pmap.c revision 126728
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43/*-
44 * Copyright (c) 2003 Networks Associates Technology, Inc.
45 * All rights reserved.
46 *
47 * This software was developed for the FreeBSD Project by Jake Burkholder,
48 * Safeport Network Services, and Network Associates Laboratories, the
49 * Security Research Division of Network Associates, Inc. under
50 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
51 * CHATS research program.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 *    notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 *    notice, this list of conditions and the following disclaimer in the
60 *    documentation and/or other materials provided with the distribution.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 126728 2004-03-07 21:06:48Z alc $");
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_cpu.h"
105#include "opt_pmap.h"
106#include "opt_msgbuf.h"
107#include "opt_kstack_pages.h"
108
109#include <sys/param.h>
110#include <sys/systm.h>
111#include <sys/kernel.h>
112#include <sys/lock.h>
113#include <sys/mman.h>
114#include <sys/msgbuf.h>
115#include <sys/mutex.h>
116#include <sys/proc.h>
117#include <sys/sx.h>
118#include <sys/user.h>
119#include <sys/vmmeter.h>
120#include <sys/sched.h>
121#include <sys/sysctl.h>
122#ifdef SMP
123#include <sys/smp.h>
124#endif
125
126#include <vm/vm.h>
127#include <vm/vm_param.h>
128#include <vm/vm_kern.h>
129#include <vm/vm_page.h>
130#include <vm/vm_map.h>
131#include <vm/vm_object.h>
132#include <vm/vm_extern.h>
133#include <vm/vm_pageout.h>
134#include <vm/vm_pager.h>
135#include <vm/uma.h>
136
137#include <machine/cpu.h>
138#include <machine/cputypes.h>
139#include <machine/md_var.h>
140#include <machine/specialreg.h>
141#ifdef SMP
142#include <machine/smp.h>
143#endif
144
145#if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
146#define CPU_ENABLE_SSE
147#endif
148#if defined(CPU_DISABLE_SSE)
149#undef CPU_ENABLE_SSE
150#endif
151
152#define PMAP_KEEP_PDIRS
153#ifndef PMAP_SHPGPERPROC
154#define PMAP_SHPGPERPROC 200
155#endif
156
157#if defined(DIAGNOSTIC)
158#define PMAP_DIAGNOSTIC
159#endif
160
161#define MINPV 2048
162
163#if !defined(PMAP_DIAGNOSTIC)
164#define PMAP_INLINE __inline
165#else
166#define PMAP_INLINE
167#endif
168
169/*
170 * Get PDEs and PTEs for user/kernel address space
171 */
172#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
173#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
174
175#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
176#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
177#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
178#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
179#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
180
181#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
182#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
183
184struct pmap kernel_pmap_store;
185LIST_HEAD(pmaplist, pmap);
186static struct pmaplist allpmaps;
187static struct mtx allpmaps_lock;
188#ifdef SMP
189static struct mtx lazypmap_lock;
190#endif
191
192vm_paddr_t avail_start;	/* PA of first available physical page */
193vm_paddr_t avail_end;	/* PA of last available physical page */
194vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
195vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
196static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
197int pgeflag = 0;		/* PG_G or-in */
198int pseflag = 0;		/* PG_PS or-in */
199
200static int nkpt;
201vm_offset_t kernel_vm_end;
202extern u_int32_t KERNend;
203
204#ifdef PAE
205static uma_zone_t pdptzone;
206#endif
207
208/*
209 * Data for the pv entry allocation mechanism
210 */
211static uma_zone_t pvzone;
212static struct vm_object pvzone_obj;
213static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
214int pmap_pagedaemon_waken;
215
216/*
217 * All those kernel PT submaps that BSD is so fond of
218 */
219pt_entry_t *CMAP1 = 0;
220static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
221caddr_t CADDR1 = 0, ptvmmap = 0;
222static caddr_t CADDR2, CADDR3;
223static struct mtx CMAPCADDR12_lock;
224static pt_entry_t *msgbufmap;
225struct msgbuf *msgbufp = 0;
226
227/*
228 * Crashdump maps.
229 */
230static pt_entry_t *pt_crashdumpmap;
231static caddr_t crashdumpmap;
232
233#ifdef SMP
234extern pt_entry_t *SMPpt;
235#endif
236static pt_entry_t *PMAP1 = 0, *PMAP2;
237static pt_entry_t *PADDR1 = 0, *PADDR2;
238#ifdef SMP
239static int PMAP1cpu;
240static int PMAP1changedcpu;
241SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
242	   &PMAP1changedcpu, 0,
243	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
244#endif
245static int PMAP1changed;
246SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
247	   &PMAP1changed, 0,
248	   "Number of times pmap_pte_quick changed PMAP1");
249static int PMAP1unchanged;
250SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
251	   &PMAP1unchanged, 0,
252	   "Number of times pmap_pte_quick didn't change PMAP1");
253
254static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
255static pv_entry_t get_pv_entry(void);
256static void	pmap_clear_ptes(vm_page_t m, int bit)
257    __always_inline;
258
259static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
260static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
261static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
262					vm_offset_t va);
263static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
264		vm_page_t mpte, vm_page_t m);
265
266static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
267
268static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
269static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
270static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
271static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
272#ifdef PAE
273static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
274#endif
275
276CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
277CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
278
279/*
280 * Move the kernel virtual free pointer to the next
281 * 4MB.  This is used to help improve performance
282 * by using a large (4MB) page for much of the kernel
283 * (.text, .data, .bss)
284 */
285static vm_offset_t
286pmap_kmem_choose(vm_offset_t addr)
287{
288	vm_offset_t newaddr = addr;
289
290#ifndef DISABLE_PSE
291	if (cpu_feature & CPUID_PSE)
292		newaddr = (addr + PDRMASK) & ~PDRMASK;
293#endif
294	return newaddr;
295}
296
297/*
298 *	Bootstrap the system enough to run with virtual memory.
299 *
300 *	On the i386 this is called after mapping has already been enabled
301 *	and just syncs the pmap module with what has already been done.
302 *	[We can't call it easily with mapping off since the kernel is not
303 *	mapped with PA == VA, hence we would have to relocate every address
304 *	from the linked base (virtual) address "KERNBASE" to the actual
305 *	(physical) address starting relative to 0]
306 */
307void
308pmap_bootstrap(firstaddr, loadaddr)
309	vm_paddr_t firstaddr;
310	vm_paddr_t loadaddr;
311{
312	vm_offset_t va;
313	pt_entry_t *pte;
314	int i;
315
316	avail_start = firstaddr;
317
318	/*
319	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
320	 * large. It should instead be correctly calculated in locore.s and
321	 * not based on 'first' (which is a physical address, not a virtual
322	 * address, for the start of unused physical memory). The kernel
323	 * page tables are NOT double mapped and thus should not be included
324	 * in this calculation.
325	 */
326	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
327	virtual_avail = pmap_kmem_choose(virtual_avail);
328
329	virtual_end = VM_MAX_KERNEL_ADDRESS;
330
331	/*
332	 * Initialize the kernel pmap (which is statically allocated).
333	 */
334	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
335#ifdef PAE
336	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
337#endif
338	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
339	TAILQ_INIT(&kernel_pmap->pm_pvlist);
340	LIST_INIT(&allpmaps);
341#ifdef SMP
342	mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
343#endif
344	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
345	mtx_lock_spin(&allpmaps_lock);
346	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
347	mtx_unlock_spin(&allpmaps_lock);
348	nkpt = NKPT;
349
350	/*
351	 * Reserve some special page table entries/VA space for temporary
352	 * mapping of pages.
353	 */
354#define	SYSMAP(c, p, v, n)	\
355	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
356
357	va = virtual_avail;
358	pte = vtopte(va);
359
360	/*
361	 * CMAP1/CMAP2 are used for zeroing and copying pages.
362	 * CMAP3 is used for the idle process page zeroing.
363	 */
364	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
365	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
366	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
367	*CMAP3 = 0;
368
369	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
370
371	/*
372	 * Crashdump maps.
373	 */
374	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
375
376	/*
377	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
378	 * XXX ptmmap is not used.
379	 */
380	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
381
382	/*
383	 * msgbufp is used to map the system message buffer.
384	 * XXX msgbufmap is not used.
385	 */
386	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
387	       atop(round_page(MSGBUF_SIZE)))
388
389	/*
390	 * ptemap is used for pmap_pte_quick
391	 */
392	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
393	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
394
395	virtual_avail = va;
396
397	*CMAP1 = *CMAP2 = 0;
398	for (i = 0; i < NKPT; i++)
399		PTD[i] = 0;
400
401	/* Turn on PG_G on kernel page(s) */
402	pmap_set_pg();
403}
404
405/*
406 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
407 */
408void
409pmap_set_pg(void)
410{
411	pd_entry_t pdir;
412	pt_entry_t *pte;
413	vm_offset_t va, endva;
414	int i;
415
416	if (pgeflag == 0)
417		return;
418
419	i = KERNLOAD/NBPDR;
420	endva = KERNBASE + KERNend;
421
422	if (pseflag) {
423		va = KERNBASE + KERNLOAD;
424		while (va  < endva) {
425			pdir = kernel_pmap->pm_pdir[KPTDI+i];
426			pdir |= pgeflag;
427			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
428			invltlb();	/* Play it safe, invltlb() every time */
429			i++;
430			va += NBPDR;
431		}
432	} else {
433		va = (vm_offset_t)btext;
434		while (va < endva) {
435			pte = vtopte(va);
436			if (*pte)
437				*pte |= pgeflag;
438			invltlb();	/* Play it safe, invltlb() every time */
439			va += PAGE_SIZE;
440		}
441	}
442}
443
444#ifdef PAE
445static void *
446pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
447{
448	*flags = UMA_SLAB_PRIV;
449	return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
450}
451#endif
452
453/*
454 *	Initialize the pmap module.
455 *	Called by vm_init, to initialize any structures that the pmap
456 *	system needs to map virtual memory.
457 *	pmap_init has been enhanced to support in a fairly consistant
458 *	way, discontiguous physical memory.
459 */
460void
461pmap_init(phys_start, phys_end)
462	vm_paddr_t phys_start, phys_end;
463{
464	int i;
465
466	/*
467	 * Allocate memory for random pmap data structures.  Includes the
468	 * pv_head_table.
