pmap.c revision 121055
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43/*-
44 * Copyright (c) 2003 Networks Associates Technology, Inc.
45 * All rights reserved.
46 *
47 * This software was developed for the FreeBSD Project by Jake Burkholder,
48 * Safeport Network Services, and Network Associates Laboratories, the
49 * Security Research Division of Network Associates, Inc. under
50 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
51 * CHATS research program.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 *    notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 *    notice, this list of conditions and the following disclaimer in the
60 *    documentation and/or other materials provided with the distribution.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 121055 2003-10-13 03:28:31Z alc $");
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_pmap.h"
105#include "opt_msgbuf.h"
106#include "opt_kstack_pages.h"
107
108#include <sys/param.h>
109#include <sys/systm.h>
110#include <sys/kernel.h>
111#include <sys/lock.h>
112#include <sys/mman.h>
113#include <sys/msgbuf.h>
114#include <sys/mutex.h>
115#include <sys/proc.h>
116#include <sys/sx.h>
117#include <sys/user.h>
118#include <sys/vmmeter.h>
119#include <sys/sysctl.h>
120#ifdef SMP
121#include <sys/smp.h>
122#endif
123
124#include <vm/vm.h>
125#include <vm/vm_param.h>
126#include <vm/vm_kern.h>
127#include <vm/vm_page.h>
128#include <vm/vm_map.h>
129#include <vm/vm_object.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_pageout.h>
132#include <vm/vm_pager.h>
133#include <vm/uma.h>
134
135#include <machine/cpu.h>
136#include <machine/cputypes.h>
137#include <machine/md_var.h>
138#include <machine/specialreg.h>
139#if defined(SMP) || defined(APIC_IO)
140#include <machine/smp.h>
141#include <machine/apic.h>
142#include <machine/segments.h>
143#include <machine/tss.h>
144#endif /* SMP || APIC_IO */
145
146#define PMAP_KEEP_PDIRS
147#ifndef PMAP_SHPGPERPROC
148#define PMAP_SHPGPERPROC 200
149#endif
150
151#if defined(DIAGNOSTIC)
152#define PMAP_DIAGNOSTIC
153#endif
154
155#define MINPV 2048
156
157#if !defined(PMAP_DIAGNOSTIC)
158#define PMAP_INLINE __inline
159#else
160#define PMAP_INLINE
161#endif
162
163/*
164 * Get PDEs and PTEs for user/kernel address space
165 */
166#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
167#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
168
169#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
170#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
171#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
172#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
173#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
174
175#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
176#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
177
178/*
179 * Given a map and a machine independent protection code,
180 * convert to a vax protection code.
181 */
182#define pte_prot(m, p)	(protection_codes[p])
183static int protection_codes[8];
184
185struct pmap kernel_pmap_store;
186LIST_HEAD(pmaplist, pmap);
187static struct pmaplist allpmaps;
188static struct mtx allpmaps_lock;
189#ifdef SMP
190static struct mtx lazypmap_lock;
191#endif
192
193vm_paddr_t avail_start;	/* PA of first available physical page */
194vm_paddr_t avail_end;	/* PA of last available physical page */
195vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
196vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
197static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
198int pgeflag = 0;		/* PG_G or-in */
199int pseflag = 0;		/* PG_PS or-in */
200
201static int nkpt;
202vm_offset_t kernel_vm_end;
203extern u_int32_t KERNend;
204
205#ifdef PAE
206static uma_zone_t pdptzone;
207#endif
208
209/*
210 * Data for the pv entry allocation mechanism
211 */
212static uma_zone_t pvzone;
213static struct vm_object pvzone_obj;
214static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
215int pmap_pagedaemon_waken;
216
217/*
218 * All those kernel PT submaps that BSD is so fond of
219 */
220pt_entry_t *CMAP1 = 0;
221static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
222caddr_t CADDR1 = 0, ptvmmap = 0;
223static caddr_t CADDR2, CADDR3;
224static struct mtx CMAPCADDR12_lock;
225static pt_entry_t *msgbufmap;
226struct msgbuf *msgbufp = 0;
227
228/*
229 * Crashdump maps.
230 */
231static pt_entry_t *pt_crashdumpmap;
232static caddr_t crashdumpmap;
233
234#ifdef SMP
235extern pt_entry_t *SMPpt;
236#endif
237static pt_entry_t *PMAP1 = 0;
238static pt_entry_t *PADDR1 = 0;
239
240static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
241static pv_entry_t get_pv_entry(void);
242static void	i386_protection_init(void);
243static void	pmap_clear_ptes(vm_page_t m, int bit)
244    __always_inline;
245
246static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
247static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
248static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
249					vm_offset_t va);
250static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
251		vm_page_t mpte, vm_page_t m);
252
253static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
254
255static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
256static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
257static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
258static void *pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
259#ifdef PAE
260static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
261#endif
262
263CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
264CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
265
266/*
267 * Move the kernel virtual free pointer to the next
268 * 4MB.  This is used to help improve performance
269 * by using a large (4MB) page for much of the kernel
270 * (.text, .data, .bss)
271 */
272static vm_offset_t
273pmap_kmem_choose(vm_offset_t addr)
274{
275	vm_offset_t newaddr = addr;
276
277#ifdef I686_CPU_not	/* Problem seems to have gone away */
278	/* Deal with un-resolved Pentium4 issues */
279	if (cpu_class == CPUCLASS_686 &&
280	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
281	    (cpu_id & 0xf00) == 0xf00)
282		return newaddr;
283#endif
284#ifndef DISABLE_PSE
285	if (cpu_feature & CPUID_PSE)
286		newaddr = (addr + PDRMASK) & ~PDRMASK;
287#endif
288	return newaddr;
289}
290
291/*
292 *	Bootstrap the system enough to run with virtual memory.
293 *
294 *	On the i386 this is called after mapping has already been enabled
295 *	and just syncs the pmap module with what has already been done.
296 *	[We can't call it easily with mapping off since the kernel is not
297 *	mapped with PA == VA, hence we would have to relocate every address
298 *	from the linked base (virtual) address "KERNBASE" to the actual
299 *	(physical) address starting relative to 0]
300 */
301void
302pmap_bootstrap(firstaddr, loadaddr)
303	vm_paddr_t firstaddr;
304	vm_paddr_t loadaddr;
305{
306	vm_offset_t va;
307	pt_entry_t *pte;
308	int i;
309
310	avail_start = firstaddr;
311
312	/*
313	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
314	 * large. It should instead be correctly calculated in locore.s and
315	 * not based on 'first' (which is a physical address, not a virtual
316	 * address, for the start of unused physical memory). The kernel
317	 * page tables are NOT double mapped and thus should not be included
318	 * in this calculation.
319	 */
320	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
321	virtual_avail = pmap_kmem_choose(virtual_avail);
322
323	virtual_end = VM_MAX_KERNEL_ADDRESS;
324
325	/*
326	 * Initialize protection array.
327	 */
328	i386_protection_init();
329
330	/*
331	 * Initialize the kernel pmap (which is statically allocated).
332	 */
333	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
334#ifdef PAE
335	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
336#endif
337	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
338	TAILQ_INIT(&kernel_pmap->pm_pvlist);
339	LIST_INIT(&allpmaps);
340#ifdef SMP
341	mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
342#endif
343	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
344	mtx_lock_spin(&allpmaps_lock);
345	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
346	mtx_unlock_spin(&allpmaps_lock);
347	nkpt = NKPT;
348
349	/*
350	 * Reserve some special page table entries/VA space for temporary
351	 * mapping of pages.
352	 */
353#define	SYSMAP(c, p, v, n)	\
354	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
355
356	va = virtual_avail;
357	pte = vtopte(va);
358
359	/*
360	 * CMAP1/CMAP2 are used for zeroing and copying pages.
361	 * CMAP3 is used for the idle process page zeroing.
362	 */
363	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
364	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
365	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
366	*CMAP3 = 0;
367
368	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
369
370	/*
371	 * Crashdump maps.
372	 */
373	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
374
375	/*
376	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
377	 * XXX ptmmap is not used.
378	 */
379	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
380
381	/*
382	 * msgbufp is used to map the system message buffer.
383	 * XXX msgbufmap is not used.
384	 */
385	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
386	       atop(round_page(MSGBUF_SIZE)))
387
388	/*
389	 * ptemap is used for pmap_pte_quick
390	 */
391	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
392
393	virtual_avail = va;
394
395	*CMAP1 = *CMAP2 = 0;
396	for (i = 0; i < NKPT; i++)
397		PTD[i] = 0;
398
399#ifdef I686_CPU_not	/* Problem seems to have gone away */
400	/* Deal with un-resolved Pentium4 issues */
401	if (cpu_class == CPUCLASS_686 &&
402	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
403	    (cpu_id & 0xf00) == 0xf00) {
404		printf("Warning: Pentium 4 cpu: PG_G disabled (global flag)\n");
405		pgeflag = 0;
406	}
407#endif
408
409#ifdef I686_CPU_not	/* Problem seems to have gone away */
410	/* Deal with un-resolved Pentium4 issues */
411	if (cpu_class == CPUCLASS_686 &&
412	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
413	    (cpu_id & 0xf00) == 0xf00) {
414		printf("Warning: Pentium 4 cpu: PG_PS disabled (4MB pages)\n");
415		pseflag = 0;
416	}
417#endif
418
419	/* Turn on PG_G on kernel page(s) */
420	pmap_set_pg();
421
422#ifdef SMP
423	if (cpu_apic_address == 0)
424		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
425
426	/* local apic is mapped on last page */
427	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
428	    (cpu_apic_address & PG_FRAME));
429#endif
430	invltlb();
431}
432
433/*
434 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
435 */
436void
437pmap_set_pg(void)
438{
439	pd_entry_t pdir;
440	pt_entry_t *pte;
441	vm_offset_t va, endva;
442	int i;
443
444	if (pgeflag == 0)
445		return;
446
447	i = KERNLOAD/NBPDR;
448	endva = KERNBASE + KERNend;
449
450	if (pseflag) {
451		va = KERNBASE + KERNLOAD;
452		while (va  < endva) {
453			pdir = kernel_pmap->pm_pdir[KPTDI+i];
454			pdir |= pgeflag;
455			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
456			invltlb();	/* Play it safe, invltlb() every time */
457			i++;
458			va += NBPDR;
459		}
460	} else {
461		va = (vm_offset_t)btext;
462		while (va < endva) {
463			pte = vtopte(va);
464			if (*pte)
465				*pte |= pgeflag;
466			invltlb();	/* Play it safe, invltlb() every time */
467			va += PAGE_SIZE;
468		}
469	}
470}
471
472static void *
473pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
474{
475	*flags = UMA_SLAB_PRIV;
476	return (void *)kmem_alloc(kernel_map, bytes);
477}
478
479#ifdef PAE
480static void *
481pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
482{
483	*flags = UMA_SLAB_PRIV;
484	return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
485}
486#endif
487
488/*
489 *	Initialize the pmap module.
