pmap.c revision 12850
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.69 1995/12/11 04:54:58 dyson Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54/*
55 * Major modifications by John S. Dyson primarily to support
56 * pageable page tables, eliminating pmap_attributes,
57 * discontiguous memory pages, and using more efficient string
58 * instructions. Jan 13, 1994.  Further modifications on Mar 2, 1994,
59 * general clean-up and efficiency mods.
60 */
61
62/*
63 *	Manages physical address maps.
64 *
65 *	In addition to hardware address maps, this
66 *	module is called upon to provide software-use-only
67 *	maps which may or may not be stored in the same
68 *	form as hardware maps.  These pseudo-maps are
69 *	used to store intermediate results from copy
70 *	operations to and from address spaces.
71 *
72 *	Since the information managed by this module is
73 *	also stored by the logical address mapping module,
74 *	this module may throw away valid virtual-to-physical
75 *	mappings at almost any time.  However, invalidations
76 *	of virtual-to-physical mappings must be done as
77 *	requested.
78 *
79 *	In order to cope with hardware architectures which
80 *	make virtual-to-physical map invalidates expensive,
81 *	this module may delay invalidate or reduced protection
82 *	operations until such time as they are actually
83 *	necessary.  This module is given full information as
84 *	to which processors are currently using which maps,
85 *	and to when physical maps must be made correct.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/proc.h>
91#include <sys/malloc.h>
92#include <sys/msgbuf.h>
93#include <sys/queue.h>
94
95#include <vm/vm.h>
96#include <vm/vm_param.h>
97#include <vm/vm_prot.h>
98#include <vm/lock.h>
99#include <vm/vm_kern.h>
100#include <vm/vm_page.h>
101#include <vm/vm_map.h>
102#include <vm/vm_object.h>
103#include <vm/vm_extern.h>
104
105#include <machine/pcb.h>
106#include <machine/cputypes.h>
107#include <machine/md_var.h>
108
109#include <i386/isa/isa.h>
110
111/*
112 * Get PDEs and PTEs for user/kernel address space
113 */
114#define	pmap_pde(m, v)	(&((m)->pm_pdir[((vm_offset_t)(v) >> PD_SHIFT)&1023]))
115#define pdir_pde(m, v) (m[((vm_offset_t)(v) >> PD_SHIFT)&1023])
116
117#define pmap_pte_pa(pte)	(*(int *)(pte) & PG_FRAME)
118
119#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
120#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
121#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
122#define pmap_pte_u(pte)		((*(int *)pte & PG_U) != 0)
123#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
124
125#define pmap_pte_set_w(pte, v)		((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
126#define pmap_pte_set_prot(pte, v)	((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
127
128/*
129 * Given a map and a machine independent protection code,
130 * convert to a vax protection code.
131 */
132#define pte_prot(m, p)	(protection_codes[p])
133static int protection_codes[8];
134
135static struct pmap kernel_pmap_store;
136pmap_t kernel_pmap;
137
138vm_offset_t avail_start;	/* PA of first available physical page */
139vm_offset_t avail_end;		/* PA of last available physical page */
140vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
141vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
142static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
143static vm_offset_t vm_first_phys;
144
145static int nkpt;
146
147extern vm_offset_t clean_sva, clean_eva;
148extern int cpu_class;
149
150/*
151 * All those kernel PT submaps that BSD is so fond of
152 */
153pt_entry_t *CMAP1;
154static pt_entry_t *CMAP2, *ptmmap;
155static pv_entry_t pv_table;
156caddr_t CADDR1, ptvmmap;
157static caddr_t CADDR2;
158static pt_entry_t *msgbufmap;
159struct msgbuf *msgbufp;
160
161static void	free_pv_entry __P((pv_entry_t pv));
162static pt_entry_t *
163		get_pt_entry __P((pmap_t pmap));
164static pv_entry_t
165		get_pv_entry __P((void));
166static void	i386_protection_init __P((void));
167static void	init_pv_entries __P((int npg));
168static void	pmap_alloc_pv_entry __P((void));
169static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
170static void	pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
171				      vm_offset_t pa));
172static int	pmap_is_managed __P((vm_offset_t pa));
173extern void	pmap_object_init_pt __P((pmap_t pmap, vm_offset_t addr,
174					 vm_object_t object, vm_offset_t offset,
175					 vm_offset_t size));
176static void	pmap_remove_all __P((vm_offset_t pa));
177static void	pmap_remove_entry __P((struct pmap *pmap, pv_entry_t pv,
178				       vm_offset_t va));
179static vm_page_t
180		pmap_pte_vm_page __P((pmap_t pmap, vm_offset_t pt));
181static boolean_t
182		pmap_testbit __P((vm_offset_t pa, int bit));
183
184/*
185 *	Routine:	pmap_pte
186 *	Function:
187 *		Extract the page table entry associated
188 *		with the given map/virtual_address pair.
189 * [ what about induced faults -wfj]
190 */
191
192inline pt_entry_t * __pure
193pmap_pte(pmap, va)
194	register pmap_t pmap;
195	vm_offset_t va;
196{
197
198	if (pmap && *pmap_pde(pmap, va)) {
199		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
200
201		/* are we current address space or kernel? */
202		if ((pmap == kernel_pmap) || (frame == ((int) PTDpde & PG_FRAME)))
203			return ((pt_entry_t *) vtopte(va));
204		/* otherwise, we are alternate address space */
205		else {
206			if (frame != ((int) APTDpde & PG_FRAME)) {
207				APTDpde = pmap->pm_pdir[PTDPTDI];
208				pmap_update();
209			}
210			return ((pt_entry_t *) avtopte(va));
211		}
212	}
213	return (0);
214}
215
216/*
217 *	Routine:	pmap_extract
218 *	Function:
219 *		Extract the physical page address associated
220 *		with the given map/virtual_address pair.
