pmap.c revision 12417
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.64 1995/10/23 02:31:29 davidg Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54/*
55 * Major modifications by John S. Dyson primarily to support
56 * pageable page tables, eliminating pmap_attributes,
57 * discontiguous memory pages, and using more efficient string
58 * instructions. Jan 13, 1994.  Further modifications on Mar 2, 1994,
59 * general clean-up and efficiency mods.
60 */
61
62/*
63 *	Manages physical address maps.
64 *
65 *	In addition to hardware address maps, this
66 *	module is called upon to provide software-use-only
67 *	maps which may or may not be stored in the same
68 *	form as hardware maps.  These pseudo-maps are
69 *	used to store intermediate results from copy
70 *	operations to and from address spaces.
71 *
72 *	Since the information managed by this module is
73 *	also stored by the logical address mapping module,
74 *	this module may throw away valid virtual-to-physical
75 *	mappings at almost any time.  However, invalidations
76 *	of virtual-to-physical mappings must be done as
77 *	requested.
78 *
79 *	In order to cope with hardware architectures which
80 *	make virtual-to-physical map invalidates expensive,
81 *	this module may delay invalidate or reduced protection
82 *	operations until such time as they are actually
83 *	necessary.  This module is given full information as
84 *	to which processors are currently using which maps,
85 *	and to when physical maps must be made correct.
86 */
87
88#include <sys/param.h>
89#include <sys/systm.h>
90#include <sys/proc.h>
91#include <sys/malloc.h>
92#include <sys/user.h>
93#include <sys/msgbuf.h>
94
95#include <vm/vm.h>
96#include <vm/vm_kern.h>
97#include <vm/vm_page.h>
98
99#include <machine/cputypes.h>
100#include <machine/md_var.h>
101
102#include <i386/isa/isa.h>
103
104/*
105 * Get PDEs and PTEs for user/kernel address space
106 */
107#define	pmap_pde(m, v)	(&((m)->pm_pdir[((vm_offset_t)(v) >> PD_SHIFT)&1023]))
108#define pdir_pde(m, v) (m[((vm_offset_t)(v) >> PD_SHIFT)&1023])
109
110#define pmap_pte_pa(pte)	(*(int *)(pte) & PG_FRAME)
111
112#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
113#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
114#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
115#define pmap_pte_u(pte)		((*(int *)pte & PG_U) != 0)
116#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
117
118#define pmap_pte_set_w(pte, v)		((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
119#define pmap_pte_set_prot(pte, v)	((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
120
121/*
122 * Given a map and a machine independent protection code,
123 * convert to a vax protection code.
124 */
125#define pte_prot(m, p)	(protection_codes[p])
126int protection_codes[8];
127
128struct pmap kernel_pmap_store;
129pmap_t kernel_pmap;
130
131vm_offset_t avail_start;	/* PA of first available physical page */
132vm_offset_t avail_end;		/* PA of last available physical page */
133vm_size_t mem_size;		/* memory size in bytes */
134vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
135vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
136boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
137vm_offset_t vm_first_phys, vm_last_phys;
138
139static inline int pmap_is_managed();
140static void i386_protection_init();
141static void pmap_alloc_pv_entry();
142static inline pv_entry_t get_pv_entry();
143int nkpt;
144
145extern vm_offset_t clean_sva, clean_eva;
146extern int cpu_class;
147
148/*
149 * All those kernel PT submaps that BSD is so fond of
150 */
151pt_entry_t *CMAP1, *CMAP2, *ptmmap;
152pv_entry_t pv_table;
153caddr_t CADDR1, CADDR2, ptvmmap;
154pt_entry_t *msgbufmap;
155struct msgbuf *msgbufp;
156
157
158void
159init_pv_entries(int);
160
161/*
162 *	Routine:	pmap_pte
163 *	Function:
164 *		Extract the page table entry associated
165 *		with the given map/virtual_address pair.
166 * [ what about induced faults -wfj]
167 */
168
169inline pt_entry_t * const
170pmap_pte(pmap, va)
171	register pmap_t pmap;
172	vm_offset_t va;
173{
174
175	if (pmap && *pmap_pde(pmap, va)) {
176		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
177
178		/* are we current address space or kernel? */
179		if ((pmap == kernel_pmap) || (frame == ((int) PTDpde & PG_FRAME)))
180			return ((pt_entry_t *) vtopte(va));
181		/* otherwise, we are alternate address space */
182		else {
183			if (frame != ((int) APTDpde & PG_FRAME)) {
184				APTDpde = pmap->pm_pdir[PTDPTDI];
185				pmap_update();
186			}
187			return ((pt_entry_t *) avtopte(va));
188		}
189	}
190	return (0);
191}
192
193/*
194 *	Routine:	pmap_extract
195 *	Function:
196 *		Extract the physical page address associated
197 *		with the given map/virtual_address pair.
198 */
199
200vm_offset_t
201pmap_extract(pmap, va)
202	register pmap_t pmap;
203	vm_offset_t va;
204{
205	vm_offset_t pa;
206
207	if (pmap && *pmap_pde(pmap, va)) {
208		vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
209
210		/* are we current address space or kernel? */
211		if ((pmap == kernel_pmap)
212		    || (frame == ((int) PTDpde & PG_FRAME))) {
213			pa = *(int *) vtopte(va);
214			/* otherwise, we are alternate address space */
215		} else {
216			if (frame != ((int) APTDpde & PG_FRAME)) {
217				APTDpde = pmap->pm_pdir[PTDPTDI];
218				pmap_update();
219			}
220			pa = *(int *) avtopte(va);
221		}
222		return ((pa & PG_FRAME) | (va & ~PG_FRAME));
223	}
224	return 0;
225
226}
227
228/*
229 * determine if a page is managed (memory vs. device)
230 */
231static inline int
232pmap_is_managed(pa)
233	vm_offset_t pa;
234{
235	int i;
236
237	if (!pmap_initialized)
238		return 0;
239
240	for (i = 0; phys_avail[i + 1]; i += 2) {
241		if (pa >= phys_avail[i] && pa < phys_avail[i + 1])
242			return 1;
243	}
244	return 0;
245}
246
247/*
248 * find the vm_page_t of a pte (only) given va of pte and pmap
249 */
250__inline vm_page_t
251pmap_pte_vm_page(pmap, pt)
252	pmap_t pmap;
253	vm_offset_t pt;
254{
255	vm_page_t m;
256
257	pt = i386_trunc_page(pt);
258	pt = (pt - UPT_MIN_ADDRESS) / NBPG;
259	pt = ((vm_offset_t) pmap->pm_pdir[pt]) & PG_FRAME;
260	m = PHYS_TO_VM_PAGE(pt);
261	return m;
262}
263
264/*
265 * Wire a page table page
266 */
267__inline void
268pmap_use_pt(pmap, va)
269	pmap_t pmap;
270	vm_offset_t va;
271{
272	vm_offset_t pt;
273
274	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
275		return;
276
277	pt = (vm_offset_t) vtopte(va);
278	vm_page_hold(pmap_pte_vm_page(pmap, pt));
279}
280
281/*
282 * Unwire a page table page
283 */
284inline void
285pmap_unuse_pt(pmap, va)
286	pmap_t pmap;
287	vm_offset_t va;
288{
289	vm_offset_t pt;
290	vm_page_t m;
291
292	if ((va >= UPT_MIN_ADDRESS) || !pmap_initialized)
293		return;
294
295	pt = (vm_offset_t) vtopte(va);
296	m = pmap_pte_vm_page(pmap, pt);
297	vm_page_unhold(m);
298	if (pmap != kernel_pmap &&
299	    (m->hold_count == 0) &&
300	    (m->wire_count == 0) &&
301	    (va < KPT_MIN_ADDRESS)) {
302		pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
303		vm_page_free(m);
304	}
305}
306
307/* [ macro again?, should I force kstack into user map here? -wfj ] */
308void
309pmap_activate(pmap, pcbp)
310	register pmap_t pmap;
311	struct pcb *pcbp;
312{
313	PMAP_ACTIVATE(pmap, pcbp);
314}
315
316/*
317 *	Bootstrap the system enough to run with virtual memory.