490 *	Called by vm_init, to initialize any structures that the pmap
491 *	system needs to map virtual memory.
492 *	pmap_init has been enhanced to support in a fairly consistant
493 *	way, discontiguous physical memory.
494 */
495void
496pmap_init(phys_start, phys_end)
497	vm_paddr_t phys_start, phys_end;
498{
499	int i;
500	int initial_pvs;
501
502	/*
503	 * Allocate memory for random pmap data structures.  Includes the
504	 * pv_head_table.
505	 */
506
507	for(i = 0; i < vm_page_array_size; i++) {
508		vm_page_t m;
509
510		m = &vm_page_array[i];
511		TAILQ_INIT(&m->md.pv_list);
512		m->md.pv_list_count = 0;
513	}
514
515	/*
516	 * init the pv free list
517	 */
518	initial_pvs = vm_page_array_size;
519	if (initial_pvs < MINPV)
520		initial_pvs = MINPV;
521	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
522	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
523	uma_zone_set_allocf(pvzone, pmap_pv_allocf);
524	uma_prealloc(pvzone, initial_pvs);
525
526#ifdef PAE
527	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
528	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
529	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
530	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
531#endif
532
533	/*
534	 * Now it is safe to enable pv_table recording.
535	 */
536	pmap_initialized = TRUE;
537}
538
539/*
540 * Initialize the address space (zone) for the pv_entries.  Set a
541 * high water mark so that the system can recover from excessive
542 * numbers of pv entries.
543 */
544void
545pmap_init2()
546{
547	int shpgperproc = PMAP_SHPGPERPROC;
548
549	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
550	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
551	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
552	pv_entry_high_water = 9 * (pv_entry_max / 10);
553	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
554}
555
556
557/***************************************************
558 * Low level helper routines.....
559 ***************************************************/
560
561#if defined(PMAP_DIAGNOSTIC)
562
563/*
564 * This code checks for non-writeable/modified pages.
565 * This should be an invalid condition.
566 */
567static int
568pmap_nw_modified(pt_entry_t ptea)
569{
570	int pte;
571
572	pte = (int) ptea;
573
574	if ((pte & (PG_M|PG_RW)) == PG_M)
575		return 1;
576	else
577		return 0;
578}
579#endif
580
581
582/*
583 * this routine defines the region(s) of memory that should
584 * not be tested for the modified bit.
585 */
586static PMAP_INLINE int
587pmap_track_modified(vm_offset_t va)
588{
589	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
590		return 1;
591	else
592		return 0;
593}
594
595#ifdef I386_CPU
596/*
597 * i386 only has "invalidate everything" and no SMP to worry about.
598 */
599PMAP_INLINE void
600pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
601{
602
603	if (pmap == kernel_pmap || pmap->pm_active)
604		invltlb();
605}
606
607PMAP_INLINE void
608pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
609{
610
611	if (pmap == kernel_pmap || pmap->pm_active)
612		invltlb();
613}
614
615PMAP_INLINE void
616pmap_invalidate_all(pmap_t pmap)
617{
618
619	if (pmap == kernel_pmap || pmap->pm_active)
620		invltlb();
621}
622#else /* !I386_CPU */
623#ifdef SMP
624/*
625 * For SMP, these functions have to use the IPI mechanism for coherence.
626 */
627void
628pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
629{
630	u_int cpumask;
631	u_int other_cpus;
632
633	critical_enter();
634	/*
635	 * We need to disable interrupt preemption but MUST NOT have
636	 * interrupts disabled here.
637	 * XXX we may need to hold schedlock to get a coherent pm_active
638	 */
639	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
640		invlpg(va);
641		smp_invlpg(va);
642	} else {
643		cpumask = PCPU_GET(cpumask);
644		other_cpus = PCPU_GET(other_cpus);
645		if (pmap->pm_active & cpumask)
646			invlpg(va);
647		if (pmap->pm_active & other_cpus)
648			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
649	}
650	critical_exit();
651}
652
653void
654pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
655{
656	u_int cpumask;
657	u_int other_cpus;
658	vm_offset_t addr;
659
660	critical_enter();
661	/*
662	 * We need to disable interrupt preemption but MUST NOT have
663	 * interrupts disabled here.
664	 * XXX we may need to hold schedlock to get a coherent pm_active
665	 */
666	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
667		for (addr = sva; addr < eva; addr += PAGE_SIZE)
668			invlpg(addr);
669		smp_invlpg_range(sva, eva);
670	} else {
671		cpumask = PCPU_GET(cpumask);
672		other_cpus = PCPU_GET(other_cpus);
673		if (pmap->pm_active & cpumask)
674			for (addr = sva; addr < eva; addr += PAGE_SIZE)
675				invlpg(addr);
676		if (pmap->pm_active & other_cpus)
677			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
678			    sva, eva);
679	}
680	critical_exit();
681}
682
683void
684pmap_invalidate_all(pmap_t pmap)
685{
686	u_int cpumask;
687	u_int other_cpus;
688
689	critical_enter();
690	/*
691	 * We need to disable interrupt preemption but MUST NOT have
692	 * interrupts disabled here.
693	 * XXX we may need to hold schedlock to get a coherent pm_active
694	 */
695	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
696		invltlb();
697		smp_invltlb();
698	} else {
699		cpumask = PCPU_GET(cpumask);
700		other_cpus = PCPU_GET(other_cpus);
701		if (pmap->pm_active & cpumask)
702			invltlb();
703		if (pmap->pm_active & other_cpus)
704			smp_masked_invltlb(pmap->pm_active & other_cpus);
705	}
706	critical_exit();
707}
708#else /* !SMP */
709/*
710 * Normal, non-SMP, 486+ invalidation functions.
711 * We inline these within pmap.c for speed.
712 */
713PMAP_INLINE void
714pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
715{
716
717	if (pmap == kernel_pmap || pmap->pm_active)
718		invlpg(va);
719}
720
721PMAP_INLINE void
722pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
723{
724	vm_offset_t addr;
725
726	if (pmap == kernel_pmap || pmap->pm_active)
727		for (addr = sva; addr < eva; addr += PAGE_SIZE)
728			invlpg(addr);
729}
730
731PMAP_INLINE void
732pmap_invalidate_all(pmap_t pmap)
733{
734
735	if (pmap == kernel_pmap || pmap->pm_active)
736		invltlb();
737}
738#endif /* !SMP */
739#endif /* !I386_CPU */
740
741/*
742 * Are we current address space or kernel?  N.B. We return FALSE when
743 * a pmap's page table is in use because a kernel thread is borrowing
744 * it.  The borrowed page table can change spontaneously, making any
745 * dependence on its continued use subject to a race condition.
746 */
747static int
748pmap_is_current(pmap_t pmap)
749{
750	return (pmap == kernel_pmap ||
751		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
752	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
753}
754
755/*
756 * Super fast pmap_pte routine best used when scanning
757 * the pv lists.  This eliminates many coarse-grained
758 * invltlb calls.  Note that many of the pv list
759 * scans are across different pmaps.  It is very wasteful
760 * to do an entire invltlb for checking a single mapping.
761 */
762pt_entry_t *
763pmap_pte_quick(pmap, va)
764	register pmap_t pmap;
765	vm_offset_t va;
766{
767	pd_entry_t newpf;
768	pd_entry_t *pde;
769
770	pde = pmap_pde(pmap, va);
771	if (*pde & PG_PS)
772		return (pde);
773	if (*pde != 0) {
774		/* are we current address space or kernel? */
775		if (pmap_is_current(pmap))
776			return vtopte(va);
777		newpf = *pde & PG_FRAME;
778		if (((*PMAP1) & PG_FRAME) != newpf) {
779			*PMAP1 = newpf | PG_RW | PG_V;
780			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
781		}
782		return PADDR1 + (i386_btop(va) & (NPTEPG - 1));
783	}
784	return (0);
785}
786
787/*
788 *	Routine:	pmap_extract
789 *	Function:
790 *		Extract the physical page address associated
791 *		with the given map/virtual_address pair.
792 */
793vm_paddr_t
794pmap_extract(pmap, va)
795	register pmap_t pmap;
796	vm_offset_t va;
797{
798	vm_paddr_t rtval;
799	pt_entry_t *pte;
800	pd_entry_t pde;
801
802	if (pmap == 0)
803		return 0;
804	pde = pmap->pm_pdir[va >> PDRSHIFT];
805	if (pde != 0) {
806		if ((pde & PG_PS) != 0) {
807			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
808			return rtval;
809		}
810		pte = pmap_pte_quick(pmap, va);
811		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
812		return rtval;
813	}
814	return 0;
815
816}
817
818/*
819 *	Routine:	pmap_extract_and_hold
820 *	Function:
821 *		Atomically extract and hold the physical page
822 *		with the given pmap and virtual address pair
823 *		if that mapping permits the given protection.
824 */
825vm_page_t
826pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
827{
828	vm_paddr_t pa;
829	vm_page_t m;
830
831	m = NULL;
832	mtx_lock(&Giant);
833	if ((pa = pmap_extract(pmap, va)) != 0) {
834		m = PHYS_TO_VM_PAGE(pa);
835		vm_page_lock_queues();
836		vm_page_hold(m);
837		vm_page_unlock_queues();
838	}
839	mtx_unlock(&Giant);
840	return (m);
841}
842
843/***************************************************
844 * Low level mapping routines.....
845 ***************************************************/
846
847/*
848 * Add a wired page to the kva.
849 * Note: not SMP coherent.
850 */
851PMAP_INLINE void
852pmap_kenter(vm_offset_t va, vm_paddr_t pa)
853{
854	pt_entry_t *pte;
855
856	pte = vtopte(va);
857	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
858}
859
860/*
861 * Remove a page from the kernel pagetables.
862 * Note: not SMP coherent.
863 */
864PMAP_INLINE void
865pmap_kremove(vm_offset_t va)
866{
867	pt_entry_t *pte;
868
869	pte = vtopte(va);
870	pte_clear(pte);
871}
872
873/*
874 *	Used to map a range of physical addresses into kernel
875 *	virtual address space.
876 *
877 *	The value passed in '*virt' is a suggested virtual address for
878 *	the mapping. Architectures which can support a direct-mapped
879 *	physical to virtual region can return the appropriate address
880 *	within that region, leaving '*virt' unchanged. Other
881 *	architectures should map the pages starting at '*virt' and
882 *	update '*virt' with the first usable address after the mapped
883 *	region.
