pmap.c revision 120623
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43/*-
44 * Copyright (c) 2003 Networks Associates Technology, Inc.
45 * All rights reserved.
46 *
47 * This software was developed for the FreeBSD Project by Jake Burkholder,
48 * Safeport Network Services, and Network Associates Laboratories, the
49 * Security Research Division of Network Associates, Inc. under
50 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
51 * CHATS research program.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 *    notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 *    notice, this list of conditions and the following disclaimer in the
60 *    documentation and/or other materials provided with the distribution.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 120623 2003-10-01 05:56:46Z jeff $");
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_pmap.h"
105#include "opt_msgbuf.h"
106#include "opt_kstack_pages.h"
107
108#include <sys/param.h>
109#include <sys/systm.h>
110#include <sys/kernel.h>
111#include <sys/lock.h>
112#include <sys/mman.h>
113#include <sys/msgbuf.h>
114#include <sys/mutex.h>
115#include <sys/proc.h>
116#include <sys/sx.h>
117#include <sys/user.h>
118#include <sys/vmmeter.h>
119#include <sys/sysctl.h>
120#ifdef SMP
121#include <sys/smp.h>
122#endif
123
124#include <vm/vm.h>
125#include <vm/vm_param.h>
126#include <vm/vm_kern.h>
127#include <vm/vm_page.h>
128#include <vm/vm_map.h>
129#include <vm/vm_object.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_pageout.h>
132#include <vm/vm_pager.h>
133#include <vm/uma.h>
134
135#include <machine/cpu.h>
136#include <machine/cputypes.h>
137#include <machine/md_var.h>
138#include <machine/specialreg.h>
139#if defined(SMP) || defined(APIC_IO)
140#include <machine/smp.h>
141#include <machine/apic.h>
142#include <machine/segments.h>
143#include <machine/tss.h>
144#endif /* SMP || APIC_IO */
145
146#define PMAP_KEEP_PDIRS
147#ifndef PMAP_SHPGPERPROC
148#define PMAP_SHPGPERPROC 200
149#endif
150
151#if defined(DIAGNOSTIC)
152#define PMAP_DIAGNOSTIC
153#endif
154
155#define MINPV 2048
156
157#if !defined(PMAP_DIAGNOSTIC)
158#define PMAP_INLINE __inline
159#else
160#define PMAP_INLINE
161#endif
162
163/*
164 * Get PDEs and PTEs for user/kernel address space
165 */
166#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
167#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
168
169#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
170#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
171#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
172#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
173#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
174
175#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
176#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
177
178/*
179 * Given a map and a machine independent protection code,
180 * convert to a vax protection code.
181 */
182#define pte_prot(m, p)	(protection_codes[p])
183static int protection_codes[8];
184
185struct pmap kernel_pmap_store;
186LIST_HEAD(pmaplist, pmap);
187static struct pmaplist allpmaps;
188static struct mtx allpmaps_lock;
189#ifdef SMP
190static struct mtx lazypmap_lock;
191#endif
192
193vm_paddr_t avail_start;	/* PA of first available physical page */
194vm_paddr_t avail_end;	/* PA of last available physical page */
195vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
196vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
197static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
198static int pgeflag;		/* PG_G or-in */
199static int pseflag;		/* PG_PS or-in */
200
201static int nkpt;
202vm_offset_t kernel_vm_end;
203extern u_int32_t KERNend;
204
205#ifdef PAE
206static uma_zone_t pdptzone;
207#endif
208
209/*
210 * Data for the pv entry allocation mechanism
211 */
212static uma_zone_t pvzone;
213static struct vm_object pvzone_obj;
214static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
215int pmap_pagedaemon_waken;
216
217/*
218 * All those kernel PT submaps that BSD is so fond of
219 */
220pt_entry_t *CMAP1 = 0;
221static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
222caddr_t CADDR1 = 0, ptvmmap = 0;
223static caddr_t CADDR2, CADDR3;
224static struct mtx CMAPCADDR12_lock;
225static pt_entry_t *msgbufmap;
226struct msgbuf *msgbufp = 0;
227
228/*
229 * Crashdump maps.
230 */
231static pt_entry_t *pt_crashdumpmap;
232static caddr_t crashdumpmap;
233
234#ifdef SMP
235extern pt_entry_t *SMPpt;
236#endif
237static pt_entry_t *PMAP1 = 0;
238static pt_entry_t *PADDR1 = 0;
239
240static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
241static pv_entry_t get_pv_entry(void);
242static void	i386_protection_init(void);
243static void	pmap_clear_ptes(vm_page_t m, int bit)
244    __always_inline;
245
246static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
247static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
248static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
249					vm_offset_t va);
250static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
251		vm_page_t mpte, vm_page_t m);
252
253static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
254
255static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
256static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
257static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
258static void *pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
259#ifdef PAE
260static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
261#endif
262
263static pd_entry_t pdir4mb;
264
265CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
266CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
267
268/*
269 * Move the kernel virtual free pointer to the next
270 * 4MB.  This is used to help improve performance
271 * by using a large (4MB) page for much of the kernel
272 * (.text, .data, .bss)
273 */
274static vm_offset_t
275pmap_kmem_choose(vm_offset_t addr)
276{
277	vm_offset_t newaddr = addr;
278
279#ifdef I686_CPU_not	/* Problem seems to have gone away */
280	/* Deal with un-resolved Pentium4 issues */
281	if (cpu_class == CPUCLASS_686 &&
282	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
283	    (cpu_id & 0xf00) == 0xf00)
284		return newaddr;
285#endif
286#ifndef DISABLE_PSE
287	if (cpu_feature & CPUID_PSE)
288		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
289#endif
290	return newaddr;
291}
292
293/*
294 *	Bootstrap the system enough to run with virtual memory.
295 *
296 *	On the i386 this is called after mapping has already been enabled
297 *	and just syncs the pmap module with what has already been done.
298 *	[We can't call it easily with mapping off since the kernel is not
299 *	mapped with PA == VA, hence we would have to relocate every address
300 *	from the linked base (virtual) address "KERNBASE" to the actual
301 *	(physical) address starting relative to 0]
302 */
303void
304pmap_bootstrap(firstaddr, loadaddr)
305	vm_paddr_t firstaddr;
306	vm_paddr_t loadaddr;
307{
308	vm_offset_t va;
309	pt_entry_t *pte;
310	int i;
311
312	avail_start = firstaddr;
313
314	/*
315	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
316	 * large. It should instead be correctly calculated in locore.s and
317	 * not based on 'first' (which is a physical address, not a virtual
318	 * address, for the start of unused physical memory). The kernel
319	 * page tables are NOT double mapped and thus should not be included
320	 * in this calculation.
321	 */
322	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
323	virtual_avail = pmap_kmem_choose(virtual_avail);
324
325	virtual_end = VM_MAX_KERNEL_ADDRESS;
326
327	/*
328	 * Initialize protection array.
329	 */
330	i386_protection_init();
331
332	/*
333	 * Initialize the kernel pmap (which is statically allocated).
334	 */
335	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
336#ifdef PAE
337	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
338#endif
339	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
340	TAILQ_INIT(&kernel_pmap->pm_pvlist);
341	LIST_INIT(&allpmaps);
342#ifdef SMP
343	mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
344#endif
345	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
346	mtx_lock_spin(&allpmaps_lock);
347	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
348	mtx_unlock_spin(&allpmaps_lock);
349	nkpt = NKPT;
350
351	/*
352	 * Reserve some special page table entries/VA space for temporary
353	 * mapping of pages.
354	 */
355#define	SYSMAP(c, p, v, n)	\
356	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
357
358	va = virtual_avail;
359	pte = vtopte(va);
360
361	/*
362	 * CMAP1/CMAP2 are used for zeroing and copying pages.
363	 * CMAP3 is used for the idle process page zeroing.
364	 */
365	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
366	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
367	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
368
369	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
370
371	/*
372	 * Crashdump maps.
373	 */
374	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
375
376	/*
377	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
378	 * XXX ptmmap is not used.
379	 */
380	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
381
382	/*
383	 * msgbufp is used to map the system message buffer.
384	 * XXX msgbufmap is not used.
385	 */
386	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
387	       atop(round_page(MSGBUF_SIZE)))
388
389	/*
390	 * ptemap is used for pmap_pte_quick
391	 */
392	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
393
394	virtual_avail = va;
395
396	*CMAP1 = *CMAP2 = 0;
397	for (i = 0; i < NKPT; i++)
398		PTD[i] = 0;
399
400	pgeflag = 0;
401#ifndef DISABLE_PG_G
402	if (cpu_feature & CPUID_PGE)
403		pgeflag = PG_G;
404#endif
405#ifdef I686_CPU_not	/* Problem seems to have gone away */
406	/* Deal with un-resolved Pentium4 issues */
407	if (cpu_class == CPUCLASS_686 &&
408	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
409	    (cpu_id & 0xf00) == 0xf00) {
410		printf("Warning: Pentium 4 cpu: PG_G disabled (global flag)\n");
411		pgeflag = 0;
412	}
413#endif
414
415/*
416 * Initialize the 4MB page size flag
417 */
418	pseflag = 0;
419/*
420 * The 4MB page version of the initial
421 * kernel page mapping.
