pmap.c revision 131272
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43/*-
44 * Copyright (c) 2003 Networks Associates Technology, Inc.
45 * All rights reserved.
46 *
47 * This software was developed for the FreeBSD Project by Jake Burkholder,
48 * Safeport Network Services, and Network Associates Laboratories, the
49 * Security Research Division of Network Associates, Inc. under
50 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
51 * CHATS research program.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 *    notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 *    notice, this list of conditions and the following disclaimer in the
60 *    documentation and/or other materials provided with the distribution.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 131272 2004-06-29 15:57:05Z peter $");
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_cpu.h"
105#include "opt_pmap.h"
106#include "opt_msgbuf.h"
107#include "opt_kstack_pages.h"
108
109#include <sys/param.h>
110#include <sys/systm.h>
111#include <sys/kernel.h>
112#include <sys/lock.h>
113#include <sys/mman.h>
114#include <sys/msgbuf.h>
115#include <sys/mutex.h>
116#include <sys/proc.h>
117#include <sys/sx.h>
118#include <sys/user.h>
119#include <sys/vmmeter.h>
120#include <sys/sched.h>
121#include <sys/sysctl.h>
122#ifdef SMP
123#include <sys/smp.h>
124#endif
125
126#include <vm/vm.h>
127#include <vm/vm_param.h>
128#include <vm/vm_kern.h>
129#include <vm/vm_page.h>
130#include <vm/vm_map.h>
131#include <vm/vm_object.h>
132#include <vm/vm_extern.h>
133#include <vm/vm_pageout.h>
134#include <vm/vm_pager.h>
135#include <vm/uma.h>
136
137#include <machine/cpu.h>
138#include <machine/cputypes.h>
139#include <machine/md_var.h>
140#include <machine/specialreg.h>
141#ifdef SMP
142#include <machine/smp.h>
143#endif
144
145#if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
146#define CPU_ENABLE_SSE
147#endif
148#if defined(CPU_DISABLE_SSE)
149#undef CPU_ENABLE_SSE
150#endif
151
152#ifndef PMAP_SHPGPERPROC
153#define PMAP_SHPGPERPROC 200
154#endif
155
156#if defined(DIAGNOSTIC)
157#define PMAP_DIAGNOSTIC
158#endif
159
160#define MINPV 2048
161
162#if !defined(PMAP_DIAGNOSTIC)
163#define PMAP_INLINE __inline
164#else
165#define PMAP_INLINE
166#endif
167
168/*
169 * Get PDEs and PTEs for user/kernel address space
170 */
171#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
172#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
173
174#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
175#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
176#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
177#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
178#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
179
180#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
181    atomic_clear_int((u_int *)(pte), PG_W))
182#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
183
184struct pmap kernel_pmap_store;
185LIST_HEAD(pmaplist, pmap);
186static struct pmaplist allpmaps;
187static struct mtx allpmaps_lock;
188#ifdef SMP
189static struct mtx lazypmap_lock;
190#endif
191
192vm_paddr_t avail_end;	/* PA of last available physical page */
193vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
194vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
195static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
196int pgeflag = 0;		/* PG_G or-in */
197int pseflag = 0;		/* PG_PS or-in */
198
199static int nkpt;
200vm_offset_t kernel_vm_end;
201extern u_int32_t KERNend;
202
203#ifdef PAE
204static uma_zone_t pdptzone;
205#endif
206
207/*
208 * Data for the pv entry allocation mechanism
209 */
210static uma_zone_t pvzone;
211static struct vm_object pvzone_obj;
212static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
213int pmap_pagedaemon_waken;
214
215/*
216 * All those kernel PT submaps that BSD is so fond of
217 */
218pt_entry_t *CMAP1 = 0;
219static pt_entry_t *CMAP2, *CMAP3;
220caddr_t CADDR1 = 0, ptvmmap = 0;
221static caddr_t CADDR2, CADDR3;
222static struct mtx CMAPCADDR12_lock;
223struct msgbuf *msgbufp = 0;
224
225/*
226 * Crashdump maps.
227 */
228static caddr_t crashdumpmap;
229
230#ifdef SMP
231extern pt_entry_t *SMPpt;
232#endif
233static pt_entry_t *PMAP1 = 0, *PMAP2;
234static pt_entry_t *PADDR1 = 0, *PADDR2;
235#ifdef SMP
236static int PMAP1cpu;
237static int PMAP1changedcpu;
238SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
239	   &PMAP1changedcpu, 0,
240	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
241#endif
242static int PMAP1changed;
243SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
244	   &PMAP1changed, 0,
245	   "Number of times pmap_pte_quick changed PMAP1");
246static int PMAP1unchanged;
247SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
248	   &PMAP1unchanged, 0,
249	   "Number of times pmap_pte_quick didn't change PMAP1");
250
251static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
252static pv_entry_t get_pv_entry(void);
253static void	pmap_clear_ptes(vm_page_t m, int bit);
254
255static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
256static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
257static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
258					vm_offset_t va);
259static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
260
261static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
262
263static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
264static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
265static int pmap_unuse_pt(pmap_t, vm_offset_t);
266static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
267#ifdef PAE
268static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
269#endif
270
271CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
272CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
273
274/*
275 * Move the kernel virtual free pointer to the next
276 * 4MB.  This is used to help improve performance
277 * by using a large (4MB) page for much of the kernel
278 * (.text, .data, .bss)
279 */
280static vm_offset_t
281pmap_kmem_choose(vm_offset_t addr)
282{
283	vm_offset_t newaddr = addr;
284
285#ifndef DISABLE_PSE
286	if (cpu_feature & CPUID_PSE)
287		newaddr = (addr + PDRMASK) & ~PDRMASK;
288#endif
289	return newaddr;
290}
291
292/*
293 *	Bootstrap the system enough to run with virtual memory.
294 *
295 *	On the i386 this is called after mapping has already been enabled
296 *	and just syncs the pmap module with what has already been done.
297 *	[We can't call it easily with mapping off since the kernel is not
298 *	mapped with PA == VA, hence we would have to relocate every address
299 *	from the linked base (virtual) address "KERNBASE" to the actual
300 *	(physical) address starting relative to 0]
301 */
302void
303pmap_bootstrap(firstaddr, loadaddr)
304	vm_paddr_t firstaddr;
305	vm_paddr_t loadaddr;
306{
307	vm_offset_t va;
308	pt_entry_t *pte, *unused;
309	int i;
310
311	/*
312	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
313	 * large. It should instead be correctly calculated in locore.s and
314	 * not based on 'first' (which is a physical address, not a virtual
315	 * address, for the start of unused physical memory). The kernel
316	 * page tables are NOT double mapped and thus should not be included
317	 * in this calculation.
318	 */
319	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
320	virtual_avail = pmap_kmem_choose(virtual_avail);
321
322	virtual_end = VM_MAX_KERNEL_ADDRESS;
323
324	/*
325	 * Initialize the kernel pmap (which is statically allocated).
326	 */
327	PMAP_LOCK_INIT(kernel_pmap);
328	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
329#ifdef PAE
330	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
331#endif
332	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
333	TAILQ_INIT(&kernel_pmap->pm_pvlist);
334	LIST_INIT(&allpmaps);
335#ifdef SMP
336	mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
337#endif
338	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
339	mtx_lock_spin(&allpmaps_lock);
340	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
341	mtx_unlock_spin(&allpmaps_lock);
342	nkpt = NKPT;
343
344	/*
345	 * Reserve some special page table entries/VA space for temporary
346	 * mapping of pages.
347	 */
348#define	SYSMAP(c, p, v, n)	\
349	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
350
351	va = virtual_avail;
352	pte = vtopte(va);
353
354	/*
355	 * CMAP1/CMAP2 are used for zeroing and copying pages.
356	 * CMAP3 is used for the idle process page zeroing.
357	 */
358	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
359	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
360	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
361	*CMAP3 = 0;
362
363	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
364
365	/*
366	 * Crashdump maps.
367	 */
368	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
369
370	/*
371	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
372	 */
373	SYSMAP(caddr_t, unused, ptvmmap, 1)
374
375	/*
376	 * msgbufp is used to map the system message buffer.
377	 */
378	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
379
380	/*
381	 * ptemap is used for pmap_pte_quick
382	 */
383	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
384	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
385
386	virtual_avail = va;
387
388	*CMAP1 = *CMAP2 = 0;
389	for (i = 0; i < NKPT; i++)
390		PTD[i] = 0;
391
392	/* Turn on PG_G on kernel page(s) */
393	pmap_set_pg();
394}
395
396/*
397 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
398 */
399void
400pmap_set_pg(void)
401{
402	pd_entry_t pdir;
403	pt_entry_t *pte;
404	vm_offset_t va, endva;
405	int i;
406
407	if (pgeflag == 0)
408		return;
409
410	i = KERNLOAD/NBPDR;
411	endva = KERNBASE + KERNend;
412
413	if (pseflag) {
414		va = KERNBASE + KERNLOAD;
415		while (va  < endva) {
416			pdir = kernel_pmap->pm_pdir[KPTDI+i];
417			pdir |= pgeflag;
418			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
419			invltlb();	/* Play it safe, invltlb() every time */
420			i++;
421			va += NBPDR;
422		}
423	} else {
424		va = (vm_offset_t)btext;
425		while (va < endva) {
426			pte = vtopte(va);
427			if (*pte)
428				*pte |= pgeflag;
429			invltlb();	/* Play it safe, invltlb() every time */
430			va += PAGE_SIZE;
431		}
432	}
433}
434
435#ifdef PAE
436static void *
437pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
438{
439	*flags = UMA_SLAB_PRIV;
440	return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
441}
442#endif
443
444/*
445 *	Initialize the pmap module.
446 *	Called by vm_init, to initialize any structures that the pmap
447 *	system needs to map virtual memory.
448 *	pmap_init has been enhanced to support in a fairly consistant
449 *	way, discontiguous physical memory.
450 */
451void
452pmap_init(void)
453{
454	int i;
455
456	/*
457	 * Allocate memory for random pmap data structures.  Includes the
458	 * pv_head_table.
459	 */
460
461	for(i = 0; i < vm_page_array_size; i++) {
462		vm_page_t m;
463
464		m = &vm_page_array[i];
465		TAILQ_INIT(&m->md.pv_list);
466		m->md.pv_list_count = 0;
467	}
468
469	/*
470	 * init the pv free list
471	 */
472	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
473	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
474	uma_prealloc(pvzone, MINPV);
475
476#ifdef PAE
477	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
478	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
479	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
480	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
481#endif
482
483	/*
484	 * Now it is safe to enable pv_table recording.