884 */
885vm_offset_t
886pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
887{
888	vm_offset_t va, sva;
889
890	va = sva = *virt;
891	while (start < end) {
892		pmap_kenter(va, start);
893		va += PAGE_SIZE;
894		start += PAGE_SIZE;
895	}
896	pmap_invalidate_range(kernel_pmap, sva, va);
897	*virt = va;
898	return (sva);
899}
900
901
902/*
903 * Add a list of wired pages to the kva
904 * this routine is only used for temporary
905 * kernel mappings that do not need to have
906 * page modification or references recorded.
907 * Note that old mappings are simply written
908 * over.  The page *must* be wired.
909 * Note: SMP coherent.  Uses a ranged shootdown IPI.
910 */
911void
912pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
913{
914	vm_offset_t va;
915
916	va = sva;
917	while (count-- > 0) {
918		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
919		va += PAGE_SIZE;
920		m++;
921	}
922	pmap_invalidate_range(kernel_pmap, sva, va);
923}
924
925/*
926 * This routine tears out page mappings from the
927 * kernel -- it is meant only for temporary mappings.
928 * Note: SMP coherent.  Uses a ranged shootdown IPI.
929 */
930void
931pmap_qremove(vm_offset_t sva, int count)
932{
933	vm_offset_t va;
934
935	va = sva;
936	while (count-- > 0) {
937		pmap_kremove(va);
938		va += PAGE_SIZE;
939	}
940	pmap_invalidate_range(kernel_pmap, sva, va);
941}
942
943/***************************************************
944 * Page table page management routines.....
945 ***************************************************/
946
947/*
948 * This routine unholds page table pages, and if the hold count
949 * drops to zero, then it decrements the wire count.
950 */
951static int
952_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
953{
954
955	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
956		vm_page_lock_queues();
957
958	if (m->hold_count == 0) {
959		vm_offset_t pteva;
960		/*
961		 * unmap the page table page
962		 */
963		pmap->pm_pdir[m->pindex] = 0;
964		--pmap->pm_stats.resident_count;
965		/*
966		 * We never unwire a kernel page table page, making a
967		 * check for the kernel_pmap unnecessary.
968		 */
969		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)) {
970			/*
971			 * Do an invltlb to make the invalidated mapping
972			 * take effect immediately.
973			 */
974			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
975			pmap_invalidate_page(pmap, pteva);
976		}
977
978		/*
979		 * If the page is finally unwired, simply free it.
980		 */
981		--m->wire_count;
982		if (m->wire_count == 0) {
983			vm_page_busy(m);
984			vm_page_free_zero(m);
985			atomic_subtract_int(&cnt.v_wire_count, 1);
986		}
987		return 1;
988	}
989	return 0;
990}
991
992static PMAP_INLINE int
993pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
994{
995	vm_page_unhold(m);
996	if (m->hold_count == 0)
997		return _pmap_unwire_pte_hold(pmap, m);
998	else
999		return 0;
1000}
1001
1002/*
1003 * After removing a page table entry, this routine is used to
1004 * conditionally free the page, and manage the hold/wire counts.
1005 */
1006static int
1007pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1008{
1009
1010	if (va >= VM_MAXUSER_ADDRESS)
1011		return 0;
1012
1013	return pmap_unwire_pte_hold(pmap, mpte);
1014}
1015
1016void
1017pmap_pinit0(pmap)
1018	struct pmap *pmap;
1019{
1020
1021	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1022#ifdef PAE
1023	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1024#endif
1025	pmap->pm_active = 0;
1026	PCPU_SET(curpmap, pmap);
1027	TAILQ_INIT(&pmap->pm_pvlist);
1028	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1029	mtx_lock_spin(&allpmaps_lock);
1030	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1031	mtx_unlock_spin(&allpmaps_lock);
1032}
1033
1034/*
1035 * Initialize a preallocated and zeroed pmap structure,
1036 * such as one in a vmspace structure.
1037 */
1038void
1039pmap_pinit(pmap)
1040	register struct pmap *pmap;
1041{
1042	vm_page_t m, ptdpg[NPGPTD];
1043	vm_paddr_t pa;
1044	static int color;
1045	int i;
1046
1047	/*
1048	 * No need to allocate page table space yet but we do need a valid
1049	 * page directory table.
1050	 */
1051	if (pmap->pm_pdir == NULL) {
1052		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1053		    NBPTD);
1054#ifdef PAE
1055		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1056		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1057		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1058		    ("pmap_pinit: pdpt misaligned"));
1059		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1060		    ("pmap_pinit: pdpt above 4g"));
1061#endif
1062	}
1063
1064	/*
1065	 * allocate the page directory page(s)
1066	 */
1067	for (i = 0; i < NPGPTD;) {
1068		m = vm_page_alloc(NULL, color++,
1069		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1070		    VM_ALLOC_ZERO);
1071		if (m == NULL)
1072			VM_WAIT;
1073		else {
1074			vm_page_lock_queues();
1075			vm_page_flag_clear(m, PG_BUSY);
1076			vm_page_unlock_queues();
1077			ptdpg[i++] = m;
1078		}
1079	}
1080
1081	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1082
1083	for (i = 0; i < NPGPTD; i++) {
1084		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1085			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1086	}
1087
1088	mtx_lock_spin(&allpmaps_lock);
1089	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1090	mtx_unlock_spin(&allpmaps_lock);
1091	/* Wire in kernel global address entries. */
1092	/* XXX copies current process, does not fill in MPPTDI */
1093	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1094#ifdef SMP
1095	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1096#endif
1097
1098	/* install self-referential address mapping entry(s) */
1099	for (i = 0; i < NPGPTD; i++) {
1100		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1101		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1102#ifdef PAE
1103		pmap->pm_pdpt[i] = pa | PG_V;
1104#endif
1105	}
1106
1107	pmap->pm_active = 0;
1108	TAILQ_INIT(&pmap->pm_pvlist);
1109	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1110}
1111
1112/*
1113 * Wire in kernel global address entries.  To avoid a race condition
1114 * between pmap initialization and pmap_growkernel, this procedure
1115 * should be called after the vmspace is attached to the process
1116 * but before this pmap is activated.
1117 */
1118void
1119pmap_pinit2(pmap)
1120	struct pmap *pmap;
1121{
1122	/* XXX: Remove this stub when no longer called */
1123}
1124
1125/*
1126 * this routine is called if the page table page is not
1127 * mapped correctly.
1128 */
1129static vm_page_t
1130_pmap_allocpte(pmap, ptepindex)
1131	pmap_t	pmap;
1132	unsigned ptepindex;
1133{
1134	vm_paddr_t ptepa;
1135	vm_page_t m;
1136
1137	/*
1138	 * Allocate a page table page.
1139	 */
1140	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1141	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1142		VM_WAIT;
1143		/*
1144		 * Indicate the need to retry.  While waiting, the page table
1145		 * page may have been allocated.
1146		 */
1147		return (NULL);
1148	}
1149	if ((m->flags & PG_ZERO) == 0)
1150		pmap_zero_page(m);
1151
1152	KASSERT(m->queue == PQ_NONE,
1153		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1154
1155	/*
1156	 * Increment the hold count for the page table page
1157	 * (denoting a new mapping.)
1158	 */
1159	m->hold_count++;
1160
1161	/*
1162	 * Map the pagetable page into the process address space, if
1163	 * it isn't already there.
1164	 */
1165
1166	pmap->pm_stats.resident_count++;
1167
1168	ptepa = VM_PAGE_TO_PHYS(m);
1169	pmap->pm_pdir[ptepindex] =
1170		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1171
1172	vm_page_lock_queues();
1173	vm_page_flag_clear(m, PG_ZERO);
1174	vm_page_wakeup(m);
1175	vm_page_unlock_queues();
1176
1177	return m;
1178}
1179
1180static vm_page_t
1181pmap_allocpte(pmap_t pmap, vm_offset_t va)
1182{
1183	unsigned ptepindex;
1184	pd_entry_t ptepa;
1185	vm_page_t m;
1186
1187	/*
1188	 * Calculate pagetable page index
1189	 */
1190	ptepindex = va >> PDRSHIFT;
1191retry:
1192	/*
1193	 * Get the page directory entry
1194	 */
1195	ptepa = pmap->pm_pdir[ptepindex];
1196
1197	/*
1198	 * This supports switching from a 4MB page to a
1199	 * normal 4K page.
1200	 */
1201	if (ptepa & PG_PS) {
1202		pmap->pm_pdir[ptepindex] = 0;
1203		ptepa = 0;
1204		pmap_invalidate_all(kernel_pmap);
1205	}
1206
1207	/*
1208	 * If the page table page is mapped, we just increment the
1209	 * hold count, and activate it.
1210	 */
1211	if (ptepa) {
1212		m = PHYS_TO_VM_PAGE(ptepa);
1213		m->hold_count++;
1214	} else {
1215		/*
1216		 * Here if the pte page isn't mapped, or if it has
1217		 * been deallocated.
1218		 */
1219		m = _pmap_allocpte(pmap, ptepindex);
1220		if (m == NULL)
1221			goto retry;
1222	}
1223	return (m);
1224}
1225
1226
1227/***************************************************
1228* Pmap allocation/deallocation routines.
1229 ***************************************************/
1230
1231#ifdef SMP
1232/*
1233 * Deal with a SMP shootdown of other users of the pmap that we are
1234 * trying to dispose of.  This can be a bit hairy.
1235 */
1236static u_int *lazymask;
1237static u_int lazyptd;
1238static volatile u_int lazywait;
1239
1240void pmap_lazyfix_action(void);
1241
1242void
1243pmap_lazyfix_action(void)
1244{
1245	u_int mymask = PCPU_GET(cpumask);
1246
1247	if (rcr3() == lazyptd)
1248		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1249	atomic_clear_int(lazymask, mymask);
1250	atomic_store_rel_int(&lazywait, 1);
1251}
1252
1253static void
1254pmap_lazyfix_self(u_int mymask)
1255{
1256
1257	if (rcr3() == lazyptd)
1258		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1259	atomic_clear_int(lazymask, mymask);
1260}
1261
1262
1263static void
1264pmap_lazyfix(pmap_t pmap)
1265{
1266	u_int mymask = PCPU_GET(cpumask);
1267	u_int mask;
1268	register u_int spins;
1269
1270	while ((mask = pmap->pm_active) != 0) {
1271		spins = 50000000;
1272		mask = mask & -mask;	/* Find least significant set bit */
1273		mtx_lock_spin(&lazypmap_lock);
1274#ifdef PAE
1275		lazyptd = vtophys(pmap->pm_pdpt);
1276#else
1277		lazyptd = vtophys(pmap->pm_pdir);
1278#endif
1279		if (mask == mymask) {
1280			lazymask = &pmap->pm_active;
1281			pmap_lazyfix_self(mymask);
1282		} else {
1283			atomic_store_rel_int((u_int *)&lazymask,
1284			    (u_int)&pmap->pm_active);
1285			atomic_store_rel_int(&lazywait, 0);
1286			ipi_selected(mask, IPI_LAZYPMAP);
1287			while (lazywait == 0) {
1288				ia32_pause();
1289				if (--spins == 0)
1290					break;
1291			}
1292		}
1293		mtx_unlock_spin(&lazypmap_lock);
1294		if (spins == 0)
1295			printf("pmap_lazyfix: spun for 50000000\n");
1296	}
1297}
1298
1299#else	/* SMP */
1300
1301/*
1302 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1303 * unlikely to have to even execute this code, including the fact
1304 * that the cleanup is deferred until the parent does a wait(2), which
1305 * means that another userland process has run.