469	 */
470
471	for(i = 0; i < vm_page_array_size; i++) {
472		vm_page_t m;
473
474		m = &vm_page_array[i];
475		TAILQ_INIT(&m->md.pv_list);
476		m->md.pv_list_count = 0;
477	}
478
479	/*
480	 * init the pv free list
481	 */
482	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
483	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
484	uma_prealloc(pvzone, MINPV);
485
486#ifdef PAE
487	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
488	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
489	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
490	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
491#endif
492
493	/*
494	 * Now it is safe to enable pv_table recording.
495	 */
496	pmap_initialized = TRUE;
497}
498
499/*
500 * Initialize the address space (zone) for the pv_entries.  Set a
501 * high water mark so that the system can recover from excessive
502 * numbers of pv entries.
503 */
504void
505pmap_init2()
506{
507	int shpgperproc = PMAP_SHPGPERPROC;
508
509	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
510	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
511	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
512	pv_entry_high_water = 9 * (pv_entry_max / 10);
513	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
514}
515
516
517/***************************************************
518 * Low level helper routines.....
519 ***************************************************/
520
521#if defined(PMAP_DIAGNOSTIC)
522
523/*
524 * This code checks for non-writeable/modified pages.
525 * This should be an invalid condition.
526 */
527static int
528pmap_nw_modified(pt_entry_t ptea)
529{
530	int pte;
531
532	pte = (int) ptea;
533
534	if ((pte & (PG_M|PG_RW)) == PG_M)
535		return 1;
536	else
537		return 0;
538}
539#endif
540
541
542/*
543 * this routine defines the region(s) of memory that should
544 * not be tested for the modified bit.
545 */
546static PMAP_INLINE int
547pmap_track_modified(vm_offset_t va)
548{
549	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
550		return 1;
551	else
552		return 0;
553}
554
555#ifdef I386_CPU
556/*
557 * i386 only has "invalidate everything" and no SMP to worry about.
558 */
559PMAP_INLINE void
560pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
561{
562
563	if (pmap == kernel_pmap || pmap->pm_active)
564		invltlb();
565}
566
567PMAP_INLINE void
568pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
569{
570
571	if (pmap == kernel_pmap || pmap->pm_active)
572		invltlb();
573}
574
575PMAP_INLINE void
576pmap_invalidate_all(pmap_t pmap)
577{
578
579	if (pmap == kernel_pmap || pmap->pm_active)
580		invltlb();
581}
582#else /* !I386_CPU */
583#ifdef SMP
584/*
585 * For SMP, these functions have to use the IPI mechanism for coherence.
586 */
587void
588pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
589{
590	u_int cpumask;
591	u_int other_cpus;
592
593	if (smp_started) {
594		if (!(read_eflags() & PSL_I))
595			panic("%s: interrupts disabled", __func__);
596		mtx_lock_spin(&smp_tlb_mtx);
597	} else
598		critical_enter();
599	/*
600	 * We need to disable interrupt preemption but MUST NOT have
601	 * interrupts disabled here.
602	 * XXX we may need to hold schedlock to get a coherent pm_active
603	 * XXX critical sections disable interrupts again
604	 */
605	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
606		invlpg(va);
607		smp_invlpg(va);
608	} else {
609		cpumask = PCPU_GET(cpumask);
610		other_cpus = PCPU_GET(other_cpus);
611		if (pmap->pm_active & cpumask)
612			invlpg(va);
613		if (pmap->pm_active & other_cpus)
614			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
615	}
616	if (smp_started)
617		mtx_unlock_spin(&smp_tlb_mtx);
618	else
619		critical_exit();
620}
621
622void
623pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
624{
625	u_int cpumask;
626	u_int other_cpus;
627	vm_offset_t addr;
628
629	if (smp_started) {
630		if (!(read_eflags() & PSL_I))
631			panic("%s: interrupts disabled", __func__);
632		mtx_lock_spin(&smp_tlb_mtx);
633	} else
634		critical_enter();
635	/*
636	 * We need to disable interrupt preemption but MUST NOT have
637	 * interrupts disabled here.
638	 * XXX we may need to hold schedlock to get a coherent pm_active
639	 * XXX critical sections disable interrupts again
640	 */
641	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
642		for (addr = sva; addr < eva; addr += PAGE_SIZE)
643			invlpg(addr);
644		smp_invlpg_range(sva, eva);
645	} else {
646		cpumask = PCPU_GET(cpumask);
647		other_cpus = PCPU_GET(other_cpus);
648		if (pmap->pm_active & cpumask)
649			for (addr = sva; addr < eva; addr += PAGE_SIZE)
650				invlpg(addr);
651		if (pmap->pm_active & other_cpus)
652			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
653			    sva, eva);
654	}
655	if (smp_started)
656		mtx_unlock_spin(&smp_tlb_mtx);
657	else
658		critical_exit();
659}
660
661void
662pmap_invalidate_all(pmap_t pmap)
663{
664	u_int cpumask;
665	u_int other_cpus;
666
667	if (smp_started) {
668		if (!(read_eflags() & PSL_I))
669			panic("%s: interrupts disabled", __func__);
670		mtx_lock_spin(&smp_tlb_mtx);
671	} else
672		critical_enter();
673	/*
674	 * We need to disable interrupt preemption but MUST NOT have
675	 * interrupts disabled here.
676	 * XXX we may need to hold schedlock to get a coherent pm_active
677	 * XXX critical sections disable interrupts again
678	 */
679	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
680		invltlb();
681		smp_invltlb();
682	} else {
683		cpumask = PCPU_GET(cpumask);
684		other_cpus = PCPU_GET(other_cpus);
685		if (pmap->pm_active & cpumask)
686			invltlb();
687		if (pmap->pm_active & other_cpus)
688			smp_masked_invltlb(pmap->pm_active & other_cpus);
689	}
690	if (smp_started)
691		mtx_unlock_spin(&smp_tlb_mtx);
692	else
693		critical_exit();
694}
695#else /* !SMP */
696/*
697 * Normal, non-SMP, 486+ invalidation functions.
698 * We inline these within pmap.c for speed.
699 */
700PMAP_INLINE void
701pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
702{
703
704	if (pmap == kernel_pmap || pmap->pm_active)
705		invlpg(va);
706}
707
708PMAP_INLINE void
709pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
710{
711	vm_offset_t addr;
712
713	if (pmap == kernel_pmap || pmap->pm_active)
714		for (addr = sva; addr < eva; addr += PAGE_SIZE)
715			invlpg(addr);
716}
717
718PMAP_INLINE void
719pmap_invalidate_all(pmap_t pmap)
720{
721
722	if (pmap == kernel_pmap || pmap->pm_active)
723		invltlb();
724}
725#endif /* !SMP */
726#endif /* !I386_CPU */
727
728/*
729 * Are we current address space or kernel?  N.B. We return FALSE when
730 * a pmap's page table is in use because a kernel thread is borrowing
731 * it.  The borrowed page table can change spontaneously, making any
732 * dependence on its continued use subject to a race condition.
733 */
734static __inline int
735pmap_is_current(pmap_t pmap)
736{
737
738	return (pmap == kernel_pmap ||
739		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
740	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
741}
742
743/*
744 * If the given pmap is not the current pmap, Giant must be held.
745 */
746pt_entry_t *
747pmap_pte(pmap_t pmap, vm_offset_t va)
748{
749	pd_entry_t newpf;
750	pd_entry_t *pde;
751
752	pde = pmap_pde(pmap, va);
753	if (*pde & PG_PS)
754		return (pde);
755	if (*pde != 0) {
756		/* are we current address space or kernel? */
757		if (pmap_is_current(pmap))
758			return (vtopte(va));
759		GIANT_REQUIRED;
760		newpf = *pde & PG_FRAME;
761		if ((*PMAP2 & PG_FRAME) != newpf) {
762			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
763			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
764		}
765		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
766	}
767	return (0);
768}
769
770static __inline void
771invlcaddr(void *caddr)
772{
773#ifdef I386_CPU
774	invltlb();
775#else
776	invlpg((u_int)caddr);
777#endif
778}
779
780/*
781 * Super fast pmap_pte routine best used when scanning
782 * the pv lists.  This eliminates many coarse-grained
783 * invltlb calls.  Note that many of the pv list
784 * scans are across different pmaps.  It is very wasteful
785 * to do an entire invltlb for checking a single mapping.
786 *
787 * If the given pmap is not the current pmap, vm_page_queue_mtx
788 * must be held and curthread pinned to a CPU.
789 */
790static pt_entry_t *
791pmap_pte_quick(pmap_t pmap, vm_offset_t va)
792{
793	pd_entry_t newpf;
794	pd_entry_t *pde;
795
796	pde = pmap_pde(pmap, va);
797	if (*pde & PG_PS)
798		return (pde);
799	if (*pde != 0) {
800		/* are we current address space or kernel? */
801		if (pmap_is_current(pmap))
802			return (vtopte(va));
803		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
804		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
805		newpf = *pde & PG_FRAME;
806		if ((*PMAP1 & PG_FRAME) != newpf) {
807			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
808#ifdef SMP
809			PMAP1cpu = PCPU_GET(cpuid);
810#endif
811			invlcaddr(PADDR1);
812			PMAP1changed++;
813		} else
814#ifdef SMP
815		if (PMAP1cpu != PCPU_GET(cpuid)) {
816			PMAP1cpu = PCPU_GET(cpuid);
817			invlcaddr(PADDR1);
818			PMAP1changedcpu++;
819		} else
820#endif
821			PMAP1unchanged++;
822		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
823	}
824	return (0);
825}
826
827/*
828 *	Routine:	pmap_extract
829 *	Function:
830 *		Extract the physical page address associated
831 *		with the given map/virtual_address pair.
832 */
833vm_paddr_t
834pmap_extract(pmap, va)
835	register pmap_t pmap;
836	vm_offset_t va;
837{
838	vm_paddr_t rtval;
839	pt_entry_t *pte;
840	pd_entry_t pde;
841
842	if (pmap == 0)
843		return 0;
844	pde = pmap->pm_pdir[va >> PDRSHIFT];
845	if (pde != 0) {
846		if ((pde & PG_PS) != 0) {
847			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
848			return rtval;
849		}
850		pte = pmap_pte(pmap, va);
851		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
852		return rtval;
853	}
854	return 0;
855
856}
857
858/*
859 *	Routine:	pmap_extract_and_hold
860 *	Function:
861 *		Atomically extract and hold the physical page
862 *		with the given pmap and virtual address pair
863 *		if that mapping permits the given protection.