485	 */
486	pmap_initialized = TRUE;
487}
488
489/*
490 * Initialize the address space (zone) for the pv_entries.  Set a
491 * high water mark so that the system can recover from excessive
492 * numbers of pv entries.
493 */
494void
495pmap_init2()
496{
497	int shpgperproc = PMAP_SHPGPERPROC;
498
499	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
500	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
501	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
502	pv_entry_high_water = 9 * (pv_entry_max / 10);
503	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
504}
505
506
507/***************************************************
508 * Low level helper routines.....
509 ***************************************************/
510
511#if defined(PMAP_DIAGNOSTIC)
512
513/*
514 * This code checks for non-writeable/modified pages.
515 * This should be an invalid condition.
516 */
517static int
518pmap_nw_modified(pt_entry_t ptea)
519{
520	int pte;
521
522	pte = (int) ptea;
523
524	if ((pte & (PG_M|PG_RW)) == PG_M)
525		return 1;
526	else
527		return 0;
528}
529#endif
530
531
532/*
533 * this routine defines the region(s) of memory that should
534 * not be tested for the modified bit.
535 */
536static PMAP_INLINE int
537pmap_track_modified(vm_offset_t va)
538{
539	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
540		return 1;
541	else
542		return 0;
543}
544
545#ifdef I386_CPU
546/*
547 * i386 only has "invalidate everything" and no SMP to worry about.
548 */
549PMAP_INLINE void
550pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
551{
552
553	if (pmap == kernel_pmap || pmap->pm_active)
554		invltlb();
555}
556
557PMAP_INLINE void
558pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
559{
560
561	if (pmap == kernel_pmap || pmap->pm_active)
562		invltlb();
563}
564
565PMAP_INLINE void
566pmap_invalidate_all(pmap_t pmap)
567{
568
569	if (pmap == kernel_pmap || pmap->pm_active)
570		invltlb();
571}
572#else /* !I386_CPU */
573#ifdef SMP
574/*
575 * For SMP, these functions have to use the IPI mechanism for coherence.
576 */
577void
578pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
579{
580	u_int cpumask;
581	u_int other_cpus;
582
583	if (smp_started) {
584		if (!(read_eflags() & PSL_I))
585			panic("%s: interrupts disabled", __func__);
586		mtx_lock_spin(&smp_tlb_mtx);
587	} else
588		critical_enter();
589	/*
590	 * We need to disable interrupt preemption but MUST NOT have
591	 * interrupts disabled here.
592	 * XXX we may need to hold schedlock to get a coherent pm_active
593	 * XXX critical sections disable interrupts again
594	 */
595	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
596		invlpg(va);
597		smp_invlpg(va);
598	} else {
599		cpumask = PCPU_GET(cpumask);
600		other_cpus = PCPU_GET(other_cpus);
601		if (pmap->pm_active & cpumask)
602			invlpg(va);
603		if (pmap->pm_active & other_cpus)
604			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
605	}
606	if (smp_started)
607		mtx_unlock_spin(&smp_tlb_mtx);
608	else
609		critical_exit();
610}
611
612void
613pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
614{
615	u_int cpumask;
616	u_int other_cpus;
617	vm_offset_t addr;
618
619	if (smp_started) {
620		if (!(read_eflags() & PSL_I))
621			panic("%s: interrupts disabled", __func__);
622		mtx_lock_spin(&smp_tlb_mtx);
623	} else
624		critical_enter();
625	/*
626	 * We need to disable interrupt preemption but MUST NOT have
627	 * interrupts disabled here.
628	 * XXX we may need to hold schedlock to get a coherent pm_active
629	 * XXX critical sections disable interrupts again
630	 */
631	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
632		for (addr = sva; addr < eva; addr += PAGE_SIZE)
633			invlpg(addr);
634		smp_invlpg_range(sva, eva);
635	} else {
636		cpumask = PCPU_GET(cpumask);
637		other_cpus = PCPU_GET(other_cpus);
638		if (pmap->pm_active & cpumask)
639			for (addr = sva; addr < eva; addr += PAGE_SIZE)
640				invlpg(addr);
641		if (pmap->pm_active & other_cpus)
642			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
643			    sva, eva);
644	}
645	if (smp_started)
646		mtx_unlock_spin(&smp_tlb_mtx);
647	else
648		critical_exit();
649}
650
651void
652pmap_invalidate_all(pmap_t pmap)
653{
654	u_int cpumask;
655	u_int other_cpus;
656
657	if (smp_started) {
658		if (!(read_eflags() & PSL_I))
659			panic("%s: interrupts disabled", __func__);
660		mtx_lock_spin(&smp_tlb_mtx);
661	} else
662		critical_enter();
663	/*
664	 * We need to disable interrupt preemption but MUST NOT have
665	 * interrupts disabled here.
666	 * XXX we may need to hold schedlock to get a coherent pm_active
667	 * XXX critical sections disable interrupts again
668	 */
669	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
670		invltlb();
671		smp_invltlb();
672	} else {
673		cpumask = PCPU_GET(cpumask);
674		other_cpus = PCPU_GET(other_cpus);
675		if (pmap->pm_active & cpumask)
676			invltlb();
677		if (pmap->pm_active & other_cpus)
678			smp_masked_invltlb(pmap->pm_active & other_cpus);
679	}
680	if (smp_started)
681		mtx_unlock_spin(&smp_tlb_mtx);
682	else
683		critical_exit();
684}
685#else /* !SMP */
686/*
687 * Normal, non-SMP, 486+ invalidation functions.
688 * We inline these within pmap.c for speed.
689 */
690PMAP_INLINE void
691pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
692{
693
694	if (pmap == kernel_pmap || pmap->pm_active)
695		invlpg(va);
696}
697
698PMAP_INLINE void
699pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
700{
701	vm_offset_t addr;
702
703	if (pmap == kernel_pmap || pmap->pm_active)
704		for (addr = sva; addr < eva; addr += PAGE_SIZE)
705			invlpg(addr);
706}
707
708PMAP_INLINE void
709pmap_invalidate_all(pmap_t pmap)
710{
711
712	if (pmap == kernel_pmap || pmap->pm_active)
713		invltlb();
714}
715#endif /* !SMP */
716#endif /* !I386_CPU */
717
718/*
719 * Are we current address space or kernel?  N.B. We return FALSE when
720 * a pmap's page table is in use because a kernel thread is borrowing
721 * it.  The borrowed page table can change spontaneously, making any
722 * dependence on its continued use subject to a race condition.
723 */
724static __inline int
725pmap_is_current(pmap_t pmap)
726{
727
728	return (pmap == kernel_pmap ||
729		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
730	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
731}
732
733/*
734 * If the given pmap is not the current pmap, Giant must be held.
735 */
736pt_entry_t *
737pmap_pte(pmap_t pmap, vm_offset_t va)
738{
739	pd_entry_t newpf;
740	pd_entry_t *pde;
741
742	pde = pmap_pde(pmap, va);
743	if (*pde & PG_PS)
744		return (pde);
745	if (*pde != 0) {
746		/* are we current address space or kernel? */
747		if (pmap_is_current(pmap))
748			return (vtopte(va));
749		GIANT_REQUIRED;
750		newpf = *pde & PG_FRAME;
751		if ((*PMAP2 & PG_FRAME) != newpf) {
752			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
753			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
754		}
755		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
756	}
757	return (0);
758}
759
760static __inline void
761invlcaddr(void *caddr)
762{
763#ifdef I386_CPU
764	invltlb();
765#else
766	invlpg((u_int)caddr);
767#endif
768}
769
770/*
771 * Super fast pmap_pte routine best used when scanning
772 * the pv lists.  This eliminates many coarse-grained
773 * invltlb calls.  Note that many of the pv list
774 * scans are across different pmaps.  It is very wasteful
775 * to do an entire invltlb for checking a single mapping.
776 *
777 * If the given pmap is not the current pmap, vm_page_queue_mtx
778 * must be held and curthread pinned to a CPU.
779 */
780static pt_entry_t *
781pmap_pte_quick(pmap_t pmap, vm_offset_t va)
782{
783	pd_entry_t newpf;
784	pd_entry_t *pde;
785
786	pde = pmap_pde(pmap, va);
787	if (*pde & PG_PS)
788		return (pde);
789	if (*pde != 0) {
790		/* are we current address space or kernel? */
791		if (pmap_is_current(pmap))
792			return (vtopte(va));
793		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
794		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
795		newpf = *pde & PG_FRAME;
796		if ((*PMAP1 & PG_FRAME) != newpf) {
797			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
798#ifdef SMP
799			PMAP1cpu = PCPU_GET(cpuid);
800#endif
801			invlcaddr(PADDR1);
802			PMAP1changed++;
803		} else
804#ifdef SMP
805		if (PMAP1cpu != PCPU_GET(cpuid)) {
806			PMAP1cpu = PCPU_GET(cpuid);
807			invlcaddr(PADDR1);
808			PMAP1changedcpu++;
809		} else
810#endif
811			PMAP1unchanged++;
812		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
813	}
814	return (0);
815}
816
817/*
818 *	Routine:	pmap_extract
819 *	Function:
820 *		Extract the physical page address associated
821 *		with the given map/virtual_address pair.
822 */
823vm_paddr_t
824pmap_extract(pmap, va)
825	register pmap_t pmap;
826	vm_offset_t va;
827{
828	vm_paddr_t rtval;
829	pt_entry_t *pte;
830	pd_entry_t pde;
831
832	if (pmap == 0)
833		return 0;
834	PMAP_LOCK(pmap);
835	pde = pmap->pm_pdir[va >> PDRSHIFT];
836	if (pde != 0) {
837		if ((pde & PG_PS) != 0) {
838			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
839			PMAP_UNLOCK(pmap);
840			return rtval;
841		}
842		pte = pmap_pte(pmap, va);
843		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
844		PMAP_UNLOCK(pmap);
845		return rtval;
846	}
847	PMAP_UNLOCK(pmap);
848	return 0;
849
850}
851
852/*
853 *	Routine:	pmap_extract_and_hold
854 *	Function:
855 *		Atomically extract and hold the physical page
856 *		with the given pmap and virtual address pair
857 *		if that mapping permits the given protection.
858 */
859vm_page_t
860pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
861{
862	pd_entry_t pde;
863	pt_entry_t pte;
864	vm_page_t m;
865
866	m = NULL;
867	if (pmap == NULL)
868		return (m);
869	vm_page_lock_queues();
870	PMAP_LOCK(pmap);
871	pde = *pmap_pde(pmap, va);
872	if (pde != 0) {
873		if (pde & PG_PS) {
874			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
875				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
876				    (va & PDRMASK));
877				vm_page_hold(m);
878			}
879		} else {
880			sched_pin();
881			pte = *pmap_pte_quick(pmap, va);
882			if (pte != 0 &&
883			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
884				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
885				vm_page_hold(m);
886			}
887			sched_unpin();
888		}
889	}
890	vm_page_unlock_queues();
891	PMAP_UNLOCK(pmap);
892	return (m);
893}
894
895/***************************************************
896 * Low level mapping routines.....