422 */
423	pdir4mb = 0;
424
425#ifndef DISABLE_PSE
426	if (cpu_feature & CPUID_PSE)
427		pseflag = PG_PS;
428#endif
429#ifdef I686_CPU_not	/* Problem seems to have gone away */
430	/* Deal with un-resolved Pentium4 issues */
431	if (cpu_class == CPUCLASS_686 &&
432	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
433	    (cpu_id & 0xf00) == 0xf00) {
434		printf("Warning: Pentium 4 cpu: PG_PS disabled (4MB pages)\n");
435		pseflag = 0;
436	}
437#endif
438#ifndef DISABLE_PSE
439	if (pseflag) {
440		pd_entry_t ptditmp;
441		/*
442		 * Note that we have enabled PSE mode
443		 */
444		ptditmp = *(PTmap + i386_btop(KERNBASE));
445		ptditmp &= ~(NBPDR - 1);
446		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
447		pdir4mb = ptditmp;
448	}
449#endif
450#ifndef SMP
451	/*
452	 * Turn on PGE/PSE.  SMP does this later on since the
453	 * 4K page tables are required for AP boot (for now).
454	 * XXX fixme.
455	 */
456	pmap_set_opt();
457#endif
458#ifdef SMP
459	if (cpu_apic_address == 0)
460		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
461
462	/* local apic is mapped on last page */
463	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
464	    (cpu_apic_address & PG_FRAME));
465#endif
466	invltlb();
467}
468
469/*
470 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
471 * BSP will run this after all the AP's have started up.
472 */
473void
474pmap_set_opt(void)
475{
476	pt_entry_t *pte;
477	vm_offset_t va, endva;
478
479	if (pgeflag && (cpu_feature & CPUID_PGE)) {
480		load_cr4(rcr4() | CR4_PGE);
481		invltlb();		/* Insurance */
482	}
483#ifndef DISABLE_PSE
484	if (pseflag && (cpu_feature & CPUID_PSE)) {
485		load_cr4(rcr4() | CR4_PSE);
486		invltlb();		/* Insurance */
487	}
488#endif
489	if (PCPU_GET(cpuid) == 0) {
490#ifndef DISABLE_PSE
491		if (pdir4mb) {
492			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
493			invltlb();	/* Insurance */
494		}
495#endif
496		if (pgeflag) {
497			/* Turn on PG_G for text, data, bss pages. */
498			va = (vm_offset_t)btext;
499#ifndef DISABLE_PSE
500			if (pseflag && (cpu_feature & CPUID_PSE)) {
501				if (va < KERNBASE + (1 << PDRSHIFT))
502					va = KERNBASE + (1 << PDRSHIFT);
503			}
504#endif
505			endva = KERNBASE + KERNend;
506			while (va < endva) {
507				pte = vtopte(va);
508				if (*pte)
509					*pte |= pgeflag;
510				va += PAGE_SIZE;
511			}
512			invltlb();	/* Insurance */
513		}
514		/*
515		 * We do not need to broadcast the invltlb here, because
516		 * each AP does it the moment it is released from the boot
517		 * lock.  See ap_init().
518		 */
519	}
520}
521
522static void *
523pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
524{
525	*flags = UMA_SLAB_PRIV;
526	return (void *)kmem_alloc(kernel_map, bytes);
527}
528
529#ifdef PAE
530static void *
531pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
532{
533	*flags = UMA_SLAB_PRIV;
534	return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
535}
536#endif
537
538/*
539 *	Initialize the pmap module.
540 *	Called by vm_init, to initialize any structures that the pmap
541 *	system needs to map virtual memory.
542 *	pmap_init has been enhanced to support in a fairly consistant
543 *	way, discontiguous physical memory.
544 */
545void
546pmap_init(phys_start, phys_end)
547	vm_paddr_t phys_start, phys_end;
548{
549	int i;
550	int initial_pvs;
551
552	/*
553	 * Allocate memory for random pmap data structures.  Includes the
554	 * pv_head_table.
555	 */
556
557	for(i = 0; i < vm_page_array_size; i++) {
558		vm_page_t m;
559
560		m = &vm_page_array[i];
561		TAILQ_INIT(&m->md.pv_list);
562		m->md.pv_list_count = 0;
563	}
564
565	/*
566	 * init the pv free list
567	 */
568	initial_pvs = vm_page_array_size;
569	if (initial_pvs < MINPV)
570		initial_pvs = MINPV;
571	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
572	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
573	uma_zone_set_allocf(pvzone, pmap_pv_allocf);
574	uma_prealloc(pvzone, initial_pvs);
575
576#ifdef PAE
577	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
578	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
579	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
580	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
581#endif
582
583	/*
584	 * Now it is safe to enable pv_table recording.
585	 */
586	pmap_initialized = TRUE;
587}
588
589/*
590 * Initialize the address space (zone) for the pv_entries.  Set a
591 * high water mark so that the system can recover from excessive
592 * numbers of pv entries.
593 */
594void
595pmap_init2()
596{
597	int shpgperproc = PMAP_SHPGPERPROC;
598
599	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
600	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
601	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
602	pv_entry_high_water = 9 * (pv_entry_max / 10);
603	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
604}
605
606
607/***************************************************
608 * Low level helper routines.....
609 ***************************************************/
610
611#if defined(PMAP_DIAGNOSTIC)
612
613/*
614 * This code checks for non-writeable/modified pages.
615 * This should be an invalid condition.
616 */
617static int
618pmap_nw_modified(pt_entry_t ptea)
619{
620	int pte;
621
622	pte = (int) ptea;
623
624	if ((pte & (PG_M|PG_RW)) == PG_M)
625		return 1;
626	else
627		return 0;
628}
629#endif
630
631
632/*
633 * this routine defines the region(s) of memory that should
634 * not be tested for the modified bit.
635 */
636static PMAP_INLINE int
637pmap_track_modified(vm_offset_t va)
638{
639	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
640		return 1;
641	else
642		return 0;
643}
644
645#ifdef I386_CPU
646/*
647 * i386 only has "invalidate everything" and no SMP to worry about.
648 */
649PMAP_INLINE void
650pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
651{
652
653	if (pmap == kernel_pmap || pmap->pm_active)
654		invltlb();
655}
656
657PMAP_INLINE void
658pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
659{
660
661	if (pmap == kernel_pmap || pmap->pm_active)
662		invltlb();
663}
664
665PMAP_INLINE void
666pmap_invalidate_all(pmap_t pmap)
667{
668
669	if (pmap == kernel_pmap || pmap->pm_active)
670		invltlb();
671}
672#else /* !I386_CPU */
673#ifdef SMP
674/*
675 * For SMP, these functions have to use the IPI mechanism for coherence.
676 */
677void
678pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
679{
680	u_int cpumask;
681	u_int other_cpus;
682
683	critical_enter();
684	/*
685	 * We need to disable interrupt preemption but MUST NOT have
686	 * interrupts disabled here.
687	 * XXX we may need to hold schedlock to get a coherent pm_active
688	 */
689	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
690		invlpg(va);
691		smp_invlpg(va);
692	} else {
693		cpumask = PCPU_GET(cpumask);
694		other_cpus = PCPU_GET(other_cpus);
695		if (pmap->pm_active & cpumask)
696			invlpg(va);
697		if (pmap->pm_active & other_cpus)
698			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
699	}
700	critical_exit();
701}
702
703void
704pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
705{
706	u_int cpumask;
707	u_int other_cpus;
708	vm_offset_t addr;
709
710	critical_enter();
711	/*
712	 * We need to disable interrupt preemption but MUST NOT have
713	 * interrupts disabled here.
714	 * XXX we may need to hold schedlock to get a coherent pm_active
715	 */
716	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
717		for (addr = sva; addr < eva; addr += PAGE_SIZE)
718			invlpg(addr);
719		smp_invlpg_range(sva, eva);
720	} else {
721		cpumask = PCPU_GET(cpumask);
722		other_cpus = PCPU_GET(other_cpus);
723		if (pmap->pm_active & cpumask)
724			for (addr = sva; addr < eva; addr += PAGE_SIZE)
725				invlpg(addr);
726		if (pmap->pm_active & other_cpus)
727			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
728			    sva, eva);
729	}
730	critical_exit();
731}
732
733void
734pmap_invalidate_all(pmap_t pmap)
735{
736	u_int cpumask;
737	u_int other_cpus;
738
739	critical_enter();
740	/*
741	 * We need to disable interrupt preemption but MUST NOT have
742	 * interrupts disabled here.
743	 * XXX we may need to hold schedlock to get a coherent pm_active
744	 */
745	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
746		invltlb();
747		smp_invltlb();
748	} else {
749		cpumask = PCPU_GET(cpumask);
750		other_cpus = PCPU_GET(other_cpus);
751		if (pmap->pm_active & cpumask)
752			invltlb();
753		if (pmap->pm_active & other_cpus)
754			smp_masked_invltlb(pmap->pm_active & other_cpus);
755	}
756	critical_exit();
757}
758#else /* !SMP */
759/*
760 * Normal, non-SMP, 486+ invalidation functions.
761 * We inline these within pmap.c for speed.
762 */
763PMAP_INLINE void
764pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
765{
766
767	if (pmap == kernel_pmap || pmap->pm_active)
768		invlpg(va);
769}
770
771PMAP_INLINE void
772pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
773{
774	vm_offset_t addr;
775
776	if (pmap == kernel_pmap || pmap->pm_active)
777		for (addr = sva; addr < eva; addr += PAGE_SIZE)
778			invlpg(addr);
779}
780
781PMAP_INLINE void
782pmap_invalidate_all(pmap_t pmap)
783{
784
785	if (pmap == kernel_pmap || pmap->pm_active)
786		invltlb();
787}
788#endif /* !SMP */
789#endif /* !I386_CPU */
790
791/*
792 * Are we current address space or kernel?