221 */
222
223vm_offset_t
224pmap_extract(pmap, va)
225	register pmap_t pmap;
226	vm_offset_t va;
227{
228	vm_offset_t pa;
229
230	if (pmap && *pmap_pde(pmap, va)) {
231		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
232
233		/* are we current address space or kernel? */
234		if ((pmap == kernel_pmap)
235		    || (frame == ((int) PTDpde & PG_FRAME))) {
236			pa = *(int *) vtopte(va);
237			/* otherwise, we are alternate address space */
238		} else {
239			if (frame != ((int) APTDpde & PG_FRAME)) {
240				APTDpde = pmap->pm_pdir[PTDPTDI];
241				pmap_update();
242			}
243			pa = *(int *) avtopte(va);
244		}
245		return ((pa & PG_FRAME) | (va & ~PG_FRAME));
246	}
247	return 0;
248
249}
250
251/*
252 * determine if a page is managed (memory vs. device)
253 */
254static inline int
255pmap_is_managed(pa)
256	vm_offset_t pa;
257{
258	int i;
259
260	if (!pmap_initialized)
261		return 0;
262
263	for (i = 0; phys_avail[i + 1]; i += 2) {
264		if (pa >= phys_avail[i] && pa < phys_avail[i + 1])
265			return 1;
266	}
267	return 0;
268}
269
270/*
271 * find the vm_page_t of a pte (only) given va of pte and pmap
272 */
273static __inline vm_page_t
274pmap_pte_vm_page(pmap, pt)
275	pmap_t pmap;
276	vm_offset_t pt;
277{
278	vm_page_t m;
279
280	pt = i386_trunc_page(pt);
281	pt = (pt - UPT_MIN_ADDRESS) / NBPG;
282	pt = ((vm_offset_t) pmap->pm_pdir[pt]) & PG_FRAME;
283	m = PHYS_TO_VM_PAGE(pt);
284	return m;
285}
286
287/*
288 * Wire a page table page
289 */
290__inline void
291pmap_use_pt(pmap, va)
292	pmap_t pmap;
293	vm_offset_t va;
294{
295	vm_offset_t pt;
296
297	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
298		return;
299
300	pt = (vm_offset_t) vtopte(va);
301	vm_page_hold(pmap_pte_vm_page(pmap, pt));
302}
303
304/*
305 * Unwire a page table page
306 */
307inline void
308pmap_unuse_pt(pmap, va)
309	pmap_t pmap;
310	vm_offset_t va;
311{
312	vm_offset_t pt;
313	vm_page_t m;
314
315	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
316		return;
317
318	pt = (vm_offset_t) vtopte(va);
319	m = pmap_pte_vm_page(pmap, pt);
320	vm_page_unhold(m);
321	if (pmap != kernel_pmap &&
322	    (m->hold_count == 0) &&
323	    (m->wire_count == 0) &&
324	    (va < KPT_MIN_ADDRESS)) {
325		pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
326		vm_page_free(m);
327	}
328}
329
330/* [ macro again?, should I force kstack into user map here? -wfj ] */
331void
332pmap_activate(pmap, pcbp)
333	register pmap_t pmap;
334	struct pcb *pcbp;
335{
336	PMAP_ACTIVATE(pmap, pcbp);
337}
338
339/*
340 *	Bootstrap the system enough to run with virtual memory.
341 *
342 *	On the i386 this is called after mapping has already been enabled
343 *	and just syncs the pmap module with what has already been done.
344 *	[We can't call it easily with mapping off since the kernel is not
345 *	mapped with PA == VA, hence we would have to relocate every address
346 *	from the linked base (virtual) address "KERNBASE" to the actual
347 *	(physical) address starting relative to 0]
348 */
349void
350pmap_bootstrap(firstaddr, loadaddr)
351	vm_offset_t firstaddr;
352	vm_offset_t loadaddr;
353{
354	vm_offset_t va;
355	pt_entry_t *pte;
356
357	avail_start = firstaddr;
358
359	/*
360	 * XXX The calculation of virtual_avail is wrong. It's NKPT*NBPG too
361	 * large. It should instead be correctly calculated in locore.s and
362	 * not based on 'first' (which is a physical address, not a virtual
363	 * address, for the start of unused physical memory). The kernel
364	 * page tables are NOT double mapped and thus should not be included
365	 * in this calculation.
366	 */
367	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
368	virtual_end = VM_MAX_KERNEL_ADDRESS;
369
370	/*
371	 * Initialize protection array.
372	 */
373	i386_protection_init();
374
375	/*
376	 * The kernel's pmap is statically allocated so we don't have to use
377	 * pmap_create, which is unlikely to work correctly at this part of
378	 * the boot sequence.
379	 */
380	kernel_pmap = &kernel_pmap_store;
381
382	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
383
384	kernel_pmap->pm_count = 1;
385	nkpt = NKPT;
386
387	/*
388	 * Reserve some special page table entries/VA space for temporary
389	 * mapping of pages.
390	 */
391#define	SYSMAP(c, p, v, n)	\
392	v = (c)va; va += ((n)*NBPG); p = pte; pte += (n);
393
394	va = virtual_avail;
395	pte = pmap_pte(kernel_pmap, va);
396
397	/*
398	 * CMAP1/CMAP2 are used for zeroing and copying pages.
399	 */
400	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
401	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
402
403	/*
404	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
405	 */
406	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
407
408	/*
409	 * msgbufmap is used to map the system message buffer.
410	 */
411	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
412
413	virtual_avail = va;
414
415	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
416	pmap_update();
417}
418
419/*
420 *	Initialize the pmap module.
421 *	Called by vm_init, to initialize any structures that the pmap
422 *	system needs to map virtual memory.
423 *	pmap_init has been enhanced to support in a fairly consistant
424 *	way, discontiguous physical memory.
425 */
426void
427pmap_init(phys_start, phys_end)
428	vm_offset_t phys_start, phys_end;
429{
430	vm_offset_t addr;
431	vm_size_t npg, s;
432	int i;
433
434	/*
435	 * calculate the number of pv_entries needed
436	 */
437	vm_first_phys = phys_avail[0];
438	for (i = 0; phys_avail[i + 1]; i += 2);
439	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / NBPG;
440
441	/*
442	 * Allocate memory for random pmap data structures.  Includes the
443	 * pv_head_table.
444	 */
445	s = (vm_size_t) (sizeof(struct pv_entry) * npg);
446	s = i386_round_page(s);
447	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
448	pv_table = (pv_entry_t) addr;
449
450	/*
451	 * init the pv free list
452	 */
453	init_pv_entries(npg);
454	/*
455	 * Now it is safe to enable pv_table recording.
456	 */
457	pmap_initialized = TRUE;
458}
459
460/*
461 *	Used to map a range of physical addresses into kernel
462 *	virtual address space.
463 *
464 *	For now, VM is already on, we only need to map the
465 *	specified memory.
466 */
467vm_offset_t
468pmap_map(virt, start, end, prot)
469	vm_offset_t virt;
470	vm_offset_t start;
471	vm_offset_t end;
472	int prot;
473{
474	while (start < end) {
475		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
476		virt += PAGE_SIZE;
477		start += PAGE_SIZE;
478	}
479	return (virt);
480}
481
482/*
483 * Initialize a preallocated and zeroed pmap structure,
484 * such as one in a vmspace structure.
485 */
486void
487pmap_pinit(pmap)
488	register struct pmap *pmap;
489{
490	/*
491	 * No need to allocate page table space yet but we do need a valid
492	 * page directory table.