897 ***************************************************/
898
899/*
900 * Add a wired page to the kva.
901 * Note: not SMP coherent.
902 */
903PMAP_INLINE void
904pmap_kenter(vm_offset_t va, vm_paddr_t pa)
905{
906	pt_entry_t *pte;
907
908	pte = vtopte(va);
909	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
910}
911
912/*
913 * Remove a page from the kernel pagetables.
914 * Note: not SMP coherent.
915 */
916PMAP_INLINE void
917pmap_kremove(vm_offset_t va)
918{
919	pt_entry_t *pte;
920
921	pte = vtopte(va);
922	pte_clear(pte);
923}
924
925/*
926 *	Used to map a range of physical addresses into kernel
927 *	virtual address space.
928 *
929 *	The value passed in '*virt' is a suggested virtual address for
930 *	the mapping. Architectures which can support a direct-mapped
931 *	physical to virtual region can return the appropriate address
932 *	within that region, leaving '*virt' unchanged. Other
933 *	architectures should map the pages starting at '*virt' and
934 *	update '*virt' with the first usable address after the mapped
935 *	region.
936 */
937vm_offset_t
938pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
939{
940	vm_offset_t va, sva;
941
942	va = sva = *virt;
943	while (start < end) {
944		pmap_kenter(va, start);
945		va += PAGE_SIZE;
946		start += PAGE_SIZE;
947	}
948	pmap_invalidate_range(kernel_pmap, sva, va);
949	*virt = va;
950	return (sva);
951}
952
953
954/*
955 * Add a list of wired pages to the kva
956 * this routine is only used for temporary
957 * kernel mappings that do not need to have
958 * page modification or references recorded.
959 * Note that old mappings are simply written
960 * over.  The page *must* be wired.
961 * Note: SMP coherent.  Uses a ranged shootdown IPI.
962 */
963void
964pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
965{
966	vm_offset_t va;
967
968	va = sva;
969	while (count-- > 0) {
970		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
971		va += PAGE_SIZE;
972		m++;
973	}
974	pmap_invalidate_range(kernel_pmap, sva, va);
975}
976
977/*
978 * This routine tears out page mappings from the
979 * kernel -- it is meant only for temporary mappings.
980 * Note: SMP coherent.  Uses a ranged shootdown IPI.
981 */
982void
983pmap_qremove(vm_offset_t sva, int count)
984{
985	vm_offset_t va;
986
987	va = sva;
988	while (count-- > 0) {
989		pmap_kremove(va);
990		va += PAGE_SIZE;
991	}
992	pmap_invalidate_range(kernel_pmap, sva, va);
993}
994
995/***************************************************
996 * Page table page management routines.....
997 ***************************************************/
998
999/*
1000 * This routine unholds page table pages, and if the hold count
1001 * drops to zero, then it decrements the wire count.
1002 */
1003static int
1004_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1005{
1006
1007	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1008		vm_page_lock_queues();
1009
1010	if (m->hold_count == 0) {
1011		vm_offset_t pteva;
1012		/*
1013		 * unmap the page table page
1014		 */
1015		pmap->pm_pdir[m->pindex] = 0;
1016		--pmap->pm_stats.resident_count;
1017		/*
1018		 * We never unwire a kernel page table page, making a
1019		 * check for the kernel_pmap unnecessary.
1020		 */
1021		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)) {
1022			/*
1023			 * Do an invltlb to make the invalidated mapping
1024			 * take effect immediately.
1025			 */
1026			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1027			pmap_invalidate_page(pmap, pteva);
1028		}
1029
1030		/*
1031		 * If the page is finally unwired, simply free it.
1032		 */
1033		--m->wire_count;
1034		if (m->wire_count == 0) {
1035			vm_page_busy(m);
1036			vm_page_free_zero(m);
1037			atomic_subtract_int(&cnt.v_wire_count, 1);
1038		}
1039		return 1;
1040	}
1041	return 0;
1042}
1043
1044static PMAP_INLINE int
1045pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1046{
1047	vm_page_unhold(m);
1048	if (m->hold_count == 0)
1049		return _pmap_unwire_pte_hold(pmap, m);
1050	else
1051		return 0;
1052}
1053
1054/*
1055 * After removing a page table entry, this routine is used to
1056 * conditionally free the page, and manage the hold/wire counts.
1057 */
1058static int
1059pmap_unuse_pt(pmap_t pmap, vm_offset_t va)
1060{
1061	pd_entry_t ptepde;
1062	vm_page_t mpte;
1063
1064	if (va >= VM_MAXUSER_ADDRESS)
1065		return 0;
1066	ptepde = *pmap_pde(pmap, va);
1067	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1068	return pmap_unwire_pte_hold(pmap, mpte);
1069}
1070
1071void
1072pmap_pinit0(pmap)
1073	struct pmap *pmap;
1074{
1075
1076	PMAP_LOCK_INIT(pmap);
1077	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1078#ifdef PAE
1079	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1080#endif
1081	pmap->pm_active = 0;
1082	PCPU_SET(curpmap, pmap);
1083	TAILQ_INIT(&pmap->pm_pvlist);
1084	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1085	mtx_lock_spin(&allpmaps_lock);
1086	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1087	mtx_unlock_spin(&allpmaps_lock);
1088}
1089
1090/*
1091 * Initialize a preallocated and zeroed pmap structure,
1092 * such as one in a vmspace structure.
1093 */
1094void
1095pmap_pinit(pmap)
1096	register struct pmap *pmap;
1097{
1098	vm_page_t m, ptdpg[NPGPTD];
1099	vm_paddr_t pa;
1100	static int color;
1101	int i;
1102
1103	PMAP_LOCK_INIT(pmap);
1104
1105	/*
1106	 * No need to allocate page table space yet but we do need a valid
1107	 * page directory table.
1108	 */
1109	if (pmap->pm_pdir == NULL) {
1110		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1111		    NBPTD);
1112#ifdef PAE
1113		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1114		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1115		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1116		    ("pmap_pinit: pdpt misaligned"));
1117		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1118		    ("pmap_pinit: pdpt above 4g"));
1119#endif
1120	}
1121
1122	/*
1123	 * allocate the page directory page(s)
1124	 */
1125	for (i = 0; i < NPGPTD;) {
1126		m = vm_page_alloc(NULL, color++,
1127		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1128		    VM_ALLOC_ZERO);
1129		if (m == NULL)
1130			VM_WAIT;
1131		else {
1132			ptdpg[i++] = m;
1133		}
1134	}
1135
1136	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1137
1138	for (i = 0; i < NPGPTD; i++) {
1139		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1140			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1141	}
1142
1143	mtx_lock_spin(&allpmaps_lock);
1144	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1145	mtx_unlock_spin(&allpmaps_lock);
1146	/* Wire in kernel global address entries. */
1147	/* XXX copies current process, does not fill in MPPTDI */
1148	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1149#ifdef SMP
1150	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1151#endif
1152
1153	/* install self-referential address mapping entry(s) */
1154	for (i = 0; i < NPGPTD; i++) {
1155		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1156		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1157#ifdef PAE
1158		pmap->pm_pdpt[i] = pa | PG_V;
1159#endif
1160	}
1161
1162	pmap->pm_active = 0;
1163	TAILQ_INIT(&pmap->pm_pvlist);
1164	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1165}
1166
1167/*
1168 * this routine is called if the page table page is not
1169 * mapped correctly.
1170 */
1171static vm_page_t
1172_pmap_allocpte(pmap, ptepindex)
1173	pmap_t	pmap;
1174	unsigned ptepindex;
1175{
1176	vm_paddr_t ptepa;
1177	vm_page_t m;
1178
1179	/*
1180	 * Allocate a page table page.
1181	 */
1182	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1183	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1184		VM_WAIT;
1185		/*
1186		 * Indicate the need to retry.  While waiting, the page table
1187		 * page may have been allocated.
1188		 */
1189		return (NULL);
1190	}
1191	if ((m->flags & PG_ZERO) == 0)
1192		pmap_zero_page(m);
1193
1194	KASSERT(m->queue == PQ_NONE,
1195		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1196
1197	/*
1198	 * Increment the hold count for the page table page
1199	 * (denoting a new mapping.)
1200	 */
1201	m->hold_count++;
1202
1203	/*
1204	 * Map the pagetable page into the process address space, if
1205	 * it isn't already there.
1206	 */
1207
1208	pmap->pm_stats.resident_count++;
1209
1210	ptepa = VM_PAGE_TO_PHYS(m);
1211	pmap->pm_pdir[ptepindex] =
1212		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1213
1214	return m;
1215}
1216
1217static vm_page_t
1218pmap_allocpte(pmap_t pmap, vm_offset_t va)
1219{
1220	unsigned ptepindex;
1221	pd_entry_t ptepa;
1222	vm_page_t m;
1223
1224	/*
1225	 * Calculate pagetable page index
1226	 */
1227	ptepindex = va >> PDRSHIFT;
1228retry:
1229	/*
1230	 * Get the page directory entry
1231	 */
1232	ptepa = pmap->pm_pdir[ptepindex];
1233
1234	/*
1235	 * This supports switching from a 4MB page to a
1236	 * normal 4K page.
1237	 */
1238	if (ptepa & PG_PS) {
1239		pmap->pm_pdir[ptepindex] = 0;
1240		ptepa = 0;
1241		pmap_invalidate_all(kernel_pmap);
1242	}
1243
1244	/*
1245	 * If the page table page is mapped, we just increment the
1246	 * hold count, and activate it.
1247	 */
1248	if (ptepa) {
1249		m = PHYS_TO_VM_PAGE(ptepa);
1250		m->hold_count++;
1251	} else {
1252		/*
1253		 * Here if the pte page isn't mapped, or if it has
1254		 * been deallocated.
1255		 */
1256		m = _pmap_allocpte(pmap, ptepindex);
1257		if (m == NULL)
1258			goto retry;
1259	}
1260	return (m);
1261}
1262
1263
1264/***************************************************
1265* Pmap allocation/deallocation routines.
1266 ***************************************************/
1267
1268#ifdef SMP
1269/*
1270 * Deal with a SMP shootdown of other users of the pmap that we are
1271 * trying to dispose of.  This can be a bit hairy.
