pmap.c revision 128098
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43/*-
44 * Copyright (c) 2003 Networks Associates Technology, Inc.
45 * All rights reserved.
46 *
47 * This software was developed for the FreeBSD Project by Jake Burkholder,
48 * Safeport Network Services, and Network Associates Laboratories, the
49 * Security Research Division of Network Associates, Inc. under
50 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
51 * CHATS research program.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 *    notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 *    notice, this list of conditions and the following disclaimer in the
60 *    documentation and/or other materials provided with the distribution.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 128098 2004-04-10 23:28:49Z alc $");
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_cpu.h"
105#include "opt_pmap.h"
106#include "opt_msgbuf.h"
107#include "opt_kstack_pages.h"
108
109#include <sys/param.h>
110#include <sys/systm.h>
111#include <sys/kernel.h>
112#include <sys/lock.h>
113#include <sys/mman.h>
114#include <sys/msgbuf.h>
115#include <sys/mutex.h>
116#include <sys/proc.h>
117#include <sys/sx.h>
118#include <sys/user.h>
119#include <sys/vmmeter.h>
120#include <sys/sched.h>
121#include <sys/sysctl.h>
122#ifdef SMP
123#include <sys/smp.h>
124#endif
125
126#include <vm/vm.h>
127#include <vm/vm_param.h>
128#include <vm/vm_kern.h>
129#include <vm/vm_page.h>
130#include <vm/vm_map.h>
131#include <vm/vm_object.h>
132#include <vm/vm_extern.h>
133#include <vm/vm_pageout.h>
134#include <vm/vm_pager.h>
135#include <vm/uma.h>
136
137#include <machine/cpu.h>
138#include <machine/cputypes.h>
139#include <machine/md_var.h>
140#include <machine/specialreg.h>
141#ifdef SMP
142#include <machine/smp.h>
143#endif
144
145#if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
146#define CPU_ENABLE_SSE
147#endif
148#if defined(CPU_DISABLE_SSE)
149#undef CPU_ENABLE_SSE
150#endif
151
152#define PMAP_KEEP_PDIRS
153#ifndef PMAP_SHPGPERPROC
154#define PMAP_SHPGPERPROC 200
155#endif
156
157#if defined(DIAGNOSTIC)
158#define PMAP_DIAGNOSTIC
159#endif
160
161#define MINPV 2048
162
163#if !defined(PMAP_DIAGNOSTIC)
164#define PMAP_INLINE __inline
165#else
166#define PMAP_INLINE
167#endif
168
169/*
170 * Get PDEs and PTEs for user/kernel address space
171 */
172#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
173#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
174
175#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
176#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
177#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
178#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
179#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
180
181#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
182#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
183
184struct pmap kernel_pmap_store;
185LIST_HEAD(pmaplist, pmap);
186static struct pmaplist allpmaps;
187static struct mtx allpmaps_lock;
188#ifdef SMP
189static struct mtx lazypmap_lock;
190#endif
191
192vm_paddr_t avail_end;	/* PA of last available physical page */
193vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
194vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
195static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
196int pgeflag = 0;		/* PG_G or-in */
197int pseflag = 0;		/* PG_PS or-in */
198
199static int nkpt;
200vm_offset_t kernel_vm_end;
201extern u_int32_t KERNend;
202
203#ifdef PAE
204static uma_zone_t pdptzone;
205#endif
206
207/*
208 * Data for the pv entry allocation mechanism
209 */
210static uma_zone_t pvzone;
211static struct vm_object pvzone_obj;
212static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
213int pmap_pagedaemon_waken;
214
215/*
216 * All those kernel PT submaps that BSD is so fond of
217 */
218pt_entry_t *CMAP1 = 0;
219static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
220caddr_t CADDR1 = 0, ptvmmap = 0;
221static caddr_t CADDR2, CADDR3;
222static struct mtx CMAPCADDR12_lock;
223static pt_entry_t *msgbufmap;
224struct msgbuf *msgbufp = 0;
225
226/*
227 * Crashdump maps.
228 */
229static pt_entry_t *pt_crashdumpmap;
230static caddr_t crashdumpmap;
231
232#ifdef SMP
233extern pt_entry_t *SMPpt;
234#endif
235static pt_entry_t *PMAP1 = 0, *PMAP2;
236static pt_entry_t *PADDR1 = 0, *PADDR2;
237#ifdef SMP
238static int PMAP1cpu;
239static int PMAP1changedcpu;
240SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
241	   &PMAP1changedcpu, 0,
242	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
243#endif
244static int PMAP1changed;
245SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
246	   &PMAP1changed, 0,
247	   "Number of times pmap_pte_quick changed PMAP1");
248static int PMAP1unchanged;
249SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
250	   &PMAP1unchanged, 0,
251	   "Number of times pmap_pte_quick didn't change PMAP1");
252
253static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
254static pv_entry_t get_pv_entry(void);
255static void	pmap_clear_ptes(vm_page_t m, int bit)
256    __always_inline;
257
258static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
259static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
260static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
261					vm_offset_t va);
262static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
263		vm_page_t mpte, vm_page_t m);
264
265static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
266
267static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
268static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
269static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
270static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
271#ifdef PAE
272static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
273#endif
274
275CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
276CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
277
278/*
279 * Move the kernel virtual free pointer to the next
280 * 4MB.  This is used to help improve performance
281 * by using a large (4MB) page for much of the kernel
282 * (.text, .data, .bss)
283 */
284static vm_offset_t
285pmap_kmem_choose(vm_offset_t addr)
286{
287	vm_offset_t newaddr = addr;
288
289#ifndef DISABLE_PSE
290	if (cpu_feature & CPUID_PSE)
291		newaddr = (addr + PDRMASK) & ~PDRMASK;
292#endif
293	return newaddr;
294}
295
296/*
297 *	Bootstrap the system enough to run with virtual memory.
298 *
299 *	On the i386 this is called after mapping has already been enabled
300 *	and just syncs the pmap module with what has already been done.
301 *	[We can't call it easily with mapping off since the kernel is not
302 *	mapped with PA == VA, hence we would have to relocate every address
303 *	from the linked base (virtual) address "KERNBASE" to the actual
304 *	(physical) address starting relative to 0]
305 */
306void
307pmap_bootstrap(firstaddr, loadaddr)
308	vm_paddr_t firstaddr;
309	vm_paddr_t loadaddr;
310{
311	vm_offset_t va;
312	pt_entry_t *pte;
313	int i;
314
315	/*
316	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
317	 * large. It should instead be correctly calculated in locore.s and
318	 * not based on 'first' (which is a physical address, not a virtual
319	 * address, for the start of unused physical memory). The kernel
320	 * page tables are NOT double mapped and thus should not be included
321	 * in this calculation.
322	 */
323	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
324	virtual_avail = pmap_kmem_choose(virtual_avail);
325
326	virtual_end = VM_MAX_KERNEL_ADDRESS;
327
328	/*
329	 * Initialize the kernel pmap (which is statically allocated).
330	 */
331	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
332#ifdef PAE
333	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
334#endif
335	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
336	TAILQ_INIT(&kernel_pmap->pm_pvlist);
337	LIST_INIT(&allpmaps);
338#ifdef SMP
339	mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
340#endif
341	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
342	mtx_lock_spin(&allpmaps_lock);
343	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
344	mtx_unlock_spin(&allpmaps_lock);
345	nkpt = NKPT;
346
347	/*
348	 * Reserve some special page table entries/VA space for temporary
349	 * mapping of pages.
350	 */
351#define	SYSMAP(c, p, v, n)	\
352	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
353
354	va = virtual_avail;
355	pte = vtopte(va);
356
357	/*
358	 * CMAP1/CMAP2 are used for zeroing and copying pages.
359	 * CMAP3 is used for the idle process page zeroing.
360	 */
361	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
362	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
363	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
364	*CMAP3 = 0;
365
366	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
367
368	/*
369	 * Crashdump maps.
370	 */
371	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
372
373	/*
374	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
375	 * XXX ptmmap is not used.
376	 */
377	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
378
379	/*
380	 * msgbufp is used to map the system message buffer.
381	 * XXX msgbufmap is not used.
382	 */
383	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
384	       atop(round_page(MSGBUF_SIZE)))
385
386	/*
387	 * ptemap is used for pmap_pte_quick
388	 */
389	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
390	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
391
392	virtual_avail = va;
393
394	*CMAP1 = *CMAP2 = 0;
395	for (i = 0; i < NKPT; i++)
396		PTD[i] = 0;
397
398	/* Turn on PG_G on kernel page(s) */
399	pmap_set_pg();
400}
401
402/*
403 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
404 */
405void
406pmap_set_pg(void)
407{
408	pd_entry_t pdir;
409	pt_entry_t *pte;
410	vm_offset_t va, endva;
411	int i;
412
413	if (pgeflag == 0)
414		return;
415
416	i = KERNLOAD/NBPDR;
417	endva = KERNBASE + KERNend;
418
419	if (pseflag) {
420		va = KERNBASE + KERNLOAD;
421		while (va  < endva) {
422			pdir = kernel_pmap->pm_pdir[KPTDI+i];
423			pdir |= pgeflag;
424			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
425			invltlb();	/* Play it safe, invltlb() every time */
426			i++;
427			va += NBPDR;
428		}
429	} else {
430		va = (vm_offset_t)btext;
431		while (va < endva) {
432			pte = vtopte(va);
433			if (*pte)
434				*pte |= pgeflag;
435			invltlb();	/* Play it safe, invltlb() every time */
436			va += PAGE_SIZE;
437		}
438	}
439}
440
441#ifdef PAE
442static void *
443pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
444{
445	*flags = UMA_SLAB_PRIV;
446	return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
447}
448#endif
449
450/*
451 *	Initialize the pmap module.
452 *	Called by vm_init, to initialize any structures that the pmap
453 *	system needs to map virtual memory.
454 *	pmap_init has been enhanced to support in a fairly consistant
455 *	way, discontiguous physical memory.
456 */
457void
458pmap_init(void)
459{
460	int i;
461
462	/*
463	 * Allocate memory for random pmap data structures.  Includes the
464	 * pv_head_table.
465	 */
466
467	for(i = 0; i < vm_page_array_size; i++) {
468		vm_page_t m;
469
470		m = &vm_page_array[i];
471		TAILQ_INIT(&m->md.pv_list);
472		m->md.pv_list_count = 0;
473	}
474
475	/*
476	 * init the pv free list
477	 */
478	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
479	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
480	uma_prealloc(pvzone, MINPV);
481
482#ifdef PAE
483	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
484	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
485	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
486	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
487#endif
488
489	/*
490	 * Now it is safe to enable pv_table recording.