493	 */
494	pmap->pm_pdir = (pd_entry_t *) kmem_alloc(kernel_map, PAGE_SIZE);
495
496	/* wire in kernel global address entries */
497	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
498
499	/* install self-referential address mapping entry */
500	*(int *) (pmap->pm_pdir + PTDPTDI) =
501	    ((int) pmap_kextract((vm_offset_t) pmap->pm_pdir)) | PG_V | PG_KW;
502
503	pmap->pm_count = 1;
504}
505
506/*
507 * grow the number of kernel page table entries, if needed
508 */
509
510static vm_page_t nkpg;
511vm_offset_t kernel_vm_end;
512
513void
514pmap_growkernel(vm_offset_t addr)
515{
516	struct proc *p;
517	struct pmap *pmap;
518	int s;
519
520	s = splhigh();
521	if (kernel_vm_end == 0) {
522		kernel_vm_end = KERNBASE;
523		nkpt = 0;
524		while (pdir_pde(PTD, kernel_vm_end)) {
525			kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
526			++nkpt;
527		}
528	}
529	addr = (addr + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
530	while (kernel_vm_end < addr) {
531		if (pdir_pde(PTD, kernel_vm_end)) {
532			kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
533			continue;
534		}
535		++nkpt;
536		if (!nkpg) {
537			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
538			if (!nkpg)
539				panic("pmap_growkernel: no memory to grow kernel");
540			vm_page_wire(nkpg);
541			vm_page_remove(nkpg);
542			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
543		}
544		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_KW);
545		nkpg = NULL;
546
547		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
548			if (p->p_vmspace) {
549				pmap = &p->p_vmspace->vm_pmap;
550				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
551			}
552		}
553		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
554		kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
555	}
556	splx(s);
557}
558
559/*
560 *	Retire the given physical map from service.
561 *	Should only be called if the map contains
562 *	no valid mappings.
563 */
564void
565pmap_destroy(pmap)
566	register pmap_t pmap;
567{
568	int count;
569
570	if (pmap == NULL)
571		return;
572
573	count = --pmap->pm_count;
574	if (count == 0) {
575		pmap_release(pmap);
576		free((caddr_t) pmap, M_VMPMAP);
577	}
578}
579
580/*
581 * Release any resources held by the given physical map.
582 * Called when a pmap initialized by pmap_pinit is being released.
583 * Should only be called if the map contains no valid mappings.
584 */
585void
586pmap_release(pmap)
587	register struct pmap *pmap;
588{
589	kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
590}
591
592/*
593 *	Add a reference to the specified pmap.
594 */
595void
596pmap_reference(pmap)
597	pmap_t pmap;
598{
599	if (pmap != NULL) {
600		pmap->pm_count++;
601	}
602}
603
604#define PV_FREELIST_MIN ((NBPG / sizeof (struct pv_entry)) / 2)
605
606/*
607 * Data for the pv entry allocation mechanism
608 */
609static int pv_freelistcnt;
610static pv_entry_t pv_freelist;
611static vm_offset_t pvva;
612static int npvvapg;
613
614/*
615 * free the pv_entry back to the free list
616 */
617inline static void
618free_pv_entry(pv)
619	pv_entry_t pv;
620{
621	if (!pv)
622		return;
623	++pv_freelistcnt;
624	pv->pv_next = pv_freelist;
625	pv_freelist = pv;
626}
627
628/*
629 * get a new pv_entry, allocating a block from the system
630 * when needed.
631 * the memory allocation is performed bypassing the malloc code
632 * because of the possibility of allocations at interrupt time.
633 */
634static inline pv_entry_t
635get_pv_entry()
636{
637	pv_entry_t tmp;
638
639	/*
640	 * get more pv_entry pages if needed
641	 */
642	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
643		pmap_alloc_pv_entry();
644	}
645	/*
646	 * get a pv_entry off of the free list
647	 */
648	--pv_freelistcnt;
649	tmp = pv_freelist;
650	pv_freelist = tmp->pv_next;
651	return tmp;
652}
653
654/*
655 * this *strange* allocation routine *statistically* eliminates the
656 * *possibility* of a malloc failure (*FATAL*) for a pv_entry_t data structure.
657 * also -- this code is MUCH MUCH faster than the malloc equiv...
658 */
659static void
660pmap_alloc_pv_entry()
661{
662	/*
663	 * do we have any pre-allocated map-pages left?
664	 */
665	if (npvvapg) {
666		vm_page_t m;
667
668		/*
669		 * we do this to keep recursion away
670		 */
671		pv_freelistcnt += PV_FREELIST_MIN;
672		/*
673		 * allocate a physical page out of the vm system
674		 */
675		m = vm_page_alloc(kernel_object,
676		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
677		    VM_ALLOC_INTERRUPT);
678		if (m) {
679			int newentries;
680			int i;
681			pv_entry_t entry;
682
683			newentries = (NBPG / sizeof(struct pv_entry));
684			/*
685			 * wire the page
686			 */
687			vm_page_wire(m);
688			m->flags &= ~PG_BUSY;
689			/*
690			 * let the kernel see it
691			 */
692			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
693
694			entry = (pv_entry_t) pvva;
695			/*
696			 * update the allocation pointers
697			 */
698			pvva += NBPG;
699			--npvvapg;
700
701			/*
702			 * free the entries into the free list
703			 */
704			for (i = 0; i < newentries; i++) {
705				free_pv_entry(entry);
706				entry++;
707			}
708		}
709		pv_freelistcnt -= PV_FREELIST_MIN;
710	}
711	if (!pv_freelist)
712		panic("get_pv_entry: cannot get a pv_entry_t");
713}
714
715
716
717/*
718 * init the pv_entry allocation system
719 */
720#define PVSPERPAGE 64
721void
722init_pv_entries(npg)
723	int npg;
724{
725	/*
726	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
727	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
728	 * this is too small.)
729	 */
730	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry) + NBPG - 1) / NBPG;
731	pvva = kmem_alloc_pageable(kernel_map, npvvapg * NBPG);
732	/*
733	 * get the first batch of entries
734	 */
735	free_pv_entry(get_pv_entry());
736}
737
738static pt_entry_t *
739get_pt_entry(pmap)
740	pmap_t pmap;
741{
742	vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
743
744	/* are we current address space or kernel? */
745	if (pmap == kernel_pmap || frame == ((int) PTDpde & PG_FRAME)) {
746		return PTmap;
747	}
748	/* otherwise, we are alternate address space */
749	if (frame != ((int) APTDpde & PG_FRAME)) {
750		APTDpde = pmap->pm_pdir[PTDPTDI];
751		pmap_update();
752	}
753	return APTmap;
754}
755
756/*
757 * If it is the first entry on the list, it is actually
758 * in the header and we must copy the following entry up
759 * to the header.  Otherwise we must search the list for
760 * the entry.  In either case we free the now unused entry.
761 */
762static void
763pmap_remove_entry(pmap, pv, va)
764	struct pmap *pmap;
765	pv_entry_t pv;
766	vm_offset_t va;
767{
768	pv_entry_t npv;
769	int s;
770
771	s = splhigh();
772	if (pmap == pv->pv_pmap && va == pv->pv_va) {
773		npv = pv->pv_next;
774		if (npv) {
775			*pv = *npv;
776			free_pv_entry(npv);
777		} else {
778			pv->pv_pmap = NULL;
779		}
780	} else {
781		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
782			if (pmap == npv->pv_pmap && va == npv->pv_va) {
783				break;
784			}
785			pv = npv;
786		}
787		if (npv) {
788			pv->pv_next = npv->pv_next;
789			free_pv_entry(npv);
790		}
791	}
792	splx(s);
793}
794
795/*
796 *	Remove the given range of addresses from the specified map.