318 *
319 *	On the i386 this is called after mapping has already been enabled
320 *	and just syncs the pmap module with what has already been done.
321 *	[We can't call it easily with mapping off since the kernel is not
322 *	mapped with PA == VA, hence we would have to relocate every address
323 *	from the linked base (virtual) address "KERNBASE" to the actual
324 *	(physical) address starting relative to 0]
325 */
326void
327pmap_bootstrap(firstaddr, loadaddr)
328	vm_offset_t firstaddr;
329	vm_offset_t loadaddr;
330{
331	vm_offset_t va;
332	pt_entry_t *pte;
333
334	avail_start = firstaddr;
335
336	/*
337	 * XXX The calculation of virtual_avail is wrong. It's NKPT*NBPG too
338	 * large. It should instead be correctly calculated in locore.s and
339	 * not based on 'first' (which is a physical address, not a virtual
340	 * address, for the start of unused physical memory). The kernel
341	 * page tables are NOT double mapped and thus should not be included
342	 * in this calculation.
343	 */
344	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
345	virtual_end = VM_MAX_KERNEL_ADDRESS;
346
347	/*
348	 * Initialize protection array.
349	 */
350	i386_protection_init();
351
352	/*
353	 * The kernel's pmap is statically allocated so we don't have to use
354	 * pmap_create, which is unlikely to work correctly at this part of
355	 * the boot sequence.
356	 */
357	kernel_pmap = &kernel_pmap_store;
358
359	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
360
361	kernel_pmap->pm_count = 1;
362	nkpt = NKPT;
363
364	/*
365	 * Reserve some special page table entries/VA space for temporary
366	 * mapping of pages.
367	 */
368#define	SYSMAP(c, p, v, n)	\
369	v = (c)va; va += ((n)*NBPG); p = pte; pte += (n);
370
371	va = virtual_avail;
372	pte = pmap_pte(kernel_pmap, va);
373
374	/*
375	 * CMAP1/CMAP2 are used for zeroing and copying pages.
376	 */
377	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
378	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
379
380	/*
381	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
382	 */
383	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
384
385	/*
386	 * msgbufmap is used to map the system message buffer.
387	 */
388	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
389
390	virtual_avail = va;
391
392	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
393	pmap_update();
394}
395
396/*
397 *	Initialize the pmap module.
398 *	Called by vm_init, to initialize any structures that the pmap
399 *	system needs to map virtual memory.
400 *	pmap_init has been enhanced to support in a fairly consistant
401 *	way, discontiguous physical memory.
402 */
403void
404pmap_init(phys_start, phys_end)
405	vm_offset_t phys_start, phys_end;
406{
407	vm_offset_t addr;
408	vm_size_t npg, s;
409	int i;
410
411	/*
412	 * calculate the number of pv_entries needed
413	 */
414	vm_first_phys = phys_avail[0];
415	for (i = 0; phys_avail[i + 1]; i += 2);
416	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / NBPG;
417
418	/*
419	 * Allocate memory for random pmap data structures.  Includes the
420	 * pv_head_table.
421	 */
422	s = (vm_size_t) (sizeof(struct pv_entry) * npg);
423	s = i386_round_page(s);
424	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
425	pv_table = (pv_entry_t) addr;
426
427	/*
428	 * init the pv free list
429	 */
430	init_pv_entries(npg);
431	/*
432	 * Now it is safe to enable pv_table recording.
433	 */
434	pmap_initialized = TRUE;
435}
436
437/*
438 *	Used to map a range of physical addresses into kernel
439 *	virtual address space.
440 *
441 *	For now, VM is already on, we only need to map the
442 *	specified memory.
443 */
444vm_offset_t
445pmap_map(virt, start, end, prot)
446	vm_offset_t virt;
447	vm_offset_t start;
448	vm_offset_t end;
449	int prot;
450{
451	while (start < end) {
452		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
453		virt += PAGE_SIZE;
454		start += PAGE_SIZE;
455	}
456	return (virt);
457}
458
459/*
460 *	Create and return a physical map.
461 *
462 *	If the size specified for the map
463 *	is zero, the map is an actual physical
464 *	map, and may be referenced by the
465 *	hardware.
466 *
467 *	If the size specified is non-zero,
468 *	the map will be used in software only, and
469 *	is bounded by that size.
470 *
471 */
472
473pmap_t
474pmap_create(size)
475	vm_size_t size;
476{
477	register pmap_t pmap;
478
479	/*
480	 * Software use map does not need a pmap
481	 */
482	if (size)
483		return (NULL);
484
485	pmap = (pmap_t) malloc(sizeof *pmap, M_VMPMAP, M_WAITOK);
486	bzero(pmap, sizeof(*pmap));
487	pmap_pinit(pmap);
488	return (pmap);
489}
490
491/*
492 * Initialize a preallocated and zeroed pmap structure,
493 * such as one in a vmspace structure.
494 */
495void
496pmap_pinit(pmap)
497	register struct pmap *pmap;
498{
499	/*
500	 * No need to allocate page table space yet but we do need a valid
501	 * page directory table.