793 */
794static __inline int
795pmap_is_current(pmap_t pmap)
796{
797	return (pmap == kernel_pmap ||
798	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME));
799}
800
801/*
802 * Super fast pmap_pte routine best used when scanning
803 * the pv lists.  This eliminates many coarse-grained
804 * invltlb calls.  Note that many of the pv list
805 * scans are across different pmaps.  It is very wasteful
806 * to do an entire invltlb for checking a single mapping.
807 */
808pt_entry_t *
809pmap_pte_quick(pmap, va)
810	register pmap_t pmap;
811	vm_offset_t va;
812{
813	pd_entry_t newpf;
814	pd_entry_t *pde;
815
816	pde = pmap_pde(pmap, va);
817	if (*pde & PG_PS)
818		return (pde);
819	if (*pde != 0) {
820		/* are we current address space or kernel? */
821		if (pmap_is_current(pmap))
822			return vtopte(va);
823		newpf = *pde & PG_FRAME;
824		if (((*PMAP1) & PG_FRAME) != newpf) {
825			*PMAP1 = newpf | PG_RW | PG_V;
826			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
827		}
828		return PADDR1 + (i386_btop(va) & (NPTEPG - 1));
829	}
830	return (0);
831}
832
833/*
834 *	Routine:	pmap_extract
835 *	Function:
836 *		Extract the physical page address associated
837 *		with the given map/virtual_address pair.
838 */
839vm_paddr_t
840pmap_extract(pmap, va)
841	register pmap_t pmap;
842	vm_offset_t va;
843{
844	vm_paddr_t rtval;
845	pt_entry_t *pte;
846	pd_entry_t pde;
847
848	if (pmap == 0)
849		return 0;
850	pde = pmap->pm_pdir[va >> PDRSHIFT];
851	if (pde != 0) {
852		if ((pde & PG_PS) != 0) {
853			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
854			return rtval;
855		}
856		pte = pmap_pte_quick(pmap, va);
857		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
858		return rtval;
859	}
860	return 0;
861
862}
863
864/*
865 *	Routine:	pmap_extract_and_hold
866 *	Function:
867 *		Atomically extract and hold the physical page
868 *		with the given pmap and virtual address pair
869 *		if that mapping permits the given protection.
870 */
871vm_page_t
872pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
873{
874	vm_paddr_t pa;
875	vm_page_t m;
876
877	m = NULL;
878	mtx_lock(&Giant);
879	if ((pa = pmap_extract(pmap, va)) != 0) {
880		m = PHYS_TO_VM_PAGE(pa);
881		vm_page_lock_queues();
882		vm_page_hold(m);
883		vm_page_unlock_queues();
884	}
885	mtx_unlock(&Giant);
886	return (m);
887}
888
889/***************************************************
890 * Low level mapping routines.....
891 ***************************************************/
892
893/*
894 * Add a wired page to the kva.
895 * Note: not SMP coherent.
896 */
897PMAP_INLINE void
898pmap_kenter(vm_offset_t va, vm_paddr_t pa)
899{
900	pt_entry_t *pte;
901
902	pte = vtopte(va);
903	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
904}
905
906/*
907 * Remove a page from the kernel pagetables.
908 * Note: not SMP coherent.
909 */
910PMAP_INLINE void
911pmap_kremove(vm_offset_t va)
912{
913	pt_entry_t *pte;
914
915	pte = vtopte(va);
916	pte_clear(pte);
917}
918
919/*
920 *	Used to map a range of physical addresses into kernel
921 *	virtual address space.
922 *
923 *	The value passed in '*virt' is a suggested virtual address for
924 *	the mapping. Architectures which can support a direct-mapped
925 *	physical to virtual region can return the appropriate address
926 *	within that region, leaving '*virt' unchanged. Other
927 *	architectures should map the pages starting at '*virt' and
928 *	update '*virt' with the first usable address after the mapped
929 *	region.
930 */
931vm_offset_t
932pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
933{
934	vm_offset_t va, sva;
935
936	va = sva = *virt;
937	while (start < end) {
938		pmap_kenter(va, start);
939		va += PAGE_SIZE;
940		start += PAGE_SIZE;
941	}
942	pmap_invalidate_range(kernel_pmap, sva, va);
943	*virt = va;
944	return (sva);
945}
946
947
948/*
949 * Add a list of wired pages to the kva
950 * this routine is only used for temporary
951 * kernel mappings that do not need to have
952 * page modification or references recorded.
953 * Note that old mappings are simply written
954 * over.  The page *must* be wired.
955 * Note: SMP coherent.  Uses a ranged shootdown IPI.
956 */
957void
958pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
959{
960	vm_offset_t va;
961
962	va = sva;
963	while (count-- > 0) {
964		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
965		va += PAGE_SIZE;
966		m++;
967	}
968	pmap_invalidate_range(kernel_pmap, sva, va);
969}
970
971/*
972 * This routine tears out page mappings from the
973 * kernel -- it is meant only for temporary mappings.
974 * Note: SMP coherent.  Uses a ranged shootdown IPI.
975 */
976void
977pmap_qremove(vm_offset_t sva, int count)
978{
979	vm_offset_t va;
980
981	va = sva;
982	while (count-- > 0) {
983		pmap_kremove(va);
984		va += PAGE_SIZE;
985	}
986	pmap_invalidate_range(kernel_pmap, sva, va);
987}
988
989/***************************************************
990 * Page table page management routines.....
991 ***************************************************/
992
993/*
994 * This routine unholds page table pages, and if the hold count
995 * drops to zero, then it decrements the wire count.
996 */
997static int
998_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
999{
1000
1001	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1002		vm_page_lock_queues();
1003
1004	if (m->hold_count == 0) {
1005		vm_offset_t pteva;
1006		/*
1007		 * unmap the page table page
1008		 */
1009		pmap->pm_pdir[m->pindex] = 0;
1010		--pmap->pm_stats.resident_count;
1011		if (pmap_is_current(pmap)) {
1012			/*
1013			 * Do an invltlb to make the invalidated mapping
1014			 * take effect immediately.
1015			 */
1016			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1017			pmap_invalidate_page(pmap, pteva);
1018		}
1019
1020		/*
1021		 * If the page is finally unwired, simply free it.
1022		 */
1023		--m->wire_count;
1024		if (m->wire_count == 0) {
1025			vm_page_busy(m);
1026			vm_page_free_zero(m);
1027			atomic_subtract_int(&cnt.v_wire_count, 1);
1028		}
1029		return 1;
1030	}
1031	return 0;
1032}
1033
1034static PMAP_INLINE int
1035pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1036{
1037	vm_page_unhold(m);
1038	if (m->hold_count == 0)
1039		return _pmap_unwire_pte_hold(pmap, m);
1040	else
1041		return 0;
1042}
1043
1044/*
1045 * After removing a page table entry, this routine is used to
1046 * conditionally free the page, and manage the hold/wire counts.
1047 */
1048static int
1049pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1050{
1051
1052	if (va >= VM_MAXUSER_ADDRESS)
1053		return 0;
1054
1055	return pmap_unwire_pte_hold(pmap, mpte);
1056}
1057
1058void
1059pmap_pinit0(pmap)
1060	struct pmap *pmap;
1061{
1062
1063	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1064#ifdef PAE
1065	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1066#endif
1067	pmap->pm_active = 0;
1068	PCPU_SET(curpmap, pmap);
1069	TAILQ_INIT(&pmap->pm_pvlist);
1070	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1071	mtx_lock_spin(&allpmaps_lock);
1072	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1073	mtx_unlock_spin(&allpmaps_lock);
1074}
1075
1076/*
1077 * Initialize a preallocated and zeroed pmap structure,
1078 * such as one in a vmspace structure.
1079 */
1080void
1081pmap_pinit(pmap)
1082	register struct pmap *pmap;
1083{
1084	vm_page_t m, ptdpg[NPGPTD];
1085	vm_paddr_t pa;
1086	static int color;
1087	int i;
1088
1089	/*
1090	 * No need to allocate page table space yet but we do need a valid
1091	 * page directory table.
1092	 */
1093	if (pmap->pm_pdir == NULL) {
1094		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1095		    NBPTD);
1096#ifdef PAE
1097		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1098		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1099		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1100		    ("pmap_pinit: pdpt misaligned"));
1101		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1102		    ("pmap_pinit: pdpt above 4g"));
1103#endif
1104	}
1105
1106	/*
1107	 * allocate the page directory page(s)
1108	 */
1109	for (i = 0; i < NPGPTD;) {
1110		m = vm_page_alloc(NULL, color++,
1111		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1112		    VM_ALLOC_ZERO);
1113		if (m == NULL)
1114			VM_WAIT;
1115		else {
1116			vm_page_lock_queues();
1117			vm_page_flag_clear(m, PG_BUSY);
1118			m->valid = VM_PAGE_BITS_ALL;
1119			vm_page_unlock_queues();
1120			ptdpg[i++] = m;
1121		}
1122	}
1123
1124	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1125
1126	for (i = 0; i < NPGPTD; i++) {
1127		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1128			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1129	}
1130
1131	mtx_lock_spin(&allpmaps_lock);
1132	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1133	mtx_unlock_spin(&allpmaps_lock);
1134	/* Wire in kernel global address entries. */
1135	/* XXX copies current process, does not fill in MPPTDI */
1136	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1137#ifdef SMP
1138	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1139#endif
1140
1141	/* install self-referential address mapping entry(s) */
1142	for (i = 0; i < NPGPTD; i++) {
1143		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1144		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1145#ifdef PAE
1146		pmap->pm_pdpt[i] = pa | PG_V;
1147#endif
1148	}
1149
1150	pmap->pm_active = 0;
1151	TAILQ_INIT(&pmap->pm_pvlist);
1152	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1153}
1154
1155/*
1156 * Wire in kernel global address entries.  To avoid a race condition
1157 * between pmap initialization and pmap_growkernel, this procedure
1158 * should be called after the vmspace is attached to the process
1159 * but before this pmap is activated.