864 */
865vm_page_t
866pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
867{
868	vm_paddr_t pa;
869	vm_page_t m;
870
871	m = NULL;
872	mtx_lock(&Giant);
873	if ((pa = pmap_extract(pmap, va)) != 0) {
874		m = PHYS_TO_VM_PAGE(pa);
875		vm_page_lock_queues();
876		vm_page_hold(m);
877		vm_page_unlock_queues();
878	}
879	mtx_unlock(&Giant);
880	return (m);
881}
882
883/***************************************************
884 * Low level mapping routines.....
885 ***************************************************/
886
887/*
888 * Add a wired page to the kva.
889 * Note: not SMP coherent.
890 */
891PMAP_INLINE void
892pmap_kenter(vm_offset_t va, vm_paddr_t pa)
893{
894	pt_entry_t *pte;
895
896	pte = vtopte(va);
897	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
898}
899
900/*
901 * Remove a page from the kernel pagetables.
902 * Note: not SMP coherent.
903 */
904PMAP_INLINE void
905pmap_kremove(vm_offset_t va)
906{
907	pt_entry_t *pte;
908
909	pte = vtopte(va);
910	pte_clear(pte);
911}
912
913/*
914 *	Used to map a range of physical addresses into kernel
915 *	virtual address space.
916 *
917 *	The value passed in '*virt' is a suggested virtual address for
918 *	the mapping. Architectures which can support a direct-mapped
919 *	physical to virtual region can return the appropriate address
920 *	within that region, leaving '*virt' unchanged. Other
921 *	architectures should map the pages starting at '*virt' and
922 *	update '*virt' with the first usable address after the mapped
923 *	region.
924 */
925vm_offset_t
926pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
927{
928	vm_offset_t va, sva;
929
930	va = sva = *virt;
931	while (start < end) {
932		pmap_kenter(va, start);
933		va += PAGE_SIZE;
934		start += PAGE_SIZE;
935	}
936	pmap_invalidate_range(kernel_pmap, sva, va);
937	*virt = va;
938	return (sva);
939}
940
941
942/*
943 * Add a list of wired pages to the kva
944 * this routine is only used for temporary
945 * kernel mappings that do not need to have
946 * page modification or references recorded.
947 * Note that old mappings are simply written
948 * over.  The page *must* be wired.
949 * Note: SMP coherent.  Uses a ranged shootdown IPI.
950 */
951void
952pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
953{
954	vm_offset_t va;
955
956	va = sva;
957	while (count-- > 0) {
958		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
959		va += PAGE_SIZE;
960		m++;
961	}
962	pmap_invalidate_range(kernel_pmap, sva, va);
963}
964
965/*
966 * This routine tears out page mappings from the
967 * kernel -- it is meant only for temporary mappings.
968 * Note: SMP coherent.  Uses a ranged shootdown IPI.
969 */
970void
971pmap_qremove(vm_offset_t sva, int count)
972{
973	vm_offset_t va;
974
975	va = sva;
976	while (count-- > 0) {
977		pmap_kremove(va);
978		va += PAGE_SIZE;
979	}
980	pmap_invalidate_range(kernel_pmap, sva, va);
981}
982
983/***************************************************
984 * Page table page management routines.....
985 ***************************************************/
986
987/*
988 * This routine unholds page table pages, and if the hold count
989 * drops to zero, then it decrements the wire count.
990 */
991static int
992_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
993{
994
995	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
996		vm_page_lock_queues();
997
998	if (m->hold_count == 0) {
999		vm_offset_t pteva;
1000		/*
1001		 * unmap the page table page
1002		 */
1003		pmap->pm_pdir[m->pindex] = 0;
1004		--pmap->pm_stats.resident_count;
1005		/*
1006		 * We never unwire a kernel page table page, making a
1007		 * check for the kernel_pmap unnecessary.
1008		 */
1009		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)) {
1010			/*
1011			 * Do an invltlb to make the invalidated mapping
1012			 * take effect immediately.
1013			 */
1014			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1015			pmap_invalidate_page(pmap, pteva);
1016		}
1017
1018		/*
1019		 * If the page is finally unwired, simply free it.
1020		 */
1021		--m->wire_count;
1022		if (m->wire_count == 0) {
1023			vm_page_busy(m);
1024			vm_page_free_zero(m);
1025			atomic_subtract_int(&cnt.v_wire_count, 1);
1026		}
1027		return 1;
1028	}
1029	return 0;
1030}
1031
1032static PMAP_INLINE int
1033pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1034{
1035	vm_page_unhold(m);
1036	if (m->hold_count == 0)
1037		return _pmap_unwire_pte_hold(pmap, m);
1038	else
1039		return 0;
1040}
1041
1042/*
1043 * After removing a page table entry, this routine is used to
1044 * conditionally free the page, and manage the hold/wire counts.
1045 */
1046static int
1047pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1048{
1049
1050	if (va >= VM_MAXUSER_ADDRESS)
1051		return 0;
1052
1053	return pmap_unwire_pte_hold(pmap, mpte);
1054}
1055
1056void
1057pmap_pinit0(pmap)
1058	struct pmap *pmap;
1059{
1060
1061	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1062#ifdef PAE
1063	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1064#endif
1065	pmap->pm_active = 0;
1066	PCPU_SET(curpmap, pmap);
1067	TAILQ_INIT(&pmap->pm_pvlist);
1068	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1069	mtx_lock_spin(&allpmaps_lock);
1070	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1071	mtx_unlock_spin(&allpmaps_lock);
1072}
1073
1074/*
1075 * Initialize a preallocated and zeroed pmap structure,
1076 * such as one in a vmspace structure.
1077 */
1078void
1079pmap_pinit(pmap)
1080	register struct pmap *pmap;
1081{
1082	vm_page_t m, ptdpg[NPGPTD];
1083	vm_paddr_t pa;
1084	static int color;
1085	int i;
1086
1087	/*
1088	 * No need to allocate page table space yet but we do need a valid
1089	 * page directory table.
1090	 */
1091	if (pmap->pm_pdir == NULL) {
1092		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1093		    NBPTD);
1094#ifdef PAE
1095		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1096		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1097		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1098		    ("pmap_pinit: pdpt misaligned"));
1099		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1100		    ("pmap_pinit: pdpt above 4g"));
1101#endif
1102	}
1103
1104	/*
1105	 * allocate the page directory page(s)
1106	 */
1107	for (i = 0; i < NPGPTD;) {
1108		m = vm_page_alloc(NULL, color++,
1109		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1110		    VM_ALLOC_ZERO);
1111		if (m == NULL)
1112			VM_WAIT;
1113		else {
1114			ptdpg[i++] = m;
1115		}
1116	}
1117
1118	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1119
1120	for (i = 0; i < NPGPTD; i++) {
1121		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1122			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1123	}
1124
1125	mtx_lock_spin(&allpmaps_lock);
1126	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1127	mtx_unlock_spin(&allpmaps_lock);
1128	/* Wire in kernel global address entries. */
1129	/* XXX copies current process, does not fill in MPPTDI */
1130	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1131#ifdef SMP
1132	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1133#endif
1134
1135	/* install self-referential address mapping entry(s) */
1136	for (i = 0; i < NPGPTD; i++) {
1137		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1138		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1139#ifdef PAE
1140		pmap->pm_pdpt[i] = pa | PG_V;
1141#endif
1142	}
1143
1144	pmap->pm_active = 0;
1145	TAILQ_INIT(&pmap->pm_pvlist);
1146	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1147}
1148
1149/*
1150 * this routine is called if the page table page is not
1151 * mapped correctly.
1152 */
1153static vm_page_t
1154_pmap_allocpte(pmap, ptepindex)
1155	pmap_t	pmap;
1156	unsigned ptepindex;
1157{
1158	vm_paddr_t ptepa;
1159	vm_page_t m;
1160
1161	/*
1162	 * Allocate a page table page.
1163	 */
1164	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1165	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1166		VM_WAIT;
1167		/*
1168		 * Indicate the need to retry.  While waiting, the page table
1169		 * page may have been allocated.
1170		 */
1171		return (NULL);
1172	}
1173	if ((m->flags & PG_ZERO) == 0)
1174		pmap_zero_page(m);
1175
1176	KASSERT(m->queue == PQ_NONE,
1177		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1178
1179	/*
1180	 * Increment the hold count for the page table page
1181	 * (denoting a new mapping.)
1182	 */
1183	m->hold_count++;
1184
1185	/*
1186	 * Map the pagetable page into the process address space, if
1187	 * it isn't already there.
1188	 */
1189
1190	pmap->pm_stats.resident_count++;
1191
1192	ptepa = VM_PAGE_TO_PHYS(m);
1193	pmap->pm_pdir[ptepindex] =
1194		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1195
1196	vm_page_lock_queues();
1197	vm_page_wakeup(m);
1198	vm_page_unlock_queues();
1199
1200	return m;
1201}
1202
1203static vm_page_t
1204pmap_allocpte(pmap_t pmap, vm_offset_t va)
1205{
1206	unsigned ptepindex;
1207	pd_entry_t ptepa;
1208	vm_page_t m;
1209
1210	/*
1211	 * Calculate pagetable page index
1212	 */
1213	ptepindex = va >> PDRSHIFT;
1214retry:
1215	/*
1216	 * Get the page directory entry
1217	 */
1218	ptepa = pmap->pm_pdir[ptepindex];
1219
1220	/*
1221	 * This supports switching from a 4MB page to a
1222	 * normal 4K page.
1223	 */
1224	if (ptepa & PG_PS) {
1225		pmap->pm_pdir[ptepindex] = 0;
1226		ptepa = 0;
1227		pmap_invalidate_all(kernel_pmap);
1228	}
1229
1230	/*
1231	 * If the page table page is mapped, we just increment the
1232	 * hold count, and activate it.
1233	 */
1234	if (ptepa) {
1235		m = PHYS_TO_VM_PAGE(ptepa);
1236		m->hold_count++;
1237	} else {
1238		/*
1239		 * Here if the pte page isn't mapped, or if it has
1240		 * been deallocated.
1241		 */
1242		m = _pmap_allocpte(pmap, ptepindex);
1243		if (m == NULL)
1244			goto retry;
1245	}
1246	return (m);
1247}
1248
1249
1250/***************************************************
1251* Pmap allocation/deallocation routines.
1252 ***************************************************/
1253
1254#ifdef SMP
1255/*
1256 * Deal with a SMP shootdown of other users of the pmap that we are
1257 * trying to dispose of.  This can be a bit hairy.