1306 */
1307static void
1308pmap_lazyfix(pmap_t pmap)
1309{
1310	u_int cr3;
1311
1312	cr3 = vtophys(pmap->pm_pdir);
1313	if (cr3 == rcr3()) {
1314		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1315		pmap->pm_active &= ~(PCPU_GET(cpumask));
1316	}
1317}
1318#endif	/* SMP */
1319
1320/*
1321 * Release any resources held by the given physical map.
1322 * Called when a pmap initialized by pmap_pinit is being released.
1323 * Should only be called if the map contains no valid mappings.
1324 */
1325void
1326pmap_release(pmap_t pmap)
1327{
1328	vm_page_t m, ptdpg[NPGPTD];
1329	int i;
1330
1331	KASSERT(pmap->pm_stats.resident_count == 0,
1332	    ("pmap_release: pmap resident count %ld != 0",
1333	    pmap->pm_stats.resident_count));
1334
1335	pmap_lazyfix(pmap);
1336	mtx_lock_spin(&allpmaps_lock);
1337	LIST_REMOVE(pmap, pm_list);
1338	mtx_unlock_spin(&allpmaps_lock);
1339
1340	for (i = 0; i < NPGPTD; i++)
1341		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1342
1343	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1344	    sizeof(*pmap->pm_pdir));
1345#ifdef SMP
1346	pmap->pm_pdir[MPPTDI] = 0;
1347#endif
1348
1349	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1350
1351	vm_page_lock_queues();
1352	for (i = 0; i < NPGPTD; i++) {
1353		m = ptdpg[i];
1354#ifdef PAE
1355		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1356		    ("pmap_release: got wrong ptd page"));
1357#endif
1358		m->wire_count--;
1359		atomic_subtract_int(&cnt.v_wire_count, 1);
1360		vm_page_busy(m);
1361		vm_page_free_zero(m);
1362	}
1363	vm_page_unlock_queues();
1364}
1365
1366static int
1367kvm_size(SYSCTL_HANDLER_ARGS)
1368{
1369	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1370
1371	return sysctl_handle_long(oidp, &ksize, 0, req);
1372}
1373SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1374    0, 0, kvm_size, "IU", "Size of KVM");
1375
1376static int
1377kvm_free(SYSCTL_HANDLER_ARGS)
1378{
1379	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1380
1381	return sysctl_handle_long(oidp, &kfree, 0, req);
1382}
1383SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1384    0, 0, kvm_free, "IU", "Amount of KVM free");
1385
1386/*
1387 * grow the number of kernel page table entries, if needed
1388 */
1389void
1390pmap_growkernel(vm_offset_t addr)
1391{
1392	struct pmap *pmap;
1393	int s;
1394	vm_paddr_t ptppaddr;
1395	vm_page_t nkpg;
1396	pd_entry_t newpdir;
1397	pt_entry_t *pde;
1398
1399	s = splhigh();
1400	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1401	if (kernel_vm_end == 0) {
1402		kernel_vm_end = KERNBASE;
1403		nkpt = 0;
1404		while (pdir_pde(PTD, kernel_vm_end)) {
1405			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1406			nkpt++;
1407		}
1408	}
1409	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1410	while (kernel_vm_end < addr) {
1411		if (pdir_pde(PTD, kernel_vm_end)) {
1412			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1413			continue;
1414		}
1415
1416		/*
1417		 * This index is bogus, but out of the way
1418		 */
1419		nkpg = vm_page_alloc(NULL, nkpt,
1420		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1421		if (!nkpg)
1422			panic("pmap_growkernel: no memory to grow kernel");
1423
1424		nkpt++;
1425
1426		pmap_zero_page(nkpg);
1427		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1428		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1429		pdir_pde(PTD, kernel_vm_end) = newpdir;
1430
1431		mtx_lock_spin(&allpmaps_lock);
1432		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1433			pde = pmap_pde(pmap, kernel_vm_end);
1434			pde_store(pde, newpdir);
1435		}
1436		mtx_unlock_spin(&allpmaps_lock);
1437		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1438	}
1439	splx(s);
1440}
1441
1442
1443/***************************************************
1444 * page management routines.
1445 ***************************************************/
1446
1447/*
1448 * free the pv_entry back to the free list
1449 */
1450static PMAP_INLINE void
1451free_pv_entry(pv_entry_t pv)
1452{
1453	pv_entry_count--;
1454	uma_zfree(pvzone, pv);
1455}
1456
1457/*
1458 * get a new pv_entry, allocating a block from the system
1459 * when needed.
1460 * the memory allocation is performed bypassing the malloc code
1461 * because of the possibility of allocations at interrupt time.
1462 */
1463static pv_entry_t
1464get_pv_entry(void)
1465{
1466	pv_entry_count++;
1467	if (pv_entry_high_water &&
1468		(pv_entry_count > pv_entry_high_water) &&
1469		(pmap_pagedaemon_waken == 0)) {
1470		pmap_pagedaemon_waken = 1;
1471		wakeup (&vm_pages_needed);
1472	}
1473	return uma_zalloc(pvzone, M_NOWAIT);
1474}
1475
1476/*
1477 * If it is the first entry on the list, it is actually
1478 * in the header and we must copy the following entry up
1479 * to the header.  Otherwise we must search the list for
1480 * the entry.  In either case we free the now unused entry.
1481 */
1482
1483static int
1484pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1485{
1486	pv_entry_t pv;
1487	int rtval;
1488	int s;
1489
1490	s = splvm();
1491	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1492	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1493		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1494			if (pmap == pv->pv_pmap && va == pv->pv_va)
1495				break;
1496		}
1497	} else {
1498		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1499			if (va == pv->pv_va)
1500				break;
1501		}
1502	}
1503
1504	rtval = 0;
1505	if (pv) {
1506		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1507		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1508		m->md.pv_list_count--;
1509		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1510			vm_page_flag_clear(m, PG_WRITEABLE);
1511
1512		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1513		free_pv_entry(pv);
1514	}
1515
1516	splx(s);
1517	return rtval;
1518}
1519
1520/*
1521 * Create a pv entry for page at pa for
1522 * (pmap, va).
1523 */
1524static void
1525pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1526{
1527
1528	int s;
1529	pv_entry_t pv;
1530
1531	s = splvm();
1532	pv = get_pv_entry();
1533	pv->pv_va = va;
1534	pv->pv_pmap = pmap;
1535	pv->pv_ptem = mpte;
1536
1537	vm_page_lock_queues();
1538	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1539	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1540	m->md.pv_list_count++;
1541
1542	vm_page_unlock_queues();
1543	splx(s);
1544}
1545
1546/*
1547 * pmap_remove_pte: do the things to unmap a page in a process
1548 */
1549static int
1550pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1551{
1552	pt_entry_t oldpte;
1553	vm_page_t m, mpte;
1554
1555	oldpte = pte_load_clear(ptq);
1556	if (oldpte & PG_W)
1557		pmap->pm_stats.wired_count -= 1;
1558	/*
1559	 * Machines that don't support invlpg, also don't support
1560	 * PG_G.
1561	 */
1562	if (oldpte & PG_G)
1563		pmap_invalidate_page(kernel_pmap, va);
1564	pmap->pm_stats.resident_count -= 1;
1565	if (oldpte & PG_MANAGED) {
1566		m = PHYS_TO_VM_PAGE(oldpte);
1567		if (oldpte & PG_M) {
1568#if defined(PMAP_DIAGNOSTIC)
1569			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1570				printf(
1571	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1572				    va, oldpte);
1573			}
1574#endif
1575			if (pmap_track_modified(va))
1576				vm_page_dirty(m);
1577		}
1578		if (oldpte & PG_A)
1579			vm_page_flag_set(m, PG_REFERENCED);
1580		return pmap_remove_entry(pmap, m, va);
1581	} else {
1582		mpte = PHYS_TO_VM_PAGE(*pmap_pde(pmap, va));
1583		return pmap_unuse_pt(pmap, va, mpte);
1584	}
1585}
1586
1587/*
1588 * Remove a single page from a process address space
1589 */
1590static void
1591pmap_remove_page(pmap_t pmap, vm_offset_t va)
1592{
1593	pt_entry_t *pte;
1594
1595	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1596		return;
1597	pmap_remove_pte(pmap, pte, va);
1598	pmap_invalidate_page(pmap, va);
1599}
1600
1601/*
1602 *	Remove the given range of addresses from the specified map.
1603 *
1604 *	It is assumed that the start and end are properly
1605 *	rounded to the page size.
1606 */
1607void
1608pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1609{
1610	vm_offset_t pdnxt;
1611	pd_entry_t ptpaddr;
1612	pt_entry_t *pte;
1613	int anyvalid;
1614
1615	if (pmap == NULL)
1616		return;
1617
1618	if (pmap->pm_stats.resident_count == 0)
1619		return;
1620
1621	/*
1622	 * special handling of removing one page.  a very
1623	 * common operation and easy to short circuit some
1624	 * code.
1625	 */
1626	if ((sva + PAGE_SIZE == eva) &&
1627	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1628		pmap_remove_page(pmap, sva);
1629		return;
1630	}
1631
1632	anyvalid = 0;
1633
1634	for (; sva < eva; sva = pdnxt) {
1635		unsigned pdirindex;
1636
1637		/*
1638		 * Calculate index for next page table.
1639		 */
1640		pdnxt = (sva + NBPDR) & ~PDRMASK;
1641		if (pmap->pm_stats.resident_count == 0)
1642			break;
1643
1644		pdirindex = sva >> PDRSHIFT;
1645		ptpaddr = pmap->pm_pdir[pdirindex];
1646
1647		/*
1648		 * Weed out invalid mappings. Note: we assume that the page
1649		 * directory table is always allocated, and in kernel virtual.