502	 */
503	pmap->pm_pdir = (pd_entry_t *) kmem_alloc(kernel_map, PAGE_SIZE);
504
505	/* wire in kernel global address entries */
506	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
507
508	/* install self-referential address mapping entry */
509	*(int *) (pmap->pm_pdir + PTDPTDI) =
510	    ((int) pmap_kextract((vm_offset_t) pmap->pm_pdir)) | PG_V | PG_KW;
511
512	pmap->pm_count = 1;
513}
514
515/*
516 * grow the number of kernel page table entries, if needed
517 */
518
519vm_page_t nkpg;
520vm_offset_t kernel_vm_end;
521
522void
523pmap_growkernel(vm_offset_t addr)
524{
525	struct proc *p;
526	struct pmap *pmap;
527	int s;
528
529	s = splhigh();
530	if (kernel_vm_end == 0) {
531		kernel_vm_end = KERNBASE;
532		nkpt = 0;
533		while (pdir_pde(PTD, kernel_vm_end)) {
534			kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
535			++nkpt;
536		}
537	}
538	addr = (addr + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
539	while (kernel_vm_end < addr) {
540		if (pdir_pde(PTD, kernel_vm_end)) {
541			kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
542			continue;
543		}
544		++nkpt;
545		if (!nkpg) {
546			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
547			if (!nkpg)
548				panic("pmap_growkernel: no memory to grow kernel");
549			vm_page_wire(nkpg);
550			vm_page_remove(nkpg);
551			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
552		}
553		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_KW);
554		nkpg = NULL;
555
556		for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
557			if (p->p_vmspace) {
558				pmap = &p->p_vmspace->vm_pmap;
559				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
560			}
561		}
562		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
563		kernel_vm_end = (kernel_vm_end + NBPG * NPTEPG) & ~(NBPG * NPTEPG - 1);
564	}
565	splx(s);
566}
567
568/*
569 *	Retire the given physical map from service.
570 *	Should only be called if the map contains
571 *	no valid mappings.
572 */
573void
574pmap_destroy(pmap)
575	register pmap_t pmap;
576{
577	int count;
578
579	if (pmap == NULL)
580		return;
581
582	count = --pmap->pm_count;
583	if (count == 0) {
584		pmap_release(pmap);
585		free((caddr_t) pmap, M_VMPMAP);
586	}
587}
588
589/*
590 * Release any resources held by the given physical map.
591 * Called when a pmap initialized by pmap_pinit is being released.
592 * Should only be called if the map contains no valid mappings.
593 */
594void
595pmap_release(pmap)
596	register struct pmap *pmap;
597{
598	kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
599}
600
601/*
602 *	Add a reference to the specified pmap.
603 */
604void
605pmap_reference(pmap)
606	pmap_t pmap;
607{
608	if (pmap != NULL) {
609		pmap->pm_count++;
610	}
611}
612
613#define PV_FREELIST_MIN ((NBPG / sizeof (struct pv_entry)) / 2)
614
615/*
616 * Data for the pv entry allocation mechanism
617 */
618int pv_freelistcnt;
619pv_entry_t pv_freelist;
620vm_offset_t pvva;
621int npvvapg;
622
623/*
624 * free the pv_entry back to the free list
625 */
626inline static void
627free_pv_entry(pv)
628	pv_entry_t pv;
629{
630	if (!pv)
631		return;
632	++pv_freelistcnt;
633	pv->pv_next = pv_freelist;
634	pv_freelist = pv;
635}
636
637/*
638 * get a new pv_entry, allocating a block from the system
639 * when needed.
640 * the memory allocation is performed bypassing the malloc code
641 * because of the possibility of allocations at interrupt time.
642 */
643static inline pv_entry_t
644get_pv_entry()
645{
646	pv_entry_t tmp;
647
648	/*
649	 * get more pv_entry pages if needed
650	 */
651	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
652		pmap_alloc_pv_entry();
653	}
654	/*
655	 * get a pv_entry off of the free list
656	 */
657	--pv_freelistcnt;
658	tmp = pv_freelist;
659	pv_freelist = tmp->pv_next;
660	return tmp;
661}
662
663/*
664 * this *strange* allocation routine *statistically* eliminates the
665 * *possibility* of a malloc failure (*FATAL*) for a pv_entry_t data structure.
666 * also -- this code is MUCH MUCH faster than the malloc equiv...
667 */
668static void
669pmap_alloc_pv_entry()
670{
671	/*
672	 * do we have any pre-allocated map-pages left?
673	 */
674	if (npvvapg) {
675		vm_page_t m;
676
677		/*
678		 * we do this to keep recursion away
679		 */
680		pv_freelistcnt += PV_FREELIST_MIN;
681		/*
682		 * allocate a physical page out of the vm system
683		 */
684		m = vm_page_alloc(kernel_object,
685		    pvva - vm_map_min(kernel_map), VM_ALLOC_INTERRUPT);
686		if (m) {
687			int newentries;
688			int i;
689			pv_entry_t entry;
690
691			newentries = (NBPG / sizeof(struct pv_entry));
692			/*
693			 * wire the page
694			 */
695			vm_page_wire(m);
696			m->flags &= ~PG_BUSY;
697			/*
698			 * let the kernel see it
699			 */
700			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
701
702			entry = (pv_entry_t) pvva;
703			/*
704			 * update the allocation pointers
705			 */
706			pvva += NBPG;
707			--npvvapg;
708
709			/*
710			 * free the entries into the free list
711			 */
712			for (i = 0; i < newentries; i++) {
713				free_pv_entry(entry);
714				entry++;
715			}
716		}
717		pv_freelistcnt -= PV_FREELIST_MIN;
718	}
719	if (!pv_freelist)
720		panic("get_pv_entry: cannot get a pv_entry_t");
721}
722
723
724
725/*
726 * init the pv_entry allocation system
727 */
728#define PVSPERPAGE 64
729void
730init_pv_entries(npg)
731	int npg;
732{
733	/*
734	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
735	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
736	 * this is too small.)
737	 */
738	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry) + NBPG - 1) / NBPG;
739	pvva = kmem_alloc_pageable(kernel_map, npvvapg * NBPG);
740	/*
741	 * get the first batch of entries
742	 */
743	free_pv_entry(get_pv_entry());
744}
745
746static pt_entry_t *
747get_pt_entry(pmap)
748	pmap_t pmap;
749{
750	vm_offset_t frame = (int) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
751
752	/* are we current address space or kernel? */
753	if (pmap == kernel_pmap || frame == ((int) PTDpde & PG_FRAME)) {
754		return PTmap;
755	}
756	/* otherwise, we are alternate address space */
757	if (frame != ((int) APTDpde & PG_FRAME)) {
758		APTDpde = pmap->pm_pdir[PTDPTDI];
759		pmap_update();
760	}
761	return APTmap;
762}
763
764/*
765 * If it is the first entry on the list, it is actually
766 * in the header and we must copy the following entry up
767 * to the header.  Otherwise we must search the list for
768 * the entry.  In either case we free the now unused entry.
769 */
770void
771pmap_remove_entry(pmap, pv, va)
772	struct pmap *pmap;
773	pv_entry_t pv;
774	vm_offset_t va;
775{
776	pv_entry_t npv;
777	int s;
778
779	s = splhigh();
780	if (pmap == pv->pv_pmap && va == pv->pv_va) {
781		npv = pv->pv_next;
782		if (npv) {
783			*pv = *npv;
784			free_pv_entry(npv);
785		} else {
786			pv->pv_pmap = NULL;
787		}
788	} else {
789		for (npv = pv->pv_next; npv; npv = npv->pv_next) {
790			if (pmap == npv->pv_pmap && va == npv->pv_va) {
791				break;
792			}
793			pv = npv;
794		}
795		if (npv) {
796			pv->pv_next = npv->pv_next;
797			free_pv_entry(npv);
798		}
799	}
800	splx(s);
801}
802
803/*
804 *	Remove the given range of addresses from the specified map.