1258 */
1259static u_int *lazymask;
1260static u_int lazyptd;
1261static volatile u_int lazywait;
1262
1263void pmap_lazyfix_action(void);
1264
1265void
1266pmap_lazyfix_action(void)
1267{
1268	u_int mymask = PCPU_GET(cpumask);
1269
1270	if (rcr3() == lazyptd)
1271		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1272	atomic_clear_int(lazymask, mymask);
1273	atomic_store_rel_int(&lazywait, 1);
1274}
1275
1276static void
1277pmap_lazyfix_self(u_int mymask)
1278{
1279
1280	if (rcr3() == lazyptd)
1281		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1282	atomic_clear_int(lazymask, mymask);
1283}
1284
1285
1286static void
1287pmap_lazyfix(pmap_t pmap)
1288{
1289	u_int mymask = PCPU_GET(cpumask);
1290	u_int mask;
1291	register u_int spins;
1292
1293	while ((mask = pmap->pm_active) != 0) {
1294		spins = 50000000;
1295		mask = mask & -mask;	/* Find least significant set bit */
1296		mtx_lock_spin(&lazypmap_lock);
1297#ifdef PAE
1298		lazyptd = vtophys(pmap->pm_pdpt);
1299#else
1300		lazyptd = vtophys(pmap->pm_pdir);
1301#endif
1302		if (mask == mymask) {
1303			lazymask = &pmap->pm_active;
1304			pmap_lazyfix_self(mymask);
1305		} else {
1306			atomic_store_rel_int((u_int *)&lazymask,
1307			    (u_int)&pmap->pm_active);
1308			atomic_store_rel_int(&lazywait, 0);
1309			ipi_selected(mask, IPI_LAZYPMAP);
1310			while (lazywait == 0) {
1311				ia32_pause();
1312				if (--spins == 0)
1313					break;
1314			}
1315		}
1316		mtx_unlock_spin(&lazypmap_lock);
1317		if (spins == 0)
1318			printf("pmap_lazyfix: spun for 50000000\n");
1319	}
1320}
1321
1322#else	/* SMP */
1323
1324/*
1325 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1326 * unlikely to have to even execute this code, including the fact
1327 * that the cleanup is deferred until the parent does a wait(2), which
1328 * means that another userland process has run.
1329 */
1330static void
1331pmap_lazyfix(pmap_t pmap)
1332{
1333	u_int cr3;
1334
1335	cr3 = vtophys(pmap->pm_pdir);
1336	if (cr3 == rcr3()) {
1337		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1338		pmap->pm_active &= ~(PCPU_GET(cpumask));
1339	}
1340}
1341#endif	/* SMP */
1342
1343/*
1344 * Release any resources held by the given physical map.
1345 * Called when a pmap initialized by pmap_pinit is being released.
1346 * Should only be called if the map contains no valid mappings.
1347 */
1348void
1349pmap_release(pmap_t pmap)
1350{
1351	vm_page_t m, ptdpg[NPGPTD];
1352	int i;
1353
1354	KASSERT(pmap->pm_stats.resident_count == 0,
1355	    ("pmap_release: pmap resident count %ld != 0",
1356	    pmap->pm_stats.resident_count));
1357
1358	pmap_lazyfix(pmap);
1359	mtx_lock_spin(&allpmaps_lock);
1360	LIST_REMOVE(pmap, pm_list);
1361	mtx_unlock_spin(&allpmaps_lock);
1362
1363	for (i = 0; i < NPGPTD; i++)
1364		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1365
1366	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1367	    sizeof(*pmap->pm_pdir));
1368#ifdef SMP
1369	pmap->pm_pdir[MPPTDI] = 0;
1370#endif
1371
1372	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1373
1374	vm_page_lock_queues();
1375	for (i = 0; i < NPGPTD; i++) {
1376		m = ptdpg[i];
1377#ifdef PAE
1378		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1379		    ("pmap_release: got wrong ptd page"));
1380#endif
1381		m->wire_count--;
1382		atomic_subtract_int(&cnt.v_wire_count, 1);
1383		vm_page_free_zero(m);
1384	}
1385	vm_page_unlock_queues();
1386}
1387
1388static int
1389kvm_size(SYSCTL_HANDLER_ARGS)
1390{
1391	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1392
1393	return sysctl_handle_long(oidp, &ksize, 0, req);
1394}
1395SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1396    0, 0, kvm_size, "IU", "Size of KVM");
1397
1398static int
1399kvm_free(SYSCTL_HANDLER_ARGS)
1400{
1401	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1402
1403	return sysctl_handle_long(oidp, &kfree, 0, req);
1404}
1405SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1406    0, 0, kvm_free, "IU", "Amount of KVM free");
1407
1408/*
1409 * grow the number of kernel page table entries, if needed
1410 */
1411void
1412pmap_growkernel(vm_offset_t addr)
1413{
1414	struct pmap *pmap;
1415	int s;
1416	vm_paddr_t ptppaddr;
1417	vm_page_t nkpg;
1418	pd_entry_t newpdir;
1419	pt_entry_t *pde;
1420
1421	s = splhigh();
1422	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1423	if (kernel_vm_end == 0) {
1424		kernel_vm_end = KERNBASE;
1425		nkpt = 0;
1426		while (pdir_pde(PTD, kernel_vm_end)) {
1427			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1428			nkpt++;
1429		}
1430	}
1431	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1432	while (kernel_vm_end < addr) {
1433		if (pdir_pde(PTD, kernel_vm_end)) {
1434			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1435			continue;
1436		}
1437
1438		/*
1439		 * This index is bogus, but out of the way
1440		 */
1441		nkpg = vm_page_alloc(NULL, nkpt,
1442		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1443		if (!nkpg)
1444			panic("pmap_growkernel: no memory to grow kernel");
1445
1446		nkpt++;
1447
1448		pmap_zero_page(nkpg);
1449		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1450		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1451		pdir_pde(PTD, kernel_vm_end) = newpdir;
1452
1453		mtx_lock_spin(&allpmaps_lock);
1454		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1455			pde = pmap_pde(pmap, kernel_vm_end);
1456			pde_store(pde, newpdir);
1457		}
1458		mtx_unlock_spin(&allpmaps_lock);
1459		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1460	}
1461	splx(s);
1462}
1463
1464
1465/***************************************************
1466 * page management routines.
1467 ***************************************************/
1468
1469/*
1470 * free the pv_entry back to the free list
1471 */
1472static PMAP_INLINE void
1473free_pv_entry(pv_entry_t pv)
1474{
1475	pv_entry_count--;
1476	uma_zfree(pvzone, pv);
1477}
1478
1479/*
1480 * get a new pv_entry, allocating a block from the system
1481 * when needed.
1482 * the memory allocation is performed bypassing the malloc code
1483 * because of the possibility of allocations at interrupt time.
1484 */
1485static pv_entry_t
1486get_pv_entry(void)
1487{
1488	pv_entry_count++;
1489	if (pv_entry_high_water &&
1490		(pv_entry_count > pv_entry_high_water) &&
1491		(pmap_pagedaemon_waken == 0)) {
1492		pmap_pagedaemon_waken = 1;
1493		wakeup (&vm_pages_needed);
1494	}
1495	return uma_zalloc(pvzone, M_NOWAIT);
1496}
1497
1498/*
1499 * If it is the first entry on the list, it is actually
1500 * in the header and we must copy the following entry up
1501 * to the header.  Otherwise we must search the list for
1502 * the entry.  In either case we free the now unused entry.
1503 */
1504
1505static int
1506pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1507{
1508	pv_entry_t pv;
1509	int rtval;
1510	int s;
1511
1512	s = splvm();
1513	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1514	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1515		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1516			if (pmap == pv->pv_pmap && va == pv->pv_va)
1517				break;
1518		}
1519	} else {
1520		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1521			if (va == pv->pv_va)
1522				break;
1523		}
1524	}
1525
1526	rtval = 0;
1527	if (pv) {
1528		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1529		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1530		m->md.pv_list_count--;
1531		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1532			vm_page_flag_clear(m, PG_WRITEABLE);
1533
1534		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1535		free_pv_entry(pv);
1536	}
1537
1538	splx(s);
1539	return rtval;
1540}
1541
1542/*
1543 * Create a pv entry for page at pa for
1544 * (pmap, va).
1545 */
1546static void
1547pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1548{
1549
1550	int s;
1551	pv_entry_t pv;
1552
1553	s = splvm();
1554	pv = get_pv_entry();
1555	pv->pv_va = va;
1556	pv->pv_pmap = pmap;
1557	pv->pv_ptem = mpte;
1558
1559	vm_page_lock_queues();
1560	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1561	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1562	m->md.pv_list_count++;
1563
1564	vm_page_unlock_queues();
1565	splx(s);
1566}
1567
1568/*
1569 * pmap_remove_pte: do the things to unmap a page in a process
1570 */
1571static int
1572pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1573{
1574	pt_entry_t oldpte;
1575	vm_page_t m, mpte;
1576
1577	oldpte = pte_load_clear(ptq);
1578	if (oldpte & PG_W)
1579		pmap->pm_stats.wired_count -= 1;
1580	/*
1581	 * Machines that don't support invlpg, also don't support
1582	 * PG_G.
1583	 */
1584	if (oldpte & PG_G)
1585		pmap_invalidate_page(kernel_pmap, va);
1586	pmap->pm_stats.resident_count -= 1;
1587	if (oldpte & PG_MANAGED) {
1588		m = PHYS_TO_VM_PAGE(oldpte);
1589		if (oldpte & PG_M) {
1590#if defined(PMAP_DIAGNOSTIC)
1591			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1592				printf(
1593	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1594				    va, oldpte);
1595			}
1596#endif
1597			if (pmap_track_modified(va))
1598				vm_page_dirty(m);
1599		}
1600		if (oldpte & PG_A)
1601			vm_page_flag_set(m, PG_REFERENCED);
1602		return pmap_remove_entry(pmap, m, va);
1603	} else {
1604		mpte = PHYS_TO_VM_PAGE(*pmap_pde(pmap, va));
1605		return pmap_unuse_pt(pmap, va, mpte);
1606	}
1607}
1608
1609/*
1610 * Remove a single page from a process address space
1611 */
1612static void
1613pmap_remove_page(pmap_t pmap, vm_offset_t va)
1614{
1615	pt_entry_t *pte;
1616
1617	if ((pte = pmap_pte(pmap, va)) == NULL || *pte == 0)
1618		return;
1619	pmap_remove_pte(pmap, pte, va);
1620	pmap_invalidate_page(pmap, va);
1621}
1622
1623/*
1624 *	Remove the given range of addresses from the specified map.
1625 *
1626 *	It is assumed that the start and end are properly
1627 *	rounded to the page size.