491	 */
492	pmap_initialized = TRUE;
493}
494
495/*
496 * Initialize the address space (zone) for the pv_entries.  Set a
497 * high water mark so that the system can recover from excessive
498 * numbers of pv entries.
499 */
500void
501pmap_init2()
502{
503	int shpgperproc = PMAP_SHPGPERPROC;
504
505	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
506	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
507	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
508	pv_entry_high_water = 9 * (pv_entry_max / 10);
509	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
510}
511
512
513/***************************************************
514 * Low level helper routines.....
515 ***************************************************/
516
517#if defined(PMAP_DIAGNOSTIC)
518
519/*
520 * This code checks for non-writeable/modified pages.
521 * This should be an invalid condition.
522 */
523static int
524pmap_nw_modified(pt_entry_t ptea)
525{
526	int pte;
527
528	pte = (int) ptea;
529
530	if ((pte & (PG_M|PG_RW)) == PG_M)
531		return 1;
532	else
533		return 0;
534}
535#endif
536
537
538/*
539 * this routine defines the region(s) of memory that should
540 * not be tested for the modified bit.
541 */
542static PMAP_INLINE int
543pmap_track_modified(vm_offset_t va)
544{
545	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
546		return 1;
547	else
548		return 0;
549}
550
551#ifdef I386_CPU
552/*
553 * i386 only has "invalidate everything" and no SMP to worry about.
554 */
555PMAP_INLINE void
556pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
557{
558
559	if (pmap == kernel_pmap || pmap->pm_active)
560		invltlb();
561}
562
563PMAP_INLINE void
564pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
565{
566
567	if (pmap == kernel_pmap || pmap->pm_active)
568		invltlb();
569}
570
571PMAP_INLINE void
572pmap_invalidate_all(pmap_t pmap)
573{
574
575	if (pmap == kernel_pmap || pmap->pm_active)
576		invltlb();
577}
578#else /* !I386_CPU */
579#ifdef SMP
580/*
581 * For SMP, these functions have to use the IPI mechanism for coherence.
582 */
583void
584pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
585{
586	u_int cpumask;
587	u_int other_cpus;
588
589	if (smp_started) {
590		if (!(read_eflags() & PSL_I))
591			panic("%s: interrupts disabled", __func__);
592		mtx_lock_spin(&smp_tlb_mtx);
593	} else
594		critical_enter();
595	/*
596	 * We need to disable interrupt preemption but MUST NOT have
597	 * interrupts disabled here.
598	 * XXX we may need to hold schedlock to get a coherent pm_active
599	 * XXX critical sections disable interrupts again
600	 */
601	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
602		invlpg(va);
603		smp_invlpg(va);
604	} else {
605		cpumask = PCPU_GET(cpumask);
606		other_cpus = PCPU_GET(other_cpus);
607		if (pmap->pm_active & cpumask)
608			invlpg(va);
609		if (pmap->pm_active & other_cpus)
610			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
611	}
612	if (smp_started)
613		mtx_unlock_spin(&smp_tlb_mtx);
614	else
615		critical_exit();
616}
617
618void
619pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
620{
621	u_int cpumask;
622	u_int other_cpus;
623	vm_offset_t addr;
624
625	if (smp_started) {
626		if (!(read_eflags() & PSL_I))
627			panic("%s: interrupts disabled", __func__);
628		mtx_lock_spin(&smp_tlb_mtx);
629	} else
630		critical_enter();
631	/*
632	 * We need to disable interrupt preemption but MUST NOT have
633	 * interrupts disabled here.
634	 * XXX we may need to hold schedlock to get a coherent pm_active
635	 * XXX critical sections disable interrupts again
636	 */
637	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
638		for (addr = sva; addr < eva; addr += PAGE_SIZE)
639			invlpg(addr);
640		smp_invlpg_range(sva, eva);
641	} else {
642		cpumask = PCPU_GET(cpumask);
643		other_cpus = PCPU_GET(other_cpus);
644		if (pmap->pm_active & cpumask)
645			for (addr = sva; addr < eva; addr += PAGE_SIZE)
646				invlpg(addr);
647		if (pmap->pm_active & other_cpus)
648			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
649			    sva, eva);
650	}
651	if (smp_started)
652		mtx_unlock_spin(&smp_tlb_mtx);
653	else
654		critical_exit();
655}
656
657void
658pmap_invalidate_all(pmap_t pmap)
659{
660	u_int cpumask;
661	u_int other_cpus;
662
663	if (smp_started) {
664		if (!(read_eflags() & PSL_I))
665			panic("%s: interrupts disabled", __func__);
666		mtx_lock_spin(&smp_tlb_mtx);
667	} else
668		critical_enter();
669	/*
670	 * We need to disable interrupt preemption but MUST NOT have
671	 * interrupts disabled here.
672	 * XXX we may need to hold schedlock to get a coherent pm_active
673	 * XXX critical sections disable interrupts again
674	 */
675	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
676		invltlb();
677		smp_invltlb();
678	} else {
679		cpumask = PCPU_GET(cpumask);
680		other_cpus = PCPU_GET(other_cpus);
681		if (pmap->pm_active & cpumask)
682			invltlb();
683		if (pmap->pm_active & other_cpus)
684			smp_masked_invltlb(pmap->pm_active & other_cpus);
685	}
686	if (smp_started)
687		mtx_unlock_spin(&smp_tlb_mtx);
688	else
689		critical_exit();
690}
691#else /* !SMP */
692/*
693 * Normal, non-SMP, 486+ invalidation functions.
694 * We inline these within pmap.c for speed.
695 */
696PMAP_INLINE void
697pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
698{
699
700	if (pmap == kernel_pmap || pmap->pm_active)
701		invlpg(va);
702}
703
704PMAP_INLINE void
705pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
706{
707	vm_offset_t addr;
708
709	if (pmap == kernel_pmap || pmap->pm_active)
710		for (addr = sva; addr < eva; addr += PAGE_SIZE)
711			invlpg(addr);
712}
713
714PMAP_INLINE void
715pmap_invalidate_all(pmap_t pmap)
716{
717
718	if (pmap == kernel_pmap || pmap->pm_active)
719		invltlb();
720}
721#endif /* !SMP */
722#endif /* !I386_CPU */
723
724/*
725 * Are we current address space or kernel?  N.B. We return FALSE when
726 * a pmap's page table is in use because a kernel thread is borrowing
727 * it.  The borrowed page table can change spontaneously, making any
728 * dependence on its continued use subject to a race condition.
729 */
730static __inline int
731pmap_is_current(pmap_t pmap)
732{
733
734	return (pmap == kernel_pmap ||
735		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
736	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
737}
738
739/*
740 * If the given pmap is not the current pmap, Giant must be held.
741 */
742pt_entry_t *
743pmap_pte(pmap_t pmap, vm_offset_t va)
744{
745	pd_entry_t newpf;
746	pd_entry_t *pde;
747
748	pde = pmap_pde(pmap, va);
749	if (*pde & PG_PS)
750		return (pde);
751	if (*pde != 0) {
752		/* are we current address space or kernel? */
753		if (pmap_is_current(pmap))
754			return (vtopte(va));
755		GIANT_REQUIRED;
756		newpf = *pde & PG_FRAME;
757		if ((*PMAP2 & PG_FRAME) != newpf) {
758			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
759			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
760		}
761		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
762	}
763	return (0);
764}
765
766static __inline void
767invlcaddr(void *caddr)
768{
769#ifdef I386_CPU
770	invltlb();
771#else
772	invlpg((u_int)caddr);
773#endif
774}
775
776/*
777 * Super fast pmap_pte routine best used when scanning
778 * the pv lists.  This eliminates many coarse-grained
779 * invltlb calls.  Note that many of the pv list
780 * scans are across different pmaps.  It is very wasteful
781 * to do an entire invltlb for checking a single mapping.
782 *
783 * If the given pmap is not the current pmap, vm_page_queue_mtx
784 * must be held and curthread pinned to a CPU.
785 */
786static pt_entry_t *
787pmap_pte_quick(pmap_t pmap, vm_offset_t va)
788{
789	pd_entry_t newpf;
790	pd_entry_t *pde;
791
792	pde = pmap_pde(pmap, va);
793	if (*pde & PG_PS)
794		return (pde);
795	if (*pde != 0) {
796		/* are we current address space or kernel? */
797		if (pmap_is_current(pmap))
798			return (vtopte(va));
799		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
800		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
801		newpf = *pde & PG_FRAME;
802		if ((*PMAP1 & PG_FRAME) != newpf) {
803			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
804#ifdef SMP
805			PMAP1cpu = PCPU_GET(cpuid);
806#endif
807			invlcaddr(PADDR1);
808			PMAP1changed++;
809		} else
810#ifdef SMP
811		if (PMAP1cpu != PCPU_GET(cpuid)) {
812			PMAP1cpu = PCPU_GET(cpuid);
813			invlcaddr(PADDR1);
814			PMAP1changedcpu++;
815		} else
816#endif
817			PMAP1unchanged++;
818		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
819	}
820	return (0);
821}
822
823/*
824 *	Routine:	pmap_extract
825 *	Function:
826 *		Extract the physical page address associated
827 *		with the given map/virtual_address pair.
828 */
829vm_paddr_t
830pmap_extract(pmap, va)
831	register pmap_t pmap;
832	vm_offset_t va;
833{
834	vm_paddr_t rtval;
835	pt_entry_t *pte;
836	pd_entry_t pde;
837
838	if (pmap == 0)
839		return 0;
840	pde = pmap->pm_pdir[va >> PDRSHIFT];
841	if (pde != 0) {
842		if ((pde & PG_PS) != 0) {
843			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
844			return rtval;
845		}
846		pte = pmap_pte(pmap, va);
847		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
848		return rtval;
849	}
850	return 0;
851
852}
853
854/*
855 *	Routine:	pmap_extract_and_hold
856 *	Function:
857 *		Atomically extract and hold the physical page
858 *		with the given pmap and virtual address pair
859 *		if that mapping permits the given protection.
860 */
861vm_page_t
862pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
863{
864	vm_paddr_t pa;
865	vm_page_t m;
866
867	m = NULL;
868	mtx_lock(&Giant);
869	if ((pa = pmap_extract(pmap, va)) != 0) {
870		m = PHYS_TO_VM_PAGE(pa);
871		vm_page_lock_queues();
872		vm_page_hold(m);
873		vm_page_unlock_queues();
874	}
875	mtx_unlock(&Giant);
876	return (m);
877}
878
879/***************************************************
880 * Low level mapping routines.....