805 *
806 *	It is assumed that the start and end are properly
807 *	rounded to the page size.
808 */
809void
810pmap_remove(pmap, sva, eva)
811	struct pmap *pmap;
812	register vm_offset_t sva;
813	register vm_offset_t eva;
814{
815	register pt_entry_t *ptp, *ptq;
816	vm_offset_t pa;
817	register pv_entry_t pv;
818	vm_offset_t va;
819	pt_entry_t oldpte;
820
821	if (pmap == NULL)
822		return;
823
824	ptp = get_pt_entry(pmap);
825
826	/*
827	 * special handling of removing one page.  a very
828	 * common operation and easy to short circuit some
829	 * code.
830	 */
831	if ((sva + NBPG) == eva) {
832
833		if (*pmap_pde(pmap, sva) == 0)
834			return;
835
836		ptq = ptp + i386_btop(sva);
837
838		if (!*ptq)
839			return;
840		/*
841		 * Update statistics
842		 */
843		if (pmap_pte_w(ptq))
844			pmap->pm_stats.wired_count--;
845		pmap->pm_stats.resident_count--;
846
847		pa = pmap_pte_pa(ptq);
848		oldpte = *ptq;
849		*ptq = 0;
850
851		if (pmap_is_managed(pa)) {
852			if ((int) oldpte & PG_M) {
853				if (sva < USRSTACK + (UPAGES * NBPG) ||
854				    (sva >= KERNBASE && (sva < clean_sva || sva >= clean_eva))) {
855					PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
856				}
857			}
858			pv = pa_to_pvh(pa);
859			pmap_remove_entry(pmap, pv, sva);
860		}
861		pmap_unuse_pt(pmap, sva);
862		pmap_update();
863		return;
864	}
865	sva = i386_btop(sva);
866	eva = i386_btop(eva);
867
868	while (sva < eva) {
869		/*
870		 * Weed out invalid mappings. Note: we assume that the page
871		 * directory table is always allocated, and in kernel virtual.
872		 */
873
874		if (*pmap_pde(pmap, i386_ptob(sva)) == 0) {
875			/* We can race ahead here, straight to next pde.. */
876			sva = ((sva + NPTEPG) & ~(NPTEPG - 1));
877			continue;
878		}
879		ptq = ptp + sva;
880
881		/*
882		 * search for page table entries, use string operations that
883		 * are much faster than explicitly scanning when page tables
884		 * are not fully populated.
885		 */
886		if (*ptq == 0) {
887			vm_offset_t pdnxt = ((sva + NPTEPG) & ~(NPTEPG - 1));
888			vm_offset_t nscan = pdnxt - sva;
889			int found = 0;
890
891			if ((nscan + sva) > eva)
892				nscan = eva - sva;
893
894			asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
895			    "=D"(ptq), "=a"(found) : "c"(nscan), "0"(ptq) : "cx");
896
897			if (!found) {
898				sva = pdnxt;
899				continue;
900			}
901			ptq -= 1;
902
903			sva = ptq - ptp;
904		}
905		/*
906		 * Update statistics
907		 */
908		oldpte = *ptq;
909		if (((int) oldpte) & PG_W)
910			pmap->pm_stats.wired_count--;
911		pmap->pm_stats.resident_count--;
912
913		/*
914		 * Invalidate the PTEs. XXX: should cluster them up and
915		 * invalidate as many as possible at once.
916		 */
917		*ptq = 0;
918
919		va = i386_ptob(sva);
920
921		/*
922		 * Remove from the PV table (raise IPL since we may be called
923		 * at interrupt time).
924		 */
925		pa = ((int) oldpte) & PG_FRAME;
926		if (!pmap_is_managed(pa)) {
927			pmap_unuse_pt(pmap, va);
928			++sva;
929			continue;
930		}
931		if ((int) oldpte & PG_M) {
932			if (sva < USRSTACK + (UPAGES * NBPG) ||
933			    (sva >= KERNBASE && (sva < clean_sva || sva >= clean_eva))) {
934				PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
935			}
936		}
937		pv = pa_to_pvh(pa);
938		pmap_remove_entry(pmap, pv, va);
939		pmap_unuse_pt(pmap, va);
940		++sva;
941	}
942	pmap_update();
943}
944
945/*
946 *	Routine:	pmap_remove_all
947 *	Function:
948 *		Removes this physical page from
949 *		all physical maps in which it resides.
950 *		Reflects back modify bits to the pager.
951 *
952 *	Notes:
953 *		Original versions of this routine were very
954 *		inefficient because they iteratively called
955 *		pmap_remove (slow...)
956 */
957void
958pmap_remove_all(pa)
959	vm_offset_t pa;
960{
961	register pv_entry_t pv, npv;
962	register pt_entry_t *pte, *ptp;
963	vm_offset_t va;
964	struct pmap *pmap;
965	vm_page_t m;
966	int s;
967	int anyvalid = 0;
968
969	/*
970	 * Not one of ours
971	 */
972	/*
973	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
974	 * pages!
975	 */
976	if (!pmap_is_managed(pa))
977		return;
978
979	pa = i386_trunc_page(pa);
980	pv = pa_to_pvh(pa);
981	m = PHYS_TO_VM_PAGE(pa);
982
983	s = splhigh();
984	while (pv->pv_pmap != NULL) {
985		pmap = pv->pv_pmap;
986		ptp = get_pt_entry(pmap);
987		va = pv->pv_va;
988		pte = ptp + i386_btop(va);
989		if (pmap_pte_w(pte))
990			pmap->pm_stats.wired_count--;
991		if (*pte) {
992			pmap->pm_stats.resident_count--;
993			anyvalid++;
994
995			/*
996			 * Update the vm_page_t clean and reference bits.
997			 */
998			if ((int) *pte & PG_M) {
999				if (va < USRSTACK + (UPAGES * NBPG) ||
1000				    (va >= KERNBASE && (va < clean_sva || va >= clean_eva))) {
1001					PHYS_TO_VM_PAGE(pa)->dirty |= VM_PAGE_BITS_ALL;
1002				}
1003			}
1004			*pte = 0;
1005			pmap_unuse_pt(pmap, va);
1006		}
1007		npv = pv->pv_next;
1008		if (npv) {
1009			*pv = *npv;
1010			free_pv_entry(npv);
1011		} else {
1012			pv->pv_pmap = NULL;
1013		}
1014	}
1015	splx(s);
1016	if (anyvalid)
1017		pmap_update();
1018}
1019
1020
1021/*
1022 *	Set the physical protection on the
1023 *	specified range of this map as requested.
1024 */
1025void
1026pmap_protect(pmap, sva, eva, prot)
1027	register pmap_t pmap;
1028	vm_offset_t sva, eva;
1029	vm_prot_t prot;
1030{
1031	register pt_entry_t *pte;
1032	register vm_offset_t va;
1033	int i386prot;
1034	register pt_entry_t *ptp;
1035	int evap = i386_btop(eva);
1036	int anyvalid = 0;;
1037
1038	if (pmap == NULL)
1039		return;
1040
1041	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1042		pmap_remove(pmap, sva, eva);
1043		return;
1044	}
1045	if (prot & VM_PROT_WRITE)
1046		return;
1047
1048	ptp = get_pt_entry(pmap);
1049
1050	va = sva;
1051	while (va < eva) {
1052		int found = 0;
1053		int svap;
1054		vm_offset_t nscan;
1055
1056		/*
1057		 * Page table page is not allocated. Skip it, we don't want to
1058		 * force allocation of unnecessary PTE pages just to set the
1059		 * protection.