1160 */
1161void
1162pmap_pinit2(pmap)
1163	struct pmap *pmap;
1164{
1165	/* XXX: Remove this stub when no longer called */
1166}
1167
1168/*
1169 * this routine is called if the page table page is not
1170 * mapped correctly.
1171 */
1172static vm_page_t
1173_pmap_allocpte(pmap, ptepindex)
1174	pmap_t	pmap;
1175	unsigned ptepindex;
1176{
1177	vm_paddr_t ptepa;
1178	vm_page_t m;
1179
1180	/*
1181	 * Allocate a page table page.
1182	 */
1183	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1184	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1185		VM_WAIT;
1186		/*
1187		 * Indicate the need to retry.  While waiting, the page table
1188		 * page may have been allocated.
1189		 */
1190		return (NULL);
1191	}
1192	if ((m->flags & PG_ZERO) == 0)
1193		pmap_zero_page(m);
1194
1195	KASSERT(m->queue == PQ_NONE,
1196		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1197
1198	/*
1199	 * Increment the hold count for the page table page
1200	 * (denoting a new mapping.)
1201	 */
1202	m->hold_count++;
1203
1204	/*
1205	 * Map the pagetable page into the process address space, if
1206	 * it isn't already there.
1207	 */
1208
1209	pmap->pm_stats.resident_count++;
1210
1211	ptepa = VM_PAGE_TO_PHYS(m);
1212	pmap->pm_pdir[ptepindex] =
1213		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1214
1215	vm_page_lock_queues();
1216	m->valid = VM_PAGE_BITS_ALL;
1217	vm_page_flag_clear(m, PG_ZERO);
1218	vm_page_wakeup(m);
1219	vm_page_unlock_queues();
1220
1221	return m;
1222}
1223
1224static vm_page_t
1225pmap_allocpte(pmap_t pmap, vm_offset_t va)
1226{
1227	unsigned ptepindex;
1228	pd_entry_t ptepa;
1229	vm_page_t m;
1230
1231	/*
1232	 * Calculate pagetable page index
1233	 */
1234	ptepindex = va >> PDRSHIFT;
1235retry:
1236	/*
1237	 * Get the page directory entry
1238	 */
1239	ptepa = pmap->pm_pdir[ptepindex];
1240
1241	/*
1242	 * This supports switching from a 4MB page to a
1243	 * normal 4K page.
1244	 */
1245	if (ptepa & PG_PS) {
1246		pmap->pm_pdir[ptepindex] = 0;
1247		ptepa = 0;
1248		pmap_invalidate_all(kernel_pmap);
1249	}
1250
1251	/*
1252	 * If the page table page is mapped, we just increment the
1253	 * hold count, and activate it.
1254	 */
1255	if (ptepa) {
1256		m = PHYS_TO_VM_PAGE(ptepa);
1257		m->hold_count++;
1258	} else {
1259		/*
1260		 * Here if the pte page isn't mapped, or if it has
1261		 * been deallocated.
1262		 */
1263		m = _pmap_allocpte(pmap, ptepindex);
1264		if (m == NULL)
1265			goto retry;
1266	}
1267	return (m);
1268}
1269
1270
1271/***************************************************
1272* Pmap allocation/deallocation routines.
1273 ***************************************************/
1274
1275#ifdef SMP
1276/*
1277 * Deal with a SMP shootdown of other users of the pmap that we are
1278 * trying to dispose of.  This can be a bit hairy.
1279 */
1280static u_int *lazymask;
1281static u_int lazyptd;
1282static volatile u_int lazywait;
1283
1284void pmap_lazyfix_action(void);
1285
1286void
1287pmap_lazyfix_action(void)
1288{
1289	u_int mymask = PCPU_GET(cpumask);
1290
1291	if (rcr3() == lazyptd)
1292		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1293	atomic_clear_int(lazymask, mymask);
1294	atomic_store_rel_int(&lazywait, 1);
1295}
1296
1297static void
1298pmap_lazyfix_self(u_int mymask)
1299{
1300
1301	if (rcr3() == lazyptd)
1302		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1303	atomic_clear_int(lazymask, mymask);
1304}
1305
1306
1307static void
1308pmap_lazyfix(pmap_t pmap)
1309{
1310	u_int mymask = PCPU_GET(cpumask);
1311	u_int mask;
1312	register u_int spins;
1313
1314	while ((mask = pmap->pm_active) != 0) {
1315		spins = 50000000;
1316		mask = mask & -mask;	/* Find least significant set bit */
1317		mtx_lock_spin(&lazypmap_lock);
1318#ifdef PAE
1319		lazyptd = vtophys(pmap->pm_pdpt);
1320#else
1321		lazyptd = vtophys(pmap->pm_pdir);
1322#endif
1323		if (mask == mymask) {
1324			lazymask = &pmap->pm_active;
1325			pmap_lazyfix_self(mymask);
1326		} else {
1327			atomic_store_rel_int((u_int *)&lazymask,
1328			    (u_int)&pmap->pm_active);
1329			atomic_store_rel_int(&lazywait, 0);
1330			ipi_selected(mask, IPI_LAZYPMAP);
1331			while (lazywait == 0) {
1332				ia32_pause();
1333				if (--spins == 0)
1334					break;
1335			}
1336		}
1337		mtx_unlock_spin(&lazypmap_lock);
1338		if (spins == 0)
1339			printf("pmap_lazyfix: spun for 50000000\n");
1340	}
1341}
1342
1343#else	/* SMP */
1344
1345/*
1346 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1347 * unlikely to have to even execute this code, including the fact
1348 * that the cleanup is deferred until the parent does a wait(2), which
1349 * means that another userland process has run.
1350 */
1351static void
1352pmap_lazyfix(pmap_t pmap)
1353{
1354	u_int cr3;
1355
1356	cr3 = vtophys(pmap->pm_pdir);
1357	if (cr3 == rcr3()) {
1358		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1359		pmap->pm_active &= ~(PCPU_GET(cpumask));
1360	}
1361}
1362#endif	/* SMP */
1363
1364/*
1365 * Release any resources held by the given physical map.
1366 * Called when a pmap initialized by pmap_pinit is being released.
1367 * Should only be called if the map contains no valid mappings.
1368 */
1369void
1370pmap_release(pmap_t pmap)
1371{
1372	vm_page_t m, ptdpg[NPGPTD];
1373	int i;
1374
1375	KASSERT(pmap->pm_stats.resident_count == 0,
1376	    ("pmap_release: pmap resident count %ld != 0",
1377	    pmap->pm_stats.resident_count));
1378
1379	pmap_lazyfix(pmap);
1380	mtx_lock_spin(&allpmaps_lock);
1381	LIST_REMOVE(pmap, pm_list);
1382	mtx_unlock_spin(&allpmaps_lock);
1383
1384	for (i = 0; i < NPGPTD; i++)
1385		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1386
1387	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1388	    sizeof(*pmap->pm_pdir));
1389#ifdef SMP
1390	pmap->pm_pdir[MPPTDI] = 0;
1391#endif
1392
1393	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1394
1395	vm_page_lock_queues();
1396	for (i = 0; i < NPGPTD; i++) {
1397		m = ptdpg[i];
1398#ifdef PAE
1399		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1400		    ("pmap_release: got wrong ptd page"));
1401#endif
1402		m->wire_count--;
1403		atomic_subtract_int(&cnt.v_wire_count, 1);
1404		vm_page_busy(m);
1405		vm_page_free_zero(m);
1406	}
1407	vm_page_unlock_queues();
1408}
1409
1410static int
1411kvm_size(SYSCTL_HANDLER_ARGS)
1412{
1413	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1414
1415	return sysctl_handle_long(oidp, &ksize, 0, req);
1416}
1417SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1418    0, 0, kvm_size, "IU", "Size of KVM");
1419
1420static int
1421kvm_free(SYSCTL_HANDLER_ARGS)
1422{
1423	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1424
1425	return sysctl_handle_long(oidp, &kfree, 0, req);
1426}
1427SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1428    0, 0, kvm_free, "IU", "Amount of KVM free");
1429
1430/*
1431 * grow the number of kernel page table entries, if needed
1432 */
1433void
1434pmap_growkernel(vm_offset_t addr)
1435{
1436	struct pmap *pmap;
1437	int s;
1438	vm_paddr_t ptppaddr;
1439	vm_page_t nkpg;
1440	pd_entry_t newpdir;
1441	pt_entry_t *pde;
1442
1443	s = splhigh();
1444	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1445	if (kernel_vm_end == 0) {
1446		kernel_vm_end = KERNBASE;
1447		nkpt = 0;
1448		while (pdir_pde(PTD, kernel_vm_end)) {
1449			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1450			nkpt++;
1451		}
1452	}
1453	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1454	while (kernel_vm_end < addr) {
1455		if (pdir_pde(PTD, kernel_vm_end)) {
1456			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1457			continue;
1458		}
1459
1460		/*
1461		 * This index is bogus, but out of the way
1462		 */
1463		nkpg = vm_page_alloc(NULL, nkpt,
1464		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1465		if (!nkpg)
1466			panic("pmap_growkernel: no memory to grow kernel");
1467
1468		nkpt++;
1469
1470		pmap_zero_page(nkpg);
1471		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1472		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1473		pdir_pde(PTD, kernel_vm_end) = newpdir;
1474
1475		mtx_lock_spin(&allpmaps_lock);
1476		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1477			pde = pmap_pde(pmap, kernel_vm_end);
1478			pde_store(pde, newpdir);
1479		}
1480		mtx_unlock_spin(&allpmaps_lock);
1481		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1482	}
1483	splx(s);
1484}
1485
1486
1487/***************************************************
1488 * page management routines.