881 ***************************************************/
882
883/*
884 * Add a wired page to the kva.
885 * Note: not SMP coherent.
886 */
887PMAP_INLINE void
888pmap_kenter(vm_offset_t va, vm_paddr_t pa)
889{
890	pt_entry_t *pte;
891
892	pte = vtopte(va);
893	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
894}
895
896/*
897 * Remove a page from the kernel pagetables.
898 * Note: not SMP coherent.
899 */
900PMAP_INLINE void
901pmap_kremove(vm_offset_t va)
902{
903	pt_entry_t *pte;
904
905	pte = vtopte(va);
906	pte_clear(pte);
907}
908
909/*
910 *	Used to map a range of physical addresses into kernel
911 *	virtual address space.
912 *
913 *	The value passed in '*virt' is a suggested virtual address for
914 *	the mapping. Architectures which can support a direct-mapped
915 *	physical to virtual region can return the appropriate address
916 *	within that region, leaving '*virt' unchanged. Other
917 *	architectures should map the pages starting at '*virt' and
918 *	update '*virt' with the first usable address after the mapped
919 *	region.
920 */
921vm_offset_t
922pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
923{
924	vm_offset_t va, sva;
925
926	va = sva = *virt;
927	while (start < end) {
928		pmap_kenter(va, start);
929		va += PAGE_SIZE;
930		start += PAGE_SIZE;
931	}
932	pmap_invalidate_range(kernel_pmap, sva, va);
933	*virt = va;
934	return (sva);
935}
936
937
938/*
939 * Add a list of wired pages to the kva
940 * this routine is only used for temporary
941 * kernel mappings that do not need to have
942 * page modification or references recorded.
943 * Note that old mappings are simply written
944 * over.  The page *must* be wired.
945 * Note: SMP coherent.  Uses a ranged shootdown IPI.
946 */
947void
948pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
949{
950	vm_offset_t va;
951
952	va = sva;
953	while (count-- > 0) {
954		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
955		va += PAGE_SIZE;
956		m++;
957	}
958	pmap_invalidate_range(kernel_pmap, sva, va);
959}
960
961/*
962 * This routine tears out page mappings from the
963 * kernel -- it is meant only for temporary mappings.
964 * Note: SMP coherent.  Uses a ranged shootdown IPI.
965 */
966void
967pmap_qremove(vm_offset_t sva, int count)
968{
969	vm_offset_t va;
970
971	va = sva;
972	while (count-- > 0) {
973		pmap_kremove(va);
974		va += PAGE_SIZE;
975	}
976	pmap_invalidate_range(kernel_pmap, sva, va);
977}
978
979/***************************************************
980 * Page table page management routines.....
981 ***************************************************/
982
983/*
984 * This routine unholds page table pages, and if the hold count
985 * drops to zero, then it decrements the wire count.
986 */
987static int
988_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
989{
990
991	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
992		vm_page_lock_queues();
993
994	if (m->hold_count == 0) {
995		vm_offset_t pteva;
996		/*
997		 * unmap the page table page
998		 */
999		pmap->pm_pdir[m->pindex] = 0;
1000		--pmap->pm_stats.resident_count;
1001		/*
1002		 * We never unwire a kernel page table page, making a
1003		 * check for the kernel_pmap unnecessary.
1004		 */
1005		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)) {
1006			/*
1007			 * Do an invltlb to make the invalidated mapping
1008			 * take effect immediately.
1009			 */
1010			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1011			pmap_invalidate_page(pmap, pteva);
1012		}
1013
1014		/*
1015		 * If the page is finally unwired, simply free it.
1016		 */
1017		--m->wire_count;
1018		if (m->wire_count == 0) {
1019			vm_page_busy(m);
1020			vm_page_free_zero(m);
1021			atomic_subtract_int(&cnt.v_wire_count, 1);
1022		}
1023		return 1;
1024	}
1025	return 0;
1026}
1027
1028static PMAP_INLINE int
1029pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1030{
1031	vm_page_unhold(m);
1032	if (m->hold_count == 0)
1033		return _pmap_unwire_pte_hold(pmap, m);
1034	else
1035		return 0;
1036}
1037
1038/*
1039 * After removing a page table entry, this routine is used to
1040 * conditionally free the page, and manage the hold/wire counts.
1041 */
1042static int
1043pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1044{
1045
1046	if (va >= VM_MAXUSER_ADDRESS)
1047		return 0;
1048
1049	return pmap_unwire_pte_hold(pmap, mpte);
1050}
1051
1052void
1053pmap_pinit0(pmap)
1054	struct pmap *pmap;
1055{
1056
1057	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1058#ifdef PAE
1059	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1060#endif
1061	pmap->pm_active = 0;
1062	PCPU_SET(curpmap, pmap);
1063	TAILQ_INIT(&pmap->pm_pvlist);
1064	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1065	mtx_lock_spin(&allpmaps_lock);
1066	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1067	mtx_unlock_spin(&allpmaps_lock);
1068}
1069
1070/*
1071 * Initialize a preallocated and zeroed pmap structure,
1072 * such as one in a vmspace structure.
1073 */
1074void
1075pmap_pinit(pmap)
1076	register struct pmap *pmap;
1077{
1078	vm_page_t m, ptdpg[NPGPTD];
1079	vm_paddr_t pa;
1080	static int color;
1081	int i;
1082
1083	/*
1084	 * No need to allocate page table space yet but we do need a valid
1085	 * page directory table.
1086	 */
1087	if (pmap->pm_pdir == NULL) {
1088		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1089		    NBPTD);
1090#ifdef PAE
1091		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1092		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1093		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1094		    ("pmap_pinit: pdpt misaligned"));
1095		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1096		    ("pmap_pinit: pdpt above 4g"));
1097#endif
1098	}
1099
1100	/*
1101	 * allocate the page directory page(s)
1102	 */
1103	for (i = 0; i < NPGPTD;) {
1104		m = vm_page_alloc(NULL, color++,
1105		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1106		    VM_ALLOC_ZERO);
1107		if (m == NULL)
1108			VM_WAIT;
1109		else {
1110			ptdpg[i++] = m;
1111		}
1112	}
1113
1114	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1115
1116	for (i = 0; i < NPGPTD; i++) {
1117		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1118			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1119	}
1120
1121	mtx_lock_spin(&allpmaps_lock);
1122	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1123	mtx_unlock_spin(&allpmaps_lock);
1124	/* Wire in kernel global address entries. */
1125	/* XXX copies current process, does not fill in MPPTDI */
1126	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1127#ifdef SMP
1128	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1129#endif
1130
1131	/* install self-referential address mapping entry(s) */
1132	for (i = 0; i < NPGPTD; i++) {
1133		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1134		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1135#ifdef PAE
1136		pmap->pm_pdpt[i] = pa | PG_V;
1137#endif
1138	}
1139
1140	pmap->pm_active = 0;
1141	TAILQ_INIT(&pmap->pm_pvlist);
1142	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1143}
1144
1145/*
1146 * this routine is called if the page table page is not
1147 * mapped correctly.
1148 */
1149static vm_page_t
1150_pmap_allocpte(pmap, ptepindex)
1151	pmap_t	pmap;
1152	unsigned ptepindex;
1153{
1154	vm_paddr_t ptepa;
1155	vm_page_t m;
1156
1157	/*
1158	 * Allocate a page table page.
1159	 */
1160	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1161	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1162		VM_WAIT;
1163		/*
1164		 * Indicate the need to retry.  While waiting, the page table
1165		 * page may have been allocated.
1166		 */
1167		return (NULL);
1168	}
1169	if ((m->flags & PG_ZERO) == 0)
1170		pmap_zero_page(m);
1171
1172	KASSERT(m->queue == PQ_NONE,
1173		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1174
1175	/*
1176	 * Increment the hold count for the page table page
1177	 * (denoting a new mapping.)
1178	 */
1179	m->hold_count++;
1180
1181	/*
1182	 * Map the pagetable page into the process address space, if
1183	 * it isn't already there.
1184	 */
1185
1186	pmap->pm_stats.resident_count++;
1187
1188	ptepa = VM_PAGE_TO_PHYS(m);
1189	pmap->pm_pdir[ptepindex] =
1190		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1191
1192	vm_page_lock_queues();
1193	vm_page_wakeup(m);
1194	vm_page_unlock_queues();
1195
1196	return m;
1197}
1198
1199static vm_page_t
1200pmap_allocpte(pmap_t pmap, vm_offset_t va)
1201{
1202	unsigned ptepindex;
1203	pd_entry_t ptepa;
1204	vm_page_t m;
1205
1206	/*
1207	 * Calculate pagetable page index
1208	 */
1209	ptepindex = va >> PDRSHIFT;
1210retry:
1211	/*
1212	 * Get the page directory entry
1213	 */
1214	ptepa = pmap->pm_pdir[ptepindex];
1215
1216	/*
1217	 * This supports switching from a 4MB page to a
1218	 * normal 4K page.
1219	 */
1220	if (ptepa & PG_PS) {
1221		pmap->pm_pdir[ptepindex] = 0;
1222		ptepa = 0;
1223		pmap_invalidate_all(kernel_pmap);
1224	}
1225
1226	/*
1227	 * If the page table page is mapped, we just increment the
1228	 * hold count, and activate it.
1229	 */
1230	if (ptepa) {
1231		m = PHYS_TO_VM_PAGE(ptepa);
1232		m->hold_count++;
1233	} else {
1234		/*
1235		 * Here if the pte page isn't mapped, or if it has
1236		 * been deallocated.
1237		 */
1238		m = _pmap_allocpte(pmap, ptepindex);
1239		if (m == NULL)
1240			goto retry;
1241	}
1242	return (m);
1243}
1244
1245
1246/***************************************************
1247* Pmap allocation/deallocation routines.
1248 ***************************************************/
1249
1250#ifdef SMP
1251/*
1252 * Deal with a SMP shootdown of other users of the pmap that we are
1253 * trying to dispose of.  This can be a bit hairy.
