *ptep);
3078			};
3079
3080}
3081
3082void
3083pmap_pvdump(pa)
3084	vm_paddr_t pa;
3085{
3086	pv_entry_t pv;
3087	vm_page_t m;
3088
3089	printf("pa %x", pa);
3090	m = PHYS_TO_VM_PAGE(pa);
3091	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3092		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3093		pads(pv->pv_pmap);
3094	}
3095	printf(" ");
3096}
3097#endif
3098