1650		 */
1651		if (ptpaddr == 0)
1652			continue;
1653
1654		/*
1655		 * Check for large page.
1656		 */
1657		if ((ptpaddr & PG_PS) != 0) {
1658			pmap->pm_pdir[pdirindex] = 0;
1659			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1660			anyvalid = 1;
1661			continue;
1662		}
1663
1664		/*
1665		 * Limit our scan to either the end of the va represented
1666		 * by the current page table page, or to the end of the
1667		 * range being removed.
1668		 */
1669		if (pdnxt > eva)
1670			pdnxt = eva;
1671
1672		for (; sva != pdnxt; sva += PAGE_SIZE) {
1673			if ((pte = pmap_pte_quick(pmap, sva)) == NULL ||
1674			    *pte == 0)
1675				continue;
1676			anyvalid = 1;
1677			if (pmap_remove_pte(pmap, pte, sva))
1678				break;
1679		}
1680	}
1681
1682	if (anyvalid)
1683		pmap_invalidate_all(pmap);
1684}
1685
1686/*
1687 *	Routine:	pmap_remove_all
1688 *	Function:
1689 *		Removes this physical page from
1690 *		all physical maps in which it resides.
1691 *		Reflects back modify bits to the pager.
1692 *
1693 *	Notes:
1694 *		Original versions of this routine were very
1695 *		inefficient because they iteratively called
1696 *		pmap_remove (slow...)
1697 */
1698
1699void
1700pmap_remove_all(vm_page_t m)
1701{
1702	register pv_entry_t pv;
1703	pt_entry_t *pte, tpte;
1704	int s;
1705
1706#if defined(PMAP_DIAGNOSTIC)
1707	/*
1708	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1709	 */
1710	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1711		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1712		    VM_PAGE_TO_PHYS(m));
1713	}
1714#endif
1715	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1716	s = splvm();
1717	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1718		pv->pv_pmap->pm_stats.resident_count--;
1719		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1720		tpte = pte_load_clear(pte);
1721		if (tpte & PG_W)
1722			pv->pv_pmap->pm_stats.wired_count--;
1723		if (tpte & PG_A)
1724			vm_page_flag_set(m, PG_REFERENCED);
1725
1726		/*
1727		 * Update the vm_page_t clean and reference bits.
1728		 */
1729		if (tpte & PG_M) {
1730#if defined(PMAP_DIAGNOSTIC)
1731			if (pmap_nw_modified((pt_entry_t) tpte)) {
1732				printf(
1733	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1734				    pv->pv_va, tpte);
1735			}
1736#endif
1737			if (pmap_track_modified(pv->pv_va))
1738				vm_page_dirty(m);
1739		}
1740		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1741		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1742		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1743		m->md.pv_list_count--;
1744		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1745		free_pv_entry(pv);
1746	}
1747	vm_page_flag_clear(m, PG_WRITEABLE);
1748	splx(s);
1749}
1750
1751/*
1752 *	Set the physical protection on the
1753 *	specified range of this map as requested.
1754 */
1755void
1756pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1757{
1758	vm_offset_t pdnxt;
1759	pd_entry_t ptpaddr;
1760	int anychanged;
1761
1762	if (pmap == NULL)
1763		return;
1764
1765	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1766		pmap_remove(pmap, sva, eva);
1767		return;
1768	}
1769
1770	if (prot & VM_PROT_WRITE)
1771		return;
1772
1773	anychanged = 0;
1774
1775	for (; sva < eva; sva = pdnxt) {
1776		unsigned pdirindex;
1777
1778		pdnxt = (sva + NBPDR) & ~PDRMASK;
1779
1780		pdirindex = sva >> PDRSHIFT;
1781		ptpaddr = pmap->pm_pdir[pdirindex];
1782
1783		/*
1784		 * Weed out invalid mappings. Note: we assume that the page
1785		 * directory table is always allocated, and in kernel virtual.
1786		 */
1787		if (ptpaddr == 0)
1788			continue;
1789
1790		/*
1791		 * Check for large page.
1792		 */
1793		if ((ptpaddr & PG_PS) != 0) {
1794			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1795			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1796			anychanged = 1;
1797			continue;
1798		}
1799
1800		if (pdnxt > eva)
1801			pdnxt = eva;
1802
1803		for (; sva != pdnxt; sva += PAGE_SIZE) {
1804			pt_entry_t pbits;
1805			pt_entry_t *pte;
1806			vm_page_t m;
1807
1808			if ((pte = pmap_pte_quick(pmap, sva)) == NULL)
1809				continue;
1810			pbits = *pte;
1811			if (pbits & PG_MANAGED) {
1812				m = NULL;
1813				if (pbits & PG_A) {
1814					m = PHYS_TO_VM_PAGE(pbits);
1815					vm_page_flag_set(m, PG_REFERENCED);
1816					pbits &= ~PG_A;
1817				}
1818				if ((pbits & PG_M) != 0 &&
1819				    pmap_track_modified(sva)) {
1820					if (m == NULL)
1821						m = PHYS_TO_VM_PAGE(pbits);
1822					vm_page_dirty(m);
1823					pbits &= ~PG_M;
1824				}
1825			}
1826
1827			pbits &= ~PG_RW;
1828
1829			if (pbits != *pte) {
1830				pte_store(pte, pbits);
1831				anychanged = 1;
1832			}
1833		}
1834	}
1835	if (anychanged)
1836		pmap_invalidate_all(pmap);
1837}
1838
1839/*
1840 *	Insert the given physical page (p) at
1841 *	the specified virtual address (v) in the
1842 *	target physical map with the protection requested.
1843 *
1844 *	If specified, the page will be wired down, meaning
1845 *	that the related pte can not be reclaimed.
1846 *
1847 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1848 *	or lose information.  That is, this routine must actually
1849 *	insert this page into the given map NOW.
1850 */
1851void
1852pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1853	   boolean_t wired)
1854{
1855	vm_paddr_t pa;
1856	register pt_entry_t *pte;
1857	vm_paddr_t opa;
1858	pt_entry_t origpte, newpte;
1859	vm_page_t mpte;
1860
1861	if (pmap == NULL)
1862		return;
1863
1864	va &= PG_FRAME;
1865#ifdef PMAP_DIAGNOSTIC
1866	if (va > VM_MAX_KERNEL_ADDRESS)
1867		panic("pmap_enter: toobig");
1868	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1869		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1870#endif
1871
1872	mpte = NULL;
1873	/*
1874	 * In the case that a page table page is not
1875	 * resident, we are creating it here.
1876	 */
1877	if (va < VM_MAXUSER_ADDRESS) {
1878		mpte = pmap_allocpte(pmap, va);
1879	}
1880#if 0 && defined(PMAP_DIAGNOSTIC)
1881	else {
1882		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1883		origpte = *pdeaddr;
1884		if ((origpte & PG_V) == 0) {
1885			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1886				pmap->pm_pdir[PTDPTDI], origpte, va);
1887		}
1888	}
1889#endif
1890
1891	pte = pmap_pte_quick(pmap, va);
1892
1893	/*
1894	 * Page Directory table entry not valid, we need a new PT page
1895	 */
1896	if (pte == NULL) {
1897		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1898			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1899	}
1900
1901	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1902	origpte = *pte;
1903	opa = origpte & PG_FRAME;
1904
1905	if (origpte & PG_PS)
1906		panic("pmap_enter: attempted pmap_enter on 4MB page");
1907
1908	/*
1909	 * Mapping has not changed, must be protection or wiring change.
1910	 */
1911	if (origpte && (opa == pa)) {
1912		/*
1913		 * Wiring change, just update stats. We don't worry about
1914		 * wiring PT pages as they remain resident as long as there
1915		 * are valid mappings in them. Hence, if a user page is wired,
1916		 * the PT page will be also.
1917		 */
1918		if (wired && ((origpte & PG_W) == 0))
1919			pmap->pm_stats.wired_count++;
1920		else if (!wired && (origpte & PG_W))
1921			pmap->pm_stats.wired_count--;
1922
1923#if defined(PMAP_DIAGNOSTIC)
1924		if (pmap_nw_modified((pt_entry_t) origpte)) {
1925			printf(
1926	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1927			    va, origpte);
1928		}
1929#endif
1930
1931		/*
1932		 * Remove extra pte reference
1933		 */
1934		if (mpte)
1935			mpte->hold_count--;
1936
1937		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
1938			if ((origpte & PG_RW) == 0) {
1939				pte_store(pte, origpte | PG_RW);
1940				pmap_invalidate_page(pmap, va);
1941			}
1942			return;
1943		}
1944
1945		/*
1946		 * We might be turning off write access to the page,
1947		 * so we go ahead and sense modify status.
1948		 */
1949		if (origpte & PG_MANAGED) {
1950			if ((origpte & PG_M) && pmap_track_modified(va)) {
1951				vm_page_t om;
1952				om = PHYS_TO_VM_PAGE(opa);
1953				vm_page_dirty(om);
1954			}
1955			pa |= PG_MANAGED;
1956		}
1957		goto validate;
1958	}
1959	/*
1960	 * Mapping has changed, invalidate old range and fall through to
1961	 * handle validating new mapping.
1962	 */
1963	if (opa) {
1964		int err;
1965		vm_page_lock_queues();
1966		err = pmap_remove_pte(pmap, pte, va);
1967		vm_page_unlock_queues();
1968		if (err)
1969			panic("pmap_enter: pte vanished, va: 0x%x", va);
1970	}
1971
1972	/*
1973	 * Enter on the PV list if part of our managed memory. Note that we
1974	 * raise IPL while manipulating pv_table since pmap_enter can be
1975	 * called at interrupt time.
1976	 */
1977	if (pmap_initialized &&
1978	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
1979		pmap_insert_entry(pmap, va, mpte, m);
1980		pa |= PG_MANAGED;
1981	}
1982
1983	/*
1984	 * Increment counters
1985	 */
1986	pmap->pm_stats.resident_count++;
1987	if (wired)
1988		pmap->pm_stats.wired_count++;
1989
1990validate:
1991	/*
1992	 * Now validate mapping with desired protection/wiring.
1993	 */
1994	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V);
1995
1996	if (wired)
1997		newpte |= PG_W;
1998	if (va < VM_MAXUSER_ADDRESS)
1999		newpte |= PG_U;
2000	if (pmap == kernel_pmap)
2001		newpte |= pgeflag;
2002
2003	/*
2004	 * if the mapping or permission bits are different, we need
2005	 * to update the pte.