797 *
798 *	It is assumed that the start and end are properly
799 *	rounded to the page size.
800 */
801void
802pmap_remove(pmap, sva, eva)
803	struct pmap *pmap;
804	register vm_offset_t sva;
805	register vm_offset_t eva;
806{
807	register pt_entry_t *ptp, *ptq;
808	vm_offset_t pa;
809	register pv_entry_t pv;
810	vm_offset_t va;
811	pt_entry_t oldpte;
812
813	if (pmap == NULL)
814		return;
815
816	ptp = get_pt_entry(pmap);
817
818	/*
819	 * special handling of removing one page.  a very
820	 * common operation and easy to short circuit some
821	 * code.
822	 */
823	if ((sva + NBPG) == eva) {
824
825		if (*pmap_pde(pmap, sva) == 0)
826			return;
827
828		ptq = ptp + i386_btop(sva);
829
830		if (!*ptq)
831			return;
832		/*
833		 * Update statistics
834		 */
835		if (pmap_pte_w(ptq))
836			pmap->pm_stats.wired_count--;
837		pmap->pm_stats.resident_count--;
838
839		pa = pmap_pte_pa(ptq);
840		oldpte = *ptq;
841		*ptq = 0;
842
843		if (pmap_is_managed(pa)) {
844			if ((int) oldpte & PG_M) {
845				if (sva < USRSTACK + (UPAGES * NBPG) ||
846				    (sva >= KERNBASE && (sva < clean_sva || sva >= clean_eva))) {
847					PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
848				}
849			}
850			pv = pa_to_pvh(pa);
851			pmap_remove_entry(pmap, pv, sva);
852		}
853		pmap_unuse_pt(pmap, sva);
854		pmap_update();
855		return;
856	}
857	sva = i386_btop(sva);
858	eva = i386_btop(eva);
859
860	while (sva < eva) {
861		/*
862		 * Weed out invalid mappings. Note: we assume that the page
863		 * directory table is always allocated, and in kernel virtual.
864		 */
865
866		if (*pmap_pde(pmap, i386_ptob(sva)) == 0) {
867			/* We can race ahead here, straight to next pde.. */
868			sva = ((sva + NPTEPG) & ~(NPTEPG - 1));
869			continue;
870		}
871		ptq = ptp + sva;
872
873		/*
874		 * search for page table entries, use string operations that
875		 * are much faster than explicitly scanning when page tables
876		 * are not fully populated.
877		 */
878		if (*ptq == 0) {
879			vm_offset_t pdnxt = ((sva + NPTEPG) & ~(NPTEPG - 1));
880			vm_offset_t nscan = pdnxt - sva;
881			int found = 0;
882
883			if ((nscan + sva) > eva)
884				nscan = eva - sva;
885
886			asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
887			    "=D"(ptq), "=a"(found) : "c"(nscan), "0"(ptq) : "cx");
888
889			if (!found) {
890				sva = pdnxt;
891				continue;
892			}
893			ptq -= 1;
894
895			sva = ptq - ptp;
896		}
897		/*
898		 * Update statistics
899		 */
900		oldpte = *ptq;
901		if (((int) oldpte) & PG_W)
902			pmap->pm_stats.wired_count--;
903		pmap->pm_stats.resident_count--;
904
905		/*
906		 * Invalidate the PTEs. XXX: should cluster them up and
907		 * invalidate as many as possible at once.
908		 */
909		*ptq = 0;
910
911		va = i386_ptob(sva);
912
913		/*
914		 * Remove from the PV table (raise IPL since we may be called
915		 * at interrupt time).
916		 */
917		pa = ((int) oldpte) & PG_FRAME;
918		if (!pmap_is_managed(pa)) {
919			pmap_unuse_pt(pmap, va);
920			++sva;
921			continue;
922		}
923		if ((int) oldpte & PG_M) {
924			if (sva < USRSTACK + (UPAGES * NBPG) ||
925			    (sva >= KERNBASE && (sva < clean_sva || sva >= clean_eva))) {
926				PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
927			}
928		}
929		pv = pa_to_pvh(pa);
930		pmap_remove_entry(pmap, pv, va);
931		pmap_unuse_pt(pmap, va);
932		++sva;
933	}
934	pmap_update();
935}
936
937/*
938 *	Routine:	pmap_remove_all
939 *	Function:
940 *		Removes this physical page from
941 *		all physical maps in which it resides.
942 *		Reflects back modify bits to the pager.
943 *
944 *	Notes:
945 *		Original versions of this routine were very
946 *		inefficient because they iteratively called
947 *		pmap_remove (slow...)
948 */
949static void
950pmap_remove_all(pa)
951	vm_offset_t pa;
952{
953	register pv_entry_t pv, npv;
954	register pt_entry_t *pte, *ptp;
955	vm_offset_t va;
956	struct pmap *pmap;
957	vm_page_t m;
958	int s;
959	int anyvalid = 0;
960
961	/*
962	 * Not one of ours
963	 */
964	/*
965	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
966	 * pages!
967	 */
968	if (!pmap_is_managed(pa))
969		return;
970
971	pa = i386_trunc_page(pa);
972	pv = pa_to_pvh(pa);
973	m = PHYS_TO_VM_PAGE(pa);
974
975	s = splhigh();
976	while (pv->pv_pmap != NULL) {
977		pmap = pv->pv_pmap;
978		ptp = get_pt_entry(pmap);
979		va = pv->pv_va;
980		pte = ptp + i386_btop(va);
981		if (pmap_pte_w(pte))
982			pmap->pm_stats.wired_count--;
983		if (*pte) {
984			pmap->pm_stats.resident_count--;
985			anyvalid++;
986
987			/*
988			 * Update the vm_page_t clean and reference bits.
989			 */
990			if ((int) *pte & PG_M) {
991				if (va < USRSTACK + (UPAGES * NBPG) ||
992				    (va >= KERNBASE && (va < clean_sva || va >= clean_eva))) {
993					PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
994				}
995			}
996			*pte = 0;
997			pmap_unuse_pt(pmap, va);
998		}
999		npv = pv->pv_next;
1000		if (npv) {
1001			*pv = *npv;
1002			free_pv_entry(npv);
1003		} else {
1004			pv->pv_pmap = NULL;
1005		}
1006	}
1007	splx(s);
1008	if (anyvalid)
1009		pmap_update();
1010}
1011
1012
1013/*
1014 *	Set the physical protection on the
1015 *	specified range of this map as requested.