1254 */
1255static u_int *lazymask;
1256static u_int lazyptd;
1257static volatile u_int lazywait;
1258
1259void pmap_lazyfix_action(void);
1260
1261void
1262pmap_lazyfix_action(void)
1263{
1264	u_int mymask = PCPU_GET(cpumask);
1265
1266	if (rcr3() == lazyptd)
1267		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1268	atomic_clear_int(lazymask, mymask);
1269	atomic_store_rel_int(&lazywait, 1);
1270}
1271
1272static void
1273pmap_lazyfix_self(u_int mymask)
1274{
1275
1276	if (rcr3() == lazyptd)
1277		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1278	atomic_clear_int(lazymask, mymask);
1279}
1280
1281
1282static void
1283pmap_lazyfix(pmap_t pmap)
1284{
1285	u_int mymask = PCPU_GET(cpumask);
1286	u_int mask;
1287	register u_int spins;
1288
1289	while ((mask = pmap->pm_active) != 0) {
1290		spins = 50000000;
1291		mask = mask & -mask;	/* Find least significant set bit */
1292		mtx_lock_spin(&lazypmap_lock);
1293#ifdef PAE
1294		lazyptd = vtophys(pmap->pm_pdpt);
1295#else
1296		lazyptd = vtophys(pmap->pm_pdir);
1297#endif
1298		if (mask == mymask) {
1299			lazymask = &pmap->pm_active;
1300			pmap_lazyfix_self(mymask);
1301		} else {
1302			atomic_store_rel_int((u_int *)&lazymask,
1303			    (u_int)&pmap->pm_active);
1304			atomic_store_rel_int(&lazywait, 0);
1305			ipi_selected(mask, IPI_LAZYPMAP);
1306			while (lazywait == 0) {
1307				ia32_pause();
1308				if (--spins == 0)
1309					break;
1310			}
1311		}
1312		mtx_unlock_spin(&lazypmap_lock);
1313		if (spins == 0)
1314			printf("pmap_lazyfix: spun for 50000000\n");
1315	}
1316}
1317
1318#else	/* SMP */
1319
1320/*
1321 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1322 * unlikely to have to even execute this code, including the fact
1323 * that the cleanup is deferred until the parent does a wait(2), which
1324 * means that another userland process has run.
1325 */
1326static void
1327pmap_lazyfix(pmap_t pmap)
1328{
1329	u_int cr3;
1330
1331	cr3 = vtophys(pmap->pm_pdir);
1332	if (cr3 == rcr3()) {
1333		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1334		pmap->pm_active &= ~(PCPU_GET(cpumask));
1335	}
1336}
1337#endif	/* SMP */
1338
1339/*
1340 * Release any resources held by the given physical map.
1341 * Called when a pmap initialized by pmap_pinit is being released.
1342 * Should only be called if the map contains no valid mappings.
1343 */
1344void
1345pmap_release(pmap_t pmap)
1346{
1347	vm_page_t m, ptdpg[NPGPTD];
1348	int i;
1349
1350	KASSERT(pmap->pm_stats.resident_count == 0,
1351	    ("pmap_release: pmap resident count %ld != 0",
1352	    pmap->pm_stats.resident_count));
1353
1354	pmap_lazyfix(pmap);
1355	mtx_lock_spin(&allpmaps_lock);
1356	LIST_REMOVE(pmap, pm_list);
1357	mtx_unlock_spin(&allpmaps_lock);
1358
1359	for (i = 0; i < NPGPTD; i++)
1360		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1361
1362	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1363	    sizeof(*pmap->pm_pdir));
1364#ifdef SMP
1365	pmap->pm_pdir[MPPTDI] = 0;
1366#endif
1367
1368	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1369
1370	vm_page_lock_queues();
1371	for (i = 0; i < NPGPTD; i++) {
1372		m = ptdpg[i];
1373#ifdef PAE
1374		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1375		    ("pmap_release: got wrong ptd page"));
1376#endif
1377		m->wire_count--;
1378		atomic_subtract_int(&cnt.v_wire_count, 1);
1379		vm_page_free_zero(m);
1380	}
1381	vm_page_unlock_queues();
1382}
1383
1384static int
1385kvm_size(SYSCTL_HANDLER_ARGS)
1386{
1387	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1388
1389	return sysctl_handle_long(oidp, &ksize, 0, req);
1390}
1391SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1392    0, 0, kvm_size, "IU", "Size of KVM");
1393
1394static int
1395kvm_free(SYSCTL_HANDLER_ARGS)
1396{
1397	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1398
1399	return sysctl_handle_long(oidp, &kfree, 0, req);
1400}
1401SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1402    0, 0, kvm_free, "IU", "Amount of KVM free");
1403
1404/*
1405 * grow the number of kernel page table entries, if needed
1406 */
1407void
1408pmap_growkernel(vm_offset_t addr)
1409{
1410	struct pmap *pmap;
1411	int s;
1412	vm_paddr_t ptppaddr;
1413	vm_page_t nkpg;
1414	pd_entry_t newpdir;
1415	pt_entry_t *pde;
1416
1417	s = splhigh();
1418	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1419	if (kernel_vm_end == 0) {
1420		kernel_vm_end = KERNBASE;
1421		nkpt = 0;
1422		while (pdir_pde(PTD, kernel_vm_end)) {
1423			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1424			nkpt++;
1425		}
1426	}
1427	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1428	while (kernel_vm_end < addr) {
1429		if (pdir_pde(PTD, kernel_vm_end)) {
1430			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1431			continue;
1432		}
1433
1434		/*
1435		 * This index is bogus, but out of the way
1436		 */
1437		nkpg = vm_page_alloc(NULL, nkpt,
1438		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1439		if (!nkpg)
1440			panic("pmap_growkernel: no memory to grow kernel");
1441
1442		nkpt++;
1443
1444		pmap_zero_page(nkpg);
1445		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1446		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1447		pdir_pde(PTD, kernel_vm_end) = newpdir;
1448
1449		mtx_lock_spin(&allpmaps_lock);
1450		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1451			pde = pmap_pde(pmap, kernel_vm_end);
1452			pde_store(pde, newpdir);
1453		}
1454		mtx_unlock_spin(&allpmaps_lock);
1455		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1456	}
1457	splx(s);
1458}
1459
1460
1461/***************************************************
1462 * page management routines.
1463 ***************************************************/
1464
1465/*
1466 * free the pv_entry back to the free list
1467 */
1468static PMAP_INLINE void
1469free_pv_entry(pv_entry_t pv)
1470{
1471	pv_entry_count--;
1472	uma_zfree(pvzone, pv);
1473}
1474
1475/*
1476 * get a new pv_entry, allocating a block from the system
1477 * when needed.
1478 * the memory allocation is performed bypassing the malloc code
1479 * because of the possibility of allocations at interrupt time.
1480 */
1481static pv_entry_t
1482get_pv_entry(void)
1483{
1484	pv_entry_count++;
1485	if (pv_entry_high_water &&
1486		(pv_entry_count > pv_entry_high_water) &&
1487		(pmap_pagedaemon_waken == 0)) {
1488		pmap_pagedaemon_waken = 1;
1489		wakeup (&vm_pages_needed);
1490	}
1491	return uma_zalloc(pvzone, M_NOWAIT);
1492}
1493
1494/*
1495 * If it is the first entry on the list, it is actually
1496 * in the header and we must copy the following entry up
1497 * to the header.  Otherwise we must search the list for
1498 * the entry.  In either case we free the now unused entry.
1499 */
1500
1501static int
1502pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1503{
1504	pv_entry_t pv;
1505	int rtval;
1506	int s;
1507
1508	s = splvm();
1509	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1510	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1511		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1512			if (pmap == pv->pv_pmap && va == pv->pv_va)
1513				break;
1514		}
1515	} else {
1516		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1517			if (va == pv->pv_va)
1518				break;
1519		}
1520	}
1521
1522	rtval = 0;
1523	if (pv) {
1524		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1525		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1526		m->md.pv_list_count--;
1527		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1528			vm_page_flag_clear(m, PG_WRITEABLE);
1529
1530		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1531		free_pv_entry(pv);
1532	}
1533
1534	splx(s);
1535	return rtval;
1536}
1537
1538/*
1539 * Create a pv entry for page at pa for
1540 * (pmap, va).
1541 */
1542static void
1543pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1544{
1545
1546	int s;
1547	pv_entry_t pv;
1548
1549	s = splvm();
1550	pv = get_pv_entry();
1551	pv->pv_va = va;
1552	pv->pv_pmap = pmap;
1553	pv->pv_ptem = mpte;
1554
1555	vm_page_lock_queues();
1556	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1557	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1558	m->md.pv_list_count++;
1559
1560	vm_page_unlock_queues();
1561	splx(s);
1562}
1563
1564/*
1565 * pmap_remove_pte: do the things to unmap a page in a process
1566 */
1567static int
1568pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1569{
1570	pt_entry_t oldpte;
1571	vm_page_t m, mpte;
1572
1573	oldpte = pte_load_clear(ptq);
1574	if (oldpte & PG_W)
1575		pmap->pm_stats.wired_count -= 1;
1576	/*
1577	 * Machines that don't support invlpg, also don't support
1578	 * PG_G.
1579	 */
1580	if (oldpte & PG_G)
1581		pmap_invalidate_page(kernel_pmap, va);
1582	pmap->pm_stats.resident_count -= 1;
1583	if (oldpte & PG_MANAGED) {
1584		m = PHYS_TO_VM_PAGE(oldpte);
1585		if (oldpte & PG_M) {
1586#if defined(PMAP_DIAGNOSTIC)
1587			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1588				printf(
1589	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1590				    va, oldpte);
1591			}
1592#endif
1593			if (pmap_track_modified(va))
1594				vm_page_dirty(m);
1595		}
1596		if (oldpte & PG_A)
1597			vm_page_flag_set(m, PG_REFERENCED);
1598		return pmap_remove_entry(pmap, m, va);
1599	} else {
1600		mpte = PHYS_TO_VM_PAGE(*pmap_pde(pmap, va));
1601		return pmap_unuse_pt(pmap, va, mpte);
1602	}
1603}
1604
1605/*
1606 * Remove a single page from a process address space
1607 */
1608static void
1609pmap_remove_page(pmap_t pmap, vm_offset_t va)
1610{
1611	pt_entry_t *pte;
1612
1613	if ((pte = pmap_pte(pmap, va)) == NULL || *pte == 0)
1614		return;
1615	pmap_remove_pte(pmap, pte, va);
1616	pmap_invalidate_page(pmap, va);
1617}
1618
1619/*
1620 *	Remove the given range of addresses from the specified map.
1621 *
1622 *	It is assumed that the start and end are properly
1623 *	rounded to the page size.