1272 */
1273static u_int *lazymask;
1274static u_int lazyptd;
1275static volatile u_int lazywait;
1276
1277void pmap_lazyfix_action(void);
1278
1279void
1280pmap_lazyfix_action(void)
1281{
1282	u_int mymask = PCPU_GET(cpumask);
1283
1284	if (rcr3() == lazyptd)
1285		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1286	atomic_clear_int(lazymask, mymask);
1287	atomic_store_rel_int(&lazywait, 1);
1288}
1289
1290static void
1291pmap_lazyfix_self(u_int mymask)
1292{
1293
1294	if (rcr3() == lazyptd)
1295		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1296	atomic_clear_int(lazymask, mymask);
1297}
1298
1299
1300static void
1301pmap_lazyfix(pmap_t pmap)
1302{
1303	u_int mymask = PCPU_GET(cpumask);
1304	u_int mask;
1305	register u_int spins;
1306
1307	while ((mask = pmap->pm_active) != 0) {
1308		spins = 50000000;
1309		mask = mask & -mask;	/* Find least significant set bit */
1310		mtx_lock_spin(&lazypmap_lock);
1311#ifdef PAE
1312		lazyptd = vtophys(pmap->pm_pdpt);
1313#else
1314		lazyptd = vtophys(pmap->pm_pdir);
1315#endif
1316		if (mask == mymask) {
1317			lazymask = &pmap->pm_active;
1318			pmap_lazyfix_self(mymask);
1319		} else {
1320			atomic_store_rel_int((u_int *)&lazymask,
1321			    (u_int)&pmap->pm_active);
1322			atomic_store_rel_int(&lazywait, 0);
1323			ipi_selected(mask, IPI_LAZYPMAP);
1324			while (lazywait == 0) {
1325				ia32_pause();
1326				if (--spins == 0)
1327					break;
1328			}
1329		}
1330		mtx_unlock_spin(&lazypmap_lock);
1331		if (spins == 0)
1332			printf("pmap_lazyfix: spun for 50000000\n");
1333	}
1334}
1335
1336#else	/* SMP */
1337
1338/*
1339 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1340 * unlikely to have to even execute this code, including the fact
1341 * that the cleanup is deferred until the parent does a wait(2), which
1342 * means that another userland process has run.
1343 */
1344static void
1345pmap_lazyfix(pmap_t pmap)
1346{
1347	u_int cr3;
1348
1349	cr3 = vtophys(pmap->pm_pdir);
1350	if (cr3 == rcr3()) {
1351		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1352		pmap->pm_active &= ~(PCPU_GET(cpumask));
1353	}
1354}
1355#endif	/* SMP */
1356
1357/*
1358 * Release any resources held by the given physical map.
1359 * Called when a pmap initialized by pmap_pinit is being released.
1360 * Should only be called if the map contains no valid mappings.
1361 */
1362void
1363pmap_release(pmap_t pmap)
1364{
1365	vm_page_t m, ptdpg[NPGPTD];
1366	int i;
1367
1368	KASSERT(pmap->pm_stats.resident_count == 0,
1369	    ("pmap_release: pmap resident count %ld != 0",
1370	    pmap->pm_stats.resident_count));
1371
1372	pmap_lazyfix(pmap);
1373	mtx_lock_spin(&allpmaps_lock);
1374	LIST_REMOVE(pmap, pm_list);
1375	mtx_unlock_spin(&allpmaps_lock);
1376
1377	for (i = 0; i < NPGPTD; i++)
1378		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1379
1380	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1381	    sizeof(*pmap->pm_pdir));
1382#ifdef SMP
1383	pmap->pm_pdir[MPPTDI] = 0;
1384#endif
1385
1386	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1387
1388	vm_page_lock_queues();
1389	for (i = 0; i < NPGPTD; i++) {
1390		m = ptdpg[i];
1391#ifdef PAE
1392		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1393		    ("pmap_release: got wrong ptd page"));
1394#endif
1395		m->wire_count--;
1396		atomic_subtract_int(&cnt.v_wire_count, 1);
1397		vm_page_free_zero(m);
1398	}
1399	vm_page_unlock_queues();
1400	PMAP_LOCK_DESTROY(pmap);
1401}
1402
1403static int
1404kvm_size(SYSCTL_HANDLER_ARGS)
1405{
1406	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1407
1408	return sysctl_handle_long(oidp, &ksize, 0, req);
1409}
1410SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1411    0, 0, kvm_size, "IU", "Size of KVM");
1412
1413static int
1414kvm_free(SYSCTL_HANDLER_ARGS)
1415{
1416	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1417
1418	return sysctl_handle_long(oidp, &kfree, 0, req);
1419}
1420SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1421    0, 0, kvm_free, "IU", "Amount of KVM free");
1422
1423/*
1424 * grow the number of kernel page table entries, if needed
1425 */
1426void
1427pmap_growkernel(vm_offset_t addr)
1428{
1429	struct pmap *pmap;
1430	vm_paddr_t ptppaddr;
1431	vm_page_t nkpg;
1432	pd_entry_t newpdir;
1433	pt_entry_t *pde;
1434
1435	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1436	if (kernel_vm_end == 0) {
1437		kernel_vm_end = KERNBASE;
1438		nkpt = 0;
1439		while (pdir_pde(PTD, kernel_vm_end)) {
1440			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1441			nkpt++;
1442		}
1443	}
1444	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1445	while (kernel_vm_end < addr) {
1446		if (pdir_pde(PTD, kernel_vm_end)) {
1447			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1448			continue;
1449		}
1450
1451		/*
1452		 * This index is bogus, but out of the way
1453		 */
1454		nkpg = vm_page_alloc(NULL, nkpt,
1455		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1456		if (!nkpg)
1457			panic("pmap_growkernel: no memory to grow kernel");
1458
1459		nkpt++;
1460
1461		pmap_zero_page(nkpg);
1462		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1463		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1464		pdir_pde(PTD, kernel_vm_end) = newpdir;
1465
1466		mtx_lock_spin(&allpmaps_lock);
1467		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1468			pde = pmap_pde(pmap, kernel_vm_end);
1469			pde_store(pde, newpdir);
1470		}
1471		mtx_unlock_spin(&allpmaps_lock);
1472		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1473	}
1474}
1475
1476
1477/***************************************************
1478 * page management routines.
1479 ***************************************************/
1480
1481/*
1482 * free the pv_entry back to the free list
1483 */
1484static PMAP_INLINE void
1485free_pv_entry(pv_entry_t pv)
1486{
1487	pv_entry_count--;
1488	uma_zfree(pvzone, pv);
1489}
1490
1491/*
1492 * get a new pv_entry, allocating a block from the system
1493 * when needed.
1494 * the memory allocation is performed bypassing the malloc code
1495 * because of the possibility of allocations at interrupt time.
1496 */
1497static pv_entry_t
1498get_pv_entry(void)
1499{
1500	pv_entry_count++;
1501	if (pv_entry_high_water &&
1502		(pv_entry_count > pv_entry_high_water) &&
1503		(pmap_pagedaemon_waken == 0)) {
1504		pmap_pagedaemon_waken = 1;
1505		wakeup (&vm_pages_needed);
1506	}
1507	return uma_zalloc(pvzone, M_NOWAIT);
1508}
1509
1510
1511static int
1512pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1513{
1514	pv_entry_t pv;
1515	int rtval;
1516
1517	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1518	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1519	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1520		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1521			if (pmap == pv->pv_pmap && va == pv->pv_va)
1522				break;
1523		}
1524	} else {
1525		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1526			if (va == pv->pv_va)
1527				break;
1528		}
1529	}
1530
1531	rtval = 0;
1532	if (pv) {
1533		rtval = pmap_unuse_pt(pmap, va);
1534		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1535		m->md.pv_list_count--;
1536		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1537			vm_page_flag_clear(m, PG_WRITEABLE);
1538
1539		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1540		free_pv_entry(pv);
1541	}
1542
1543	return rtval;
1544}
1545
1546/*
1547 * Create a pv entry for page at pa for
1548 * (pmap, va).
1549 */
1550static void
1551pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1552{
1553
1554	pv_entry_t pv;
1555
1556	pv = get_pv_entry();
1557	pv->pv_va = va;
1558	pv->pv_pmap = pmap;
1559
1560	vm_page_lock_queues();
1561	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1562	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1563	m->md.pv_list_count++;
1564
1565	vm_page_unlock_queues();
1566}
1567
1568/*
1569 * pmap_remove_pte: do the things to unmap a page in a process
1570 */
1571static int
1572pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1573{
1574	pt_entry_t oldpte;
1575	vm_page_t m;
1576
1577	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1578	oldpte = pte_load_clear(ptq);
1579	if (oldpte & PG_W)
1580		pmap->pm_stats.wired_count -= 1;
1581	/*
1582	 * Machines that don't support invlpg, also don't support
1583	 * PG_G.
1584	 */
1585	if (oldpte & PG_G)
1586		pmap_invalidate_page(kernel_pmap, va);
1587	pmap->pm_stats.resident_count -= 1;
1588	if (oldpte & PG_MANAGED) {
1589		m = PHYS_TO_VM_PAGE(oldpte);
1590		if (oldpte & PG_M) {
1591#if defined(PMAP_DIAGNOSTIC)
1592			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1593				printf(
1594	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1595				    va, oldpte);
1596			}
1597#endif
1598			if (pmap_track_modified(va))
1599				vm_page_dirty(m);
1600		}
1601		if (oldpte & PG_A)
1602			vm_page_flag_set(m, PG_REFERENCED);
1603		return pmap_remove_entry(pmap, m, va);
1604	} else {
1605		return pmap_unuse_pt(pmap, va);
1606	}
1607}
1608
1609/*
1610 * Remove a single page from a process address space
1611 */
1612static void
1613pmap_remove_page(pmap_t pmap, vm_offset_t va)
1614{
1615	pt_entry_t *pte;
1616
1617	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1618	if ((pte = pmap_pte(pmap, va)) == NULL || *pte == 0)
1619		return;
1620	pmap_remove_pte(pmap, pte, va);
1621	pmap_invalidate_page(pmap, va);
1622}
1623
1624/*
1625 *	Remove the given range of addresses from the specified map.
1626 *
1627 *	It is assumed that the start and end are properly
1628 *	rounded to the page size.
1629 */
1630void
1631pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1632{
1633	vm_offset_t pdnxt;
1634	pd_entry_t ptpaddr;
1635	pt_entry_t *pte;
1636	int anyvalid;
1637
1638	if (pmap == NULL)
1639		return;
1640
1641	/*
1642	 * Perform an unsynchronized read.  This is, however, safe.