2006	 */
2007	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2008		pte_store(pte, newpte | PG_A);
2009		/*if (origpte)*/ {
2010			pmap_invalidate_page(pmap, va);
2011		}
2012	}
2013}
2014
2015/*
2016 * this code makes some *MAJOR* assumptions:
2017 * 1. Current pmap & pmap exists.
2018 * 2. Not wired.
2019 * 3. Read access.
2020 * 4. No page table pages.
2021 * 5. Tlbflush is deferred to calling procedure.
2022 * 6. Page IS managed.
2023 * but is *MUCH* faster than pmap_enter...
2024 */
2025
2026vm_page_t
2027pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2028{
2029	pt_entry_t *pte;
2030	vm_paddr_t pa;
2031
2032	/*
2033	 * In the case that a page table page is not
2034	 * resident, we are creating it here.
2035	 */
2036	if (va < VM_MAXUSER_ADDRESS) {
2037		unsigned ptepindex;
2038		pd_entry_t ptepa;
2039
2040		/*
2041		 * Calculate pagetable page index
2042		 */
2043		ptepindex = va >> PDRSHIFT;
2044		if (mpte && (mpte->pindex == ptepindex)) {
2045			mpte->hold_count++;
2046		} else {
2047retry:
2048			/*
2049			 * Get the page directory entry
2050			 */
2051			ptepa = pmap->pm_pdir[ptepindex];
2052
2053			/*
2054			 * If the page table page is mapped, we just increment
2055			 * the hold count, and activate it.
2056			 */
2057			if (ptepa) {
2058				if (ptepa & PG_PS)
2059					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2060				mpte = PHYS_TO_VM_PAGE(ptepa);
2061				mpte->hold_count++;
2062			} else {
2063				mpte = _pmap_allocpte(pmap, ptepindex);
2064				if (mpte == NULL)
2065					goto retry;
2066			}
2067		}
2068	} else {
2069		mpte = NULL;
2070	}
2071
2072	/*
2073	 * This call to vtopte makes the assumption that we are
2074	 * entering the page into the current pmap.  In order to support
2075	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2076	 * But that isn't as quick as vtopte.
2077	 */
2078	pte = vtopte(va);
2079	if (*pte) {
2080		if (mpte != NULL) {
2081			vm_page_lock_queues();
2082			pmap_unwire_pte_hold(pmap, mpte);
2083			vm_page_unlock_queues();
2084		}
2085		return 0;
2086	}
2087
2088	/*
2089	 * Enter on the PV list if part of our managed memory. Note that we
2090	 * raise IPL while manipulating pv_table since pmap_enter can be
2091	 * called at interrupt time.
2092	 */
2093	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2094		pmap_insert_entry(pmap, va, mpte, m);
2095
2096	/*
2097	 * Increment counters
2098	 */
2099	pmap->pm_stats.resident_count++;
2100
2101	pa = VM_PAGE_TO_PHYS(m);
2102
2103	/*
2104	 * Now validate mapping with RO protection
2105	 */
2106	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2107		pte_store(pte, pa | PG_V | PG_U);
2108	else
2109		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2110
2111	return mpte;
2112}
2113
2114/*
2115 * Make a temporary mapping for a physical address.  This is only intended
2116 * to be used for panic dumps.
2117 */
2118void *
2119pmap_kenter_temporary(vm_offset_t pa, int i)
2120{
2121	vm_offset_t va;
2122
2123	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2124	pmap_kenter(va, pa);
2125#ifndef I386_CPU
2126	invlpg(va);
2127#else
2128	invltlb();
2129#endif
2130	return ((void *)crashdumpmap);
2131}
2132
2133/*
2134 * This code maps large physical mmap regions into the
2135 * processor address space.  Note that some shortcuts
2136 * are taken, but the code works.
2137 */
2138void
2139pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2140		    vm_object_t object, vm_pindex_t pindex,
2141		    vm_size_t size)
2142{
2143	vm_page_t p;
2144
2145	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2146	KASSERT(object->type == OBJT_DEVICE,
2147	    ("pmap_object_init_pt: non-device object"));
2148	if (pseflag &&
2149	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2150		int i;
2151		vm_page_t m[1];
2152		unsigned int ptepindex;
2153		int npdes;
2154		pd_entry_t ptepa;
2155
2156		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2157			return;
2158retry:
2159		p = vm_page_lookup(object, pindex);
2160		if (p != NULL) {
2161			vm_page_lock_queues();
2162			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2163				goto retry;
2164		} else {
2165			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2166			if (p == NULL)
2167				return;
2168			m[0] = p;
2169
2170			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2171				vm_page_lock_queues();
2172				vm_page_free(p);
2173				vm_page_unlock_queues();
2174				return;
2175			}
2176
2177			p = vm_page_lookup(object, pindex);
2178			vm_page_lock_queues();
2179			vm_page_wakeup(p);
2180		}
2181		vm_page_unlock_queues();
2182
2183		ptepa = VM_PAGE_TO_PHYS(p);
2184		if (ptepa & (NBPDR - 1))
2185			return;
2186
2187		p->valid = VM_PAGE_BITS_ALL;
2188
2189		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2190		npdes = size >> PDRSHIFT;
2191		for(i = 0; i < npdes; i++) {
2192			pde_store(&pmap->pm_pdir[ptepindex],
2193			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2194			ptepa += NBPDR;
2195			ptepindex += 1;
2196		}
2197		pmap_invalidate_all(pmap);
2198	}
2199}
2200
2201/*
2202 *	Routine:	pmap_change_wiring
2203 *	Function:	Change the wiring attribute for a map/virtual-address
2204 *			pair.
2205 *	In/out conditions:
2206 *			The mapping must already exist in the pmap.
2207 */
2208void
2209pmap_change_wiring(pmap, va, wired)
2210	register pmap_t pmap;
2211	vm_offset_t va;
2212	boolean_t wired;
2213{
2214	register pt_entry_t *pte;
2215
2216	if (pmap == NULL)
2217		return;
2218
2219	pte = pmap_pte_quick(pmap, va);
2220
2221	if (wired && !pmap_pte_w(pte))
2222		pmap->pm_stats.wired_count++;
2223	else if (!wired && pmap_pte_w(pte))
2224		pmap->pm_stats.wired_count--;
2225
2226	/*
2227	 * Wiring is not a hardware characteristic so there is no need to
2228	 * invalidate TLB.
2229	 */
2230	pmap_pte_set_w(pte, wired);
2231}
2232
2233
2234
2235/*
2236 *	Copy the range specified by src_addr/len
2237 *	from the source map to the range dst_addr/len
2238 *	in the destination map.
2239 *
2240 *	This routine is only advisory and need not do anything.
2241 */
2242
2243void
2244pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2245	  vm_offset_t src_addr)
2246{
2247	vm_offset_t addr;
2248	vm_offset_t end_addr = src_addr + len;
2249	vm_offset_t pdnxt;
2250	vm_page_t m;
2251
2252	if (dst_addr != src_addr)
2253		return;
2254
2255	if (!pmap_is_current(src_pmap))
2256		return;
2257
2258	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2259		pt_entry_t *src_pte, *dst_pte;
2260		vm_page_t dstmpte, srcmpte;
2261		pd_entry_t srcptepaddr;
2262		unsigned ptepindex;
2263
2264		if (addr >= UPT_MIN_ADDRESS)
2265			panic("pmap_copy: invalid to pmap_copy page tables\n");
2266
2267		/*
2268		 * Don't let optional prefaulting of pages make us go
2269		 * way below the low water mark of free pages or way
2270		 * above high water mark of used pv entries.
2271		 */
2272		if (cnt.v_free_count < cnt.v_free_reserved ||
2273		    pv_entry_count > pv_entry_high_water)
2274			break;
2275
2276		pdnxt = (addr + NBPDR) & ~PDRMASK;
2277		ptepindex = addr >> PDRSHIFT;
2278
2279		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2280		if (srcptepaddr == 0)
2281			continue;
2282
2283		if (srcptepaddr & PG_PS) {
2284			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2285				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2286				dst_pmap->pm_stats.resident_count +=
2287				    NBPDR / PAGE_SIZE;
2288			}
2289			continue;
2290		}
2291
2292		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2293		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2294			continue;
2295
2296		if (pdnxt > end_addr)
2297			pdnxt = end_addr;
2298
2299		src_pte = vtopte(addr);
2300		while (addr < pdnxt) {
2301			pt_entry_t ptetemp;
2302			ptetemp = *src_pte;
2303			/*
2304			 * we only virtual copy managed pages
2305			 */
2306			if ((ptetemp & PG_MANAGED) != 0) {
2307				/*
2308				 * We have to check after allocpte for the
2309				 * pte still being around...  allocpte can
2310				 * block.
2311				 */
2312				dstmpte = pmap_allocpte(dst_pmap, addr);
2313				dst_pte = pmap_pte_quick(dst_pmap, addr);
2314				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2315					/*
2316					 * Clear the modified and
2317					 * accessed (referenced) bits
2318					 * during the copy.
2319					 */
2320					m = PHYS_TO_VM_PAGE(ptetemp);
2321					*dst_pte = ptetemp & ~(PG_M | PG_A);
2322					dst_pmap->pm_stats.resident_count++;
2323					pmap_insert_entry(dst_pmap, addr,
2324						dstmpte, m);
2325	 			} else {
2326					vm_page_lock_queues();
2327					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2328					vm_page_unlock_queues();
2329				}
2330				if (dstmpte->hold_count >= srcmpte->hold_count)
2331					break;
2332			}
2333			addr += PAGE_SIZE;
2334			src_pte++;
2335		}
2336	}
2337}
2338
2339#ifdef SMP
2340
2341/*
2342 *	pmap_zpi_switchout*()
2343 *
2344 *	These functions allow us to avoid doing IPIs alltogether in certain
2345 *	temporary page-mapping situations (page zeroing).  Instead to deal
2346 *	with being preempted and moved onto a different cpu we invalidate
2347 *	the page when the scheduler switches us in.  This does not occur
2348 *	very often so we remain relatively optimal with very little effort.
2349 */
2350static void
2351pmap_zpi_switchout12(void)
2352{
2353	invlpg((u_int)CADDR1);
2354	invlpg((u_int)CADDR2);
2355}
2356
2357static void
2358pmap_zpi_switchout2(void)
2359{
2360	invlpg((u_int)CADDR2);
2361}
2362
2363static void
2364pmap_zpi_switchout3(void)
2365{
2366	invlpg((u_int)CADDR3);
2367}
2368
2369#endif
2370
2371static __inline void
2372pagezero(void *page)
2373{
2374#if defined(I686_CPU)
2375	if (cpu_class == CPUCLASS_686) {
2376#if defined(CPU_ENABLE_SSE)
2377		if (cpu_feature & CPUID_SSE2)
2378			sse2_pagezero(page);
2379		else
2380#endif
2381			i686_pagezero(page);
2382	} else
2383#endif
2384		bzero(page, PAGE_SIZE);
2385}
2386
2387static __inline void
2388invlcaddr(void *caddr)
2389{
2390#ifdef I386_CPU
2391	invltlb();
2392#else
2393	invlpg((u_int)caddr);
2394#endif
2395}
2396
2397/*
2398 *	pmap_zero_page zeros the specified hardware page by mapping
2399 *	the page into KVM and using bzero to clear its contents.