1624 */
1625void
1626pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1627{
1628	vm_offset_t pdnxt;
1629	pd_entry_t ptpaddr;
1630	pt_entry_t *pte;
1631	int anyvalid;
1632
1633	if (pmap == NULL)
1634		return;
1635
1636	if (pmap->pm_stats.resident_count == 0)
1637		return;
1638
1639	/*
1640	 * special handling of removing one page.  a very
1641	 * common operation and easy to short circuit some
1642	 * code.
1643	 */
1644	if ((sva + PAGE_SIZE == eva) &&
1645	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1646		pmap_remove_page(pmap, sva);
1647		return;
1648	}
1649
1650	anyvalid = 0;
1651
1652	for (; sva < eva; sva = pdnxt) {
1653		unsigned pdirindex;
1654
1655		/*
1656		 * Calculate index for next page table.
1657		 */
1658		pdnxt = (sva + NBPDR) & ~PDRMASK;
1659		if (pmap->pm_stats.resident_count == 0)
1660			break;
1661
1662		pdirindex = sva >> PDRSHIFT;
1663		ptpaddr = pmap->pm_pdir[pdirindex];
1664
1665		/*
1666		 * Weed out invalid mappings. Note: we assume that the page
1667		 * directory table is always allocated, and in kernel virtual.
1668		 */
1669		if (ptpaddr == 0)
1670			continue;
1671
1672		/*
1673		 * Check for large page.
1674		 */
1675		if ((ptpaddr & PG_PS) != 0) {
1676			pmap->pm_pdir[pdirindex] = 0;
1677			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1678			anyvalid = 1;
1679			continue;
1680		}
1681
1682		/*
1683		 * Limit our scan to either the end of the va represented
1684		 * by the current page table page, or to the end of the
1685		 * range being removed.
1686		 */
1687		if (pdnxt > eva)
1688			pdnxt = eva;
1689
1690		for (; sva != pdnxt; sva += PAGE_SIZE) {
1691			if ((pte = pmap_pte(pmap, sva)) == NULL ||
1692			    *pte == 0)
1693				continue;
1694			anyvalid = 1;
1695			if (pmap_remove_pte(pmap, pte, sva))
1696				break;
1697		}
1698	}
1699
1700	if (anyvalid)
1701		pmap_invalidate_all(pmap);
1702}
1703
1704/*
1705 *	Routine:	pmap_remove_all
1706 *	Function:
1707 *		Removes this physical page from
1708 *		all physical maps in which it resides.
1709 *		Reflects back modify bits to the pager.
1710 *
1711 *	Notes:
1712 *		Original versions of this routine were very
1713 *		inefficient because they iteratively called
1714 *		pmap_remove (slow...)
1715 */
1716
1717void
1718pmap_remove_all(vm_page_t m)
1719{
1720	register pv_entry_t pv;
1721	pt_entry_t *pte, tpte;
1722	int s;
1723
1724#if defined(PMAP_DIAGNOSTIC)
1725	/*
1726	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1727	 */
1728	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1729		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1730		    VM_PAGE_TO_PHYS(m));
1731	}
1732#endif
1733	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1734	s = splvm();
1735	sched_pin();
1736	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1737		pv->pv_pmap->pm_stats.resident_count--;
1738		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1739		tpte = pte_load_clear(pte);
1740		if (tpte & PG_W)
1741			pv->pv_pmap->pm_stats.wired_count--;
1742		if (tpte & PG_A)
1743			vm_page_flag_set(m, PG_REFERENCED);
1744
1745		/*
1746		 * Update the vm_page_t clean and reference bits.
1747		 */
1748		if (tpte & PG_M) {
1749#if defined(PMAP_DIAGNOSTIC)
1750			if (pmap_nw_modified((pt_entry_t) tpte)) {
1751				printf(
1752	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1753				    pv->pv_va, tpte);
1754			}
1755#endif
1756			if (pmap_track_modified(pv->pv_va))
1757				vm_page_dirty(m);
1758		}
1759		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1760		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1761		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1762		m->md.pv_list_count--;
1763		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1764		free_pv_entry(pv);
1765	}
1766	vm_page_flag_clear(m, PG_WRITEABLE);
1767	sched_unpin();
1768	splx(s);
1769}
1770
1771/*
1772 *	Set the physical protection on the
1773 *	specified range of this map as requested.
1774 */
1775void
1776pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1777{
1778	vm_offset_t pdnxt;
1779	pd_entry_t ptpaddr;
1780	int anychanged;
1781
1782	if (pmap == NULL)
1783		return;
1784
1785	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1786		pmap_remove(pmap, sva, eva);
1787		return;
1788	}
1789
1790	if (prot & VM_PROT_WRITE)
1791		return;
1792
1793	anychanged = 0;
1794
1795	for (; sva < eva; sva = pdnxt) {
1796		unsigned pdirindex;
1797
1798		pdnxt = (sva + NBPDR) & ~PDRMASK;
1799
1800		pdirindex = sva >> PDRSHIFT;
1801		ptpaddr = pmap->pm_pdir[pdirindex];
1802
1803		/*
1804		 * Weed out invalid mappings. Note: we assume that the page
1805		 * directory table is always allocated, and in kernel virtual.
1806		 */
1807		if (ptpaddr == 0)
1808			continue;
1809
1810		/*
1811		 * Check for large page.
1812		 */
1813		if ((ptpaddr & PG_PS) != 0) {
1814			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1815			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1816			anychanged = 1;
1817			continue;
1818		}
1819
1820		if (pdnxt > eva)
1821			pdnxt = eva;
1822
1823		for (; sva != pdnxt; sva += PAGE_SIZE) {
1824			pt_entry_t pbits;
1825			pt_entry_t *pte;
1826			vm_page_t m;
1827
1828			if ((pte = pmap_pte(pmap, sva)) == NULL)
1829				continue;
1830			pbits = *pte;
1831			if (pbits & PG_MANAGED) {
1832				m = NULL;
1833				if (pbits & PG_A) {
1834					m = PHYS_TO_VM_PAGE(pbits);
1835					vm_page_flag_set(m, PG_REFERENCED);
1836					pbits &= ~PG_A;
1837				}
1838				if ((pbits & PG_M) != 0 &&
1839				    pmap_track_modified(sva)) {
1840					if (m == NULL)
1841						m = PHYS_TO_VM_PAGE(pbits);
1842					vm_page_dirty(m);
1843					pbits &= ~PG_M;
1844				}
1845			}
1846
1847			pbits &= ~PG_RW;
1848
1849			if (pbits != *pte) {
1850				pte_store(pte, pbits);
1851				anychanged = 1;
1852			}
1853		}
1854	}
1855	if (anychanged)
1856		pmap_invalidate_all(pmap);
1857}
1858
1859/*
1860 *	Insert the given physical page (p) at
1861 *	the specified virtual address (v) in the
1862 *	target physical map with the protection requested.
1863 *
1864 *	If specified, the page will be wired down, meaning
1865 *	that the related pte can not be reclaimed.
1866 *
1867 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1868 *	or lose information.  That is, this routine must actually
1869 *	insert this page into the given map NOW.
1870 */
1871void
1872pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1873	   boolean_t wired)
1874{
1875	vm_paddr_t pa;
1876	register pt_entry_t *pte;
1877	vm_paddr_t opa;
1878	pt_entry_t origpte, newpte;
1879	vm_page_t mpte;
1880
1881	if (pmap == NULL)
1882		return;
1883
1884	va &= PG_FRAME;
1885#ifdef PMAP_DIAGNOSTIC
1886	if (va > VM_MAX_KERNEL_ADDRESS)
1887		panic("pmap_enter: toobig");
1888	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1889		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1890#endif
1891
1892	mpte = NULL;
1893	/*
1894	 * In the case that a page table page is not
1895	 * resident, we are creating it here.
1896	 */
1897	if (va < VM_MAXUSER_ADDRESS) {
1898		mpte = pmap_allocpte(pmap, va);
1899	}
1900#if 0 && defined(PMAP_DIAGNOSTIC)
1901	else {
1902		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1903		origpte = *pdeaddr;
1904		if ((origpte & PG_V) == 0) {
1905			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1906				pmap->pm_pdir[PTDPTDI], origpte, va);
1907		}
1908	}
1909#endif
1910
1911	pte = pmap_pte(pmap, va);
1912
1913	/*
1914	 * Page Directory table entry not valid, we need a new PT page
1915	 */
1916	if (pte == NULL) {
1917		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1918			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1919	}
1920
1921	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1922	origpte = *pte;
1923	opa = origpte & PG_FRAME;
1924
1925	if (origpte & PG_PS) {
1926		/*
1927		 * Yes, I know this will truncate upper address bits for PAE,
1928		 * but I'm actually more interested in the lower bits
1929		 */
1930		printf("pmap_enter: va %p, pte %p, origpte %p\n",
1931		    (void *)va, (void *)pte, (void *)(uintptr_t)origpte);
1932		panic("pmap_enter: attempted pmap_enter on 4MB page");
1933	}
1934
1935	/*
1936	 * Mapping has not changed, must be protection or wiring change.
1937	 */
1938	if (origpte && (opa == pa)) {
1939		/*
1940		 * Wiring change, just update stats. We don't worry about
1941		 * wiring PT pages as they remain resident as long as there
1942		 * are valid mappings in them. Hence, if a user page is wired,
1943		 * the PT page will be also.
1944		 */
1945		if (wired && ((origpte & PG_W) == 0))
1946			pmap->pm_stats.wired_count++;
1947		else if (!wired && (origpte & PG_W))
1948			pmap->pm_stats.wired_count--;
1949
1950#if defined(PMAP_DIAGNOSTIC)
1951		if (pmap_nw_modified((pt_entry_t) origpte)) {
1952			printf(
1953	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1954			    va, origpte);
1955		}
1956#endif
1957
1958		/*
1959		 * Remove extra pte reference
1960		 */
1961		if (mpte)
1962			mpte->hold_count--;
1963
1964		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
1965			if ((origpte & PG_RW) == 0) {
1966				pte_store(pte, origpte | PG_RW);
1967				pmap_invalidate_page(pmap, va);
1968			}
1969			return;
1970		}
1971
1972		/*
1973		 * We might be turning off write access to the page,
1974		 * so we go ahead and sense modify status.
1975		 */
1976		if (origpte & PG_MANAGED) {
1977			if ((origpte & PG_M) && pmap_track_modified(va)) {
1978				vm_page_t om;
1979				om = PHYS_TO_VM_PAGE(opa);
1980				vm_page_dirty(om);
1981			}
1982			pa |= PG_MANAGED;
1983		}
1984		goto validate;
1985	}
1986	/*
1987	 * Mapping has changed, invalidate old range and fall through to
1988	 * handle validating new mapping.