1060		 */
1061		if (!*pmap_pde(pmap, va)) {
1062			/* XXX: avoid address wrap around */
1063	nextpde:
1064			if (va >= i386_trunc_pdr((vm_offset_t) - 1))
1065				break;
1066			va = i386_round_pdr(va + PAGE_SIZE);
1067			continue;
1068		}
1069		pte = ptp + i386_btop(va);
1070
1071		if (*pte == 0) {
1072			/*
1073			 * scan for a non-empty pte
1074			 */
1075			svap = pte - ptp;
1076			nscan = ((svap + NPTEPG) & ~(NPTEPG - 1)) - svap;
1077
1078			if (nscan + svap > evap)
1079				nscan = evap - svap;
1080
1081			found = 0;
1082			if (nscan)
1083				asm("xorl %%eax,%%eax;cld;repe;scasl;jz 1f;incl %%eax;1:;" :
1084				    "=D"(pte), "=a"(found) : "c"(nscan), "0"(pte) : "cx");
1085
1086			if (!found)
1087				goto nextpde;
1088
1089			pte -= 1;
1090			svap = pte - ptp;
1091
1092			va = i386_ptob(svap);
1093		}
1094		anyvalid++;
1095
1096		i386prot = pte_prot(pmap, prot);
1097		if (va < UPT_MAX_ADDRESS) {
1098			i386prot |= PG_u;
1099			if (va >= UPT_MIN_ADDRESS)
1100				i386prot |= PG_RW;
1101		}
1102		pmap_pte_set_prot(pte, i386prot);
1103		va += PAGE_SIZE;
1104	}
1105	if (anyvalid)
1106		pmap_update();
1107}
1108
1109/*
1110 *	Insert the given physical page (p) at
1111 *	the specified virtual address (v) in the
1112 *	target physical map with the protection requested.
1113 *
1114 *	If specified, the page will be wired down, meaning
1115 *	that the related pte can not be reclaimed.
1116 *
1117 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1118 *	or lose information.  That is, this routine must actually
1119 *	insert this page into the given map NOW.
1120 */
1121void
1122pmap_enter(pmap, va, pa, prot, wired)
1123	register pmap_t pmap;
1124	vm_offset_t va;
1125	register vm_offset_t pa;
1126	vm_prot_t prot;
1127	boolean_t wired;
1128{
1129	register pt_entry_t *pte;
1130	register pt_entry_t npte;
1131	vm_offset_t opa;
1132	int ptevalid = 0;
1133
1134	if (pmap == NULL)
1135		return;
1136
1137	va = i386_trunc_page(va);
1138	pa = i386_trunc_page(pa);
1139	if (va > VM_MAX_KERNEL_ADDRESS)
1140		panic("pmap_enter: toobig");
1141
1142	/*
1143	 * Page Directory table entry not valid, we need a new PT page
1144	 */
1145	if (*pmap_pde(pmap, va) == 0) {
1146		printf("kernel page directory invalid pdir=%p, va=0x%lx\n",
1147			pmap->pm_pdir[PTDPTDI], va);
1148		panic("invalid kernel page directory");
1149	}
1150	pte = pmap_pte(pmap, va);
1151	opa = pmap_pte_pa(pte);
1152
1153	/*
1154	 * Mapping has not changed, must be protection or wiring change.
1155	 */
1156	if (opa == pa) {
1157		/*
1158		 * Wiring change, just update stats. We don't worry about
1159		 * wiring PT pages as they remain resident as long as there
1160		 * are valid mappings in them. Hence, if a user page is wired,
1161		 * the PT page will be also.
1162		 */
1163		if (wired && !pmap_pte_w(pte))
1164			pmap->pm_stats.wired_count++;
1165		else if (!wired && pmap_pte_w(pte))
1166			pmap->pm_stats.wired_count--;
1167
1168		goto validate;
1169	}
1170	/*
1171	 * Mapping has changed, invalidate old range and fall through to
1172	 * handle validating new mapping.
1173	 */
1174	if (opa) {
1175		pmap_remove(pmap, va, va + PAGE_SIZE);
1176	}
1177	/*
1178	 * Enter on the PV list if part of our managed memory Note that we
1179	 * raise IPL while manipulating pv_table since pmap_enter can be
1180	 * called at interrupt time.
1181	 */
1182	if (pmap_is_managed(pa)) {
1183		register pv_entry_t pv, npv;
1184		int s;
1185
1186		pv = pa_to_pvh(pa);
1187		s = splhigh();
1188		/*
1189		 * No entries yet, use header as the first entry
1190		 */
1191		if (pv->pv_pmap == NULL) {
1192			pv->pv_va = va;
1193			pv->pv_pmap = pmap;
1194			pv->pv_next = NULL;
1195		}
1196		/*
1197		 * There is at least one other VA mapping this page. Place
1198		 * this entry after the header.
1199		 */
1200		else {
1201			npv = get_pv_entry();
1202			npv->pv_va = va;
1203			npv->pv_pmap = pmap;
1204			npv->pv_next = pv->pv_next;
1205			pv->pv_next = npv;
1206		}
1207		splx(s);
1208	}
1209
1210	/*
1211	 * Increment counters
1212	 */
1213	pmap->pm_stats.resident_count++;
1214	if (wired)
1215		pmap->pm_stats.wired_count++;
1216
1217validate:
1218	/*
1219	 * Now validate mapping with desired protection/wiring.
1220	 */
1221	npte = (pt_entry_t) ((int) (pa | pte_prot(pmap, prot) | PG_V));
1222
1223	/*
1224	 * When forking (copy-on-write, etc): A process will turn off write
1225	 * permissions for any of its writable pages.  If the data (object) is
1226	 * only referred to by one process, the processes map is modified
1227	 * directly as opposed to using the object manipulation routine.  When
1228	 * using pmap_protect, the modified bits are not kept in the vm_page_t
1229	 * data structure.  Therefore, when using pmap_enter in vm_fault to
1230	 * bring back writability of a page, there has been no memory of the
1231	 * modified or referenced bits except at the pte level.  this clause
1232	 * supports the carryover of the modified and used (referenced) bits.
1233	 */
1234	if (pa == opa)
1235		(int) npte |= (int) *pte & (PG_M | PG_U);
1236
1237	if (wired)
1238		(int) npte |= PG_W;
1239	if (va < UPT_MIN_ADDRESS)
1240		(int) npte |= PG_u;
1241	else if (va < UPT_MAX_ADDRESS)
1242		(int) npte |= PG_u | PG_RW;
1243
1244	if (*pte != npte) {
1245		if (*pte)
1246			ptevalid++;
1247		*pte = npte;
1248	}
1249	if (ptevalid) {
1250		pmap_update();
1251	} else {
1252		pmap_use_pt(pmap, va);
1253	}
1254}
1255
1256/*
1257 * Add a list of wired pages to the kva
1258 * this routine is only used for temporary
1259 * kernel mappings that do not need to have
1260 * page modification or references recorded.