1643	 */
1644	if (pmap->pm_stats.resident_count == 0)
1645		return;
1646	PMAP_LOCK(pmap);
1647
1648	/*
1649	 * special handling of removing one page.  a very
1650	 * common operation and easy to short circuit some
1651	 * code.
1652	 */
1653	if ((sva + PAGE_SIZE == eva) &&
1654	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1655		pmap_remove_page(pmap, sva);
1656		PMAP_UNLOCK(pmap);
1657		return;
1658	}
1659
1660	anyvalid = 0;
1661
1662	for (; sva < eva; sva = pdnxt) {
1663		unsigned pdirindex;
1664
1665		/*
1666		 * Calculate index for next page table.
1667		 */
1668		pdnxt = (sva + NBPDR) & ~PDRMASK;
1669		if (pmap->pm_stats.resident_count == 0)
1670			break;
1671
1672		pdirindex = sva >> PDRSHIFT;
1673		ptpaddr = pmap->pm_pdir[pdirindex];
1674
1675		/*
1676		 * Weed out invalid mappings. Note: we assume that the page
1677		 * directory table is always allocated, and in kernel virtual.
1678		 */
1679		if (ptpaddr == 0)
1680			continue;
1681
1682		/*
1683		 * Check for large page.
1684		 */
1685		if ((ptpaddr & PG_PS) != 0) {
1686			pmap->pm_pdir[pdirindex] = 0;
1687			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1688			anyvalid = 1;
1689			continue;
1690		}
1691
1692		/*
1693		 * Limit our scan to either the end of the va represented
1694		 * by the current page table page, or to the end of the
1695		 * range being removed.
1696		 */
1697		if (pdnxt > eva)
1698			pdnxt = eva;
1699
1700		for (; sva != pdnxt; sva += PAGE_SIZE) {
1701			if ((pte = pmap_pte(pmap, sva)) == NULL ||
1702			    *pte == 0)
1703				continue;
1704			anyvalid = 1;
1705			if (pmap_remove_pte(pmap, pte, sva))
1706				break;
1707		}
1708	}
1709
1710	if (anyvalid)
1711		pmap_invalidate_all(pmap);
1712	PMAP_UNLOCK(pmap);
1713}
1714
1715/*
1716 *	Routine:	pmap_remove_all
1717 *	Function:
1718 *		Removes this physical page from
1719 *		all physical maps in which it resides.
1720 *		Reflects back modify bits to the pager.
1721 *
1722 *	Notes:
1723 *		Original versions of this routine were very
1724 *		inefficient because they iteratively called
1725 *		pmap_remove (slow...)
1726 */
1727
1728void
1729pmap_remove_all(vm_page_t m)
1730{
1731	register pv_entry_t pv;
1732	pt_entry_t *pte, tpte;
1733
1734#if defined(PMAP_DIAGNOSTIC)
1735	/*
1736	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1737	 */
1738	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1739		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1740		    VM_PAGE_TO_PHYS(m));
1741	}
1742#endif
1743	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1744	sched_pin();
1745	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1746		PMAP_LOCK(pv->pv_pmap);
1747		pv->pv_pmap->pm_stats.resident_count--;
1748		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1749		tpte = pte_load_clear(pte);
1750		if (tpte & PG_W)
1751			pv->pv_pmap->pm_stats.wired_count--;
1752		if (tpte & PG_A)
1753			vm_page_flag_set(m, PG_REFERENCED);
1754
1755		/*
1756		 * Update the vm_page_t clean and reference bits.
1757		 */
1758		if (tpte & PG_M) {
1759#if defined(PMAP_DIAGNOSTIC)
1760			if (pmap_nw_modified((pt_entry_t) tpte)) {
1761				printf(
1762	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1763				    pv->pv_va, tpte);
1764			}
1765#endif
1766			if (pmap_track_modified(pv->pv_va))
1767				vm_page_dirty(m);
1768		}
1769		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1770		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1771		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1772		m->md.pv_list_count--;
1773		pmap_unuse_pt(pv->pv_pmap, pv->pv_va);
1774		PMAP_UNLOCK(pv->pv_pmap);
1775		free_pv_entry(pv);
1776	}
1777	vm_page_flag_clear(m, PG_WRITEABLE);
1778	sched_unpin();
1779}
1780
1781/*
1782 *	Set the physical protection on the
1783 *	specified range of this map as requested.
1784 */
1785void
1786pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1787{
1788	vm_offset_t pdnxt;
1789	pd_entry_t ptpaddr;
1790	int anychanged;
1791
1792	if (pmap == NULL)
1793		return;
1794
1795	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1796		pmap_remove(pmap, sva, eva);
1797		return;
1798	}
1799
1800	if (prot & VM_PROT_WRITE)
1801		return;
1802
1803	anychanged = 0;
1804
1805	PMAP_LOCK(pmap);
1806	for (; sva < eva; sva = pdnxt) {
1807		unsigned pdirindex;
1808
1809		pdnxt = (sva + NBPDR) & ~PDRMASK;
1810
1811		pdirindex = sva >> PDRSHIFT;
1812		ptpaddr = pmap->pm_pdir[pdirindex];
1813
1814		/*
1815		 * Weed out invalid mappings. Note: we assume that the page
1816		 * directory table is always allocated, and in kernel virtual.
1817		 */
1818		if (ptpaddr == 0)
1819			continue;
1820
1821		/*
1822		 * Check for large page.
1823		 */
1824		if ((ptpaddr & PG_PS) != 0) {
1825			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1826			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1827			anychanged = 1;
1828			continue;
1829		}
1830
1831		if (pdnxt > eva)
1832			pdnxt = eva;
1833
1834		for (; sva != pdnxt; sva += PAGE_SIZE) {
1835			pt_entry_t pbits;
1836			pt_entry_t *pte;
1837			vm_page_t m;
1838
1839			if ((pte = pmap_pte(pmap, sva)) == NULL)
1840				continue;
1841			pbits = *pte;
1842			if (pbits & PG_MANAGED) {
1843				m = NULL;
1844				if (pbits & PG_A) {
1845					m = PHYS_TO_VM_PAGE(pbits);
1846					vm_page_flag_set(m, PG_REFERENCED);
1847					pbits &= ~PG_A;
1848				}
1849				if ((pbits & PG_M) != 0 &&
1850				    pmap_track_modified(sva)) {
1851					if (m == NULL)
1852						m = PHYS_TO_VM_PAGE(pbits);
1853					vm_page_dirty(m);
1854					pbits &= ~PG_M;
1855				}
1856			}
1857
1858			pbits &= ~PG_RW;
1859
1860			if (pbits != *pte) {
1861				pte_store(pte, pbits);
1862				anychanged = 1;
1863			}
1864		}
1865	}
1866	if (anychanged)
1867		pmap_invalidate_all(pmap);
1868	PMAP_UNLOCK(pmap);
1869}
1870
1871/*
1872 *	Insert the given physical page (p) at
1873 *	the specified virtual address (v) in the
1874 *	target physical map with the protection requested.
1875 *
1876 *	If specified, the page will be wired down, meaning
1877 *	that the related pte can not be reclaimed.
1878 *
1879 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1880 *	or lose information.  That is, this routine must actually
1881 *	insert this page into the given map NOW.
1882 */
1883void
1884pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1885	   boolean_t wired)
1886{
1887	vm_paddr_t pa;
1888	register pt_entry_t *pte;
1889	vm_paddr_t opa;
1890	pt_entry_t origpte, newpte;
1891	vm_page_t mpte;
1892
1893	if (pmap == NULL)
1894		return;
1895
1896	va &= PG_FRAME;
1897#ifdef PMAP_DIAGNOSTIC
1898	if (va > VM_MAX_KERNEL_ADDRESS)
1899		panic("pmap_enter: toobig");
1900	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1901		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1902#endif
1903
1904	mpte = NULL;
1905	/*
1906	 * In the case that a page table page is not
1907	 * resident, we are creating it here.
1908	 */
1909	if (va < VM_MAXUSER_ADDRESS) {
1910		mpte = pmap_allocpte(pmap, va);
1911	}
1912#if 0 && defined(PMAP_DIAGNOSTIC)
1913	else {
1914		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1915		origpte = *pdeaddr;
1916		if ((origpte & PG_V) == 0) {
1917			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1918				pmap->pm_pdir[PTDPTDI], origpte, va);
1919		}
1920	}
1921#endif
1922
1923	pte = pmap_pte(pmap, va);
1924
1925	/*
1926	 * Page Directory table entry not valid, we need a new PT page
1927	 */
1928	if (pte == NULL) {
1929		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1930			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1931	}
1932
1933	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1934	origpte = *pte;
1935	opa = origpte & PG_FRAME;
1936
1937	if (origpte & PG_PS) {
1938		/*
1939		 * Yes, I know this will truncate upper address bits for PAE,
1940		 * but I'm actually more interested in the lower bits
1941		 */
1942		printf("pmap_enter: va %p, pte %p, origpte %p\n",
1943		    (void *)va, (void *)pte, (void *)(uintptr_t)origpte);
1944		panic("pmap_enter: attempted pmap_enter on 4MB page");
1945	}
1946
1947	/*
1948	 * Mapping has not changed, must be protection or wiring change.
1949	 */
1950	if (origpte && (opa == pa)) {
1951		/*
1952		 * Wiring change, just update stats. We don't worry about
1953		 * wiring PT pages as they remain resident as long as there
1954		 * are valid mappings in them. Hence, if a user page is wired,
1955		 * the PT page will be also.
1956		 */
1957		if (wired && ((origpte & PG_W) == 0))
1958			pmap->pm_stats.wired_count++;
1959		else if (!wired && (origpte & PG_W))
1960			pmap->pm_stats.wired_count--;
1961
1962#if defined(PMAP_DIAGNOSTIC)
1963		if (pmap_nw_modified((pt_entry_t) origpte)) {
1964			printf(
1965	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1966			    va, origpte);
1967		}
1968#endif
1969
1970		/*
1971		 * Remove extra pte reference
1972		 */
1973		if (mpte)
1974			mpte->hold_count--;
1975
1976		/*
1977		 * We might be turning off write access to the page,
1978		 * so we go ahead and sense modify status.
1979		 */
1980		if (origpte & PG_MANAGED) {
1981			if ((origpte & PG_M) && pmap_track_modified(va)) {
1982				vm_page_t om;
1983				om = PHYS_TO_VM_PAGE(opa);
1984				vm_page_dirty(om);
1985			}
1986			pa |= PG_MANAGED;
1987		}
1988		goto validate;
1989	}
1990	/*
1991	 * Mapping has changed, invalidate old range and fall through to
1992	 * handle validating new mapping.