1489 ***************************************************/
1490
1491/*
1492 * free the pv_entry back to the free list
1493 */
1494static PMAP_INLINE void
1495free_pv_entry(pv_entry_t pv)
1496{
1497	pv_entry_count--;
1498	uma_zfree(pvzone, pv);
1499}
1500
1501/*
1502 * get a new pv_entry, allocating a block from the system
1503 * when needed.
1504 * the memory allocation is performed bypassing the malloc code
1505 * because of the possibility of allocations at interrupt time.
1506 */
1507static pv_entry_t
1508get_pv_entry(void)
1509{
1510	pv_entry_count++;
1511	if (pv_entry_high_water &&
1512		(pv_entry_count > pv_entry_high_water) &&
1513		(pmap_pagedaemon_waken == 0)) {
1514		pmap_pagedaemon_waken = 1;
1515		wakeup (&vm_pages_needed);
1516	}
1517	return uma_zalloc(pvzone, M_NOWAIT);
1518}
1519
1520/*
1521 * If it is the first entry on the list, it is actually
1522 * in the header and we must copy the following entry up
1523 * to the header.  Otherwise we must search the list for
1524 * the entry.  In either case we free the now unused entry.
1525 */
1526
1527static int
1528pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1529{
1530	pv_entry_t pv;
1531	int rtval;
1532	int s;
1533
1534	s = splvm();
1535	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1536	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1537		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1538			if (pmap == pv->pv_pmap && va == pv->pv_va)
1539				break;
1540		}
1541	} else {
1542		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1543			if (va == pv->pv_va)
1544				break;
1545		}
1546	}
1547
1548	rtval = 0;
1549	if (pv) {
1550		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1551		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1552		m->md.pv_list_count--;
1553		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1554			vm_page_flag_clear(m, PG_WRITEABLE);
1555
1556		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1557		free_pv_entry(pv);
1558	}
1559
1560	splx(s);
1561	return rtval;
1562}
1563
1564/*
1565 * Create a pv entry for page at pa for
1566 * (pmap, va).
1567 */
1568static void
1569pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1570{
1571
1572	int s;
1573	pv_entry_t pv;
1574
1575	s = splvm();
1576	pv = get_pv_entry();
1577	pv->pv_va = va;
1578	pv->pv_pmap = pmap;
1579	pv->pv_ptem = mpte;
1580
1581	vm_page_lock_queues();
1582	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1583	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1584	m->md.pv_list_count++;
1585
1586	vm_page_unlock_queues();
1587	splx(s);
1588}
1589
1590/*
1591 * pmap_remove_pte: do the things to unmap a page in a process
1592 */
1593static int
1594pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1595{
1596	pt_entry_t oldpte;
1597	vm_page_t m, mpte;
1598
1599	oldpte = pte_load_clear(ptq);
1600	if (oldpte & PG_W)
1601		pmap->pm_stats.wired_count -= 1;
1602	/*
1603	 * Machines that don't support invlpg, also don't support
1604	 * PG_G.
1605	 */
1606	if (oldpte & PG_G)
1607		pmap_invalidate_page(kernel_pmap, va);
1608	pmap->pm_stats.resident_count -= 1;
1609	if (oldpte & PG_MANAGED) {
1610		m = PHYS_TO_VM_PAGE(oldpte);
1611		if (oldpte & PG_M) {
1612#if defined(PMAP_DIAGNOSTIC)
1613			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1614				printf(
1615	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1616				    va, oldpte);
1617			}
1618#endif
1619			if (pmap_track_modified(va))
1620				vm_page_dirty(m);
1621		}
1622		if (oldpte & PG_A)
1623			vm_page_flag_set(m, PG_REFERENCED);
1624		return pmap_remove_entry(pmap, m, va);
1625	} else {
1626		mpte = PHYS_TO_VM_PAGE(*pmap_pde(pmap, va));
1627		return pmap_unuse_pt(pmap, va, mpte);
1628	}
1629}
1630
1631/*
1632 * Remove a single page from a process address space
1633 */
1634static void
1635pmap_remove_page(pmap_t pmap, vm_offset_t va)
1636{
1637	pt_entry_t *pte;
1638
1639	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1640		return;
1641	pmap_remove_pte(pmap, pte, va);
1642	pmap_invalidate_page(pmap, va);
1643}
1644
1645/*
1646 *	Remove the given range of addresses from the specified map.
1647 *
1648 *	It is assumed that the start and end are properly
1649 *	rounded to the page size.
1650 */
1651void
1652pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1653{
1654	vm_offset_t pdnxt;
1655	pd_entry_t ptpaddr;
1656	pt_entry_t *pte;
1657	int anyvalid;
1658
1659	if (pmap == NULL)
1660		return;
1661
1662	if (pmap->pm_stats.resident_count == 0)
1663		return;
1664
1665	/*
1666	 * special handling of removing one page.  a very
1667	 * common operation and easy to short circuit some
1668	 * code.
1669	 */
1670	if ((sva + PAGE_SIZE == eva) &&
1671	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1672		pmap_remove_page(pmap, sva);
1673		return;
1674	}
1675
1676	anyvalid = 0;
1677
1678	for (; sva < eva; sva = pdnxt) {
1679		unsigned pdirindex;
1680
1681		/*
1682		 * Calculate index for next page table.
1683		 */
1684		pdnxt = (sva + NBPDR) & ~PDRMASK;
1685		if (pmap->pm_stats.resident_count == 0)
1686			break;
1687
1688		pdirindex = sva >> PDRSHIFT;
1689		ptpaddr = pmap->pm_pdir[pdirindex];
1690
1691		/*
1692		 * Weed out invalid mappings. Note: we assume that the page
1693		 * directory table is always allocated, and in kernel virtual.
1694		 */
1695		if (ptpaddr == 0)
1696			continue;
1697
1698		/*
1699		 * Check for large page.
1700		 */
1701		if ((ptpaddr & PG_PS) != 0) {
1702			pmap->pm_pdir[pdirindex] = 0;
1703			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1704			anyvalid = 1;
1705			continue;
1706		}
1707
1708		/*
1709		 * Limit our scan to either the end of the va represented
1710		 * by the current page table page, or to the end of the
1711		 * range being removed.
1712		 */
1713		if (pdnxt > eva)
1714			pdnxt = eva;
1715
1716		for (; sva != pdnxt; sva += PAGE_SIZE) {
1717			if ((pte = pmap_pte_quick(pmap, sva)) == NULL ||
1718			    *pte == 0)
1719				continue;
1720			anyvalid = 1;
1721			if (pmap_remove_pte(pmap, pte, sva))
1722				break;
1723		}
1724	}
1725
1726	if (anyvalid)
1727		pmap_invalidate_all(pmap);
1728}
1729
1730/*
1731 *	Routine:	pmap_remove_all
1732 *	Function:
1733 *		Removes this physical page from
1734 *		all physical maps in which it resides.
1735 *		Reflects back modify bits to the pager.
1736 *
1737 *	Notes:
1738 *		Original versions of this routine were very
1739 *		inefficient because they iteratively called
1740 *		pmap_remove (slow...)
1741 */
1742
1743void
1744pmap_remove_all(vm_page_t m)
1745{
1746	register pv_entry_t pv;
1747	pt_entry_t *pte, tpte;
1748	int s;
1749
1750#if defined(PMAP_DIAGNOSTIC)
1751	/*
1752	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1753	 */
1754	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1755		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1756		    VM_PAGE_TO_PHYS(m));
1757	}
1758#endif
1759	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1760	s = splvm();
1761	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1762		pv->pv_pmap->pm_stats.resident_count--;
1763		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1764		tpte = pte_load_clear(pte);
1765		if (tpte & PG_W)
1766			pv->pv_pmap->pm_stats.wired_count--;
1767		if (tpte & PG_A)
1768			vm_page_flag_set(m, PG_REFERENCED);
1769
1770		/*
1771		 * Update the vm_page_t clean and reference bits.
1772		 */
1773		if (tpte & PG_M) {
1774#if defined(PMAP_DIAGNOSTIC)
1775			if (pmap_nw_modified((pt_entry_t) tpte)) {
1776				printf(
1777	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1778				    pv->pv_va, tpte);
1779			}
1780#endif
1781			if (pmap_track_modified(pv->pv_va))
1782				vm_page_dirty(m);
1783		}
1784		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1785		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1786		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1787		m->md.pv_list_count--;
1788		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1789		free_pv_entry(pv);
1790	}
1791	vm_page_flag_clear(m, PG_WRITEABLE);
1792	splx(s);
1793}
1794
1795/*
1796 *	Set the physical protection on the
1797 *	specified range of this map as requested.
1798 */
1799void
1800pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1801{
1802	vm_offset_t pdnxt;
1803	pd_entry_t ptpaddr;
1804	int anychanged;
1805
1806	if (pmap == NULL)
1807		return;
1808
1809	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1810		pmap_remove(pmap, sva, eva);
1811		return;
1812	}
1813
1814	if (prot & VM_PROT_WRITE)
1815		return;
1816
1817	anychanged = 0;
1818
1819	for (; sva < eva; sva = pdnxt) {
1820		unsigned pdirindex;
1821
1822		pdnxt = (sva + NBPDR) & ~PDRMASK;
1823
1824		pdirindex = sva >> PDRSHIFT;
1825		ptpaddr = pmap->pm_pdir[pdirindex];
1826
1827		/*
1828		 * Weed out invalid mappings. Note: we assume that the page
1829		 * directory table is always allocated, and in kernel virtual.