1628 */
1629void
1630pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1631{
1632	vm_offset_t pdnxt;
1633	pd_entry_t ptpaddr;
1634	pt_entry_t *pte;
1635	int anyvalid;
1636
1637	if (pmap == NULL)
1638		return;
1639
1640	if (pmap->pm_stats.resident_count == 0)
1641		return;
1642
1643	/*
1644	 * special handling of removing one page.  a very
1645	 * common operation and easy to short circuit some
1646	 * code.
1647	 */
1648	if ((sva + PAGE_SIZE == eva) &&
1649	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1650		pmap_remove_page(pmap, sva);
1651		return;
1652	}
1653
1654	anyvalid = 0;
1655
1656	for (; sva < eva; sva = pdnxt) {
1657		unsigned pdirindex;
1658
1659		/*
1660		 * Calculate index for next page table.
1661		 */
1662		pdnxt = (sva + NBPDR) & ~PDRMASK;
1663		if (pmap->pm_stats.resident_count == 0)
1664			break;
1665
1666		pdirindex = sva >> PDRSHIFT;
1667		ptpaddr = pmap->pm_pdir[pdirindex];
1668
1669		/*
1670		 * Weed out invalid mappings. Note: we assume that the page
1671		 * directory table is always allocated, and in kernel virtual.
1672		 */
1673		if (ptpaddr == 0)
1674			continue;
1675
1676		/*
1677		 * Check for large page.
1678		 */
1679		if ((ptpaddr & PG_PS) != 0) {
1680			pmap->pm_pdir[pdirindex] = 0;
1681			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1682			anyvalid = 1;
1683			continue;
1684		}
1685
1686		/*
1687		 * Limit our scan to either the end of the va represented
1688		 * by the current page table page, or to the end of the
1689		 * range being removed.
1690		 */
1691		if (pdnxt > eva)
1692			pdnxt = eva;
1693
1694		for (; sva != pdnxt; sva += PAGE_SIZE) {
1695			if ((pte = pmap_pte(pmap, sva)) == NULL ||
1696			    *pte == 0)
1697				continue;
1698			anyvalid = 1;
1699			if (pmap_remove_pte(pmap, pte, sva))
1700				break;
1701		}
1702	}
1703
1704	if (anyvalid)
1705		pmap_invalidate_all(pmap);
1706}
1707
1708/*
1709 *	Routine:	pmap_remove_all
1710 *	Function:
1711 *		Removes this physical page from
1712 *		all physical maps in which it resides.
1713 *		Reflects back modify bits to the pager.
1714 *
1715 *	Notes:
1716 *		Original versions of this routine were very
1717 *		inefficient because they iteratively called
1718 *		pmap_remove (slow...)
1719 */
1720
1721void
1722pmap_remove_all(vm_page_t m)
1723{
1724	register pv_entry_t pv;
1725	pt_entry_t *pte, tpte;
1726	int s;
1727
1728#if defined(PMAP_DIAGNOSTIC)
1729	/*
1730	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1731	 */
1732	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1733		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1734		    VM_PAGE_TO_PHYS(m));
1735	}
1736#endif
1737	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1738	s = splvm();
1739	sched_pin();
1740	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1741		pv->pv_pmap->pm_stats.resident_count--;
1742		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1743		tpte = pte_load_clear(pte);
1744		if (tpte & PG_W)
1745			pv->pv_pmap->pm_stats.wired_count--;
1746		if (tpte & PG_A)
1747			vm_page_flag_set(m, PG_REFERENCED);
1748
1749		/*
1750		 * Update the vm_page_t clean and reference bits.
1751		 */
1752		if (tpte & PG_M) {
1753#if defined(PMAP_DIAGNOSTIC)
1754			if (pmap_nw_modified((pt_entry_t) tpte)) {
1755				printf(
1756	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1757				    pv->pv_va, tpte);
1758			}
1759#endif
1760			if (pmap_track_modified(pv->pv_va))
1761				vm_page_dirty(m);
1762		}
1763		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1764		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1765		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1766		m->md.pv_list_count--;
1767		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1768		free_pv_entry(pv);
1769	}
1770	vm_page_flag_clear(m, PG_WRITEABLE);
1771	sched_unpin();
1772	splx(s);
1773}
1774
1775/*
1776 *	Set the physical protection on the
1777 *	specified range of this map as requested.
1778 */
1779void
1780pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1781{
1782	vm_offset_t pdnxt;
1783	pd_entry_t ptpaddr;
1784	int anychanged;
1785
1786	if (pmap == NULL)
1787		return;
1788
1789	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1790		pmap_remove(pmap, sva, eva);
1791		return;
1792	}
1793
1794	if (prot & VM_PROT_WRITE)
1795		return;
1796
1797	anychanged = 0;
1798
1799	for (; sva < eva; sva = pdnxt) {
1800		unsigned pdirindex;
1801
1802		pdnxt = (sva + NBPDR) & ~PDRMASK;
1803
1804		pdirindex = sva >> PDRSHIFT;
1805		ptpaddr = pmap->pm_pdir[pdirindex];
1806
1807		/*
1808		 * Weed out invalid mappings. Note: we assume that the page
1809		 * directory table is always allocated, and in kernel virtual.
1810		 */
1811		if (ptpaddr == 0)
1812			continue;
1813
1814		/*
1815		 * Check for large page.
1816		 */
1817		if ((ptpaddr & PG_PS) != 0) {
1818			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1819			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1820			anychanged = 1;
1821			continue;
1822		}
1823
1824		if (pdnxt > eva)
1825			pdnxt = eva;
1826
1827		for (; sva != pdnxt; sva += PAGE_SIZE) {
1828			pt_entry_t pbits;
1829			pt_entry_t *pte;
1830			vm_page_t m;
1831
1832			if ((pte = pmap_pte(pmap, sva)) == NULL)
1833				continue;
1834			pbits = *pte;
1835			if (pbits & PG_MANAGED) {
1836				m = NULL;
1837				if (pbits & PG_A) {
1838					m = PHYS_TO_VM_PAGE(pbits);
1839					vm_page_flag_set(m, PG_REFERENCED);
1840					pbits &= ~PG_A;
1841				}
1842				if ((pbits & PG_M) != 0 &&
1843				    pmap_track_modified(sva)) {
1844					if (m == NULL)
1845						m = PHYS_TO_VM_PAGE(pbits);
1846					vm_page_dirty(m);
1847					pbits &= ~PG_M;
1848				}
1849			}
1850
1851			pbits &= ~PG_RW;
1852
1853			if (pbits != *pte) {
1854				pte_store(pte, pbits);
1855				anychanged = 1;
1856			}
1857		}
1858	}
1859	if (anychanged)
1860		pmap_invalidate_all(pmap);
1861}
1862
1863/*
1864 *	Insert the given physical page (p) at
1865 *	the specified virtual address (v) in the
1866 *	target physical map with the protection requested.
1867 *
1868 *	If specified, the page will be wired down, meaning
1869 *	that the related pte can not be reclaimed.
1870 *
1871 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1872 *	or lose information.  That is, this routine must actually
1873 *	insert this page into the given map NOW.
1874 */
1875void
1876pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1877	   boolean_t wired)
1878{
1879	vm_paddr_t pa;
1880	register pt_entry_t *pte;
1881	vm_paddr_t opa;
1882	pt_entry_t origpte, newpte;
1883	vm_page_t mpte;
1884
1885	if (pmap == NULL)
1886		return;
1887
1888	va &= PG_FRAME;
1889#ifdef PMAP_DIAGNOSTIC
1890	if (va > VM_MAX_KERNEL_ADDRESS)
1891		panic("pmap_enter: toobig");
1892	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1893		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1894#endif
1895
1896	mpte = NULL;
1897	/*
1898	 * In the case that a page table page is not
1899	 * resident, we are creating it here.
1900	 */
1901	if (va < VM_MAXUSER_ADDRESS) {
1902		mpte = pmap_allocpte(pmap, va);
1903	}
1904#if 0 && defined(PMAP_DIAGNOSTIC)
1905	else {
1906		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1907		origpte = *pdeaddr;
1908		if ((origpte & PG_V) == 0) {
1909			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1910				pmap->pm_pdir[PTDPTDI], origpte, va);
1911		}
1912	}
1913#endif
1914
1915	pte = pmap_pte(pmap, va);
1916
1917	/*
1918	 * Page Directory table entry not valid, we need a new PT page
1919	 */
1920	if (pte == NULL) {
1921		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1922			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1923	}
1924
1925	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1926	origpte = *pte;
1927	opa = origpte & PG_FRAME;
1928
1929	if (origpte & PG_PS) {
1930		/*
1931		 * Yes, I know this will truncate upper address bits for PAE,
1932		 * but I'm actually more interested in the lower bits
1933		 */
1934		printf("pmap_enter: va %p, pte %p, origpte %p\n",
1935		    (void *)va, (void *)pte, (void *)(uintptr_t)origpte);
1936		panic("pmap_enter: attempted pmap_enter on 4MB page");
1937	}
1938
1939	/*
1940	 * Mapping has not changed, must be protection or wiring change.
1941	 */
1942	if (origpte && (opa == pa)) {
1943		/*
1944		 * Wiring change, just update stats. We don't worry about
1945		 * wiring PT pages as they remain resident as long as there
1946		 * are valid mappings in them. Hence, if a user page is wired,
1947		 * the PT page will be also.
1948		 */
1949		if (wired && ((origpte & PG_W) == 0))
1950			pmap->pm_stats.wired_count++;
1951		else if (!wired && (origpte & PG_W))
1952			pmap->pm_stats.wired_count--;
1953
1954#if defined(PMAP_DIAGNOSTIC)
1955		if (pmap_nw_modified((pt_entry_t) origpte)) {
1956			printf(
1957	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1958			    va, origpte);
1959		}
1960#endif
1961
1962		/*
1963		 * Remove extra pte reference
1964		 */
1965		if (mpte)
1966			mpte->hold_count--;
1967
1968		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
1969			if ((origpte & PG_RW) == 0) {
1970				pte_store(pte, origpte | PG_RW);
1971				pmap_invalidate_page(pmap, va);
1972			}
1973			return;
1974		}
1975
1976		/*
1977		 * We might be turning off write access to the page,
1978		 * so we go ahead and sense modify status.
1979		 */
1980		if (origpte & PG_MANAGED) {
1981			if ((origpte & PG_M) && pmap_track_modified(va)) {
1982				vm_page_t om;
1983				om = PHYS_TO_VM_PAGE(opa);
1984				vm_page_dirty(om);
1985			}
1986			pa |= PG_MANAGED;
1987		}
1988		goto validate;
1989	}
1990	/*
1991	 * Mapping has changed, invalidate old range and fall through to
1992	 * handle validating new mapping.