1993	 */
1994	if (opa) {
1995		int err;
1996		vm_page_lock_queues();
1997		PMAP_LOCK(pmap);
1998		err = pmap_remove_pte(pmap, pte, va);
1999		PMAP_UNLOCK(pmap);
2000		vm_page_unlock_queues();
2001		if (err)
2002			panic("pmap_enter: pte vanished, va: 0x%x", va);
2003	}
2004
2005	/*
2006	 * Enter on the PV list if part of our managed memory. Note that we
2007	 * raise IPL while manipulating pv_table since pmap_enter can be
2008	 * called at interrupt time.
2009	 */
2010	if (pmap_initialized &&
2011	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2012		pmap_insert_entry(pmap, va, m);
2013		pa |= PG_MANAGED;
2014	}
2015
2016	/*
2017	 * Increment counters
2018	 */
2019	pmap->pm_stats.resident_count++;
2020	if (wired)
2021		pmap->pm_stats.wired_count++;
2022
2023validate:
2024	/*
2025	 * Now validate mapping with desired protection/wiring.
2026	 */
2027	newpte = (pt_entry_t)(pa | PG_V);
2028	if ((prot & VM_PROT_WRITE) != 0)
2029		newpte |= PG_RW;
2030	if (wired)
2031		newpte |= PG_W;
2032	if (va < VM_MAXUSER_ADDRESS)
2033		newpte |= PG_U;
2034	if (pmap == kernel_pmap)
2035		newpte |= pgeflag;
2036
2037	/*
2038	 * if the mapping or permission bits are different, we need
2039	 * to update the pte.
2040	 */
2041	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2042		pte_store(pte, newpte | PG_A);
2043		/*if (origpte)*/ {
2044			pmap_invalidate_page(pmap, va);
2045		}
2046	}
2047}
2048
2049/*
2050 * this code makes some *MAJOR* assumptions:
2051 * 1. Current pmap & pmap exists.
2052 * 2. Not wired.
2053 * 3. Read access.
2054 * 4. No page table pages.
2055 * 5. Tlbflush is deferred to calling procedure.
2056 * 6. Page IS managed.
2057 * but is *MUCH* faster than pmap_enter...
2058 */
2059
2060vm_page_t
2061pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2062{
2063	pt_entry_t *pte;
2064	vm_paddr_t pa;
2065
2066	/*
2067	 * In the case that a page table page is not
2068	 * resident, we are creating it here.
2069	 */
2070	if (va < VM_MAXUSER_ADDRESS) {
2071		unsigned ptepindex;
2072		pd_entry_t ptepa;
2073
2074		/*
2075		 * Calculate pagetable page index
2076		 */
2077		ptepindex = va >> PDRSHIFT;
2078		if (mpte && (mpte->pindex == ptepindex)) {
2079			mpte->hold_count++;
2080		} else {
2081retry:
2082			/*
2083			 * Get the page directory entry
2084			 */
2085			ptepa = pmap->pm_pdir[ptepindex];
2086
2087			/*
2088			 * If the page table page is mapped, we just increment
2089			 * the hold count, and activate it.
2090			 */
2091			if (ptepa) {
2092				if (ptepa & PG_PS)
2093					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2094				mpte = PHYS_TO_VM_PAGE(ptepa);
2095				mpte->hold_count++;
2096			} else {
2097				mpte = _pmap_allocpte(pmap, ptepindex);
2098				if (mpte == NULL)
2099					goto retry;
2100			}
2101		}
2102	} else {
2103		mpte = NULL;
2104	}
2105
2106	/*
2107	 * This call to vtopte makes the assumption that we are
2108	 * entering the page into the current pmap.  In order to support
2109	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2110	 * But that isn't as quick as vtopte.
2111	 */
2112	pte = vtopte(va);
2113	if (*pte) {
2114		if (mpte != NULL) {
2115			vm_page_lock_queues();
2116			pmap_unwire_pte_hold(pmap, mpte);
2117			vm_page_unlock_queues();
2118		}
2119		return 0;
2120	}
2121
2122	/*
2123	 * Enter on the PV list if part of our managed memory. Note that we
2124	 * raise IPL while manipulating pv_table since pmap_enter can be
2125	 * called at interrupt time.
2126	 */
2127	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2128		pmap_insert_entry(pmap, va, m);
2129
2130	/*
2131	 * Increment counters
2132	 */
2133	pmap->pm_stats.resident_count++;
2134
2135	pa = VM_PAGE_TO_PHYS(m);
2136
2137	/*
2138	 * Now validate mapping with RO protection
2139	 */
2140	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2141		pte_store(pte, pa | PG_V | PG_U);
2142	else
2143		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2144
2145	return mpte;
2146}
2147
2148/*
2149 * Make a temporary mapping for a physical address.  This is only intended
2150 * to be used for panic dumps.
2151 */
2152void *
2153pmap_kenter_temporary(vm_paddr_t pa, int i)
2154{
2155	vm_offset_t va;
2156
2157	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2158	pmap_kenter(va, pa);
2159#ifndef I386_CPU
2160	invlpg(va);
2161#else
2162	invltlb();
2163#endif
2164	return ((void *)crashdumpmap);
2165}
2166
2167/*
2168 * This code maps large physical mmap regions into the
2169 * processor address space.  Note that some shortcuts
2170 * are taken, but the code works.
2171 */
2172void
2173pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2174		    vm_object_t object, vm_pindex_t pindex,
2175		    vm_size_t size)
2176{
2177	vm_page_t p;
2178
2179	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2180	KASSERT(object->type == OBJT_DEVICE,
2181	    ("pmap_object_init_pt: non-device object"));
2182	if (pseflag &&
2183	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2184		int i;
2185		vm_page_t m[1];
2186		unsigned int ptepindex;
2187		int npdes;
2188		pd_entry_t ptepa;
2189
2190		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2191			return;
2192retry:
2193		p = vm_page_lookup(object, pindex);
2194		if (p != NULL) {
2195			vm_page_lock_queues();
2196			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2197				goto retry;
2198		} else {
2199			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2200			if (p == NULL)
2201				return;
2202			m[0] = p;
2203
2204			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2205				vm_page_lock_queues();
2206				vm_page_free(p);
2207				vm_page_unlock_queues();
2208				return;
2209			}
2210
2211			p = vm_page_lookup(object, pindex);
2212			vm_page_lock_queues();
2213			vm_page_wakeup(p);
2214		}
2215		vm_page_unlock_queues();
2216
2217		ptepa = VM_PAGE_TO_PHYS(p);
2218		if (ptepa & (NBPDR - 1))
2219			return;
2220
2221		p->valid = VM_PAGE_BITS_ALL;
2222
2223		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2224		npdes = size >> PDRSHIFT;
2225		for(i = 0; i < npdes; i++) {
2226			pde_store(&pmap->pm_pdir[ptepindex],
2227			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2228			ptepa += NBPDR;
2229			ptepindex += 1;
2230		}
2231		pmap_invalidate_all(pmap);
2232	}
2233}
2234
2235/*
2236 *	Routine:	pmap_change_wiring
2237 *	Function:	Change the wiring attribute for a map/virtual-address
2238 *			pair.
2239 *	In/out conditions:
2240 *			The mapping must already exist in the pmap.
2241 */
2242void
2243pmap_change_wiring(pmap, va, wired)
2244	register pmap_t pmap;
2245	vm_offset_t va;
2246	boolean_t wired;
2247{
2248	register pt_entry_t *pte;
2249
2250	if (pmap == NULL)
2251		return;
2252
2253	PMAP_LOCK(pmap);
2254	pte = pmap_pte(pmap, va);
2255
2256	if (wired && !pmap_pte_w(pte))
2257		pmap->pm_stats.wired_count++;
2258	else if (!wired && pmap_pte_w(pte))
2259		pmap->pm_stats.wired_count--;
2260
2261	/*
2262	 * Wiring is not a hardware characteristic so there is no need to
2263	 * invalidate TLB.
2264	 */
2265	pmap_pte_set_w(pte, wired);
2266	PMAP_UNLOCK(pmap);
2267}
2268
2269
2270
2271/*
2272 *	Copy the range specified by src_addr/len
2273 *	from the source map to the range dst_addr/len
2274 *	in the destination map.
2275 *
2276 *	This routine is only advisory and need not do anything.
2277 */
2278
2279void
2280pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2281	  vm_offset_t src_addr)
2282{
2283	vm_offset_t addr;
2284	vm_offset_t end_addr = src_addr + len;
2285	vm_offset_t pdnxt;
2286	vm_page_t m;
2287
2288	if (dst_addr != src_addr)
2289		return;
2290
2291	if (!pmap_is_current(src_pmap))
2292		return;
2293
2294	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2295		pt_entry_t *src_pte, *dst_pte;
2296		vm_page_t dstmpte, srcmpte;
2297		pd_entry_t srcptepaddr;
2298		unsigned ptepindex;
2299
2300		if (addr >= UPT_MIN_ADDRESS)
2301			panic("pmap_copy: invalid to pmap_copy page tables\n");
2302
2303		/*
2304		 * Don't let optional prefaulting of pages make us go
2305		 * way below the low water mark of free pages or way
2306		 * above high water mark of used pv entries.
2307		 */
2308		if (cnt.v_free_count < cnt.v_free_reserved ||
2309		    pv_entry_count > pv_entry_high_water)
2310			break;
2311
2312		pdnxt = (addr + NBPDR) & ~PDRMASK;
2313		ptepindex = addr >> PDRSHIFT;
2314
2315		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2316		if (srcptepaddr == 0)
2317			continue;
2318
2319		if (srcptepaddr & PG_PS) {
2320			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2321				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2322				dst_pmap->pm_stats.resident_count +=
2323				    NBPDR / PAGE_SIZE;
2324			}
2325			continue;
2326		}
2327
2328		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2329		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2330			continue;
2331
2332		if (pdnxt > end_addr)
2333			pdnxt = end_addr;
2334
2335		src_pte = vtopte(addr);
2336		while (addr < pdnxt) {
2337			pt_entry_t ptetemp;
2338			ptetemp = *src_pte;
2339			/*
2340			 * we only virtual copy managed pages
2341			 */
2342			if ((ptetemp & PG_MANAGED) != 0) {
2343				/*
2344				 * We have to check after allocpte for the
2345				 * pte still being around...  allocpte can
2346				 * block.
2347				 */
2348				dstmpte = pmap_allocpte(dst_pmap, addr);
2349				dst_pte = pmap_pte(dst_pmap, addr);
2350				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2351					/*
2352					 * Clear the modified and
2353					 * accessed (referenced) bits
2354					 * during the copy.