1016 */
1017void
1018pmap_protect(pmap, sva, eva, prot)
1019	register pmap_t pmap;
1020	vm_offset_t sva, eva;
1021	vm_prot_t prot;
1022{
1023	register pt_entry_t *pte;
1024	register vm_offset_t va;
1025	int i386prot;
1026	register pt_entry_t *ptp;
1027	int evap = i386_btop(eva);
1028	int anyvalid = 0;;
1029
1030	if (pmap == NULL)
1031		return;
1032
1033	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1034		pmap_remove(pmap, sva, eva);
1035		return;
1036	}
1037	if (prot & VM_PROT_WRITE)
1038		return;
1039
1040	ptp = get_pt_entry(pmap);
1041
1042	va = sva;
1043	while (va < eva) {
1044		int found = 0;
1045		int svap;
1046		vm_offset_t nscan;
1047
1048		/*
1049		 * Page table page is not allocated. Skip it, we don't want to
1050		 * force allocation of unnecessary PTE pages just to set the
1051		 * protection.
1052		 */
1053		if (!*pmap_pde(pmap, va)) {
1054			/* XXX: avoid address wrap around */
1055	nextpde:
1056			if (va >= i386_trunc_pdr((vm_offset_t) - 1))
1057				break;
1058			va = i386_round_pdr(va + PAGE_SIZE);
1059			continue;
1060		}
1061		pte = ptp + i386_btop(va);
1062
1063		if (*pte == 0) {
1064			/*
1065			 * scan for a non-empty pte
1066			 */
1067			svap = pte - ptp;
1068			nscan = ((svap + NPTEPG) & ~(NPTEPG - 1)) - svap;
1069
1070			if (nscan + svap > evap)
1071				nscan = evap - svap;
1072
1073			found = 0;
1074			if (nscan)
1075				asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
1076				    "=D"(pte), "=a"(found) : "c"(nscan), "0"(pte) : "cx");
1077
1078			if (!found)
1079				goto nextpde;
1080
1081			pte -= 1;
1082			svap = pte - ptp;
1083
1084			va = i386_ptob(svap);
1085		}
1086		anyvalid++;
1087
1088		i386prot = pte_prot(pmap, prot);
1089		if (va < UPT_MAX_ADDRESS) {
1090			i386prot |= PG_u;
1091			if (va >= UPT_MIN_ADDRESS)
1092				i386prot |= PG_RW;
1093		}
1094		pmap_pte_set_prot(pte, i386prot);
1095		va += PAGE_SIZE;
1096	}
1097	if (anyvalid)
1098		pmap_update();
1099}
1100
1101/*
1102 *	Insert the given physical page (p) at
1103 *	the specified virtual address (v) in the
1104 *	target physical map with the protection requested.
1105 *
1106 *	If specified, the page will be wired down, meaning
1107 *	that the related pte can not be reclaimed.
1108 *
1109 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1110 *	or lose information.  That is, this routine must actually
1111 *	insert this page into the given map NOW.
1112 */
1113void
1114pmap_enter(pmap, va, pa, prot, wired)
1115	register pmap_t pmap;
1116	vm_offset_t va;
1117	register vm_offset_t pa;
1118	vm_prot_t prot;
1119	boolean_t wired;
1120{
1121	register pt_entry_t *pte;
1122	register pt_entry_t npte;
1123	vm_offset_t opa;
1124	int ptevalid = 0;
1125
1126	if (pmap == NULL)
1127		return;
1128
1129	va = i386_trunc_page(va);
1130	pa = i386_trunc_page(pa);
1131	if (va > VM_MAX_KERNEL_ADDRESS)
1132		panic("pmap_enter: toobig");
1133
1134	/*
1135	 * Page Directory table entry not valid, we need a new PT page
1136	 */
1137	if (*pmap_pde(pmap, va) == 0) {
1138		printf("kernel page directory invalid pdir=%p, va=0x%lx\n",
1139			pmap->pm_pdir[PTDPTDI], va);
1140		panic("invalid kernel page directory");
1141	}
1142	pte = pmap_pte(pmap, va);
1143	opa = pmap_pte_pa(pte);
1144
1145	/*
1146	 * Mapping has not changed, must be protection or wiring change.
1147	 */
1148	if (opa == pa) {
1149		/*
1150		 * Wiring change, just update stats. We don't worry about
1151		 * wiring PT pages as they remain resident as long as there
1152		 * are valid mappings in them. Hence, if a user page is wired,
1153		 * the PT page will be also.
1154		 */
1155		if (wired && !pmap_pte_w(pte))
1156			pmap->pm_stats.wired_count++;
1157		else if (!wired && pmap_pte_w(pte))
1158			pmap->pm_stats.wired_count--;
1159
1160		goto validate;
1161	}
1162	/*
1163	 * Mapping has changed, invalidate old range and fall through to
1164	 * handle validating new mapping.
1165	 */
1166	if (opa) {
1167		pmap_remove(pmap, va, va + PAGE_SIZE);
1168	}
1169	/*
1170	 * Enter on the PV list if part of our managed memory Note that we
1171	 * raise IPL while manipulating pv_table since pmap_enter can be
1172	 * called at interrupt time.
1173	 */
1174	if (pmap_is_managed(pa)) {
1175		register pv_entry_t pv, npv;
1176		int s;
1177
1178		pv = pa_to_pvh(pa);
1179		s = splhigh();
1180		/*
1181		 * No entries yet, use header as the first entry
1182		 */
1183		if (pv->pv_pmap == NULL) {
1184			pv->pv_va = va;
1185			pv->pv_pmap = pmap;
1186			pv->pv_next = NULL;
1187		}
1188		/*
1189		 * There is at least one other VA mapping this page. Place
1190		 * this entry after the header.
1191		 */
1192		else {
1193			npv = get_pv_entry();
1194			npv->pv_va = va;
1195			npv->pv_pmap = pmap;
1196			npv->pv_next = pv->pv_next;
1197			pv->pv_next = npv;
1198		}
1199		splx(s);
1200	}
1201
1202	/*
1203	 * Increment counters
1204	 */
1205	pmap->pm_stats.resident_count++;
1206	if (wired)
1207		pmap->pm_stats.wired_count++;
1208
1209validate:
1210	/*
1211	 * Now validate mapping with desired protection/wiring.
1212	 */
1213	npte = (pt_entry_t) ((int) (pa | pte_prot(pmap, prot) | PG_V));
1214
1215	/*
1216	 * When forking (copy-on-write, etc): A process will turn off write
1217	 * permissions for any of its writable pages.  If the data (object) is
1218	 * only referred to by one process, the processes map is modified
1219	 * directly as opposed to using the object manipulation routine.  When
1220	 * using pmap_protect, the modified bits are not kept in the vm_page_t
1221	 * data structure.  Therefore, when using pmap_enter in vm_fault to
1222	 * bring back writability of a page, there has been no memory of the
1223	 * modified or referenced bits except at the pte level.  this clause
1224	 * supports the carryover of the modified and used (referenced) bits.
1225	 */
1226	if (pa == opa)
1227		(int) npte |= (int) *pte & (PG_M | PG_U);
1228
1229	if (wired)
1230		(int) npte |= PG_W;
1231	if (va < UPT_MIN_ADDRESS)
1232		(int) npte |= PG_u;
1233	else if (va < UPT_MAX_ADDRESS)
1234		(int) npte |= PG_u | PG_RW;
1235
1236	if (*pte != npte) {
1237		if (*pte)
1238			ptevalid++;
1239		*pte = npte;
1240	}
1241	if (ptevalid) {
1242		pmap_update();
1243	} else {
1244		pmap_use_pt(pmap, va);
1245	}
1246}
1247
1248/*
1249 * Add a list of wired pages to the kva
1250 * this routine is only used for temporary
1251 * kernel mappings that do not need to have
1252 * page modification or references recorded.