1261 * Note that old mappings are simply written
1262 * over.  The page *must* be wired.
1263 */
1264void
1265pmap_qenter(va, m, count)
1266	vm_offset_t va;
1267	vm_page_t *m;
1268	int count;
1269{
1270	int i;
1271	int anyvalid = 0;
1272	register pt_entry_t *pte;
1273
1274	for (i = 0; i < count; i++) {
1275		pte = vtopte(va + i * NBPG);
1276		if (*pte)
1277			anyvalid++;
1278		*pte = (pt_entry_t) ((int) (VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V));
1279	}
1280	if (anyvalid)
1281		pmap_update();
1282}
1283/*
1284 * this routine jerks page mappings from the
1285 * kernel -- it is meant only for temporary mappings.
1286 */
1287void
1288pmap_qremove(va, count)
1289	vm_offset_t va;
1290	int count;
1291{
1292	int i;
1293	register pt_entry_t *pte;
1294
1295	for (i = 0; i < count; i++) {
1296		pte = vtopte(va + i * NBPG);
1297		*pte = 0;
1298	}
1299	pmap_update();
1300}
1301
1302/*
1303 * add a wired page to the kva
1304 * note that in order for the mapping to take effect -- you
1305 * should do a pmap_update after doing the pmap_kenter...
1306 */
1307void
1308pmap_kenter(va, pa)
1309	vm_offset_t va;
1310	register vm_offset_t pa;
1311{
1312	register pt_entry_t *pte;
1313	int wasvalid = 0;
1314
1315	pte = vtopte(va);
1316
1317	if (*pte)
1318		wasvalid++;
1319
1320	*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V));
1321
1322	if (wasvalid)
1323		pmap_update();
1324}
1325
1326/*
1327 * remove a page from the kernel pagetables
1328 */
1329void
1330pmap_kremove(va)
1331	vm_offset_t va;
1332{
1333	register pt_entry_t *pte;
1334
1335	pte = vtopte(va);
1336
1337	*pte = (pt_entry_t) 0;
1338	pmap_update();
1339}
1340
1341/*
1342 * this code makes some *MAJOR* assumptions:
1343 * 1. Current pmap & pmap exists.
1344 * 2. Not wired.
1345 * 3. Read access.
1346 * 4. No page table pages.
1347 * 5. Tlbflush is deferred to calling procedure.
1348 * 6. Page IS managed.
1349 * but is *MUCH* faster than pmap_enter...
1350 */
1351
1352static inline void
1353pmap_enter_quick(pmap, va, pa)
1354	register pmap_t pmap;
1355	vm_offset_t va;
1356	register vm_offset_t pa;
1357{
1358	register pt_entry_t *pte;
1359	register pv_entry_t pv, npv;
1360	int s;
1361
1362	/*
1363	 * Enter on the PV list if part of our managed memory Note that we
1364	 * raise IPL while manipulating pv_table since pmap_enter can be
1365	 * called at interrupt time.
1366	 */
1367
1368	pte = vtopte(va);
1369
1370	/* a fault on the page table might occur here */
1371	if (*pte) {
1372		pmap_remove(pmap, va, va + PAGE_SIZE);
1373	}
1374	pv = pa_to_pvh(pa);
1375	s = splhigh();
1376	/*
1377	 * No entries yet, use header as the first entry
1378	 */
1379	if (pv->pv_pmap == NULL) {
1380		pv->pv_pmap = pmap;
1381		pv->pv_va = va;
1382		pv->pv_next = NULL;
1383	}
1384	/*
1385	 * There is at least one other VA mapping this page. Place this entry
1386	 * after the header.
1387	 */
1388	else {
1389		npv = get_pv_entry();
1390		npv->pv_va = va;
1391		npv->pv_pmap = pmap;
1392		npv->pv_next = pv->pv_next;
1393		pv->pv_next = npv;
1394	}
1395	splx(s);
1396
1397	/*
1398	 * Increment counters
1399	 */
1400	pmap->pm_stats.resident_count++;
1401
1402	/*
1403	 * Now validate mapping with desired protection/wiring.
1404	 */
1405	*pte = (pt_entry_t) ((int) (pa | PG_V | PG_u));
1406
1407	pmap_use_pt(pmap, va);
1408
1409	return;
1410}
1411
1412#define MAX_INIT_PT (1024*2048)
1413/*
1414 * pmap_object_init_pt preloads the ptes for a given object
1415 * into the specified pmap.  This eliminates the blast of soft
1416 * faults on process startup and immediately after an mmap.
1417 */
1418void
1419pmap_object_init_pt(pmap, addr, object, offset, size)
1420	pmap_t pmap;
1421	vm_offset_t addr;
1422	vm_object_t object;
1423	vm_offset_t offset;
1424	vm_offset_t size;
1425{
1426	vm_offset_t tmpoff;
1427	vm_page_t p;
1428	int objbytes;
1429
1430	if (!pmap || ((size > MAX_INIT_PT) &&
1431		(object->resident_page_count > (MAX_INIT_PT / NBPG)))) {
1432		return;
1433	}
1434
1435	/*
1436	 * if we are processing a major portion of the object, then scan the
1437	 * entire thing.
1438	 */
1439	if (size > (object->size >> 2)) {
1440		objbytes = size;
1441
1442		for (p = object->memq.tqh_first;
1443		    ((objbytes > 0) && (p != NULL));
1444		    p = p->listq.tqe_next) {
1445
1446			tmpoff = p->offset;
1447			if (tmpoff < offset) {
1448				continue;
1449			}
1450			tmpoff -= offset;
1451			if (tmpoff >= size) {
1452				continue;
1453			}
1454			if (((p->flags & (PG_ACTIVE | PG_INACTIVE)) != 0) &&
1455			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1456			    (p->bmapped == 0) &&
1457				(p->busy == 0) &&
1458			    (p->flags & (PG_BUSY | PG_FICTITIOUS | PG_CACHE)) == 0) {
1459				vm_page_hold(p);
1460				p->flags |= PG_MAPPED;
1461				pmap_enter_quick(pmap, addr + tmpoff, VM_PAGE_TO_PHYS(p));
1462				vm_page_unhold(p);
1463			}
1464			objbytes -= NBPG;
1465		}
1466	} else {
1467		/*
1468		 * else lookup the pages one-by-one.