1989	 */
1990	if (opa) {
1991		int err;
1992		vm_page_lock_queues();
1993		err = pmap_remove_pte(pmap, pte, va);
1994		vm_page_unlock_queues();
1995		if (err)
1996			panic("pmap_enter: pte vanished, va: 0x%x", va);
1997	}
1998
1999	/*
2000	 * Enter on the PV list if part of our managed memory. Note that we
2001	 * raise IPL while manipulating pv_table since pmap_enter can be
2002	 * called at interrupt time.
2003	 */
2004	if (pmap_initialized &&
2005	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2006		pmap_insert_entry(pmap, va, mpte, m);
2007		pa |= PG_MANAGED;
2008	}
2009
2010	/*
2011	 * Increment counters
2012	 */
2013	pmap->pm_stats.resident_count++;
2014	if (wired)
2015		pmap->pm_stats.wired_count++;
2016
2017validate:
2018	/*
2019	 * Now validate mapping with desired protection/wiring.
2020	 */
2021	newpte = (pt_entry_t)(pa | PG_V);
2022	if ((prot & VM_PROT_WRITE) != 0)
2023		newpte |= PG_RW;
2024	if (wired)
2025		newpte |= PG_W;
2026	if (va < VM_MAXUSER_ADDRESS)
2027		newpte |= PG_U;
2028	if (pmap == kernel_pmap)
2029		newpte |= pgeflag;
2030
2031	/*
2032	 * if the mapping or permission bits are different, we need
2033	 * to update the pte.
2034	 */
2035	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2036		pte_store(pte, newpte | PG_A);
2037		/*if (origpte)*/ {
2038			pmap_invalidate_page(pmap, va);
2039		}
2040	}
2041}
2042
2043/*
2044 * this code makes some *MAJOR* assumptions:
2045 * 1. Current pmap & pmap exists.
2046 * 2. Not wired.
2047 * 3. Read access.
2048 * 4. No page table pages.
2049 * 5. Tlbflush is deferred to calling procedure.
2050 * 6. Page IS managed.
2051 * but is *MUCH* faster than pmap_enter...
2052 */
2053
2054vm_page_t
2055pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2056{
2057	pt_entry_t *pte;
2058	vm_paddr_t pa;
2059
2060	/*
2061	 * In the case that a page table page is not
2062	 * resident, we are creating it here.
2063	 */
2064	if (va < VM_MAXUSER_ADDRESS) {
2065		unsigned ptepindex;
2066		pd_entry_t ptepa;
2067
2068		/*
2069		 * Calculate pagetable page index
2070		 */
2071		ptepindex = va >> PDRSHIFT;
2072		if (mpte && (mpte->pindex == ptepindex)) {
2073			mpte->hold_count++;
2074		} else {
2075retry:
2076			/*
2077			 * Get the page directory entry
2078			 */
2079			ptepa = pmap->pm_pdir[ptepindex];
2080
2081			/*
2082			 * If the page table page is mapped, we just increment
2083			 * the hold count, and activate it.
2084			 */
2085			if (ptepa) {
2086				if (ptepa & PG_PS)
2087					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2088				mpte = PHYS_TO_VM_PAGE(ptepa);
2089				mpte->hold_count++;
2090			} else {
2091				mpte = _pmap_allocpte(pmap, ptepindex);
2092				if (mpte == NULL)
2093					goto retry;
2094			}
2095		}
2096	} else {
2097		mpte = NULL;
2098	}
2099
2100	/*
2101	 * This call to vtopte makes the assumption that we are
2102	 * entering the page into the current pmap.  In order to support
2103	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2104	 * But that isn't as quick as vtopte.
2105	 */
2106	pte = vtopte(va);
2107	if (*pte) {
2108		if (mpte != NULL) {
2109			vm_page_lock_queues();
2110			pmap_unwire_pte_hold(pmap, mpte);
2111			vm_page_unlock_queues();
2112		}
2113		return 0;
2114	}
2115
2116	/*
2117	 * Enter on the PV list if part of our managed memory. Note that we
2118	 * raise IPL while manipulating pv_table since pmap_enter can be
2119	 * called at interrupt time.
2120	 */
2121	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2122		pmap_insert_entry(pmap, va, mpte, m);
2123
2124	/*
2125	 * Increment counters
2126	 */
2127	pmap->pm_stats.resident_count++;
2128
2129	pa = VM_PAGE_TO_PHYS(m);
2130
2131	/*
2132	 * Now validate mapping with RO protection
2133	 */
2134	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2135		pte_store(pte, pa | PG_V | PG_U);
2136	else
2137		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2138
2139	return mpte;
2140}
2141
2142/*
2143 * Make a temporary mapping for a physical address.  This is only intended
2144 * to be used for panic dumps.
2145 */
2146void *
2147pmap_kenter_temporary(vm_paddr_t pa, int i)
2148{
2149	vm_offset_t va;
2150
2151	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2152	pmap_kenter(va, pa);
2153#ifndef I386_CPU
2154	invlpg(va);
2155#else
2156	invltlb();
2157#endif
2158	return ((void *)crashdumpmap);
2159}
2160
2161/*
2162 * This code maps large physical mmap regions into the
2163 * processor address space.  Note that some shortcuts
2164 * are taken, but the code works.
2165 */
2166void
2167pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2168		    vm_object_t object, vm_pindex_t pindex,
2169		    vm_size_t size)
2170{
2171	vm_page_t p;
2172
2173	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2174	KASSERT(object->type == OBJT_DEVICE,
2175	    ("pmap_object_init_pt: non-device object"));
2176	if (pseflag &&
2177	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2178		int i;
2179		vm_page_t m[1];
2180		unsigned int ptepindex;
2181		int npdes;
2182		pd_entry_t ptepa;
2183
2184		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2185			return;
2186retry:
2187		p = vm_page_lookup(object, pindex);
2188		if (p != NULL) {
2189			vm_page_lock_queues();
2190			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2191				goto retry;
2192		} else {
2193			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2194			if (p == NULL)
2195				return;
2196			m[0] = p;
2197
2198			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2199				vm_page_lock_queues();
2200				vm_page_free(p);
2201				vm_page_unlock_queues();
2202				return;
2203			}
2204
2205			p = vm_page_lookup(object, pindex);
2206			vm_page_lock_queues();
2207			vm_page_wakeup(p);
2208		}
2209		vm_page_unlock_queues();
2210
2211		ptepa = VM_PAGE_TO_PHYS(p);
2212		if (ptepa & (NBPDR - 1))
2213			return;
2214
2215		p->valid = VM_PAGE_BITS_ALL;
2216
2217		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2218		npdes = size >> PDRSHIFT;
2219		for(i = 0; i < npdes; i++) {
2220			pde_store(&pmap->pm_pdir[ptepindex],
2221			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2222			ptepa += NBPDR;
2223			ptepindex += 1;
2224		}
2225		pmap_invalidate_all(pmap);
2226	}
2227}
2228
2229/*
2230 *	Routine:	pmap_change_wiring
2231 *	Function:	Change the wiring attribute for a map/virtual-address
2232 *			pair.
2233 *	In/out conditions:
2234 *			The mapping must already exist in the pmap.
2235 */
2236void
2237pmap_change_wiring(pmap, va, wired)
2238	register pmap_t pmap;
2239	vm_offset_t va;
2240	boolean_t wired;
2241{
2242	register pt_entry_t *pte;
2243
2244	if (pmap == NULL)
2245		return;
2246
2247	pte = pmap_pte(pmap, va);
2248
2249	if (wired && !pmap_pte_w(pte))
2250		pmap->pm_stats.wired_count++;
2251	else if (!wired && pmap_pte_w(pte))
2252		pmap->pm_stats.wired_count--;
2253
2254	/*
2255	 * Wiring is not a hardware characteristic so there is no need to
2256	 * invalidate TLB.
2257	 */
2258	pmap_pte_set_w(pte, wired);
2259}
2260
2261
2262
2263/*
2264 *	Copy the range specified by src_addr/len
2265 *	from the source map to the range dst_addr/len
2266 *	in the destination map.
2267 *
2268 *	This routine is only advisory and need not do anything.
2269 */
2270
2271void
2272pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2273	  vm_offset_t src_addr)
2274{
2275	vm_offset_t addr;
2276	vm_offset_t end_addr = src_addr + len;
2277	vm_offset_t pdnxt;
2278	vm_page_t m;
2279
2280	if (dst_addr != src_addr)
2281		return;
2282
2283	if (!pmap_is_current(src_pmap))
2284		return;
2285
2286	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2287		pt_entry_t *src_pte, *dst_pte;
2288		vm_page_t dstmpte, srcmpte;
2289		pd_entry_t srcptepaddr;
2290		unsigned ptepindex;
2291
2292		if (addr >= UPT_MIN_ADDRESS)
2293			panic("pmap_copy: invalid to pmap_copy page tables\n");
2294
2295		/*
2296		 * Don't let optional prefaulting of pages make us go
2297		 * way below the low water mark of free pages or way
2298		 * above high water mark of used pv entries.
2299		 */
2300		if (cnt.v_free_count < cnt.v_free_reserved ||
2301		    pv_entry_count > pv_entry_high_water)
2302			break;
2303
2304		pdnxt = (addr + NBPDR) & ~PDRMASK;
2305		ptepindex = addr >> PDRSHIFT;
2306
2307		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2308		if (srcptepaddr == 0)
2309			continue;
2310
2311		if (srcptepaddr & PG_PS) {
2312			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2313				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2314				dst_pmap->pm_stats.resident_count +=
2315				    NBPDR / PAGE_SIZE;
2316			}
2317			continue;
2318		}
2319
2320		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2321		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2322			continue;
2323
2324		if (pdnxt > end_addr)
2325			pdnxt = end_addr;
2326
2327		src_pte = vtopte(addr);
2328		while (addr < pdnxt) {
2329			pt_entry_t ptetemp;
2330			ptetemp = *src_pte;
2331			/*
2332			 * we only virtual copy managed pages
2333			 */
2334			if ((ptetemp & PG_MANAGED) != 0) {
2335				/*
2336				 * We have to check after allocpte for the
2337				 * pte still being around...  allocpte can
2338				 * block.
2339				 */
2340				dstmpte = pmap_allocpte(dst_pmap, addr);
2341				dst_pte = pmap_pte(dst_pmap, addr);
2342				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2343					/*
2344					 * Clear the modified and
2345					 * accessed (referenced) bits
2346					 * during the copy.