1830		 */
1831		if (ptpaddr == 0)
1832			continue;
1833
1834		/*
1835		 * Check for large page.
1836		 */
1837		if ((ptpaddr & PG_PS) != 0) {
1838			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1839			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1840			anychanged = 1;
1841			continue;
1842		}
1843
1844		if (pdnxt > eva)
1845			pdnxt = eva;
1846
1847		for (; sva != pdnxt; sva += PAGE_SIZE) {
1848			pt_entry_t pbits;
1849			pt_entry_t *pte;
1850			vm_page_t m;
1851
1852			if ((pte = pmap_pte_quick(pmap, sva)) == NULL)
1853				continue;
1854			pbits = *pte;
1855			if (pbits & PG_MANAGED) {
1856				m = NULL;
1857				if (pbits & PG_A) {
1858					m = PHYS_TO_VM_PAGE(pbits);
1859					vm_page_flag_set(m, PG_REFERENCED);
1860					pbits &= ~PG_A;
1861				}
1862				if ((pbits & PG_M) != 0 &&
1863				    pmap_track_modified(sva)) {
1864					if (m == NULL)
1865						m = PHYS_TO_VM_PAGE(pbits);
1866					vm_page_dirty(m);
1867					pbits &= ~PG_M;
1868				}
1869			}
1870
1871			pbits &= ~PG_RW;
1872
1873			if (pbits != *pte) {
1874				pte_store(pte, pbits);
1875				anychanged = 1;
1876			}
1877		}
1878	}
1879	if (anychanged)
1880		pmap_invalidate_all(pmap);
1881}
1882
1883/*
1884 *	Insert the given physical page (p) at
1885 *	the specified virtual address (v) in the
1886 *	target physical map with the protection requested.
1887 *
1888 *	If specified, the page will be wired down, meaning
1889 *	that the related pte can not be reclaimed.
1890 *
1891 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1892 *	or lose information.  That is, this routine must actually
1893 *	insert this page into the given map NOW.
1894 */
1895void
1896pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1897	   boolean_t wired)
1898{
1899	vm_paddr_t pa;
1900	register pt_entry_t *pte;
1901	vm_paddr_t opa;
1902	pt_entry_t origpte, newpte;
1903	vm_page_t mpte;
1904
1905	if (pmap == NULL)
1906		return;
1907
1908	va &= PG_FRAME;
1909#ifdef PMAP_DIAGNOSTIC
1910	if (va > VM_MAX_KERNEL_ADDRESS)
1911		panic("pmap_enter: toobig");
1912	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1913		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1914#endif
1915
1916	mpte = NULL;
1917	/*
1918	 * In the case that a page table page is not
1919	 * resident, we are creating it here.
1920	 */
1921	if (va < VM_MAXUSER_ADDRESS) {
1922		mpte = pmap_allocpte(pmap, va);
1923	}
1924#if 0 && defined(PMAP_DIAGNOSTIC)
1925	else {
1926		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1927		origpte = *pdeaddr;
1928		if ((origpte & PG_V) == 0) {
1929			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1930				pmap->pm_pdir[PTDPTDI], origpte, va);
1931		}
1932	}
1933#endif
1934
1935	pte = pmap_pte_quick(pmap, va);
1936
1937	/*
1938	 * Page Directory table entry not valid, we need a new PT page
1939	 */
1940	if (pte == NULL) {
1941		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1942			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1943	}
1944
1945	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1946	origpte = *pte;
1947	opa = origpte & PG_FRAME;
1948
1949	if (origpte & PG_PS)
1950		panic("pmap_enter: attempted pmap_enter on 4MB page");
1951
1952	/*
1953	 * Mapping has not changed, must be protection or wiring change.
1954	 */
1955	if (origpte && (opa == pa)) {
1956		/*
1957		 * Wiring change, just update stats. We don't worry about
1958		 * wiring PT pages as they remain resident as long as there
1959		 * are valid mappings in them. Hence, if a user page is wired,
1960		 * the PT page will be also.
1961		 */
1962		if (wired && ((origpte & PG_W) == 0))
1963			pmap->pm_stats.wired_count++;
1964		else if (!wired && (origpte & PG_W))
1965			pmap->pm_stats.wired_count--;
1966
1967#if defined(PMAP_DIAGNOSTIC)
1968		if (pmap_nw_modified((pt_entry_t) origpte)) {
1969			printf(
1970	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1971			    va, origpte);
1972		}
1973#endif
1974
1975		/*
1976		 * Remove extra pte reference
1977		 */
1978		if (mpte)
1979			mpte->hold_count--;
1980
1981		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
1982			if ((origpte & PG_RW) == 0) {
1983				pte_store(pte, origpte | PG_RW);
1984				pmap_invalidate_page(pmap, va);
1985			}
1986			return;
1987		}
1988
1989		/*
1990		 * We might be turning off write access to the page,
1991		 * so we go ahead and sense modify status.
1992		 */
1993		if (origpte & PG_MANAGED) {
1994			if ((origpte & PG_M) && pmap_track_modified(va)) {
1995				vm_page_t om;
1996				om = PHYS_TO_VM_PAGE(opa);
1997				vm_page_dirty(om);
1998			}
1999			pa |= PG_MANAGED;
2000		}
2001		goto validate;
2002	}
2003	/*
2004	 * Mapping has changed, invalidate old range and fall through to
2005	 * handle validating new mapping.
2006	 */
2007	if (opa) {
2008		int err;
2009		vm_page_lock_queues();
2010		err = pmap_remove_pte(pmap, pte, va);
2011		vm_page_unlock_queues();
2012		if (err)
2013			panic("pmap_enter: pte vanished, va: 0x%x", va);
2014	}
2015
2016	/*
2017	 * Enter on the PV list if part of our managed memory. Note that we
2018	 * raise IPL while manipulating pv_table since pmap_enter can be
2019	 * called at interrupt time.
2020	 */
2021	if (pmap_initialized &&
2022	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2023		pmap_insert_entry(pmap, va, mpte, m);
2024		pa |= PG_MANAGED;
2025	}
2026
2027	/*
2028	 * Increment counters
2029	 */
2030	pmap->pm_stats.resident_count++;
2031	if (wired)
2032		pmap->pm_stats.wired_count++;
2033
2034validate:
2035	/*
2036	 * Now validate mapping with desired protection/wiring.
2037	 */
2038	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V);
2039
2040	if (wired)
2041		newpte |= PG_W;
2042	if (va < VM_MAXUSER_ADDRESS)
2043		newpte |= PG_U;
2044	if (pmap == kernel_pmap)
2045		newpte |= pgeflag;
2046
2047	/*
2048	 * if the mapping or permission bits are different, we need
2049	 * to update the pte.
2050	 */
2051	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2052		pte_store(pte, newpte | PG_A);
2053		/*if (origpte)*/ {
2054			pmap_invalidate_page(pmap, va);
2055		}
2056	}
2057}
2058
2059/*
2060 * this code makes some *MAJOR* assumptions:
2061 * 1. Current pmap & pmap exists.
2062 * 2. Not wired.
2063 * 3. Read access.
2064 * 4. No page table pages.
2065 * 5. Tlbflush is deferred to calling procedure.
2066 * 6. Page IS managed.
2067 * but is *MUCH* faster than pmap_enter...
2068 */
2069
2070vm_page_t
2071pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2072{
2073	pt_entry_t *pte;
2074	vm_paddr_t pa;
2075
2076	/*
2077	 * In the case that a page table page is not
2078	 * resident, we are creating it here.
2079	 */
2080	if (va < VM_MAXUSER_ADDRESS) {
2081		unsigned ptepindex;
2082		pd_entry_t ptepa;
2083
2084		/*
2085		 * Calculate pagetable page index
2086		 */
2087		ptepindex = va >> PDRSHIFT;
2088		if (mpte && (mpte->pindex == ptepindex)) {
2089			mpte->hold_count++;
2090		} else {
2091retry:
2092			/*
2093			 * Get the page directory entry
2094			 */
2095			ptepa = pmap->pm_pdir[ptepindex];
2096
2097			/*
2098			 * If the page table page is mapped, we just increment
2099			 * the hold count, and activate it.
2100			 */
2101			if (ptepa) {
2102				if (ptepa & PG_PS)
2103					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2104				mpte = PHYS_TO_VM_PAGE(ptepa);
2105				mpte->hold_count++;
2106			} else {
2107				mpte = _pmap_allocpte(pmap, ptepindex);
2108				if (mpte == NULL)
2109					goto retry;
2110			}
2111		}
2112	} else {
2113		mpte = NULL;
2114	}
2115
2116	/*
2117	 * This call to vtopte makes the assumption that we are
2118	 * entering the page into the current pmap.  In order to support
2119	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2120	 * But that isn't as quick as vtopte.
2121	 */
2122	pte = vtopte(va);
2123	if (*pte) {
2124		if (mpte != NULL) {
2125			vm_page_lock_queues();
2126			pmap_unwire_pte_hold(pmap, mpte);
2127			vm_page_unlock_queues();
2128		}
2129		return 0;
2130	}
2131
2132	/*
2133	 * Enter on the PV list if part of our managed memory. Note that we
2134	 * raise IPL while manipulating pv_table since pmap_enter can be
2135	 * called at interrupt time.