2400 */
2401void
2402pmap_zero_page(vm_page_t m)
2403{
2404
2405	mtx_lock(&CMAPCADDR12_lock);
2406	if (*CMAP2)
2407		panic("pmap_zero_page: CMAP2 busy");
2408#ifdef SMP
2409	curthread->td_pcb->pcb_switchout = pmap_zpi_switchout2;
2410#endif
2411	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2412	pagezero(CADDR2);
2413	*CMAP2 = 0;
2414	invlcaddr(CADDR2);
2415#ifdef SMP
2416	curthread->td_pcb->pcb_switchout = NULL;
2417#endif
2418	mtx_unlock(&CMAPCADDR12_lock);
2419}
2420
2421/*
2422 *	pmap_zero_page_area zeros the specified hardware page by mapping
2423 *	the page into KVM and using bzero to clear its contents.
2424 *
2425 *	off and size may not cover an area beyond a single hardware page.
2426 */
2427void
2428pmap_zero_page_area(vm_page_t m, int off, int size)
2429{
2430
2431	mtx_lock(&CMAPCADDR12_lock);
2432	if (*CMAP2)
2433		panic("pmap_zero_page: CMAP2 busy");
2434#ifdef SMP
2435	curthread->td_pcb->pcb_switchout = pmap_zpi_switchout2;
2436#endif
2437	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2438	if (off == 0 && size == PAGE_SIZE)
2439		pagezero(CADDR2);
2440	else
2441		bzero((char *)CADDR2 + off, size);
2442	*CMAP2 = 0;
2443	invlcaddr(CADDR2);
2444#ifdef SMP
2445	curthread->td_pcb->pcb_switchout = NULL;
2446#endif
2447	mtx_unlock(&CMAPCADDR12_lock);
2448}
2449
2450/*
2451 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2452 *	the page into KVM and using bzero to clear its contents.  This
2453 *	is intended to be called from the vm_pagezero process only and
2454 *	outside of Giant.
2455 */
2456void
2457pmap_zero_page_idle(vm_page_t m)
2458{
2459
2460	if (*CMAP3)
2461		panic("pmap_zero_page: CMAP3 busy");
2462#ifdef SMP
2463	curthread->td_pcb->pcb_switchout = pmap_zpi_switchout3;
2464#endif
2465	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2466	pagezero(CADDR3);
2467	*CMAP3 = 0;
2468	invlcaddr(CADDR3);
2469#ifdef SMP
2470	curthread->td_pcb->pcb_switchout = NULL;
2471#endif
2472}
2473
2474/*
2475 *	pmap_copy_page copies the specified (machine independent)
2476 *	page by mapping the page into virtual memory and using
2477 *	bcopy to copy the page, one machine dependent page at a
2478 *	time.
2479 */
2480void
2481pmap_copy_page(vm_page_t src, vm_page_t dst)
2482{
2483
2484	mtx_lock(&CMAPCADDR12_lock);
2485	if (*CMAP1)
2486		panic("pmap_copy_page: CMAP1 busy");
2487	if (*CMAP2)
2488		panic("pmap_copy_page: CMAP2 busy");
2489#ifdef SMP
2490	curthread->td_pcb->pcb_switchout = pmap_zpi_switchout12;
2491#endif
2492	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2493	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2494	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2495	*CMAP1 = 0;
2496	*CMAP2 = 0;
2497#ifdef I386_CPU
2498	invltlb();
2499#else
2500	invlpg((u_int)CADDR1);
2501	invlpg((u_int)CADDR2);
2502#endif
2503#ifdef SMP
2504	curthread->td_pcb->pcb_switchout = NULL;
2505#endif
2506	mtx_unlock(&CMAPCADDR12_lock);
2507}
2508
2509/*
2510 * Returns true if the pmap's pv is one of the first
2511 * 16 pvs linked to from this page.  This count may
2512 * be changed upwards or downwards in the future; it
2513 * is only necessary that true be returned for a small
2514 * subset of pmaps for proper page aging.
2515 */
2516boolean_t
2517pmap_page_exists_quick(pmap, m)
2518	pmap_t pmap;
2519	vm_page_t m;
2520{
2521	pv_entry_t pv;
2522	int loops = 0;
2523	int s;
2524
2525	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2526		return FALSE;
2527
2528	s = splvm();
2529	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2530	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2531		if (pv->pv_pmap == pmap) {
2532			splx(s);
2533			return TRUE;
2534		}
2535		loops++;
2536		if (loops >= 16)
2537			break;
2538	}
2539	splx(s);
2540	return (FALSE);
2541}
2542
2543#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2544/*
2545 * Remove all pages from specified address space
2546 * this aids process exit speeds.  Also, this code
2547 * is special cased for current process only, but
2548 * can have the more generic (and slightly slower)
2549 * mode enabled.  This is much faster than pmap_remove
2550 * in the case of running down an entire address space.
2551 */
2552void
2553pmap_remove_pages(pmap, sva, eva)
2554	pmap_t pmap;
2555	vm_offset_t sva, eva;
2556{
2557	pt_entry_t *pte, tpte;
2558	vm_page_t m;
2559	pv_entry_t pv, npv;
2560	int s;
2561
2562#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2563	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2564		printf("warning: pmap_remove_pages called with non-current pmap\n");
2565		return;
2566	}
2567#endif
2568	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2569	s = splvm();
2570	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2571
2572		if (pv->pv_va >= eva || pv->pv_va < sva) {
2573			npv = TAILQ_NEXT(pv, pv_plist);
2574			continue;
2575		}
2576
2577#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2578		pte = vtopte(pv->pv_va);
2579#else
2580		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2581#endif
2582		tpte = *pte;
2583
2584		if (tpte == 0) {
2585			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2586							pte, pv->pv_va);
2587			panic("bad pte");
2588		}
2589
2590/*
2591 * We cannot remove wired pages from a process' mapping at this time
2592 */
2593		if (tpte & PG_W) {
2594			npv = TAILQ_NEXT(pv, pv_plist);
2595			continue;
2596		}
2597
2598		m = PHYS_TO_VM_PAGE(tpte);
2599		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2600		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2601		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2602
2603		KASSERT(m < &vm_page_array[vm_page_array_size],
2604			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2605
2606		pv->pv_pmap->pm_stats.resident_count--;
2607
2608		pte_clear(pte);
2609
2610		/*
2611		 * Update the vm_page_t clean and reference bits.
2612		 */
2613		if (tpte & PG_M) {
2614			vm_page_dirty(m);
2615		}
2616
2617		npv = TAILQ_NEXT(pv, pv_plist);
2618		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2619
2620		m->md.pv_list_count--;
2621		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2622		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2623			vm_page_flag_clear(m, PG_WRITEABLE);
2624		}
2625
2626		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2627		free_pv_entry(pv);
2628	}
2629	splx(s);
2630	pmap_invalidate_all(pmap);
2631}
2632
2633/*
2634 *	pmap_is_modified:
2635 *
2636 *	Return whether or not the specified physical page was modified
2637 *	in any physical maps.
2638 */
2639boolean_t
2640pmap_is_modified(vm_page_t m)
2641{
2642	pv_entry_t pv;
2643	pt_entry_t *pte;
2644	int s;
2645
2646	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2647		return FALSE;
2648
2649	s = splvm();
2650	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2651	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2652		/*
2653		 * if the bit being tested is the modified bit, then
2654		 * mark clean_map and ptes as never
2655		 * modified.
2656		 */
2657		if (!pmap_track_modified(pv->pv_va))
2658			continue;
2659#if defined(PMAP_DIAGNOSTIC)
2660		if (!pv->pv_pmap) {
2661			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2662			continue;
2663		}
2664#endif
2665		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2666		if (*pte & PG_M) {
2667			splx(s);
2668			return TRUE;
2669		}
2670	}
2671	splx(s);
2672	return (FALSE);
2673}
2674
2675/*
2676 *	pmap_is_prefaultable:
2677 *
2678 *	Return whether or not the specified virtual address is elgible
2679 *	for prefault.
2680 */
2681boolean_t
2682pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2683{
2684	pt_entry_t *pte;
2685
2686	if ((*pmap_pde(pmap, addr)) == 0)
2687		return (FALSE);
2688	pte = vtopte(addr);
2689	if (*pte)
2690		return (FALSE);
2691	return (TRUE);
2692}
2693
2694/*
2695 *	Clear the given bit in each of the given page's ptes.
2696 */
2697static __inline void
2698pmap_clear_ptes(vm_page_t m, int bit)
2699{
2700	register pv_entry_t pv;
2701	pt_entry_t pbits, *pte;
2702	int s;
2703
2704	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2705	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2706		return;
2707
2708	s = splvm();
2709	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2710	/*
2711	 * Loop over all current mappings setting/clearing as appropos If
2712	 * setting RO do we need to clear the VAC?
2713	 */
2714	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2715		/*
2716		 * don't write protect pager mappings
2717		 */
2718		if (bit == PG_RW) {
2719			if (!pmap_track_modified(pv->pv_va))
2720				continue;
2721		}
2722
2723#if defined(PMAP_DIAGNOSTIC)
2724		if (!pv->pv_pmap) {
2725			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2726			continue;
2727		}
2728#endif
2729
2730		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2731		pbits = *pte;
2732		if (pbits & bit) {
2733			if (bit == PG_RW) {
2734				if (pbits & PG_M) {
2735					vm_page_dirty(m);
2736				}
2737				pte_store(pte, pbits & ~(PG_M|PG_RW));
2738			} else {
2739				pte_store(pte, pbits & ~bit);
2740			}
2741			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2742		}
2743	}
2744	if (bit == PG_RW)
2745		vm_page_flag_clear(m, PG_WRITEABLE);
2746	splx(s);
2747}
2748
2749/*
2750 *      pmap_page_protect:
2751 *
2752 *      Lower the permission for all mappings to a given page.
2753 */
2754void
2755pmap_page_protect(vm_page_t m, vm_prot_t prot)
2756{
2757	if ((prot & VM_PROT_WRITE) == 0) {
2758		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2759			pmap_clear_ptes(m, PG_RW);
2760		} else {
2761			pmap_remove_all(m);
2762		}
2763	}
2764}
2765
2766/*
2767 *	pmap_ts_referenced:
2768 *
2769 *	Return a count of reference bits for a page, clearing those bits.