2347					 */
2348					m = PHYS_TO_VM_PAGE(ptetemp);
2349					*dst_pte = ptetemp & ~(PG_M | PG_A);
2350					dst_pmap->pm_stats.resident_count++;
2351					pmap_insert_entry(dst_pmap, addr,
2352						dstmpte, m);
2353	 			} else {
2354					vm_page_lock_queues();
2355					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2356					vm_page_unlock_queues();
2357				}
2358				if (dstmpte->hold_count >= srcmpte->hold_count)
2359					break;
2360			}
2361			addr += PAGE_SIZE;
2362			src_pte++;
2363		}
2364	}
2365}
2366
2367static __inline void
2368pagezero(void *page)
2369{
2370#if defined(I686_CPU)
2371	if (cpu_class == CPUCLASS_686) {
2372#if defined(CPU_ENABLE_SSE)
2373		if (cpu_feature & CPUID_SSE2)
2374			sse2_pagezero(page);
2375		else
2376#endif
2377			i686_pagezero(page);
2378	} else
2379#endif
2380		bzero(page, PAGE_SIZE);
2381}
2382
2383/*
2384 *	pmap_zero_page zeros the specified hardware page by mapping
2385 *	the page into KVM and using bzero to clear its contents.
2386 */
2387void
2388pmap_zero_page(vm_page_t m)
2389{
2390
2391	mtx_lock(&CMAPCADDR12_lock);
2392	if (*CMAP2)
2393		panic("pmap_zero_page: CMAP2 busy");
2394	sched_pin();
2395	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2396	invlcaddr(CADDR2);
2397	pagezero(CADDR2);
2398	*CMAP2 = 0;
2399	sched_unpin();
2400	mtx_unlock(&CMAPCADDR12_lock);
2401}
2402
2403/*
2404 *	pmap_zero_page_area zeros the specified hardware page by mapping
2405 *	the page into KVM and using bzero to clear its contents.
2406 *
2407 *	off and size may not cover an area beyond a single hardware page.
2408 */
2409void
2410pmap_zero_page_area(vm_page_t m, int off, int size)
2411{
2412
2413	mtx_lock(&CMAPCADDR12_lock);
2414	if (*CMAP2)
2415		panic("pmap_zero_page: CMAP2 busy");
2416	sched_pin();
2417	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2418	invlcaddr(CADDR2);
2419	if (off == 0 && size == PAGE_SIZE)
2420		pagezero(CADDR2);
2421	else
2422		bzero((char *)CADDR2 + off, size);
2423	*CMAP2 = 0;
2424	sched_unpin();
2425	mtx_unlock(&CMAPCADDR12_lock);
2426}
2427
2428/*
2429 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2430 *	the page into KVM and using bzero to clear its contents.  This
2431 *	is intended to be called from the vm_pagezero process only and
2432 *	outside of Giant.
2433 */
2434void
2435pmap_zero_page_idle(vm_page_t m)
2436{
2437
2438	if (*CMAP3)
2439		panic("pmap_zero_page: CMAP3 busy");
2440	sched_pin();
2441	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2442	invlcaddr(CADDR3);
2443	pagezero(CADDR3);
2444	*CMAP3 = 0;
2445	sched_unpin();
2446}
2447
2448/*
2449 *	pmap_copy_page copies the specified (machine independent)
2450 *	page by mapping the page into virtual memory and using
2451 *	bcopy to copy the page, one machine dependent page at a
2452 *	time.
2453 */
2454void
2455pmap_copy_page(vm_page_t src, vm_page_t dst)
2456{
2457
2458	mtx_lock(&CMAPCADDR12_lock);
2459	if (*CMAP1)
2460		panic("pmap_copy_page: CMAP1 busy");
2461	if (*CMAP2)
2462		panic("pmap_copy_page: CMAP2 busy");
2463	sched_pin();
2464#ifdef I386_CPU
2465	invltlb();
2466#else
2467	invlpg((u_int)CADDR1);
2468	invlpg((u_int)CADDR2);
2469#endif
2470	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2471	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2472	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2473	*CMAP1 = 0;
2474	*CMAP2 = 0;
2475	sched_unpin();
2476	mtx_unlock(&CMAPCADDR12_lock);
2477}
2478
2479/*
2480 * Returns true if the pmap's pv is one of the first
2481 * 16 pvs linked to from this page.  This count may
2482 * be changed upwards or downwards in the future; it
2483 * is only necessary that true be returned for a small
2484 * subset of pmaps for proper page aging.
2485 */
2486boolean_t
2487pmap_page_exists_quick(pmap, m)
2488	pmap_t pmap;
2489	vm_page_t m;
2490{
2491	pv_entry_t pv;
2492	int loops = 0;
2493	int s;
2494
2495	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2496		return FALSE;
2497
2498	s = splvm();
2499	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2500	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2501		if (pv->pv_pmap == pmap) {
2502			splx(s);
2503			return TRUE;
2504		}
2505		loops++;
2506		if (loops >= 16)
2507			break;
2508	}
2509	splx(s);
2510	return (FALSE);
2511}
2512
2513#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2514/*
2515 * Remove all pages from specified address space
2516 * this aids process exit speeds.  Also, this code
2517 * is special cased for current process only, but
2518 * can have the more generic (and slightly slower)
2519 * mode enabled.  This is much faster than pmap_remove
2520 * in the case of running down an entire address space.
2521 */
2522void
2523pmap_remove_pages(pmap, sva, eva)
2524	pmap_t pmap;
2525	vm_offset_t sva, eva;
2526{
2527	pt_entry_t *pte, tpte;
2528	vm_page_t m;
2529	pv_entry_t pv, npv;
2530	int s;
2531
2532#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2533	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2534		printf("warning: pmap_remove_pages called with non-current pmap\n");
2535		return;
2536	}
2537#endif
2538	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2539	s = splvm();
2540	sched_pin();
2541	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2542
2543		if (pv->pv_va >= eva || pv->pv_va < sva) {
2544			npv = TAILQ_NEXT(pv, pv_plist);
2545			continue;
2546		}
2547
2548#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2549		pte = vtopte(pv->pv_va);
2550#else
2551		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2552#endif
2553		tpte = *pte;
2554
2555		if (tpte == 0) {
2556			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2557							pte, pv->pv_va);
2558			panic("bad pte");
2559		}
2560
2561/*
2562 * We cannot remove wired pages from a process' mapping at this time
2563 */
2564		if (tpte & PG_W) {
2565			npv = TAILQ_NEXT(pv, pv_plist);
2566			continue;
2567		}
2568
2569		m = PHYS_TO_VM_PAGE(tpte);
2570		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2571		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2572		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2573
2574		KASSERT(m < &vm_page_array[vm_page_array_size],
2575			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2576
2577		pv->pv_pmap->pm_stats.resident_count--;
2578
2579		pte_clear(pte);
2580
2581		/*
2582		 * Update the vm_page_t clean and reference bits.
2583		 */
2584		if (tpte & PG_M) {
2585			vm_page_dirty(m);
2586		}
2587
2588		npv = TAILQ_NEXT(pv, pv_plist);
2589		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2590
2591		m->md.pv_list_count--;
2592		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2593		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2594			vm_page_flag_clear(m, PG_WRITEABLE);
2595		}
2596
2597		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2598		free_pv_entry(pv);
2599	}
2600	sched_unpin();
2601	splx(s);
2602	pmap_invalidate_all(pmap);
2603}
2604
2605/*
2606 *	pmap_is_modified:
2607 *
2608 *	Return whether or not the specified physical page was modified
2609 *	in any physical maps.
2610 */
2611boolean_t
2612pmap_is_modified(vm_page_t m)
2613{
2614	pv_entry_t pv;
2615	pt_entry_t *pte;
2616	int s;
2617
2618	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2619		return FALSE;
2620
2621	s = splvm();
2622	sched_pin();
2623	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2624	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2625		/*
2626		 * if the bit being tested is the modified bit, then
2627		 * mark clean_map and ptes as never
2628		 * modified.
2629		 */
2630		if (!pmap_track_modified(pv->pv_va))
2631			continue;
2632#if defined(PMAP_DIAGNOSTIC)
2633		if (!pv->pv_pmap) {
2634			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2635			continue;
2636		}
2637#endif
2638		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2639		if (*pte & PG_M) {
2640			sched_unpin();
2641			splx(s);
2642			return TRUE;
2643		}
2644	}
2645	sched_unpin();
2646	splx(s);
2647	return (FALSE);
2648}
2649
2650/*
2651 *	pmap_is_prefaultable:
2652 *
2653 *	Return whether or not the specified virtual address is elgible
2654 *	for prefault.
2655 */
2656boolean_t
2657pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2658{
2659	pt_entry_t *pte;
2660
2661	if ((*pmap_pde(pmap, addr)) == 0)
2662		return (FALSE);
2663	pte = vtopte(addr);
2664	if (*pte)
2665		return (FALSE);
2666	return (TRUE);
2667}
2668
2669/*
2670 *	Clear the given bit in each of the given page's ptes.
2671 */
2672static __inline void
2673pmap_clear_ptes(vm_page_t m, int bit)
2674{
2675	register pv_entry_t pv;
2676	pt_entry_t pbits, *pte;
2677	int s;
2678
2679	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2680	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2681		return;
2682
2683	s = splvm();
2684	sched_pin();
2685	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2686	/*
2687	 * Loop over all current mappings setting/clearing as appropos If
2688	 * setting RO do we need to clear the VAC?
2689	 */
2690	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2691		/*
2692		 * don't write protect pager mappings
2693		 */
2694		if (bit == PG_RW) {
2695			if (!pmap_track_modified(pv->pv_va))
2696				continue;
2697		}
2698
2699#if defined(PMAP_DIAGNOSTIC)
2700		if (!pv->pv_pmap) {
2701			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2702			continue;
2703		}
2704#endif
2705
2706		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2707		pbits = *pte;
2708		if (pbits & bit) {
2709			if (bit == PG_RW) {
2710				if (pbits & PG_M) {
2711					vm_page_dirty(m);
2712				}
2713				pte_store(pte, pbits & ~(PG_M|PG_RW));
2714			} else {
2715				pte_store(pte, pbits & ~bit);
2716			}
2717			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2718		}
2719	}
2720	if (bit == PG_RW)
2721		vm_page_flag_clear(m, PG_WRITEABLE);
2722	sched_unpin();
2723	splx(s);
2724}
2725
2726/*
2727 *      pmap_page_protect:
2728 *
2729 *      Lower the permission for all mappings to a given page.