1253 * Note that old mappings are simply written
1254 * over.  The page *must* be wired.
1255 */
1256void
1257pmap_qenter(va, m, count)
1258	vm_offset_t va;
1259	vm_page_t *m;
1260	int count;
1261{
1262	int i;
1263	int anyvalid = 0;
1264	register pt_entry_t *pte;
1265
1266	for (i = 0; i < count; i++) {
1267		pte = vtopte(va + i * NBPG);
1268		if (*pte)
1269			anyvalid++;
1270		*pte = (pt_entry_t) ((int) (VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V));
1271	}
1272	if (anyvalid)
1273		pmap_update();
1274}
1275/*
1276 * this routine jerks page mappings from the
1277 * kernel -- it is meant only for temporary mappings.
1278 */
1279void
1280pmap_qremove(va, count)
1281	vm_offset_t va;
1282	int count;
1283{
1284	int i;
1285	register pt_entry_t *pte;
1286
1287	for (i = 0; i < count; i++) {
1288		pte = vtopte(va + i * NBPG);
1289		*pte = 0;
1290	}
1291	pmap_update();
1292}
1293
1294/*
1295 * add a wired page to the kva
1296 * note that in order for the mapping to take effect -- you
1297 * should do a pmap_update after doing the pmap_kenter...
1298 */
1299void
1300pmap_kenter(va, pa)
1301	vm_offset_t va;
1302	register vm_offset_t pa;
1303{
1304	register pt_entry_t *pte;
1305	int wasvalid = 0;
1306
1307	pte = vtopte(va);
1308
1309	if (*pte)
1310		wasvalid++;
1311
1312	*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V));
1313
1314	if (wasvalid)
1315		pmap_update();
1316}
1317
1318/*
1319 * remove a page from the kernel pagetables
1320 */
1321void
1322pmap_kremove(va)
1323	vm_offset_t va;
1324{
1325	register pt_entry_t *pte;
1326
1327	pte = vtopte(va);
1328
1329	*pte = (pt_entry_t) 0;
1330	pmap_update();
1331}
1332
1333/*
1334 * this code makes some *MAJOR* assumptions:
1335 * 1. Current pmap & pmap exists.
1336 * 2. Not wired.
1337 * 3. Read access.
1338 * 4. No page table pages.
1339 * 5. Tlbflush is deferred to calling procedure.
1340 * 6. Page IS managed.
1341 * but is *MUCH* faster than pmap_enter...
1342 */
1343
1344static inline void
1345pmap_enter_quick(pmap, va, pa)
1346	register pmap_t pmap;
1347	vm_offset_t va;
1348	register vm_offset_t pa;
1349{
1350	register pt_entry_t *pte;
1351	register pv_entry_t pv, npv;
1352	int s;
1353
1354	/*
1355	 * Enter on the PV list if part of our managed memory Note that we
1356	 * raise IPL while manipulating pv_table since pmap_enter can be
1357	 * called at interrupt time.
1358	 */
1359
1360	pte = vtopte(va);
1361
1362	/* a fault on the page table might occur here */
1363	if (*pte) {
1364		pmap_remove(pmap, va, va + PAGE_SIZE);
1365	}
1366	pv = pa_to_pvh(pa);
1367	s = splhigh();
1368	/*
1369	 * No entries yet, use header as the first entry
1370	 */
1371	if (pv->pv_pmap == NULL) {
1372		pv->pv_pmap = pmap;
1373		pv->pv_va = va;
1374		pv->pv_next = NULL;
1375	}
1376	/*
1377	 * There is at least one other VA mapping this page. Place this entry
1378	 * after the header.
1379	 */
1380	else {
1381		npv = get_pv_entry();
1382		npv->pv_va = va;
1383		npv->pv_pmap = pmap;
1384		npv->pv_next = pv->pv_next;
1385		pv->pv_next = npv;
1386	}
1387	splx(s);
1388
1389	/*
1390	 * Increment counters
1391	 */
1392	pmap->pm_stats.resident_count++;
1393
1394	/*
1395	 * Now validate mapping with desired protection/wiring.
1396	 */
1397	*pte = (pt_entry_t) ((int) (pa | PG_V | PG_u));
1398
1399	pmap_use_pt(pmap, va);
1400
1401	return;
1402}
1403
1404#define MAX_INIT_PT (512 * 4096)
1405/*
1406 * pmap_object_init_pt preloads the ptes for a given object
1407 * into the specified pmap.  This eliminates the blast of soft
1408 * faults on process startup and immediately after an mmap.
1409 */
1410void
1411pmap_object_init_pt(pmap, addr, object, pindex, size)
1412	pmap_t pmap;
1413	vm_offset_t addr;
1414	vm_object_t object;
1415	vm_pindex_t pindex;
1416	vm_size_t size;
1417{
1418	vm_offset_t tmpidx;
1419	int psize;
1420	vm_page_t p;
1421	int objpgs;
1422
1423	if (!pmap || ((size > MAX_INIT_PT) &&
1424		(object->resident_page_count > MAX_INIT_PT / PAGE_SIZE))) {
1425		return;
1426	}
1427
1428	psize = (size >> PAGE_SHIFT);
1429	/*
1430	 * if we are processing a major portion of the object, then scan the
1431	 * entire thing.
1432	 */
1433	if (psize > (object->size >> 2)) {
1434		objpgs = psize;
1435
1436		for (p = object->memq.tqh_first;
1437		    ((objpgs > 0) && (p != NULL));
1438		    p = p->listq.tqe_next) {
1439
1440			tmpidx = p->pindex;
1441			if (tmpidx < pindex) {
1442				continue;
1443			}
1444			tmpidx -= pindex;
1445			if (tmpidx >= psize) {
1446				continue;
1447			}
1448			if (((p->flags & (PG_ACTIVE | PG_INACTIVE | PG_CACHE)) != 0) &&
1449			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1450			    (p->bmapped == 0) &&
1451			    (p->busy == 0) &&
1452			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1453				if (p->flags & PG_CACHE)
1454					vm_page_deactivate(p);
1455				vm_page_hold(p);
1456				p->flags |= PG_MAPPED;
1457				pmap_enter_quick(pmap,
1458					addr + (tmpidx << PAGE_SHIFT),
1459					VM_PAGE_TO_PHYS(p));
1460				vm_page_unhold(p);
1461			}
1462			objpgs -= 1;
1463		}
1464	} else {
1465		/*
1466		 * else lookup the pages one-by-one.