2355					 */
2356					m = PHYS_TO_VM_PAGE(ptetemp);
2357					*dst_pte = ptetemp & ~(PG_M | PG_A);
2358					dst_pmap->pm_stats.resident_count++;
2359					pmap_insert_entry(dst_pmap, addr, m);
2360	 			} else {
2361					vm_page_lock_queues();
2362					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2363					vm_page_unlock_queues();
2364				}
2365				if (dstmpte->hold_count >= srcmpte->hold_count)
2366					break;
2367			}
2368			addr += PAGE_SIZE;
2369			src_pte++;
2370		}
2371	}
2372}
2373
2374static __inline void
2375pagezero(void *page)
2376{
2377#if defined(I686_CPU)
2378	if (cpu_class == CPUCLASS_686) {
2379#if defined(CPU_ENABLE_SSE)
2380		if (cpu_feature & CPUID_SSE2)
2381			sse2_pagezero(page);
2382		else
2383#endif
2384			i686_pagezero(page);
2385	} else
2386#endif
2387		bzero(page, PAGE_SIZE);
2388}
2389
2390/*
2391 *	pmap_zero_page zeros the specified hardware page by mapping
2392 *	the page into KVM and using bzero to clear its contents.
2393 */
2394void
2395pmap_zero_page(vm_page_t m)
2396{
2397
2398	mtx_lock(&CMAPCADDR12_lock);
2399	if (*CMAP2)
2400		panic("pmap_zero_page: CMAP2 busy");
2401	sched_pin();
2402	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2403	invlcaddr(CADDR2);
2404	pagezero(CADDR2);
2405	*CMAP2 = 0;
2406	sched_unpin();
2407	mtx_unlock(&CMAPCADDR12_lock);
2408}
2409
2410/*
2411 *	pmap_zero_page_area zeros the specified hardware page by mapping
2412 *	the page into KVM and using bzero to clear its contents.
2413 *
2414 *	off and size may not cover an area beyond a single hardware page.
2415 */
2416void
2417pmap_zero_page_area(vm_page_t m, int off, int size)
2418{
2419
2420	mtx_lock(&CMAPCADDR12_lock);
2421	if (*CMAP2)
2422		panic("pmap_zero_page: CMAP2 busy");
2423	sched_pin();
2424	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2425	invlcaddr(CADDR2);
2426	if (off == 0 && size == PAGE_SIZE)
2427		pagezero(CADDR2);
2428	else
2429		bzero((char *)CADDR2 + off, size);
2430	*CMAP2 = 0;
2431	sched_unpin();
2432	mtx_unlock(&CMAPCADDR12_lock);
2433}
2434
2435/*
2436 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2437 *	the page into KVM and using bzero to clear its contents.  This
2438 *	is intended to be called from the vm_pagezero process only and
2439 *	outside of Giant.
2440 */
2441void
2442pmap_zero_page_idle(vm_page_t m)
2443{
2444
2445	if (*CMAP3)
2446		panic("pmap_zero_page: CMAP3 busy");
2447	sched_pin();
2448	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2449	invlcaddr(CADDR3);
2450	pagezero(CADDR3);
2451	*CMAP3 = 0;
2452	sched_unpin();
2453}
2454
2455/*
2456 *	pmap_copy_page copies the specified (machine independent)
2457 *	page by mapping the page into virtual memory and using
2458 *	bcopy to copy the page, one machine dependent page at a
2459 *	time.
2460 */
2461void
2462pmap_copy_page(vm_page_t src, vm_page_t dst)
2463{
2464
2465	mtx_lock(&CMAPCADDR12_lock);
2466	if (*CMAP1)
2467		panic("pmap_copy_page: CMAP1 busy");
2468	if (*CMAP2)
2469		panic("pmap_copy_page: CMAP2 busy");
2470	sched_pin();
2471#ifdef I386_CPU
2472	invltlb();
2473#else
2474	invlpg((u_int)CADDR1);
2475	invlpg((u_int)CADDR2);
2476#endif
2477	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2478	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2479	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2480	*CMAP1 = 0;
2481	*CMAP2 = 0;
2482	sched_unpin();
2483	mtx_unlock(&CMAPCADDR12_lock);
2484}
2485
2486/*
2487 * Returns true if the pmap's pv is one of the first
2488 * 16 pvs linked to from this page.  This count may
2489 * be changed upwards or downwards in the future; it
2490 * is only necessary that true be returned for a small
2491 * subset of pmaps for proper page aging.
2492 */
2493boolean_t
2494pmap_page_exists_quick(pmap, m)
2495	pmap_t pmap;
2496	vm_page_t m;
2497{
2498	pv_entry_t pv;
2499	int loops = 0;
2500
2501	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2502		return FALSE;
2503
2504	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2505	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2506		if (pv->pv_pmap == pmap) {
2507			return TRUE;
2508		}
2509		loops++;
2510		if (loops >= 16)
2511			break;
2512	}
2513	return (FALSE);
2514}
2515
2516#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2517/*
2518 * Remove all pages from specified address space
2519 * this aids process exit speeds.  Also, this code
2520 * is special cased for current process only, but
2521 * can have the more generic (and slightly slower)
2522 * mode enabled.  This is much faster than pmap_remove
2523 * in the case of running down an entire address space.
2524 */
2525void
2526pmap_remove_pages(pmap, sva, eva)
2527	pmap_t pmap;
2528	vm_offset_t sva, eva;
2529{
2530	pt_entry_t *pte, tpte;
2531	vm_page_t m;
2532	pv_entry_t pv, npv;
2533
2534#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2535	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2536		printf("warning: pmap_remove_pages called with non-current pmap\n");
2537		return;
2538	}
2539#endif
2540	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2541	PMAP_LOCK(pmap);
2542	sched_pin();
2543	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2544
2545		if (pv->pv_va >= eva || pv->pv_va < sva) {
2546			npv = TAILQ_NEXT(pv, pv_plist);
2547			continue;
2548		}
2549
2550#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2551		pte = vtopte(pv->pv_va);
2552#else
2553		pte = pmap_pte_quick(pmap, pv->pv_va);
2554#endif
2555		tpte = *pte;
2556
2557		if (tpte == 0) {
2558			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2559							pte, pv->pv_va);
2560			panic("bad pte");
2561		}
2562
2563/*
2564 * We cannot remove wired pages from a process' mapping at this time
2565 */
2566		if (tpte & PG_W) {
2567			npv = TAILQ_NEXT(pv, pv_plist);
2568			continue;
2569		}
2570
2571		m = PHYS_TO_VM_PAGE(tpte);
2572		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2573		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2574		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2575
2576		KASSERT(m < &vm_page_array[vm_page_array_size],
2577			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2578
2579		pmap->pm_stats.resident_count--;
2580
2581		pte_clear(pte);
2582
2583		/*
2584		 * Update the vm_page_t clean and reference bits.
2585		 */
2586		if (tpte & PG_M) {
2587			vm_page_dirty(m);
2588		}
2589
2590		npv = TAILQ_NEXT(pv, pv_plist);
2591		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2592
2593		m->md.pv_list_count--;
2594		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2595		if (TAILQ_EMPTY(&m->md.pv_list))
2596			vm_page_flag_clear(m, PG_WRITEABLE);
2597
2598		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2599		free_pv_entry(pv);
2600	}
2601	sched_unpin();
2602	pmap_invalidate_all(pmap);
2603	PMAP_UNLOCK(pmap);
2604}
2605
2606/*
2607 *	pmap_is_modified:
2608 *
2609 *	Return whether or not the specified physical page was modified
2610 *	in any physical maps.
2611 */
2612boolean_t
2613pmap_is_modified(vm_page_t m)
2614{
2615	pv_entry_t pv;
2616	pt_entry_t *pte;
2617	boolean_t rv;
2618
2619	rv = FALSE;
2620	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2621		return (rv);
2622
2623	sched_pin();
2624	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2625	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2626		/*
2627		 * if the bit being tested is the modified bit, then
2628		 * mark clean_map and ptes as never
2629		 * modified.
2630		 */
2631		if (!pmap_track_modified(pv->pv_va))
2632			continue;
2633#if defined(PMAP_DIAGNOSTIC)
2634		if (!pv->pv_pmap) {
2635			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2636			continue;
2637		}
2638#endif
2639		PMAP_LOCK(pv->pv_pmap);
2640		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2641		rv = (*pte & PG_M) != 0;
2642		PMAP_UNLOCK(pv->pv_pmap);
2643		if (rv)
2644			break;
2645	}
2646	sched_unpin();
2647	return (rv);
2648}
2649
2650/*
2651 *	pmap_is_prefaultable:
2652 *
2653 *	Return whether or not the specified virtual address is elgible
2654 *	for prefault.
2655 */
2656boolean_t
2657pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2658{
2659	pt_entry_t *pte;
2660	boolean_t rv;
2661
2662	rv = FALSE;
2663	PMAP_LOCK(pmap);
2664	if (*pmap_pde(pmap, addr)) {
2665		pte = vtopte(addr);
2666		rv = *pte == 0;
2667	}
2668	PMAP_UNLOCK(pmap);
2669	return (rv);
2670}
2671
2672/*
2673 *	Clear the given bit in each of the given page's ptes.
2674 */
2675static __inline void
2676pmap_clear_ptes(vm_page_t m, int bit)
2677{
2678	register pv_entry_t pv;
2679	pt_entry_t pbits, *pte;
2680
2681	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2682	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2683		return;
2684
2685	sched_pin();
2686	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2687	/*
2688	 * Loop over all current mappings setting/clearing as appropos If
2689	 * setting RO do we need to clear the VAC?
2690	 */
2691	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2692		/*
2693		 * don't write protect pager mappings
2694		 */
2695		if (bit == PG_RW) {
2696			if (!pmap_track_modified(pv->pv_va))
2697				continue;
2698		}
2699
2700#if defined(PMAP_DIAGNOSTIC)
2701		if (!pv->pv_pmap) {
2702			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2703			continue;
2704		}
2705#endif
2706
2707		PMAP_LOCK(pv->pv_pmap);
2708		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2709		pbits = *pte;
2710		if (pbits & bit) {
2711			if (bit == PG_RW) {
2712				if (pbits & PG_M) {
2713					vm_page_dirty(m);
2714				}
2715				pte_store(pte, pbits & ~(PG_M|PG_RW));
2716			} else {
2717				pte_store(pte, pbits & ~bit);
2718			}
2719			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2720		}
2721		PMAP_UNLOCK(pv->pv_pmap);
2722	}
2723	if (bit == PG_RW)
2724		vm_page_flag_clear(m, PG_WRITEABLE);
2725	sched_unpin();
2726}
2727
2728/*
2729 *      pmap_page_protect:
2730 *
2731 *      Lower the permission for all mappings to a given page.