2730 */
2731void
2732pmap_page_protect(vm_page_t m, vm_prot_t prot)
2733{
2734	if ((prot & VM_PROT_WRITE) == 0) {
2735		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2736			pmap_clear_ptes(m, PG_RW);
2737		} else {
2738			pmap_remove_all(m);
2739		}
2740	}
2741}
2742
2743/*
2744 *	pmap_ts_referenced:
2745 *
2746 *	Return a count of reference bits for a page, clearing those bits.
2747 *	It is not necessary for every reference bit to be cleared, but it
2748 *	is necessary that 0 only be returned when there are truly no
2749 *	reference bits set.
2750 *
2751 *	XXX: The exact number of bits to check and clear is a matter that
2752 *	should be tested and standardized at some point in the future for
2753 *	optimal aging of shared pages.
2754 */
2755int
2756pmap_ts_referenced(vm_page_t m)
2757{
2758	register pv_entry_t pv, pvf, pvn;
2759	pt_entry_t *pte;
2760	pt_entry_t v;
2761	int s;
2762	int rtval = 0;
2763
2764	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2765		return (rtval);
2766
2767	s = splvm();
2768	sched_pin();
2769	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2770	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2771
2772		pvf = pv;
2773
2774		do {
2775			pvn = TAILQ_NEXT(pv, pv_list);
2776
2777			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2778
2779			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2780
2781			if (!pmap_track_modified(pv->pv_va))
2782				continue;
2783
2784			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2785
2786			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2787				pte_store(pte, v & ~PG_A);
2788				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2789
2790				rtval++;
2791				if (rtval > 4) {
2792					break;
2793				}
2794			}
2795		} while ((pv = pvn) != NULL && pv != pvf);
2796	}
2797	sched_unpin();
2798	splx(s);
2799
2800	return (rtval);
2801}
2802
2803/*
2804 *	Clear the modify bits on the specified physical page.
2805 */
2806void
2807pmap_clear_modify(vm_page_t m)
2808{
2809	pmap_clear_ptes(m, PG_M);
2810}
2811
2812/*
2813 *	pmap_clear_reference:
2814 *
2815 *	Clear the reference bit on the specified physical page.
2816 */
2817void
2818pmap_clear_reference(vm_page_t m)
2819{
2820	pmap_clear_ptes(m, PG_A);
2821}
2822
2823/*
2824 * Miscellaneous support routines follow
2825 */
2826
2827/*
2828 * Map a set of physical memory pages into the kernel virtual
2829 * address space. Return a pointer to where it is mapped. This
2830 * routine is intended to be used for mapping device memory,
2831 * NOT real memory.
2832 */
2833void *
2834pmap_mapdev(pa, size)
2835	vm_paddr_t pa;
2836	vm_size_t size;
2837{
2838	vm_offset_t va, tmpva, offset;
2839
2840	offset = pa & PAGE_MASK;
2841	size = roundup(offset + size, PAGE_SIZE);
2842	pa = pa & PG_FRAME;
2843
2844	if (pa < KERNLOAD && pa + size <= KERNLOAD)
2845		va = KERNBASE + pa;
2846	else
2847		va = kmem_alloc_nofault(kernel_map, size);
2848	if (!va)
2849		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2850
2851	for (tmpva = va; size > 0; ) {
2852		pmap_kenter(tmpva, pa);
2853		size -= PAGE_SIZE;
2854		tmpva += PAGE_SIZE;
2855		pa += PAGE_SIZE;
2856	}
2857	pmap_invalidate_range(kernel_pmap, va, tmpva);
2858	return ((void *)(va + offset));
2859}
2860
2861void
2862pmap_unmapdev(va, size)
2863	vm_offset_t va;
2864	vm_size_t size;
2865{
2866	vm_offset_t base, offset, tmpva;
2867
2868	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
2869		return;
2870	base = va & PG_FRAME;
2871	offset = va & PAGE_MASK;
2872	size = roundup(offset + size, PAGE_SIZE);
2873	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2874		pmap_kremove(tmpva);
2875	pmap_invalidate_range(kernel_pmap, va, tmpva);
2876	kmem_free(kernel_map, base, size);
2877}
2878
2879/*
2880 * perform the pmap work for mincore
2881 */
2882int
2883pmap_mincore(pmap, addr)
2884	pmap_t pmap;
2885	vm_offset_t addr;
2886{
2887	pt_entry_t *ptep, pte;
2888	vm_page_t m;
2889	int val = 0;
2890
2891	ptep = pmap_pte(pmap, addr);
2892	if (ptep == 0) {
2893		return 0;
2894	}
2895
2896	if ((pte = *ptep) != 0) {
2897		vm_paddr_t pa;
2898
2899		val = MINCORE_INCORE;
2900		if ((pte & PG_MANAGED) == 0)
2901			return val;
2902
2903		pa = pte & PG_FRAME;
2904
2905		m = PHYS_TO_VM_PAGE(pa);
2906
2907		/*
2908		 * Modified by us
2909		 */
2910		if (pte & PG_M)
2911			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2912		else {
2913			/*
2914			 * Modified by someone else
2915			 */
2916			vm_page_lock_queues();
2917			if (m->dirty || pmap_is_modified(m))
2918				val |= MINCORE_MODIFIED_OTHER;
2919			vm_page_unlock_queues();
2920		}
2921		/*
2922		 * Referenced by us
2923		 */
2924		if (pte & PG_A)
2925			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2926		else {
2927			/*
2928			 * Referenced by someone else
2929			 */
2930			vm_page_lock_queues();
2931			if ((m->flags & PG_REFERENCED) ||
2932			    pmap_ts_referenced(m)) {
2933				val |= MINCORE_REFERENCED_OTHER;
2934				vm_page_flag_set(m, PG_REFERENCED);
2935			}
2936			vm_page_unlock_queues();
2937		}
2938	}
2939	return val;
2940}
2941
2942void
2943pmap_activate(struct thread *td)
2944{
2945	struct proc *p = td->td_proc;
2946	pmap_t	pmap, oldpmap;
2947	u_int32_t  cr3;
2948
2949	critical_enter();
2950	pmap = vmspace_pmap(td->td_proc->p_vmspace);
2951	oldpmap = PCPU_GET(curpmap);
2952#if defined(SMP)
2953	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
2954	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
2955#else
2956	oldpmap->pm_active &= ~1;
2957	pmap->pm_active |= 1;
2958#endif
2959#ifdef PAE
2960	cr3 = vtophys(pmap->pm_pdpt);
2961#else
2962	cr3 = vtophys(pmap->pm_pdir);
2963#endif
2964	/* XXXKSE this is wrong.
2965	 * pmap_activate is for the current thread on the current cpu
2966	 */
2967	if (p->p_flag & P_SA) {
2968		/* Make sure all other cr3 entries are updated. */
2969		/* what if they are running?  XXXKSE (maybe abort them) */
2970		FOREACH_THREAD_IN_PROC(p, td) {
2971			td->td_pcb->pcb_cr3 = cr3;
2972		}
2973	} else {
2974		td->td_pcb->pcb_cr3 = cr3;
2975	}
2976	load_cr3(cr3);
2977	PCPU_SET(curpmap, pmap);
2978	critical_exit();
2979}
2980
2981vm_offset_t
2982pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
2983{
2984
2985	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
2986		return addr;
2987	}
2988
2989	addr = (addr + PDRMASK) & ~PDRMASK;
2990	return addr;
2991}
2992
2993
2994#if defined(PMAP_DEBUG)
2995pmap_pid_dump(int pid)
2996{
2997	pmap_t pmap;
2998	struct proc *p;
2999	int npte = 0;
3000	int index;
3001
3002	sx_slock(&allproc_lock);
3003	LIST_FOREACH(p, &allproc, p_list) {
3004		if (p->p_pid != pid)
3005			continue;
3006
3007		if (p->p_vmspace) {
3008			int i,j;
3009			index = 0;
3010			pmap = vmspace_pmap(p->p_vmspace);
3011			for (i = 0; i < NPDEPTD; i++) {
3012				pd_entry_t *pde;
3013				pt_entry_t *pte;
3014				vm_offset_t base = i << PDRSHIFT;
3015
3016				pde = &pmap->pm_pdir[i];
3017				if (pde && pmap_pde_v(pde)) {
3018					for (j = 0; j < NPTEPG; j++) {
3019						vm_offset_t va = base + (j << PAGE_SHIFT);
3020						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3021							if (index) {
3022								index = 0;
3023								printf("\n");
3024							}
3025							sx_sunlock(&allproc_lock);
3026							return npte;
3027						}
3028						pte = pmap_pte(pmap, va);
3029						if (pte && pmap_pte_v(pte)) {
3030							pt_entry_t pa;
3031							vm_page_t m;
3032							pa = *pte;
3033							m = PHYS_TO_VM_PAGE(pa);
3034							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3035								va, pa, m->hold_count, m->wire_count, m->flags);
3036							npte++;
3037							index++;
3038							if (index >= 2) {
3039								index = 0;
3040								printf("\n");
3041							} else {
3042								printf(" ");
3043							}
3044						}
3045					}
3046				}
3047			}
3048		}
3049	}
3050	sx_sunlock(&allproc_lock);
3051	return npte;
3052}
3053#endif
3054
3055#if defined(DEBUG)
3056
3057static void	pads(pmap_t pm);
3058void		pmap_pvdump(vm_offset_t pa);
3059
3060/* print address space of pmap*/
3061static void
3062pads(pm)
3063	pmap_t pm;
3064{
3065	int i, j;
3066	vm_paddr_t va;
3067	pt_entry_t *ptep;
3068
3069	if (pm == kernel_pmap)
3070		return;
3071	for (i = 0; i < NPDEPTD; i++)
3072		if (pm->pm_pdir[i])
3073			for (j = 0; j < NPTEPG; j++) {
3074				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3075				if (pm == kernel_pmap && va < KERNBASE)
3076					continue;
3077				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3078					continue;
3079				ptep = pmap_pte(pm, va);
3080				if (pmap_pte_v(ptep))
3081					printf("%x:%x ", va, *ptep);
3082			};
3083
3084}
3085
3086void
3087pmap_pvdump(pa)
3088	vm_paddr_t pa;
3089{
3090	pv_entry_t pv;
3091	vm_page_t m;
3092
3093	printf("pa %x", pa);
3094	m = PHYS_TO_VM_PAGE(pa);
3095	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3096		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3097		pads(pv->pv_pmap);
3098	}
3099	printf(" ");
3100}
3101#endif
3102