2136	 */
2137	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2138		pmap_insert_entry(pmap, va, mpte, m);
2139
2140	/*
2141	 * Increment counters
2142	 */
2143	pmap->pm_stats.resident_count++;
2144
2145	pa = VM_PAGE_TO_PHYS(m);
2146
2147	/*
2148	 * Now validate mapping with RO protection
2149	 */
2150	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2151		pte_store(pte, pa | PG_V | PG_U);
2152	else
2153		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2154
2155	return mpte;
2156}
2157
2158/*
2159 * Make a temporary mapping for a physical address.  This is only intended
2160 * to be used for panic dumps.
2161 */
2162void *
2163pmap_kenter_temporary(vm_offset_t pa, int i)
2164{
2165	vm_offset_t va;
2166
2167	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2168	pmap_kenter(va, pa);
2169#ifndef I386_CPU
2170	invlpg(va);
2171#else
2172	invltlb();
2173#endif
2174	return ((void *)crashdumpmap);
2175}
2176
2177/*
2178 * This code maps large physical mmap regions into the
2179 * processor address space.  Note that some shortcuts
2180 * are taken, but the code works.
2181 */
2182void
2183pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2184		    vm_object_t object, vm_pindex_t pindex,
2185		    vm_size_t size)
2186{
2187	vm_page_t p;
2188
2189	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2190	KASSERT(object->type == OBJT_DEVICE,
2191	    ("pmap_object_init_pt: non-device object"));
2192	if (pseflag &&
2193	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2194		int i;
2195		vm_page_t m[1];
2196		unsigned int ptepindex;
2197		int npdes;
2198		pd_entry_t ptepa;
2199
2200		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2201			return;
2202retry:
2203		p = vm_page_lookup(object, pindex);
2204		if (p != NULL) {
2205			vm_page_lock_queues();
2206			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2207				goto retry;
2208		} else {
2209			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2210			if (p == NULL)
2211				return;
2212			m[0] = p;
2213
2214			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2215				vm_page_lock_queues();
2216				vm_page_free(p);
2217				vm_page_unlock_queues();
2218				return;
2219			}
2220
2221			p = vm_page_lookup(object, pindex);
2222			vm_page_lock_queues();
2223			vm_page_wakeup(p);
2224		}
2225		vm_page_unlock_queues();
2226
2227		ptepa = VM_PAGE_TO_PHYS(p);
2228		if (ptepa & (NBPDR - 1))
2229			return;
2230
2231		p->valid = VM_PAGE_BITS_ALL;
2232
2233		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2234		npdes = size >> PDRSHIFT;
2235		for(i = 0; i < npdes; i++) {
2236			pde_store(&pmap->pm_pdir[ptepindex],
2237			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2238			ptepa += NBPDR;
2239			ptepindex += 1;
2240		}
2241		pmap_invalidate_all(pmap);
2242	}
2243}
2244
2245/*
2246 * pmap_prefault provides a quick way of clustering
2247 * pagefaults into a processes address space.  It is a "cousin"
2248 * of pmap_object_init_pt, except it runs at page fault time instead
2249 * of mmap time.
2250 */
2251#define PFBAK 4
2252#define PFFOR 4
2253#define PAGEORDER_SIZE (PFBAK+PFFOR)
2254
2255static int pmap_prefault_pageorder[] = {
2256	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2257	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2258	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2259	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2260};
2261
2262void
2263pmap_prefault(pmap, addra, entry)
2264	pmap_t pmap;
2265	vm_offset_t addra;
2266	vm_map_entry_t entry;
2267{
2268	int i;
2269	vm_offset_t starta;
2270	vm_offset_t addr;
2271	vm_pindex_t pindex;
2272	vm_page_t m, mpte;
2273	vm_object_t object;
2274
2275	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2276		return;
2277
2278	object = entry->object.vm_object;
2279
2280	starta = addra - PFBAK * PAGE_SIZE;
2281	if (starta < entry->start) {
2282		starta = entry->start;
2283	} else if (starta > addra) {
2284		starta = 0;
2285	}
2286
2287	mpte = NULL;
2288	for (i = 0; i < PAGEORDER_SIZE; i++) {
2289		vm_object_t backing_object, lobject;
2290		pt_entry_t *pte;
2291
2292		addr = addra + pmap_prefault_pageorder[i];
2293		if (addr > addra + (PFFOR * PAGE_SIZE))
2294			addr = 0;
2295
2296		if (addr < starta || addr >= entry->end)
2297			continue;
2298
2299		if ((*pmap_pde(pmap, addr)) == 0)
2300			continue;
2301
2302		pte = vtopte(addr);
2303		if (*pte)
2304			continue;
2305
2306		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2307		lobject = object;
2308		VM_OBJECT_LOCK(lobject);
2309		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
2310		    lobject->type == OBJT_DEFAULT &&
2311		    (backing_object = lobject->backing_object) != NULL) {
2312			if (lobject->backing_object_offset & PAGE_MASK)
2313				break;
2314			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2315			VM_OBJECT_LOCK(backing_object);
2316			VM_OBJECT_UNLOCK(lobject);
2317			lobject = backing_object;
2318		}
2319		VM_OBJECT_UNLOCK(lobject);
2320		/*
2321		 * give-up when a page is not in memory
2322		 */
2323		if (m == NULL)
2324			break;
2325		vm_page_lock_queues();
2326		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2327			(m->busy == 0) &&
2328		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2329
2330			if ((m->queue - m->pc) == PQ_CACHE) {
2331				vm_page_deactivate(m);
2332			}
2333			vm_page_busy(m);
2334			vm_page_unlock_queues();
2335			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2336			vm_page_lock_queues();
2337			vm_page_wakeup(m);
2338		}
2339		vm_page_unlock_queues();
2340	}
2341}
2342
2343/*
2344 *	Routine:	pmap_change_wiring
2345 *	Function:	Change the wiring attribute for a map/virtual-address
2346 *			pair.
2347 *	In/out conditions:
2348 *			The mapping must already exist in the pmap.
2349 */
2350void
2351pmap_change_wiring(pmap, va, wired)
2352	register pmap_t pmap;
2353	vm_offset_t va;
2354	boolean_t wired;
2355{
2356	register pt_entry_t *pte;
2357
2358	if (pmap == NULL)
2359		return;
2360
2361	pte = pmap_pte_quick(pmap, va);
2362
2363	if (wired && !pmap_pte_w(pte))
2364		pmap->pm_stats.wired_count++;
2365	else if (!wired && pmap_pte_w(pte))
2366		pmap->pm_stats.wired_count--;
2367
2368	/*
2369	 * Wiring is not a hardware characteristic so there is no need to
2370	 * invalidate TLB.
2371	 */
2372	pmap_pte_set_w(pte, wired);
2373}
2374
2375
2376
2377/*
2378 *	Copy the range specified by src_addr/len
2379 *	from the source map to the range dst_addr/len
2380 *	in the destination map.
2381 *
2382 *	This routine is only advisory and need not do anything.
2383 */
2384
2385void
2386pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2387	  vm_offset_t src_addr)
2388{
2389	vm_offset_t addr;
2390	vm_offset_t end_addr = src_addr + len;
2391	vm_offset_t pdnxt;
2392	vm_page_t m;
2393
2394	if (dst_addr != src_addr)
2395		return;
2396
2397	if (!pmap_is_current(src_pmap))
2398		return;
2399
2400	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2401		pt_entry_t *src_pte, *dst_pte;
2402		vm_page_t dstmpte, srcmpte;
2403		pd_entry_t srcptepaddr;
2404		unsigned ptepindex;
2405
2406		if (addr >= UPT_MIN_ADDRESS)
2407			panic("pmap_copy: invalid to pmap_copy page tables\n");
2408
2409		/*
2410		 * Don't let optional prefaulting of pages make us go
2411		 * way below the low water mark of free pages or way
2412		 * above high water mark of used pv entries.
2413		 */
2414		if (cnt.v_free_count < cnt.v_free_reserved ||
2415		    pv_entry_count > pv_entry_high_water)
2416			break;
2417
2418		pdnxt = (addr + NBPDR) & ~PDRMASK;
2419		ptepindex = addr >> PDRSHIFT;
2420
2421		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2422		if (srcptepaddr == 0)
2423			continue;
2424
2425		if (srcptepaddr & PG_PS) {
2426			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2427				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2428				dst_pmap->pm_stats.resident_count +=
2429				    NBPDR / PAGE_SIZE;
2430			}
2431			continue;
2432		}
2433
2434		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2435		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2436			continue;
2437
2438		if (pdnxt > end_addr)
2439			pdnxt = end_addr;
2440
2441		src_pte = vtopte(addr);
2442		while (addr < pdnxt) {
2443			pt_entry_t ptetemp;
2444			ptetemp = *src_pte;
2445			/*
2446			 * we only virtual copy managed pages
2447			 */
2448			if ((ptetemp & PG_MANAGED) != 0) {
2449				/*
2450				 * We have to check after allocpte for the
2451				 * pte still being around...  allocpte can
2452				 * block.
2453				 */
2454				dstmpte = pmap_allocpte(dst_pmap, addr);
2455				dst_pte = pmap_pte_quick(dst_pmap, addr);
2456				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2457					/*
2458					 * Clear the modified and
2459					 * accessed (referenced) bits
2460					 * during the copy.