1467		 */
1468		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
1469			p = vm_page_lookup(object, tmpidx + pindex);
1470			if (p &&
1471			    ((p->flags & (PG_ACTIVE | PG_INACTIVE | PG_CACHE)) != 0) &&
1472			    (p->bmapped == 0) &&
1473			    (p->busy == 0) &&
1474			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1475			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1476				if (p->flags & PG_CACHE)
1477					vm_page_deactivate(p);
1478				vm_page_hold(p);
1479				p->flags |= PG_MAPPED;
1480				pmap_enter_quick(pmap,
1481					addr + (tmpidx << PAGE_SHIFT),
1482					VM_PAGE_TO_PHYS(p));
1483				vm_page_unhold(p);
1484			}
1485		}
1486	}
1487}
1488
1489/*
1490 *	Routine:	pmap_change_wiring
1491 *	Function:	Change the wiring attribute for a map/virtual-address
1492 *			pair.
1493 *	In/out conditions:
1494 *			The mapping must already exist in the pmap.
1495 */
1496void
1497pmap_change_wiring(pmap, va, wired)
1498	register pmap_t pmap;
1499	vm_offset_t va;
1500	boolean_t wired;
1501{
1502	register pt_entry_t *pte;
1503
1504	if (pmap == NULL)
1505		return;
1506
1507	pte = pmap_pte(pmap, va);
1508
1509	if (wired && !pmap_pte_w(pte))
1510		pmap->pm_stats.wired_count++;
1511	else if (!wired && pmap_pte_w(pte))
1512		pmap->pm_stats.wired_count--;
1513
1514	/*
1515	 * Wiring is not a hardware characteristic so there is no need to
1516	 * invalidate TLB.
1517	 */
1518	pmap_pte_set_w(pte, wired);
1519	/*
1520	 * When unwiring, set the modified bit in the pte -- could have been
1521	 * changed by the kernel
1522	 */
1523	if (!wired)
1524		(int) *pte |= PG_M;
1525}
1526
1527
1528
1529/*
1530 *	Copy the range specified by src_addr/len
1531 *	from the source map to the range dst_addr/len
1532 *	in the destination map.
1533 *
1534 *	This routine is only advisory and need not do anything.
1535 */
1536void
1537pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1538	pmap_t dst_pmap, src_pmap;
1539	vm_offset_t dst_addr;
1540	vm_size_t len;
1541	vm_offset_t src_addr;
1542{
1543}
1544
1545/*
1546 *	Routine:	pmap_kernel
1547 *	Function:
1548 *		Returns the physical map handle for the kernel.
1549 */
1550pmap_t
1551pmap_kernel()
1552{
1553	return (kernel_pmap);
1554}
1555
1556/*
1557 *	pmap_zero_page zeros the specified (machine independent)
1558 *	page by mapping the page into virtual memory and using
1559 *	bzero to clear its contents, one machine dependent page
1560 *	at a time.
1561 */
1562void
1563pmap_zero_page(phys)
1564	vm_offset_t phys;
1565{
1566	if (*(int *) CMAP2)
1567		panic("pmap_zero_page: CMAP busy");
1568
1569	*(int *) CMAP2 = PG_V | PG_KW | i386_trunc_page(phys);
1570	bzero(CADDR2, NBPG);
1571
1572	*(int *) CMAP2 = 0;
1573	pmap_update();
1574}
1575
1576/*
1577 *	pmap_copy_page copies the specified (machine independent)
1578 *	page by mapping the page into virtual memory and using
1579 *	bcopy to copy the page, one machine dependent page at a
1580 *	time.
1581 */
1582void
1583pmap_copy_page(src, dst)
1584	vm_offset_t src;
1585	vm_offset_t dst;
1586{
1587	if (*(int *) CMAP1 || *(int *) CMAP2)
1588		panic("pmap_copy_page: CMAP busy");
1589
1590	*(int *) CMAP1 = PG_V | PG_KW | i386_trunc_page(src);
1591	*(int *) CMAP2 = PG_V | PG_KW | i386_trunc_page(dst);
1592
1593#if __GNUC__ > 1
1594	memcpy(CADDR2, CADDR1, NBPG);
1595#else
1596	bcopy(CADDR1, CADDR2, NBPG);
1597#endif
1598	*(int *) CMAP1 = 0;
1599	*(int *) CMAP2 = 0;
1600	pmap_update();
1601}
1602
1603
1604/*
1605 *	Routine:	pmap_pageable
1606 *	Function:
1607 *		Make the specified pages (by pmap, offset)
1608 *		pageable (or not) as requested.
1609 *
1610 *		A page which is not pageable may not take
1611 *		a fault; therefore, its page table entry
1612 *		must remain valid for the duration.
1613 *
1614 *		This routine is merely advisory; pmap_enter
1615 *		will specify that these pages are to be wired
1616 *		down (or not) as appropriate.
1617 */
1618void
1619pmap_pageable(pmap, sva, eva, pageable)
1620	pmap_t pmap;
1621	vm_offset_t sva, eva;
1622	boolean_t pageable;
1623{
1624}
1625
1626/*
1627 * this routine returns true if a physical page resides
1628 * in the given pmap.
1629 */
1630boolean_t
1631pmap_page_exists(pmap, pa)
1632	pmap_t pmap;
1633	vm_offset_t pa;
1634{
1635	register pv_entry_t pv;
1636	int s;
1637
1638	if (!pmap_is_managed(pa))
1639		return FALSE;
1640
1641	pv = pa_to_pvh(pa);
1642	s = splhigh();
1643
1644	/*
1645	 * Not found, check current mappings returning immediately if found.
1646	 */
1647	if (pv->pv_pmap != NULL) {
1648		for (; pv; pv = pv->pv_next) {
1649			if (pv->pv_pmap == pmap) {
1650				splx(s);
1651				return TRUE;
1652			}
1653		}
1654	}
1655	splx(s);
1656	return (FALSE);
1657}
1658
1659/*
1660 * pmap_testbit tests bits in pte's
1661 * note that the testbit/changebit routines are inline,
1662 * and a lot of things compile-time evaluate.
1663 */
1664static __inline boolean_t
1665pmap_testbit(pa, bit)
1666	register vm_offset_t pa;
1667	int bit;
1668{
1669	register pv_entry_t pv;
1670	pt_entry_t *pte;
1671	int s;
1672
1673	if (!pmap_is_managed(pa))
1674		return FALSE;
1675
1676	pv = pa_to_pvh(pa);
1677	s = splhigh();
1678
1679	/*
1680	 * Not found, check current mappings returning immediately if found.
1681	 */
1682	if (pv->pv_pmap != NULL) {
1683		for (; pv; pv = pv->pv_next) {
1684			/*
1685			 * if the bit being tested is the modified bit, then
1686			 * mark UPAGES as always modified, and ptes as never
1687			 * modified.