1993	 */
1994	if (opa) {
1995		int err;
1996		vm_page_lock_queues();
1997		err = pmap_remove_pte(pmap, pte, va);
1998		vm_page_unlock_queues();
1999		if (err)
2000			panic("pmap_enter: pte vanished, va: 0x%x", va);
2001	}
2002
2003	/*
2004	 * Enter on the PV list if part of our managed memory. Note that we
2005	 * raise IPL while manipulating pv_table since pmap_enter can be
2006	 * called at interrupt time.
2007	 */
2008	if (pmap_initialized &&
2009	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2010		pmap_insert_entry(pmap, va, mpte, m);
2011		pa |= PG_MANAGED;
2012	}
2013
2014	/*
2015	 * Increment counters
2016	 */
2017	pmap->pm_stats.resident_count++;
2018	if (wired)
2019		pmap->pm_stats.wired_count++;
2020
2021validate:
2022	/*
2023	 * Now validate mapping with desired protection/wiring.
2024	 */
2025	newpte = (pt_entry_t)(pa | PG_V);
2026	if ((prot & VM_PROT_WRITE) != 0)
2027		newpte |= PG_RW;
2028	if (wired)
2029		newpte |= PG_W;
2030	if (va < VM_MAXUSER_ADDRESS)
2031		newpte |= PG_U;
2032	if (pmap == kernel_pmap)
2033		newpte |= pgeflag;
2034
2035	/*
2036	 * if the mapping or permission bits are different, we need
2037	 * to update the pte.
2038	 */
2039	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2040		pte_store(pte, newpte | PG_A);
2041		/*if (origpte)*/ {
2042			pmap_invalidate_page(pmap, va);
2043		}
2044	}
2045}
2046
2047/*
2048 * this code makes some *MAJOR* assumptions:
2049 * 1. Current pmap & pmap exists.
2050 * 2. Not wired.
2051 * 3. Read access.
2052 * 4. No page table pages.
2053 * 5. Tlbflush is deferred to calling procedure.
2054 * 6. Page IS managed.
2055 * but is *MUCH* faster than pmap_enter...
2056 */
2057
2058vm_page_t
2059pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2060{
2061	pt_entry_t *pte;
2062	vm_paddr_t pa;
2063
2064	/*
2065	 * In the case that a page table page is not
2066	 * resident, we are creating it here.
2067	 */
2068	if (va < VM_MAXUSER_ADDRESS) {
2069		unsigned ptepindex;
2070		pd_entry_t ptepa;
2071
2072		/*
2073		 * Calculate pagetable page index
2074		 */
2075		ptepindex = va >> PDRSHIFT;
2076		if (mpte && (mpte->pindex == ptepindex)) {
2077			mpte->hold_count++;
2078		} else {
2079retry:
2080			/*
2081			 * Get the page directory entry
2082			 */
2083			ptepa = pmap->pm_pdir[ptepindex];
2084
2085			/*
2086			 * If the page table page is mapped, we just increment
2087			 * the hold count, and activate it.
2088			 */
2089			if (ptepa) {
2090				if (ptepa & PG_PS)
2091					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2092				mpte = PHYS_TO_VM_PAGE(ptepa);
2093				mpte->hold_count++;
2094			} else {
2095				mpte = _pmap_allocpte(pmap, ptepindex);
2096				if (mpte == NULL)
2097					goto retry;
2098			}
2099		}
2100	} else {
2101		mpte = NULL;
2102	}
2103
2104	/*
2105	 * This call to vtopte makes the assumption that we are
2106	 * entering the page into the current pmap.  In order to support
2107	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2108	 * But that isn't as quick as vtopte.
2109	 */
2110	pte = vtopte(va);
2111	if (*pte) {
2112		if (mpte != NULL) {
2113			vm_page_lock_queues();
2114			pmap_unwire_pte_hold(pmap, mpte);
2115			vm_page_unlock_queues();
2116		}
2117		return 0;
2118	}
2119
2120	/*
2121	 * Enter on the PV list if part of our managed memory. Note that we
2122	 * raise IPL while manipulating pv_table since pmap_enter can be
2123	 * called at interrupt time.
2124	 */
2125	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2126		pmap_insert_entry(pmap, va, mpte, m);
2127
2128	/*
2129	 * Increment counters
2130	 */
2131	pmap->pm_stats.resident_count++;
2132
2133	pa = VM_PAGE_TO_PHYS(m);
2134
2135	/*
2136	 * Now validate mapping with RO protection
2137	 */
2138	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2139		pte_store(pte, pa | PG_V | PG_U);
2140	else
2141		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2142
2143	return mpte;
2144}
2145
2146/*
2147 * Make a temporary mapping for a physical address.  This is only intended
2148 * to be used for panic dumps.
2149 */
2150void *
2151pmap_kenter_temporary(vm_offset_t pa, int i)
2152{
2153	vm_offset_t va;
2154
2155	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2156	pmap_kenter(va, pa);
2157#ifndef I386_CPU
2158	invlpg(va);
2159#else
2160	invltlb();
2161#endif
2162	return ((void *)crashdumpmap);
2163}
2164
2165/*
2166 * This code maps large physical mmap regions into the
2167 * processor address space.  Note that some shortcuts
2168 * are taken, but the code works.
2169 */
2170void
2171pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2172		    vm_object_t object, vm_pindex_t pindex,
2173		    vm_size_t size)
2174{
2175	vm_page_t p;
2176
2177	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2178	KASSERT(object->type == OBJT_DEVICE,
2179	    ("pmap_object_init_pt: non-device object"));
2180	if (pseflag &&
2181	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2182		int i;
2183		vm_page_t m[1];
2184		unsigned int ptepindex;
2185		int npdes;
2186		pd_entry_t ptepa;
2187
2188		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2189			return;
2190retry:
2191		p = vm_page_lookup(object, pindex);
2192		if (p != NULL) {
2193			vm_page_lock_queues();
2194			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2195				goto retry;
2196		} else {
2197			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2198			if (p == NULL)
2199				return;
2200			m[0] = p;
2201
2202			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2203				vm_page_lock_queues();
2204				vm_page_free(p);
2205				vm_page_unlock_queues();
2206				return;
2207			}
2208
2209			p = vm_page_lookup(object, pindex);
2210			vm_page_lock_queues();
2211			vm_page_wakeup(p);
2212		}
2213		vm_page_unlock_queues();
2214
2215		ptepa = VM_PAGE_TO_PHYS(p);
2216		if (ptepa & (NBPDR - 1))
2217			return;
2218
2219		p->valid = VM_PAGE_BITS_ALL;
2220
2221		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2222		npdes = size >> PDRSHIFT;
2223		for(i = 0; i < npdes; i++) {
2224			pde_store(&pmap->pm_pdir[ptepindex],
2225			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2226			ptepa += NBPDR;
2227			ptepindex += 1;
2228		}
2229		pmap_invalidate_all(pmap);
2230	}
2231}
2232
2233/*
2234 *	Routine:	pmap_change_wiring
2235 *	Function:	Change the wiring attribute for a map/virtual-address
2236 *			pair.
2237 *	In/out conditions:
2238 *			The mapping must already exist in the pmap.
2239 */
2240void
2241pmap_change_wiring(pmap, va, wired)
2242	register pmap_t pmap;
2243	vm_offset_t va;
2244	boolean_t wired;
2245{
2246	register pt_entry_t *pte;
2247
2248	if (pmap == NULL)
2249		return;
2250
2251	pte = pmap_pte(pmap, va);
2252
2253	if (wired && !pmap_pte_w(pte))
2254		pmap->pm_stats.wired_count++;
2255	else if (!wired && pmap_pte_w(pte))
2256		pmap->pm_stats.wired_count--;
2257
2258	/*
2259	 * Wiring is not a hardware characteristic so there is no need to
2260	 * invalidate TLB.
2261	 */
2262	pmap_pte_set_w(pte, wired);
2263}
2264
2265
2266
2267/*
2268 *	Copy the range specified by src_addr/len
2269 *	from the source map to the range dst_addr/len
2270 *	in the destination map.
2271 *
2272 *	This routine is only advisory and need not do anything.
2273 */
2274
2275void
2276pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2277	  vm_offset_t src_addr)
2278{
2279	vm_offset_t addr;
2280	vm_offset_t end_addr = src_addr + len;
2281	vm_offset_t pdnxt;
2282	vm_page_t m;
2283
2284	if (dst_addr != src_addr)
2285		return;
2286
2287	if (!pmap_is_current(src_pmap))
2288		return;
2289
2290	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2291		pt_entry_t *src_pte, *dst_pte;
2292		vm_page_t dstmpte, srcmpte;
2293		pd_entry_t srcptepaddr;
2294		unsigned ptepindex;
2295
2296		if (addr >= UPT_MIN_ADDRESS)
2297			panic("pmap_copy: invalid to pmap_copy page tables\n");
2298
2299		/*
2300		 * Don't let optional prefaulting of pages make us go
2301		 * way below the low water mark of free pages or way
2302		 * above high water mark of used pv entries.
2303		 */
2304		if (cnt.v_free_count < cnt.v_free_reserved ||
2305		    pv_entry_count > pv_entry_high_water)
2306			break;
2307
2308		pdnxt = (addr + NBPDR) & ~PDRMASK;
2309		ptepindex = addr >> PDRSHIFT;
2310
2311		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2312		if (srcptepaddr == 0)
2313			continue;
2314
2315		if (srcptepaddr & PG_PS) {
2316			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2317				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2318				dst_pmap->pm_stats.resident_count +=
2319				    NBPDR / PAGE_SIZE;
2320			}
2321			continue;
2322		}
2323
2324		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2325		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2326			continue;
2327
2328		if (pdnxt > end_addr)
2329			pdnxt = end_addr;
2330
2331		src_pte = vtopte(addr);
2332		while (addr < pdnxt) {
2333			pt_entry_t ptetemp;
2334			ptetemp = *src_pte;
2335			/*
2336			 * we only virtual copy managed pages
2337			 */
2338			if ((ptetemp & PG_MANAGED) != 0) {
2339				/*
2340				 * We have to check after allocpte for the
2341				 * pte still being around...  allocpte can
2342				 * block.
2343				 */
2344				dstmpte = pmap_allocpte(dst_pmap, addr);
2345				dst_pte = pmap_pte(dst_pmap, addr);
2346				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2347					/*
2348					 * Clear the modified and
2349					 * accessed (referenced) bits
2350					 * during the copy.