1469		 */
1470		for (tmpoff = 0; tmpoff < size; tmpoff += NBPG) {
1471			p = vm_page_lookup(object, tmpoff + offset);
1472			if (p && ((p->flags & (PG_ACTIVE | PG_INACTIVE)) != 0) &&
1473			    (p->bmapped == 0) && (p->busy == 0) &&
1474			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1475			    (p->flags & (PG_BUSY | PG_FICTITIOUS | PG_CACHE)) == 0) {
1476				vm_page_hold(p);
1477				p->flags |= PG_MAPPED;
1478				pmap_enter_quick(pmap, addr + tmpoff, VM_PAGE_TO_PHYS(p));
1479				vm_page_unhold(p);
1480			}
1481		}
1482	}
1483}
1484
1485/*
1486 *	Routine:	pmap_change_wiring
1487 *	Function:	Change the wiring attribute for a map/virtual-address
1488 *			pair.
1489 *	In/out conditions:
1490 *			The mapping must already exist in the pmap.
1491 */
1492void
1493pmap_change_wiring(pmap, va, wired)
1494	register pmap_t pmap;
1495	vm_offset_t va;
1496	boolean_t wired;
1497{
1498	register pt_entry_t *pte;
1499
1500	if (pmap == NULL)
1501		return;
1502
1503	pte = pmap_pte(pmap, va);
1504
1505	if (wired && !pmap_pte_w(pte))
1506		pmap->pm_stats.wired_count++;
1507	else if (!wired && pmap_pte_w(pte))
1508		pmap->pm_stats.wired_count--;
1509
1510	/*
1511	 * Wiring is not a hardware characteristic so there is no need to
1512	 * invalidate TLB.
1513	 */
1514	pmap_pte_set_w(pte, wired);
1515	/*
1516	 * When unwiring, set the modified bit in the pte -- could have been
1517	 * changed by the kernel
1518	 */
1519	if (!wired)
1520		(int) *pte |= PG_M;
1521}
1522
1523
1524
1525/*
1526 *	Copy the range specified by src_addr/len
1527 *	from the source map to the range dst_addr/len
1528 *	in the destination map.
1529 *
1530 *	This routine is only advisory and need not do anything.
1531 */
1532void
1533pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1534	pmap_t dst_pmap, src_pmap;
1535	vm_offset_t dst_addr;
1536	vm_size_t len;
1537	vm_offset_t src_addr;
1538{
1539}
1540
1541/*
1542 *	Routine:	pmap_kernel
1543 *	Function:
1544 *		Returns the physical map handle for the kernel.
1545 */
1546pmap_t
1547pmap_kernel()
1548{
1549	return (kernel_pmap);
1550}
1551
1552/*
1553 *	pmap_zero_page zeros the specified (machine independent)
1554 *	page by mapping the page into virtual memory and using
1555 *	bzero to clear its contents, one machine dependent page
1556 *	at a time.
1557 */
1558void
1559pmap_zero_page(phys)
1560	vm_offset_t phys;
1561{
1562	if (*(int *) CMAP2)
1563		panic("pmap_zero_page: CMAP busy");
1564
1565	*(int *) CMAP2 = PG_V | PG_KW | i386_trunc_page(phys);
1566	bzero(CADDR2, NBPG);
1567
1568	*(int *) CMAP2 = 0;
1569	pmap_update();
1570}
1571
1572/*
1573 *	pmap_copy_page copies the specified (machine independent)
1574 *	page by mapping the page into virtual memory and using
1575 *	bcopy to copy the page, one machine dependent page at a
1576 *	time.
1577 */
1578void
1579pmap_copy_page(src, dst)
1580	vm_offset_t src;
1581	vm_offset_t dst;
1582{
1583	if (*(int *) CMAP1 || *(int *) CMAP2)
1584		panic("pmap_copy_page: CMAP busy");
1585
1586	*(int *) CMAP1 = PG_V | PG_KW | i386_trunc_page(src);
1587	*(int *) CMAP2 = PG_V | PG_KW | i386_trunc_page(dst);
1588
1589#if __GNUC__ > 1
1590	memcpy(CADDR2, CADDR1, NBPG);
1591#else
1592	bcopy(CADDR1, CADDR2, NBPG);
1593#endif
1594	*(int *) CMAP1 = 0;
1595	*(int *) CMAP2 = 0;
1596	pmap_update();
1597}
1598
1599
1600/*
1601 *	Routine:	pmap_pageable
1602 *	Function:
1603 *		Make the specified pages (by pmap, offset)
1604 *		pageable (or not) as requested.
1605 *
1606 *		A page which is not pageable may not take
1607 *		a fault; therefore, its page table entry
1608 *		must remain valid for the duration.
1609 *
1610 *		This routine is merely advisory; pmap_enter
1611 *		will specify that these pages are to be wired
1612 *		down (or not) as appropriate.
1613 */
1614void
1615pmap_pageable(pmap, sva, eva, pageable)
1616	pmap_t pmap;
1617	vm_offset_t sva, eva;
1618	boolean_t pageable;
1619{
1620}
1621
1622/*
1623 * this routine returns true if a physical page resides
1624 * in the given pmap.
1625 */
1626boolean_t
1627pmap_page_exists(pmap, pa)
1628	pmap_t pmap;
1629	vm_offset_t pa;
1630{
1631	register pv_entry_t pv;
1632	int s;
1633
1634	if (!pmap_is_managed(pa))
1635		return FALSE;
1636
1637	pv = pa_to_pvh(pa);
1638	s = splhigh();
1639
1640	/*
1641	 * Not found, check current mappings returning immediately if found.
1642	 */
1643	if (pv->pv_pmap != NULL) {
1644		for (; pv; pv = pv->pv_next) {
1645			if (pv->pv_pmap == pmap) {
1646				splx(s);
1647				return TRUE;
1648			}
1649		}
1650	}
1651	splx(s);
1652	return (FALSE);
1653}
1654
1655/*
1656 * pmap_testbit tests bits in pte's
1657 * note that the testbit/changebit routines are inline,
1658 * and a lot of things compile-time evaluate.
1659 */
1660static __inline boolean_t
1661pmap_testbit(pa, bit)
1662	register vm_offset_t pa;
1663	int bit;
1664{
1665	register pv_entry_t pv;
1666	pt_entry_t *pte;
1667	int s;
1668
1669	if (!pmap_is_managed(pa))
1670		return FALSE;
1671
1672	pv = pa_to_pvh(pa);
1673	s = splhigh();
1674
1675	/*
1676	 * Not found, check current mappings returning immediately if found.
1677	 */
1678	if (pv->pv_pmap != NULL) {
1679		for (; pv; pv = pv->pv_next) {
1680			/*
1681			 * if the bit being tested is the modified bit, then
1682			 * mark UPAGES as always modified, and ptes as never
1683			 * modified.