1688			 */
1689			if (bit & PG_U) {
1690				if ((pv->pv_va >= clean_sva) && (pv->pv_va < clean_eva)) {
1691					continue;
1692				}
1693			}
1694			if (bit & PG_M) {
1695				if (pv->pv_va >= USRSTACK) {
1696					if (pv->pv_va >= clean_sva && pv->pv_va < clean_eva) {
1697						continue;
1698					}
1699					if (pv->pv_va < USRSTACK + (UPAGES * NBPG)) {
1700						splx(s);
1701						return TRUE;
1702					} else if (pv->pv_va < KERNBASE) {
1703						splx(s);
1704						return FALSE;
1705					}
1706				}
1707			}
1708			if (!pv->pv_pmap) {
1709				printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
1710				continue;
1711			}
1712			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1713			if ((int) *pte & bit) {
1714				splx(s);
1715				return TRUE;
1716			}
1717		}
1718	}
1719	splx(s);
1720	return (FALSE);
1721}
1722
1723/*
1724 * this routine is used to modify bits in ptes
1725 */
1726static __inline void
1727pmap_changebit(pa, bit, setem)
1728	vm_offset_t pa;
1729	int bit;
1730	boolean_t setem;
1731{
1732	register pv_entry_t pv;
1733	register pt_entry_t *pte, npte;
1734	vm_offset_t va;
1735	int s;
1736
1737	if (!pmap_is_managed(pa))
1738		return;
1739
1740	pv = pa_to_pvh(pa);
1741	s = splhigh();
1742
1743	/*
1744	 * Loop over all current mappings setting/clearing as appropos If
1745	 * setting RO do we need to clear the VAC?
1746	 */
1747	if (pv->pv_pmap != NULL) {
1748		for (; pv; pv = pv->pv_next) {
1749			va = pv->pv_va;
1750
1751			/*
1752			 * don't write protect pager mappings
1753			 */
1754			if (!setem && (bit == PG_RW)) {
1755				if (va >= clean_sva && va < clean_eva)
1756					continue;
1757			}
1758			if (!pv->pv_pmap) {
1759				printf("Null pmap (cb) at va: 0x%lx\n", va);
1760				continue;
1761			}
1762			pte = pmap_pte(pv->pv_pmap, va);
1763			if (setem)
1764				(int) npte = (int) *pte | bit;
1765			else
1766				(int) npte = (int) *pte & ~bit;
1767			*pte = npte;
1768		}
1769	}
1770	splx(s);
1771	pmap_update();
1772}
1773
1774/*
1775 *      pmap_page_protect:
1776 *
1777 *      Lower the permission for all mappings to a given page.
1778 */
1779void
1780pmap_page_protect(phys, prot)
1781	vm_offset_t phys;
1782	vm_prot_t prot;
1783{
1784	if ((prot & VM_PROT_WRITE) == 0) {
1785		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
1786			pmap_changebit(phys, PG_RW, FALSE);
1787		else
1788			pmap_remove_all(phys);
1789	}
1790}
1791
1792vm_offset_t
1793pmap_phys_address(ppn)
1794	int ppn;
1795{
1796	return (i386_ptob(ppn));
1797}
1798
1799/*
1800 *	pmap_is_referenced:
1801 *
1802 *	Return whether or not the specified physical page was referenced
1803 *	by any physical maps.
1804 */
1805boolean_t
1806pmap_is_referenced(vm_offset_t pa)
1807{
1808	return pmap_testbit((pa), PG_U);
1809}
1810
1811/*
1812 *	pmap_is_modified:
1813 *
1814 *	Return whether or not the specified physical page was modified
1815 *	in any physical maps.
1816 */
1817boolean_t
1818pmap_is_modified(vm_offset_t pa)
1819{
1820	return pmap_testbit((pa), PG_M);
1821}
1822
1823/*
1824 *	Clear the modify bits on the specified physical page.
1825 */
1826void
1827pmap_clear_modify(vm_offset_t pa)
1828{
1829	pmap_changebit((pa), PG_M, FALSE);
1830}
1831
1832/*
1833 *	pmap_clear_reference:
1834 *
1835 *	Clear the reference bit on the specified physical page.
1836 */
1837void
1838pmap_clear_reference(vm_offset_t pa)
1839{
1840	pmap_changebit((pa), PG_U, FALSE);
1841}
1842
1843/*
1844 * Miscellaneous support routines follow
1845 */
1846
1847static void
1848i386_protection_init()
1849{
1850	register int *kp, prot;
1851
1852	kp = protection_codes;
1853	for (prot = 0; prot < 8; prot++) {
1854		switch (prot) {
1855		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
1856			/*
1857			 * Read access is also 0. There isn't any execute bit,
1858			 * so just make it readable.
1859			 */
1860		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
1861		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
1862		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
1863			*kp++ = 0;
1864			break;
1865		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
1866		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
1867		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
1868		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
1869			*kp++ = PG_RW;
1870			break;
1871		}
1872	}
1873}
1874
1875/*
1876 * Map a set of physical memory pages into the kernel virtual
1877 * address space. Return a pointer to where it is mapped. This
1878 * routine is intended to be used for mapping device memory,
1879 * NOT real memory. The non-cacheable bits are set on each
1880 * mapped page.
1881 */
1882void *
1883pmap_mapdev(pa, size)
1884	vm_offset_t pa;
1885	vm_size_t size;
1886{
1887	vm_offset_t va, tmpva;
1888	pt_entry_t *pte;
1889
1890	pa = trunc_page(pa);
1891	size = roundup(size, PAGE_SIZE);
1892
1893	va = kmem_alloc_pageable(kernel_map, size);
1894	if (!va)
1895		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
1896
1897	for (tmpva = va; size > 0;) {
1898		pte = vtopte(tmpva);
1899		*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_N));
1900		size -= PAGE_SIZE;
1901		tmpva += PAGE_SIZE;
1902		pa += PAGE_SIZE;
1903	}
1904	pmap_update();
1905
1906	return ((void *) va);
1907}
1908
1909#ifdef DEBUG
1910/* print address space of pmap*/
1911void
1912pads(pm)
1913	pmap_t pm;
1914{
1915	unsigned va, i, j;
1916	pt_entry_t *ptep;
1917
1918	if (pm == kernel_pmap)
1919		return;
1920	for (i = 0; i < 1024; i++)
1921		if (pm->pm_pdir[i])
1922			for (j = 0; j < 1024; j++) {
1923				va = (i << PD_SHIFT) + (j << PG_SHIFT);
1924				if (pm == kernel_pmap && va < KERNBASE)
1925					continue;
1926				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
1927					continue;
1928				ptep = pmap_pte(pm, va);
1929				if (pmap_pte_v(ptep))
1930					printf("%x:%x ", va, *(int *) ptep);
1931			};
1932
1933}
1934
1935void
1936pmap_pvdump(pa)
1937	vm_offset_t pa;
1938{
1939	register pv_entry_t pv;
1940
1941	printf("pa %x", pa);
1942	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
1943#ifdef used_to_be
1944		printf(" -> pmap %x, va %x, flags %x",
1945		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
1946#endif
1947		printf(" -> pmap %x, va %x",
1948		    pv->pv_pmap, pv->pv_va);
1949		pads(pv->pv_pmap);
1950	}
1951	printf(" ");
1952}
1953#endif
1954