2351					 */
2352					m = PHYS_TO_VM_PAGE(ptetemp);
2353					*dst_pte = ptetemp & ~(PG_M | PG_A);
2354					dst_pmap->pm_stats.resident_count++;
2355					pmap_insert_entry(dst_pmap, addr,
2356						dstmpte, m);
2357	 			} else {
2358					vm_page_lock_queues();
2359					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2360					vm_page_unlock_queues();
2361				}
2362				if (dstmpte->hold_count >= srcmpte->hold_count)
2363					break;
2364			}
2365			addr += PAGE_SIZE;
2366			src_pte++;
2367		}
2368	}
2369}
2370
2371static __inline void
2372pagezero(void *page)
2373{
2374#if defined(I686_CPU)
2375	if (cpu_class == CPUCLASS_686) {
2376#if defined(CPU_ENABLE_SSE)
2377		if (cpu_feature & CPUID_SSE2)
2378			sse2_pagezero(page);
2379		else
2380#endif
2381			i686_pagezero(page);
2382	} else
2383#endif
2384		bzero(page, PAGE_SIZE);
2385}
2386
2387/*
2388 *	pmap_zero_page zeros the specified hardware page by mapping
2389 *	the page into KVM and using bzero to clear its contents.
2390 */
2391void
2392pmap_zero_page(vm_page_t m)
2393{
2394
2395	mtx_lock(&CMAPCADDR12_lock);
2396	if (*CMAP2)
2397		panic("pmap_zero_page: CMAP2 busy");
2398	sched_pin();
2399	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2400	invlcaddr(CADDR2);
2401	pagezero(CADDR2);
2402	*CMAP2 = 0;
2403	sched_unpin();
2404	mtx_unlock(&CMAPCADDR12_lock);
2405}
2406
2407/*
2408 *	pmap_zero_page_area zeros the specified hardware page by mapping
2409 *	the page into KVM and using bzero to clear its contents.
2410 *
2411 *	off and size may not cover an area beyond a single hardware page.
2412 */
2413void
2414pmap_zero_page_area(vm_page_t m, int off, int size)
2415{
2416
2417	mtx_lock(&CMAPCADDR12_lock);
2418	if (*CMAP2)
2419		panic("pmap_zero_page: CMAP2 busy");
2420	sched_pin();
2421	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2422	invlcaddr(CADDR2);
2423	if (off == 0 && size == PAGE_SIZE)
2424		pagezero(CADDR2);
2425	else
2426		bzero((char *)CADDR2 + off, size);
2427	*CMAP2 = 0;
2428	sched_unpin();
2429	mtx_unlock(&CMAPCADDR12_lock);
2430}
2431
2432/*
2433 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2434 *	the page into KVM and using bzero to clear its contents.  This
2435 *	is intended to be called from the vm_pagezero process only and
2436 *	outside of Giant.
2437 */
2438void
2439pmap_zero_page_idle(vm_page_t m)
2440{
2441
2442	if (*CMAP3)
2443		panic("pmap_zero_page: CMAP3 busy");
2444	sched_pin();
2445	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2446	invlcaddr(CADDR3);
2447	pagezero(CADDR3);
2448	*CMAP3 = 0;
2449	sched_unpin();
2450}
2451
2452/*
2453 *	pmap_copy_page copies the specified (machine independent)
2454 *	page by mapping the page into virtual memory and using
2455 *	bcopy to copy the page, one machine dependent page at a
2456 *	time.
2457 */
2458void
2459pmap_copy_page(vm_page_t src, vm_page_t dst)
2460{
2461
2462	mtx_lock(&CMAPCADDR12_lock);
2463	if (*CMAP1)
2464		panic("pmap_copy_page: CMAP1 busy");
2465	if (*CMAP2)
2466		panic("pmap_copy_page: CMAP2 busy");
2467	sched_pin();
2468#ifdef I386_CPU
2469	invltlb();
2470#else
2471	invlpg((u_int)CADDR1);
2472	invlpg((u_int)CADDR2);
2473#endif
2474	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2475	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2476	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2477	*CMAP1 = 0;
2478	*CMAP2 = 0;
2479	sched_unpin();
2480	mtx_unlock(&CMAPCADDR12_lock);
2481}
2482
2483/*
2484 * Returns true if the pmap's pv is one of the first
2485 * 16 pvs linked to from this page.  This count may
2486 * be changed upwards or downwards in the future; it
2487 * is only necessary that true be returned for a small
2488 * subset of pmaps for proper page aging.
2489 */
2490boolean_t
2491pmap_page_exists_quick(pmap, m)
2492	pmap_t pmap;
2493	vm_page_t m;
2494{
2495	pv_entry_t pv;
2496	int loops = 0;
2497	int s;
2498
2499	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2500		return FALSE;
2501
2502	s = splvm();
2503	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2504	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2505		if (pv->pv_pmap == pmap) {
2506			splx(s);
2507			return TRUE;
2508		}
2509		loops++;
2510		if (loops >= 16)
2511			break;
2512	}
2513	splx(s);
2514	return (FALSE);
2515}
2516
2517#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2518/*
2519 * Remove all pages from specified address space
2520 * this aids process exit speeds.  Also, this code
2521 * is special cased for current process only, but
2522 * can have the more generic (and slightly slower)
2523 * mode enabled.  This is much faster than pmap_remove
2524 * in the case of running down an entire address space.
2525 */
2526void
2527pmap_remove_pages(pmap, sva, eva)
2528	pmap_t pmap;
2529	vm_offset_t sva, eva;
2530{
2531	pt_entry_t *pte, tpte;
2532	vm_page_t m;
2533	pv_entry_t pv, npv;
2534	int s;
2535
2536#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2537	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2538		printf("warning: pmap_remove_pages called with non-current pmap\n");
2539		return;
2540	}
2541#endif
2542	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2543	s = splvm();
2544	sched_pin();
2545	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2546
2547		if (pv->pv_va >= eva || pv->pv_va < sva) {
2548			npv = TAILQ_NEXT(pv, pv_plist);
2549			continue;
2550		}
2551
2552#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2553		pte = vtopte(pv->pv_va);
2554#else
2555		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2556#endif
2557		tpte = *pte;
2558
2559		if (tpte == 0) {
2560			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2561							pte, pv->pv_va);
2562			panic("bad pte");
2563		}
2564
2565/*
2566 * We cannot remove wired pages from a process' mapping at this time
2567 */
2568		if (tpte & PG_W) {
2569			npv = TAILQ_NEXT(pv, pv_plist);
2570			continue;
2571		}
2572
2573		m = PHYS_TO_VM_PAGE(tpte);
2574		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2575		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2576		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2577
2578		KASSERT(m < &vm_page_array[vm_page_array_size],
2579			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2580
2581		pv->pv_pmap->pm_stats.resident_count--;
2582
2583		pte_clear(pte);
2584
2585		/*
2586		 * Update the vm_page_t clean and reference bits.
2587		 */
2588		if (tpte & PG_M) {
2589			vm_page_dirty(m);
2590		}
2591
2592		npv = TAILQ_NEXT(pv, pv_plist);
2593		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2594
2595		m->md.pv_list_count--;
2596		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2597		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2598			vm_page_flag_clear(m, PG_WRITEABLE);
2599		}
2600
2601		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2602		free_pv_entry(pv);
2603	}
2604	sched_unpin();
2605	splx(s);
2606	pmap_invalidate_all(pmap);
2607}
2608
2609/*
2610 *	pmap_is_modified:
2611 *
2612 *	Return whether or not the specified physical page was modified
2613 *	in any physical maps.
2614 */
2615boolean_t
2616pmap_is_modified(vm_page_t m)
2617{
2618	pv_entry_t pv;
2619	pt_entry_t *pte;
2620	int s;
2621
2622	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2623		return FALSE;
2624
2625	s = splvm();
2626	sched_pin();
2627	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2628	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2629		/*
2630		 * if the bit being tested is the modified bit, then
2631		 * mark clean_map and ptes as never
2632		 * modified.
2633		 */
2634		if (!pmap_track_modified(pv->pv_va))
2635			continue;
2636#if defined(PMAP_DIAGNOSTIC)
2637		if (!pv->pv_pmap) {
2638			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2639			continue;
2640		}
2641#endif
2642		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2643		if (*pte & PG_M) {
2644			sched_unpin();
2645			splx(s);
2646			return TRUE;
2647		}
2648	}
2649	sched_unpin();
2650	splx(s);
2651	return (FALSE);
2652}
2653
2654/*
2655 *	pmap_is_prefaultable:
2656 *
2657 *	Return whether or not the specified virtual address is elgible
2658 *	for prefault.
2659 */
2660boolean_t
2661pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2662{
2663	pt_entry_t *pte;
2664
2665	if ((*pmap_pde(pmap, addr)) == 0)
2666		return (FALSE);
2667	pte = vtopte(addr);
2668	if (*pte)
2669		return (FALSE);
2670	return (TRUE);
2671}
2672
2673/*
2674 *	Clear the given bit in each of the given page's ptes.
2675 */
2676static __inline void
2677pmap_clear_ptes(vm_page_t m, int bit)
2678{
2679	register pv_entry_t pv;
2680	pt_entry_t pbits, *pte;
2681	int s;
2682
2683	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2684	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2685		return;
2686
2687	s = splvm();
2688	sched_pin();
2689	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2690	/*
2691	 * Loop over all current mappings setting/clearing as appropos If
2692	 * setting RO do we need to clear the VAC?
2693	 */
2694	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2695		/*
2696		 * don't write protect pager mappings
2697		 */
2698		if (bit == PG_RW) {
2699			if (!pmap_track_modified(pv->pv_va))
2700				continue;
2701		}
2702
2703#if defined(PMAP_DIAGNOSTIC)
2704		if (!pv->pv_pmap) {
2705			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2706			continue;
2707		}
2708#endif
2709
2710		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2711		pbits = *pte;
2712		if (pbits & bit) {
2713			if (bit == PG_RW) {
2714				if (pbits & PG_M) {
2715					vm_page_dirty(m);
2716				}
2717				pte_store(pte, pbits & ~(PG_M|PG_RW));
2718			} else {
2719				pte_store(pte, pbits & ~bit);
2720			}
2721			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2722		}
2723	}
2724	if (bit == PG_RW)
2725		vm_page_flag_clear(m, PG_WRITEABLE);
2726	sched_unpin();
2727	splx(s);
2728}
2729
2730/*
2731 *      pmap_page_protect:
2732 *
2733 *      Lower the permission for all mappings to a given page.