2770 *	It is not necessary for every reference bit to be cleared, but it
2771 *	is necessary that 0 only be returned when there are truly no
2772 *	reference bits set.
2773 *
2774 *	XXX: The exact number of bits to check and clear is a matter that
2775 *	should be tested and standardized at some point in the future for
2776 *	optimal aging of shared pages.
2777 */
2778int
2779pmap_ts_referenced(vm_page_t m)
2780{
2781	register pv_entry_t pv, pvf, pvn;
2782	pt_entry_t *pte;
2783	pt_entry_t v;
2784	int s;
2785	int rtval = 0;
2786
2787	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2788		return (rtval);
2789
2790	s = splvm();
2791	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2792	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2793
2794		pvf = pv;
2795
2796		do {
2797			pvn = TAILQ_NEXT(pv, pv_list);
2798
2799			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2800
2801			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2802
2803			if (!pmap_track_modified(pv->pv_va))
2804				continue;
2805
2806			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2807
2808			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2809				pte_store(pte, v & ~PG_A);
2810				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2811
2812				rtval++;
2813				if (rtval > 4) {
2814					break;
2815				}
2816			}
2817		} while ((pv = pvn) != NULL && pv != pvf);
2818	}
2819	splx(s);
2820
2821	return (rtval);
2822}
2823
2824/*
2825 *	Clear the modify bits on the specified physical page.
2826 */
2827void
2828pmap_clear_modify(vm_page_t m)
2829{
2830	pmap_clear_ptes(m, PG_M);
2831}
2832
2833/*
2834 *	pmap_clear_reference:
2835 *
2836 *	Clear the reference bit on the specified physical page.
2837 */
2838void
2839pmap_clear_reference(vm_page_t m)
2840{
2841	pmap_clear_ptes(m, PG_A);
2842}
2843
2844/*
2845 * Miscellaneous support routines follow
2846 */
2847
2848static void
2849i386_protection_init()
2850{
2851	register int *kp, prot;
2852
2853	kp = protection_codes;
2854	for (prot = 0; prot < 8; prot++) {
2855		switch (prot) {
2856		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2857			/*
2858			 * Read access is also 0. There isn't any execute bit,
2859			 * so just make it readable.
2860			 */
2861		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2862		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2863		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2864			*kp++ = 0;
2865			break;
2866		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2867		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2868		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2869		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2870			*kp++ = PG_RW;
2871			break;
2872		}
2873	}
2874}
2875
2876/*
2877 * Map a set of physical memory pages into the kernel virtual
2878 * address space. Return a pointer to where it is mapped. This
2879 * routine is intended to be used for mapping device memory,
2880 * NOT real memory.
2881 */
2882void *
2883pmap_mapdev(pa, size)
2884	vm_paddr_t pa;
2885	vm_size_t size;
2886{
2887	vm_offset_t va, tmpva, offset;
2888
2889	offset = pa & PAGE_MASK;
2890	size = roundup(offset + size, PAGE_SIZE);
2891
2892	va = kmem_alloc_nofault(kernel_map, size);
2893	if (!va)
2894		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2895
2896	pa = pa & PG_FRAME;
2897	for (tmpva = va; size > 0; ) {
2898		pmap_kenter(tmpva, pa);
2899		size -= PAGE_SIZE;
2900		tmpva += PAGE_SIZE;
2901		pa += PAGE_SIZE;
2902	}
2903	pmap_invalidate_range(kernel_pmap, va, tmpva);
2904	return ((void *)(va + offset));
2905}
2906
2907void
2908pmap_unmapdev(va, size)
2909	vm_offset_t va;
2910	vm_size_t size;
2911{
2912	vm_offset_t base, offset, tmpva;
2913	pt_entry_t *pte;
2914
2915	base = va & PG_FRAME;
2916	offset = va & PAGE_MASK;
2917	size = roundup(offset + size, PAGE_SIZE);
2918	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
2919		pte = vtopte(tmpva);
2920		pte_clear(pte);
2921	}
2922	pmap_invalidate_range(kernel_pmap, va, tmpva);
2923	kmem_free(kernel_map, base, size);
2924}
2925
2926/*
2927 * perform the pmap work for mincore
2928 */
2929int
2930pmap_mincore(pmap, addr)
2931	pmap_t pmap;
2932	vm_offset_t addr;
2933{
2934	pt_entry_t *ptep, pte;
2935	vm_page_t m;
2936	int val = 0;
2937
2938	ptep = pmap_pte_quick(pmap, addr);
2939	if (ptep == 0) {
2940		return 0;
2941	}
2942
2943	if ((pte = *ptep) != 0) {
2944		vm_paddr_t pa;
2945
2946		val = MINCORE_INCORE;
2947		if ((pte & PG_MANAGED) == 0)
2948			return val;
2949
2950		pa = pte & PG_FRAME;
2951
2952		m = PHYS_TO_VM_PAGE(pa);
2953
2954		/*
2955		 * Modified by us
2956		 */
2957		if (pte & PG_M)
2958			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2959		else {
2960			/*
2961			 * Modified by someone else
2962			 */
2963			vm_page_lock_queues();
2964			if (m->dirty || pmap_is_modified(m))
2965				val |= MINCORE_MODIFIED_OTHER;
2966			vm_page_unlock_queues();
2967		}
2968		/*
2969		 * Referenced by us
2970		 */
2971		if (pte & PG_A)
2972			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2973		else {
2974			/*
2975			 * Referenced by someone else
2976			 */
2977			vm_page_lock_queues();
2978			if ((m->flags & PG_REFERENCED) ||
2979			    pmap_ts_referenced(m)) {
2980				val |= MINCORE_REFERENCED_OTHER;
2981				vm_page_flag_set(m, PG_REFERENCED);
2982			}
2983			vm_page_unlock_queues();
2984		}
2985	}
2986	return val;
2987}
2988
2989void
2990pmap_activate(struct thread *td)
2991{
2992	struct proc *p = td->td_proc;
2993	pmap_t	pmap, oldpmap;
2994	u_int32_t  cr3;
2995
2996	critical_enter();
2997	pmap = vmspace_pmap(td->td_proc->p_vmspace);
2998	oldpmap = PCPU_GET(curpmap);
2999#if defined(SMP)
3000	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3001	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3002#else
3003	oldpmap->pm_active &= ~1;
3004	pmap->pm_active |= 1;
3005#endif
3006#ifdef PAE
3007	cr3 = vtophys(pmap->pm_pdpt);
3008#else
3009	cr3 = vtophys(pmap->pm_pdir);
3010#endif
3011	/* XXXKSE this is wrong.
3012	 * pmap_activate is for the current thread on the current cpu
3013	 */
3014	if (p->p_flag & P_SA) {
3015		/* Make sure all other cr3 entries are updated. */
3016		/* what if they are running?  XXXKSE (maybe abort them) */
3017		FOREACH_THREAD_IN_PROC(p, td) {
3018			td->td_pcb->pcb_cr3 = cr3;
3019		}
3020	} else {
3021		td->td_pcb->pcb_cr3 = cr3;
3022	}
3023	load_cr3(cr3);
3024	PCPU_SET(curpmap, pmap);
3025	critical_exit();
3026}
3027
3028vm_offset_t
3029pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3030{
3031
3032	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3033		return addr;
3034	}
3035
3036	addr = (addr + PDRMASK) & ~PDRMASK;
3037	return addr;
3038}
3039
3040
3041#if defined(PMAP_DEBUG)
3042pmap_pid_dump(int pid)
3043{
3044	pmap_t pmap;
3045	struct proc *p;
3046	int npte = 0;
3047	int index;
3048
3049	sx_slock(&allproc_lock);
3050	LIST_FOREACH(p, &allproc, p_list) {
3051		if (p->p_pid != pid)
3052			continue;
3053
3054		if (p->p_vmspace) {
3055			int i,j;
3056			index = 0;
3057			pmap = vmspace_pmap(p->p_vmspace);
3058			for (i = 0; i < NPDEPTD; i++) {
3059				pd_entry_t *pde;
3060				pt_entry_t *pte;
3061				vm_offset_t base = i << PDRSHIFT;
3062
3063				pde = &pmap->pm_pdir[i];
3064				if (pde && pmap_pde_v(pde)) {
3065					for (j = 0; j < NPTEPG; j++) {
3066						vm_offset_t va = base + (j << PAGE_SHIFT);
3067						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3068							if (index) {
3069								index = 0;
3070								printf("\n");
3071							}
3072							sx_sunlock(&allproc_lock);
3073							return npte;
3074						}
3075						pte = pmap_pte_quick(pmap, va);
3076						if (pte && pmap_pte_v(pte)) {
3077							pt_entry_t pa;
3078							vm_page_t m;
3079							pa = *pte;
3080							m = PHYS_TO_VM_PAGE(pa);
3081							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3082								va, pa, m->hold_count, m->wire_count, m->flags);
3083							npte++;
3084							index++;
3085							if (index >= 2) {
3086								index = 0;
3087								printf("\n");
3088							} else {
3089								printf(" ");
3090							}
3091						}
3092					}
3093				}
3094			}
3095		}
3096	}
3097	sx_sunlock(&allproc_lock);
3098	return npte;
3099}
3100#endif
3101
3102#if defined(DEBUG)
3103
3104static void	pads(pmap_t pm);
3105void		pmap_pvdump(vm_offset_t pa);
3106
3107/* print address space of pmap*/
3108static void
3109pads(pm)
3110	pmap_t pm;
3111{
3112	int i, j;
3113	vm_paddr_t va;
3114	pt_entry_t *ptep;
3115
3116	if (pm == kernel_pmap)
3117		return;
3118	for (i = 0; i < NPDEPTD; i++)
3119		if (pm->pm_pdir[i])
3120			for (j = 0; j < NPTEPG; j++) {
3121				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3122				if (pm == kernel_pmap && va < KERNBASE)
3123					continue;
3124				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3125					continue;
3126				ptep = pmap_pte_quick(pm, va);
3127				if (pmap_pte_v(ptep))
3128					printf("%x:%x ", va, *ptep);
3129			};
3130
3131}
3132
3133void
3134pmap_pvdump(pa)
3135	vm_paddr_t pa;
3136{
3137	pv_entry_t pv;
3138	vm_page_t m;
3139
3140	printf("pa %x", pa);
3141	m = PHYS_TO_VM_PAGE(pa);
3142	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3143		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3144		pads(pv->pv_pmap);
3145	}
3146	printf(" ");
3147}
3148#endif
3149