1684			 */
1685			if (bit & PG_U) {
1686				if ((pv->pv_va >= clean_sva) && (pv->pv_va < clean_eva)) {
1687					continue;
1688				}
1689			}
1690			if (bit & PG_M) {
1691				if (pv->pv_va >= USRSTACK) {
1692					if (pv->pv_va >= clean_sva && pv->pv_va < clean_eva) {
1693						continue;
1694					}
1695					if (pv->pv_va < USRSTACK + (UPAGES * NBPG)) {
1696						splx(s);
1697						return TRUE;
1698					} else if (pv->pv_va < KERNBASE) {
1699						splx(s);
1700						return FALSE;
1701					}
1702				}
1703			}
1704			if (!pv->pv_pmap) {
1705				printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
1706				continue;
1707			}
1708			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
1709			if ((int) *pte & bit) {
1710				splx(s);
1711				return TRUE;
1712			}
1713		}
1714	}
1715	splx(s);
1716	return (FALSE);
1717}
1718
1719/*
1720 * this routine is used to modify bits in ptes
1721 */
1722static __inline void
1723pmap_changebit(pa, bit, setem)
1724	vm_offset_t pa;
1725	int bit;
1726	boolean_t setem;
1727{
1728	register pv_entry_t pv;
1729	register pt_entry_t *pte, npte;
1730	vm_offset_t va;
1731	int s;
1732
1733	if (!pmap_is_managed(pa))
1734		return;
1735
1736	pv = pa_to_pvh(pa);
1737	s = splhigh();
1738
1739	/*
1740	 * Loop over all current mappings setting/clearing as appropos If
1741	 * setting RO do we need to clear the VAC?
1742	 */
1743	if (pv->pv_pmap != NULL) {
1744		for (; pv; pv = pv->pv_next) {
1745			va = pv->pv_va;
1746
1747			/*
1748			 * don't write protect pager mappings
1749			 */
1750			if (!setem && (bit == PG_RW)) {
1751				if (va >= clean_sva && va < clean_eva)
1752					continue;
1753			}
1754			if (!pv->pv_pmap) {
1755				printf("Null pmap (cb) at va: 0x%lx\n", va);
1756				continue;
1757			}
1758			pte = pmap_pte(pv->pv_pmap, va);
1759			if (setem)
1760				(int) npte = (int) *pte | bit;
1761			else
1762				(int) npte = (int) *pte & ~bit;
1763			*pte = npte;
1764		}
1765	}
1766	splx(s);
1767	pmap_update();
1768}
1769
1770/*
1771 *      pmap_page_protect:
1772 *
1773 *      Lower the permission for all mappings to a given page.
1774 */
1775void
1776pmap_page_protect(phys, prot)
1777	vm_offset_t phys;
1778	vm_prot_t prot;
1779{
1780	if ((prot & VM_PROT_WRITE) == 0) {
1781		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
1782			pmap_changebit(phys, PG_RW, FALSE);
1783		else
1784			pmap_remove_all(phys);
1785	}
1786}
1787
1788vm_offset_t
1789pmap_phys_address(ppn)
1790	int ppn;
1791{
1792	return (i386_ptob(ppn));
1793}
1794
1795/*
1796 *	pmap_is_referenced:
1797 *
1798 *	Return whether or not the specified physical page was referenced
1799 *	by any physical maps.
1800 */
1801boolean_t
1802pmap_is_referenced(vm_offset_t pa)
1803{
1804	return pmap_testbit((pa), PG_U);
1805}
1806
1807/*
1808 *	pmap_is_modified:
1809 *
1810 *	Return whether or not the specified physical page was modified
1811 *	in any physical maps.
1812 */
1813boolean_t
1814pmap_is_modified(vm_offset_t pa)
1815{
1816	return pmap_testbit((pa), PG_M);
1817}
1818
1819/*
1820 *	Clear the modify bits on the specified physical page.
1821 */
1822void
1823pmap_clear_modify(vm_offset_t pa)
1824{
1825	pmap_changebit((pa), PG_M, FALSE);
1826}
1827
1828/*
1829 *	pmap_clear_reference:
1830 *
1831 *	Clear the reference bit on the specified physical page.
1832 */
1833void
1834pmap_clear_reference(vm_offset_t pa)
1835{
1836	pmap_changebit((pa), PG_U, FALSE);
1837}
1838
1839/*
1840 *	Routine:	pmap_copy_on_write
1841 *	Function:
1842 *		Remove write privileges from all
1843 *		physical maps for this physical page.
1844 */
1845void
1846pmap_copy_on_write(vm_offset_t pa)
1847{
1848	pmap_changebit((pa), PG_RW, FALSE);
1849}
1850
1851/*
1852 * Miscellaneous support routines follow
1853 */
1854
1855void
1856i386_protection_init()
1857{
1858	register int *kp, prot;
1859
1860	kp = protection_codes;
1861	for (prot = 0; prot < 8; prot++) {
1862		switch (prot) {
1863		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
1864			/*
1865			 * Read access is also 0. There isn't any execute bit,
1866			 * so just make it readable.
1867			 */
1868		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
1869		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
1870		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
1871			*kp++ = 0;
1872			break;
1873		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
1874		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
1875		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
1876		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
1877			*kp++ = PG_RW;
1878			break;
1879		}
1880	}
1881}
1882
1883/*
1884 * Map a set of physical memory pages into the kernel virtual
1885 * address space. Return a pointer to where it is mapped. This
1886 * routine is intended to be used for mapping device memory,
1887 * NOT real memory. The non-cacheable bits are set on each
1888 * mapped page.
1889 */
1890void *
1891pmap_mapdev(pa, size)
1892	vm_offset_t pa;
1893	vm_size_t size;
1894{
1895	vm_offset_t va, tmpva;
1896	pt_entry_t *pte;
1897
1898	pa = trunc_page(pa);
1899	size = roundup(size, PAGE_SIZE);
1900
1901	va = kmem_alloc_pageable(kernel_map, size);
1902	if (!va)
1903		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
1904
1905	for (tmpva = va; size > 0;) {
1906		pte = vtopte(tmpva);
1907		*pte = (pt_entry_t) ((int) (pa | PG_RW | PG_V | PG_N));
1908		size -= PAGE_SIZE;
1909		tmpva += PAGE_SIZE;
1910		pa += PAGE_SIZE;
1911	}
1912	pmap_update();
1913
1914	return ((void *) va);
1915}
1916
1917#ifdef DEBUG
1918/* print address space of pmap*/
1919void
1920pads(pm)
1921	pmap_t pm;
1922{
1923	unsigned va, i, j;
1924	pt_entry_t *ptep;
1925
1926	if (pm == kernel_pmap)
1927		return;
1928	for (i = 0; i < 1024; i++)
1929		if (pm->pm_pdir[i])
1930			for (j = 0; j < 1024; j++) {
1931				va = (i << PD_SHIFT) + (j << PG_SHIFT);
1932				if (pm == kernel_pmap && va < KERNBASE)
1933					continue;
1934				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
1935					continue;
1936				ptep = pmap_pte(pm, va);
1937				if (pmap_pte_v(ptep))
1938					printf("%x:%x ", va, *(int *) ptep);
1939			};
1940
1941}
1942
1943void
1944pmap_pvdump(pa)
1945	vm_offset_t pa;
1946{
1947	register pv_entry_t pv;
1948
1949	printf("pa %x", pa);
1950	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
1951#ifdef used_to_be
1952		printf(" -> pmap %x, va %x, flags %x",
1953		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
1954#endif
1955		printf(" -> pmap %x, va %x",
1956		    pv->pv_pmap, pv->pv_va);
1957		pads(pv->pv_pmap);
1958	}
1959	printf(" ");
1960}
1961#endif
1962