2734 */
2735void
2736pmap_page_protect(vm_page_t m, vm_prot_t prot)
2737{
2738	if ((prot & VM_PROT_WRITE) == 0) {
2739		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2740			pmap_clear_ptes(m, PG_RW);
2741		} else {
2742			pmap_remove_all(m);
2743		}
2744	}
2745}
2746
2747/*
2748 *	pmap_ts_referenced:
2749 *
2750 *	Return a count of reference bits for a page, clearing those bits.
2751 *	It is not necessary for every reference bit to be cleared, but it
2752 *	is necessary that 0 only be returned when there are truly no
2753 *	reference bits set.
2754 *
2755 *	XXX: The exact number of bits to check and clear is a matter that
2756 *	should be tested and standardized at some point in the future for
2757 *	optimal aging of shared pages.
2758 */
2759int
2760pmap_ts_referenced(vm_page_t m)
2761{
2762	register pv_entry_t pv, pvf, pvn;
2763	pt_entry_t *pte;
2764	pt_entry_t v;
2765	int s;
2766	int rtval = 0;
2767
2768	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2769		return (rtval);
2770
2771	s = splvm();
2772	sched_pin();
2773	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2774	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2775
2776		pvf = pv;
2777
2778		do {
2779			pvn = TAILQ_NEXT(pv, pv_list);
2780
2781			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2782
2783			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2784
2785			if (!pmap_track_modified(pv->pv_va))
2786				continue;
2787
2788			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2789
2790			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2791				pte_store(pte, v & ~PG_A);
2792				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2793
2794				rtval++;
2795				if (rtval > 4) {
2796					break;
2797				}
2798			}
2799		} while ((pv = pvn) != NULL && pv != pvf);
2800	}
2801	sched_unpin();
2802	splx(s);
2803
2804	return (rtval);
2805}
2806
2807/*
2808 *	Clear the modify bits on the specified physical page.
2809 */
2810void
2811pmap_clear_modify(vm_page_t m)
2812{
2813	pmap_clear_ptes(m, PG_M);
2814}
2815
2816/*
2817 *	pmap_clear_reference:
2818 *
2819 *	Clear the reference bit on the specified physical page.
2820 */
2821void
2822pmap_clear_reference(vm_page_t m)
2823{
2824	pmap_clear_ptes(m, PG_A);
2825}
2826
2827/*
2828 * Miscellaneous support routines follow
2829 */
2830
2831/*
2832 * Map a set of physical memory pages into the kernel virtual
2833 * address space. Return a pointer to where it is mapped. This
2834 * routine is intended to be used for mapping device memory,
2835 * NOT real memory.
2836 */
2837void *
2838pmap_mapdev(pa, size)
2839	vm_paddr_t pa;
2840	vm_size_t size;
2841{
2842	vm_offset_t va, tmpva, offset;
2843
2844	offset = pa & PAGE_MASK;
2845	size = roundup(offset + size, PAGE_SIZE);
2846	pa = pa & PG_FRAME;
2847
2848	if (pa < KERNLOAD && pa + size <= KERNLOAD)
2849		va = KERNBASE + pa;
2850	else
2851		va = kmem_alloc_nofault(kernel_map, size);
2852	if (!va)
2853		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2854
2855	for (tmpva = va; size > 0; ) {
2856		pmap_kenter(tmpva, pa);
2857		size -= PAGE_SIZE;
2858		tmpva += PAGE_SIZE;
2859		pa += PAGE_SIZE;
2860	}
2861	pmap_invalidate_range(kernel_pmap, va, tmpva);
2862	return ((void *)(va + offset));
2863}
2864
2865void
2866pmap_unmapdev(va, size)
2867	vm_offset_t va;
2868	vm_size_t size;
2869{
2870	vm_offset_t base, offset, tmpva;
2871
2872	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
2873		return;
2874	base = va & PG_FRAME;
2875	offset = va & PAGE_MASK;
2876	size = roundup(offset + size, PAGE_SIZE);
2877	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2878		pmap_kremove(tmpva);
2879	pmap_invalidate_range(kernel_pmap, va, tmpva);
2880	kmem_free(kernel_map, base, size);
2881}
2882
2883/*
2884 * perform the pmap work for mincore
2885 */
2886int
2887pmap_mincore(pmap, addr)
2888	pmap_t pmap;
2889	vm_offset_t addr;
2890{
2891	pt_entry_t *ptep, pte;
2892	vm_page_t m;
2893	int val = 0;
2894
2895	ptep = pmap_pte(pmap, addr);
2896	if (ptep == 0) {
2897		return 0;
2898	}
2899
2900	if ((pte = *ptep) != 0) {
2901		vm_paddr_t pa;
2902
2903		val = MINCORE_INCORE;
2904		if ((pte & PG_MANAGED) == 0)
2905			return val;
2906
2907		pa = pte & PG_FRAME;
2908
2909		m = PHYS_TO_VM_PAGE(pa);
2910
2911		/*
2912		 * Modified by us
2913		 */
2914		if (pte & PG_M)
2915			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2916		else {
2917			/*
2918			 * Modified by someone else
2919			 */
2920			vm_page_lock_queues();
2921			if (m->dirty || pmap_is_modified(m))
2922				val |= MINCORE_MODIFIED_OTHER;
2923			vm_page_unlock_queues();
2924		}
2925		/*
2926		 * Referenced by us
2927		 */
2928		if (pte & PG_A)
2929			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2930		else {
2931			/*
2932			 * Referenced by someone else
2933			 */
2934			vm_page_lock_queues();
2935			if ((m->flags & PG_REFERENCED) ||
2936			    pmap_ts_referenced(m)) {
2937				val |= MINCORE_REFERENCED_OTHER;
2938				vm_page_flag_set(m, PG_REFERENCED);
2939			}
2940			vm_page_unlock_queues();
2941		}
2942	}
2943	return val;
2944}
2945
2946void
2947pmap_activate(struct thread *td)
2948{
2949	struct proc *p = td->td_proc;
2950	pmap_t	pmap, oldpmap;
2951	u_int32_t  cr3;
2952
2953	critical_enter();
2954	pmap = vmspace_pmap(td->td_proc->p_vmspace);
2955	oldpmap = PCPU_GET(curpmap);
2956#if defined(SMP)
2957	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
2958	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
2959#else
2960	oldpmap->pm_active &= ~1;
2961	pmap->pm_active |= 1;
2962#endif
2963#ifdef PAE
2964	cr3 = vtophys(pmap->pm_pdpt);
2965#else
2966	cr3 = vtophys(pmap->pm_pdir);
2967#endif
2968	/* XXXKSE this is wrong.
2969	 * pmap_activate is for the current thread on the current cpu
2970	 */
2971	if (p->p_flag & P_SA) {
2972		/* Make sure all other cr3 entries are updated. */
2973		/* what if they are running?  XXXKSE (maybe abort them) */
2974		FOREACH_THREAD_IN_PROC(p, td) {
2975			td->td_pcb->pcb_cr3 = cr3;
2976		}
2977	} else {
2978		td->td_pcb->pcb_cr3 = cr3;
2979	}
2980	load_cr3(cr3);
2981	PCPU_SET(curpmap, pmap);
2982	critical_exit();
2983}
2984
2985vm_offset_t
2986pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
2987{
2988
2989	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
2990		return addr;
2991	}
2992
2993	addr = (addr + PDRMASK) & ~PDRMASK;
2994	return addr;
2995}
2996
2997
2998#if defined(PMAP_DEBUG)
2999pmap_pid_dump(int pid)
3000{
3001	pmap_t pmap;
3002	struct proc *p;
3003	int npte = 0;
3004	int index;
3005
3006	sx_slock(&allproc_lock);
3007	LIST_FOREACH(p, &allproc, p_list) {
3008		if (p->p_pid != pid)
3009			continue;
3010
3011		if (p->p_vmspace) {
3012			int i,j;
3013			index = 0;
3014			pmap = vmspace_pmap(p->p_vmspace);
3015			for (i = 0; i < NPDEPTD; i++) {
3016				pd_entry_t *pde;
3017				pt_entry_t *pte;
3018				vm_offset_t base = i << PDRSHIFT;
3019
3020				pde = &pmap->pm_pdir[i];
3021				if (pde && pmap_pde_v(pde)) {
3022					for (j = 0; j < NPTEPG; j++) {
3023						vm_offset_t va = base + (j << PAGE_SHIFT);
3024						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3025							if (index) {
3026								index = 0;
3027								printf("\n");
3028							}
3029							sx_sunlock(&allproc_lock);
3030							return npte;
3031						}
3032						pte = pmap_pte(pmap, va);
3033						if (pte && pmap_pte_v(pte)) {
3034							pt_entry_t pa;
3035							vm_page_t m;
3036							pa = *pte;
3037							m = PHYS_TO_VM_PAGE(pa);
3038							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3039								va, pa, m->hold_count, m->wire_count, m->flags);
3040							npte++;
3041							index++;
3042							if (index >= 2) {
3043								index = 0;
3044								printf("\n");
3045							} else {
3046								printf(" ");
3047							}
3048						}
3049					}
3050				}
3051			}
3052		}
3053	}
3054	sx_sunlock(&allproc_lock);
3055	return npte;
3056}
3057#endif
3058
3059#if defined(DEBUG)
3060
3061static void	pads(pmap_t pm);
3062void		pmap_pvdump(vm_offset_t pa);
3063
3064/* print address space of pmap*/
3065static void
3066pads(pm)
3067	pmap_t pm;
3068{
3069	int i, j;
3070	vm_paddr_t va;
3071	pt_entry_t *ptep;
3072
3073	if (pm == kernel_pmap)
3074		return;
3075	for (i = 0; i < NPDEPTD; i++)
3076		if (pm->pm_pdir[i])
3077			for (j = 0; j < NPTEPG; j++) {
3078				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3079				if (pm == kernel_pmap && va < KERNBASE)
3080					continue;
3081				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3082					continue;
3083				ptep = pmap_pte(pm, va);
3084				if (pmap_pte_v(ptep))
3085					printf("%x:%x ", va, *ptep);
3086			};
3087
3088}
3089
3090void
3091pmap_pvdump(pa)
3092	vm_paddr_t pa;
3093{
3094	pv_entry_t pv;
3095	vm_page_t m;
3096
3097	printf("pa %x", pa);
3098	m = PHYS_TO_VM_PAGE(pa);
3099	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3100		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3101		pads(pv->pv_pmap);
3102	}
3103	printf(" ");
3104}
3105#endif
3106