2732 */
2733void
2734pmap_page_protect(vm_page_t m, vm_prot_t prot)
2735{
2736	if ((prot & VM_PROT_WRITE) == 0) {
2737		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2738			pmap_clear_ptes(m, PG_RW);
2739		} else {
2740			pmap_remove_all(m);
2741		}
2742	}
2743}
2744
2745/*
2746 *	pmap_ts_referenced:
2747 *
2748 *	Return a count of reference bits for a page, clearing those bits.
2749 *	It is not necessary for every reference bit to be cleared, but it
2750 *	is necessary that 0 only be returned when there are truly no
2751 *	reference bits set.
2752 *
2753 *	XXX: The exact number of bits to check and clear is a matter that
2754 *	should be tested and standardized at some point in the future for
2755 *	optimal aging of shared pages.
2756 */
2757int
2758pmap_ts_referenced(vm_page_t m)
2759{
2760	register pv_entry_t pv, pvf, pvn;
2761	pt_entry_t *pte;
2762	pt_entry_t v;
2763	int rtval = 0;
2764
2765	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2766		return (rtval);
2767
2768	sched_pin();
2769	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2770	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2771
2772		pvf = pv;
2773
2774		do {
2775			pvn = TAILQ_NEXT(pv, pv_list);
2776
2777			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2778
2779			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2780
2781			if (!pmap_track_modified(pv->pv_va))
2782				continue;
2783
2784			PMAP_LOCK(pv->pv_pmap);
2785			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2786
2787			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2788				atomic_clear_int((u_int *)pte, PG_A);
2789				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2790
2791				rtval++;
2792				if (rtval > 4) {
2793					PMAP_UNLOCK(pv->pv_pmap);
2794					break;
2795				}
2796			}
2797			PMAP_UNLOCK(pv->pv_pmap);
2798		} while ((pv = pvn) != NULL && pv != pvf);
2799	}
2800	sched_unpin();
2801
2802	return (rtval);
2803}
2804
2805/*
2806 *	Clear the modify bits on the specified physical page.
2807 */
2808void
2809pmap_clear_modify(vm_page_t m)
2810{
2811	pmap_clear_ptes(m, PG_M);
2812}
2813
2814/*
2815 *	pmap_clear_reference:
2816 *
2817 *	Clear the reference bit on the specified physical page.
2818 */
2819void
2820pmap_clear_reference(vm_page_t m)
2821{
2822	pmap_clear_ptes(m, PG_A);
2823}
2824
2825/*
2826 * Miscellaneous support routines follow
2827 */
2828
2829/*
2830 * Map a set of physical memory pages into the kernel virtual
2831 * address space. Return a pointer to where it is mapped. This
2832 * routine is intended to be used for mapping device memory,
2833 * NOT real memory.
2834 */
2835void *
2836pmap_mapdev(pa, size)
2837	vm_paddr_t pa;
2838	vm_size_t size;
2839{
2840	vm_offset_t va, tmpva, offset;
2841
2842	offset = pa & PAGE_MASK;
2843	size = roundup(offset + size, PAGE_SIZE);
2844	pa = pa & PG_FRAME;
2845
2846	if (pa < KERNLOAD && pa + size <= KERNLOAD)
2847		va = KERNBASE + pa;
2848	else
2849		va = kmem_alloc_nofault(kernel_map, size);
2850	if (!va)
2851		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2852
2853	for (tmpva = va; size > 0; ) {
2854		pmap_kenter(tmpva, pa);
2855		size -= PAGE_SIZE;
2856		tmpva += PAGE_SIZE;
2857		pa += PAGE_SIZE;
2858	}
2859	pmap_invalidate_range(kernel_pmap, va, tmpva);
2860	return ((void *)(va + offset));
2861}
2862
2863void
2864pmap_unmapdev(va, size)
2865	vm_offset_t va;
2866	vm_size_t size;
2867{
2868	vm_offset_t base, offset, tmpva;
2869
2870	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
2871		return;
2872	base = va & PG_FRAME;
2873	offset = va & PAGE_MASK;
2874	size = roundup(offset + size, PAGE_SIZE);
2875	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2876		pmap_kremove(tmpva);
2877	pmap_invalidate_range(kernel_pmap, va, tmpva);
2878	kmem_free(kernel_map, base, size);
2879}
2880
2881/*
2882 * perform the pmap work for mincore
2883 */
2884int
2885pmap_mincore(pmap, addr)
2886	pmap_t pmap;
2887	vm_offset_t addr;
2888{
2889	pt_entry_t *ptep, pte;
2890	vm_page_t m;
2891	int val = 0;
2892
2893	PMAP_LOCK(pmap);
2894	ptep = pmap_pte(pmap, addr);
2895	pte = (ptep != NULL) ? *ptep : 0;
2896	PMAP_UNLOCK(pmap);
2897
2898	if (pte != 0) {
2899		vm_paddr_t pa;
2900
2901		val = MINCORE_INCORE;
2902		if ((pte & PG_MANAGED) == 0)
2903			return val;
2904
2905		pa = pte & PG_FRAME;
2906
2907		m = PHYS_TO_VM_PAGE(pa);
2908
2909		/*
2910		 * Modified by us
2911		 */
2912		if (pte & PG_M)
2913			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2914		else {
2915			/*
2916			 * Modified by someone else
2917			 */
2918			vm_page_lock_queues();
2919			if (m->dirty || pmap_is_modified(m))
2920				val |= MINCORE_MODIFIED_OTHER;
2921			vm_page_unlock_queues();
2922		}
2923		/*
2924		 * Referenced by us
2925		 */
2926		if (pte & PG_A)
2927			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2928		else {
2929			/*
2930			 * Referenced by someone else
2931			 */
2932			vm_page_lock_queues();
2933			if ((m->flags & PG_REFERENCED) ||
2934			    pmap_ts_referenced(m)) {
2935				val |= MINCORE_REFERENCED_OTHER;
2936				vm_page_flag_set(m, PG_REFERENCED);
2937			}
2938			vm_page_unlock_queues();
2939		}
2940	}
2941	return val;
2942}
2943
2944void
2945pmap_activate(struct thread *td)
2946{
2947	struct proc *p = td->td_proc;
2948	pmap_t	pmap, oldpmap;
2949	u_int32_t  cr3;
2950
2951	critical_enter();
2952	pmap = vmspace_pmap(td->td_proc->p_vmspace);
2953	oldpmap = PCPU_GET(curpmap);
2954#if defined(SMP)
2955	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
2956	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
2957#else
2958	oldpmap->pm_active &= ~1;
2959	pmap->pm_active |= 1;
2960#endif
2961#ifdef PAE
2962	cr3 = vtophys(pmap->pm_pdpt);
2963#else
2964	cr3 = vtophys(pmap->pm_pdir);
2965#endif
2966	/* XXXKSE this is wrong.
2967	 * pmap_activate is for the current thread on the current cpu
2968	 */
2969	if (p->p_flag & P_SA) {
2970		/* Make sure all other cr3 entries are updated. */
2971		/* what if they are running?  XXXKSE (maybe abort them) */
2972		FOREACH_THREAD_IN_PROC(p, td) {
2973			td->td_pcb->pcb_cr3 = cr3;
2974		}
2975	} else {
2976		td->td_pcb->pcb_cr3 = cr3;
2977	}
2978	load_cr3(cr3);
2979	PCPU_SET(curpmap, pmap);
2980	critical_exit();
2981}
2982
2983vm_offset_t
2984pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
2985{
2986
2987	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
2988		return addr;
2989	}
2990
2991	addr = (addr + PDRMASK) & ~PDRMASK;
2992	return addr;
2993}
2994
2995
2996#if defined(PMAP_DEBUG)
2997pmap_pid_dump(int pid)
2998{
2999	pmap_t pmap;
3000	struct proc *p;
3001	int npte = 0;
3002	int index;
3003
3004	sx_slock(&allproc_lock);
3005	LIST_FOREACH(p, &allproc, p_list) {
3006		if (p->p_pid != pid)
3007			continue;
3008
3009		if (p->p_vmspace) {
3010			int i,j;
3011			index = 0;
3012			pmap = vmspace_pmap(p->p_vmspace);
3013			for (i = 0; i < NPDEPTD; i++) {
3014				pd_entry_t *pde;
3015				pt_entry_t *pte;
3016				vm_offset_t base = i << PDRSHIFT;
3017
3018				pde = &pmap->pm_pdir[i];
3019				if (pde && pmap_pde_v(pde)) {
3020					for (j = 0; j < NPTEPG; j++) {
3021						vm_offset_t va = base + (j << PAGE_SHIFT);
3022						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3023							if (index) {
3024								index = 0;
3025								printf("\n");
3026							}
3027							sx_sunlock(&allproc_lock);
3028							return npte;
3029						}
3030						pte = pmap_pte(pmap, va);
3031						if (pte && pmap_pte_v(pte)) {
3032							pt_entry_t pa;
3033							vm_page_t m;
3034							pa = *pte;
3035							m = PHYS_TO_VM_PAGE(pa);
3036							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3037								va, pa, m->hold_count, m->wire_count, m->flags);
3038							npte++;
3039							index++;
3040							if (index >= 2) {
3041								index = 0;
3042								printf("\n");
3043							} else {
3044								printf(" ");
3045							}
3046						}
3047					}
3048				}
3049			}
3050		}
3051	}
3052	sx_sunlock(&allproc_lock);
3053	return npte;
3054}
3055#endif
3056
3057#if defined(DEBUG)
3058
3059static void	pads(pmap_t pm);
3060void		pmap_pvdump(vm_offset_t pa);
3061
3062/* print address space of pmap*/
3063static void
3064pads(pm)
3065	pmap_t pm;
3066{
3067	int i, j;
3068	vm_paddr_t va;
3069	pt_entry_t *ptep;
3070
3071	if (pm == kernel_pmap)
3072		return;
3073	for (i = 0; i < NPDEPTD; i++)
3074		if (pm->pm_pdir[i])
3075			for (j = 0; j < NPTEPG; j++) {
3076				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3077				if (pm == kernel_pmap && va < KERNBASE)
3078					continue;
3079				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3080					continue;
3081				ptep = pmap_pte(pm, va);
3082				if (pmap_pte_v(ptep))
3083					printf("%x:%x ", va, *ptep);
3084			};
3085
3086}
3087
3088void
3089pmap_pvdump(pa)
3090	vm_paddr_t pa;
3091{
3092	pv_entry_t pv;
3093	vm_page_t m;
3094
3095	printf("pa %x", pa);
3096	m = PHYS_TO_VM_PAGE(pa);
3097	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3098		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3099		pads(pv->pv_pmap);
3100	}
3101	printf(" ");
3102}
3103#endif
3104