2461					 */
2462					m = PHYS_TO_VM_PAGE(ptetemp);
2463					*dst_pte = ptetemp & ~(PG_M | PG_A);
2464					dst_pmap->pm_stats.resident_count++;
2465					pmap_insert_entry(dst_pmap, addr,
2466						dstmpte, m);
2467	 			} else {
2468					vm_page_lock_queues();
2469					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2470					vm_page_unlock_queues();
2471				}
2472				if (dstmpte->hold_count >= srcmpte->hold_count)
2473					break;
2474			}
2475			addr += PAGE_SIZE;
2476			src_pte++;
2477		}
2478	}
2479}
2480
2481#ifdef SMP
2482
2483/*
2484 *	pmap_zpi_switchout*()
2485 *
2486 *	These functions allow us to avoid doing IPIs alltogether in certain
2487 *	temporary page-mapping situations (page zeroing).  Instead to deal
2488 *	with being preempted and moved onto a different cpu we invalidate
2489 *	the page when the scheduler switches us in.  This does not occur
2490 *	very often so we remain relatively optimal with very little effort.
2491 */
2492static void
2493pmap_zpi_switchout12(void)
2494{
2495	invlpg((u_int)CADDR1);
2496	invlpg((u_int)CADDR2);
2497}
2498
2499static void
2500pmap_zpi_switchout2(void)
2501{
2502	invlpg((u_int)CADDR2);
2503}
2504
2505static void
2506pmap_zpi_switchout3(void)
2507{
2508	invlpg((u_int)CADDR3);
2509}
2510
2511#endif
2512
2513static __inline void
2514pagezero(void *page)
2515{
2516#if defined(I686_CPU)
2517	if (cpu_class == CPUCLASS_686) {
2518#if defined(CPU_ENABLED_SSE)
2519		if (cpu_feature & CPUID_SSE2)
2520			sse2_pagezero(page);
2521		else
2522#endif
2523			i686_pagezero(page);
2524	} else
2525#endif
2526		bzero(page, PAGE_SIZE);
2527}
2528
2529static __inline void
2530invlcaddr(void *caddr)
2531{
2532#ifdef I386_CPU
2533	invltlb();
2534#else
2535	invlpg((u_int)caddr);
2536#endif
2537}
2538
2539/*
2540 *	pmap_zero_page zeros the specified hardware page by mapping
2541 *	the page into KVM and using bzero to clear its contents.
2542 */
2543void
2544pmap_zero_page(vm_page_t m)
2545{
2546
2547	mtx_lock(&CMAPCADDR12_lock);
2548	if (*CMAP2)
2549		panic("pmap_zero_page: CMAP2 busy");
2550#ifdef SMP
2551	curthread->td_pcb->pcb_switchout = pmap_zpi_switchout2;
2552#endif
2553	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2554	pagezero(CADDR2);
2555	*CMAP2 = 0;
2556	invlcaddr(CADDR2);
2557#ifdef SMP
2558	curthread->td_pcb->pcb_switchout = NULL;
2559#endif
2560	mtx_unlock(&CMAPCADDR12_lock);
2561}
2562
2563/*
2564 *	pmap_zero_page_area zeros the specified hardware page by mapping
2565 *	the page into KVM and using bzero to clear its contents.
2566 *
2567 *	off and size may not cover an area beyond a single hardware page.
2568 */
2569void
2570pmap_zero_page_area(vm_page_t m, int off, int size)
2571{
2572
2573	mtx_lock(&CMAPCADDR12_lock);
2574	if (*CMAP2)
2575		panic("pmap_zero_page: CMAP2 busy");
2576#ifdef SMP
2577	curthread->td_pcb->pcb_switchout = pmap_zpi_switchout2;
2578#endif
2579	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2580	if (off == 0 && size == PAGE_SIZE)
2581		pagezero(CADDR2);
2582	else
2583		bzero((char *)CADDR2 + off, size);
2584	*CMAP2 = 0;
2585	invlcaddr(CADDR2);
2586#ifdef SMP
2587	curthread->td_pcb->pcb_switchout = NULL;
2588#endif
2589	mtx_unlock(&CMAPCADDR12_lock);
2590}
2591
2592/*
2593 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2594 *	the page into KVM and using bzero to clear its contents.  This
2595 *	is intended to be called from the vm_pagezero process only and
2596 *	outside of Giant.
2597 */
2598void
2599pmap_zero_page_idle(vm_page_t m)
2600{
2601
2602	if (*CMAP3)
2603		panic("pmap_zero_page: CMAP3 busy");
2604#ifdef SMP
2605	curthread->td_pcb->pcb_switchout = pmap_zpi_switchout3;
2606#endif
2607	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2608	pagezero(CADDR3);
2609	*CMAP3 = 0;
2610	invlcaddr(CADDR3);
2611#ifdef SMP
2612	curthread->td_pcb->pcb_switchout = NULL;
2613#endif
2614}
2615
2616/*
2617 *	pmap_copy_page copies the specified (machine independent)
2618 *	page by mapping the page into virtual memory and using
2619 *	bcopy to copy the page, one machine dependent page at a
2620 *	time.
2621 */
2622void
2623pmap_copy_page(vm_page_t src, vm_page_t dst)
2624{
2625
2626	mtx_lock(&CMAPCADDR12_lock);
2627	if (*CMAP1)
2628		panic("pmap_copy_page: CMAP1 busy");
2629	if (*CMAP2)
2630		panic("pmap_copy_page: CMAP2 busy");
2631#ifdef SMP
2632	curthread->td_pcb->pcb_switchout = pmap_zpi_switchout12;
2633#endif
2634	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2635	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2636	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2637	*CMAP1 = 0;
2638	*CMAP2 = 0;
2639#ifdef I386_CPU
2640	invltlb();
2641#else
2642	invlpg((u_int)CADDR1);
2643	invlpg((u_int)CADDR2);
2644#endif
2645#ifdef SMP
2646	curthread->td_pcb->pcb_switchout = NULL;
2647#endif
2648	mtx_unlock(&CMAPCADDR12_lock);
2649}
2650
2651/*
2652 * Returns true if the pmap's pv is one of the first
2653 * 16 pvs linked to from this page.  This count may
2654 * be changed upwards or downwards in the future; it
2655 * is only necessary that true be returned for a small
2656 * subset of pmaps for proper page aging.
2657 */
2658boolean_t
2659pmap_page_exists_quick(pmap, m)
2660	pmap_t pmap;
2661	vm_page_t m;
2662{
2663	pv_entry_t pv;
2664	int loops = 0;
2665	int s;
2666
2667	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2668		return FALSE;
2669
2670	s = splvm();
2671	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2672	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2673		if (pv->pv_pmap == pmap) {
2674			splx(s);
2675			return TRUE;
2676		}
2677		loops++;
2678		if (loops >= 16)
2679			break;
2680	}
2681	splx(s);
2682	return (FALSE);
2683}
2684
2685#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2686/*
2687 * Remove all pages from specified address space
2688 * this aids process exit speeds.  Also, this code
2689 * is special cased for current process only, but
2690 * can have the more generic (and slightly slower)
2691 * mode enabled.  This is much faster than pmap_remove
2692 * in the case of running down an entire address space.
2693 */
2694void
2695pmap_remove_pages(pmap, sva, eva)
2696	pmap_t pmap;
2697	vm_offset_t sva, eva;
2698{
2699	pt_entry_t *pte, tpte;
2700	vm_page_t m;
2701	pv_entry_t pv, npv;
2702	int s;
2703
2704#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2705	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2706		printf("warning: pmap_remove_pages called with non-current pmap\n");
2707		return;
2708	}
2709#endif
2710	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2711	s = splvm();
2712	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2713
2714		if (pv->pv_va >= eva || pv->pv_va < sva) {
2715			npv = TAILQ_NEXT(pv, pv_plist);
2716			continue;
2717		}
2718
2719#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2720		pte = vtopte(pv->pv_va);
2721#else
2722		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2723#endif
2724		tpte = *pte;
2725
2726		if (tpte == 0) {
2727			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2728							pte, pv->pv_va);
2729			panic("bad pte");
2730		}
2731
2732/*
2733 * We cannot remove wired pages from a process' mapping at this time
2734 */
2735		if (tpte & PG_W) {
2736			npv = TAILQ_NEXT(pv, pv_plist);
2737			continue;
2738		}
2739
2740		m = PHYS_TO_VM_PAGE(tpte);
2741		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2742		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2743		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2744
2745		KASSERT(m < &vm_page_array[vm_page_array_size],
2746			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2747
2748		pv->pv_pmap->pm_stats.resident_count--;
2749
2750		pte_clear(pte);
2751
2752		/*
2753		 * Update the vm_page_t clean and reference bits.
2754		 */
2755		if (tpte & PG_M) {
2756			vm_page_dirty(m);
2757		}
2758
2759		npv = TAILQ_NEXT(pv, pv_plist);
2760		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2761
2762		m->md.pv_list_count--;
2763		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2764		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2765			vm_page_flag_clear(m, PG_WRITEABLE);
2766		}
2767
2768		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2769		free_pv_entry(pv);
2770	}
2771	splx(s);
2772	pmap_invalidate_all(pmap);
2773}
2774
2775/*
2776 *	pmap_is_modified:
2777 *
2778 *	Return whether or not the specified physical page was modified
2779 *	in any physical maps.
2780 */
2781boolean_t
2782pmap_is_modified(vm_page_t m)
2783{
2784	pv_entry_t pv;
2785	pt_entry_t *pte;
2786	int s;
2787
2788	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2789		return FALSE;
2790
2791	s = splvm();
2792	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2793	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2794		/*
2795		 * if the bit being tested is the modified bit, then
2796		 * mark clean_map and ptes as never
2797		 * modified.
2798		 */
2799		if (!pmap_track_modified(pv->pv_va))
2800			continue;
2801#if defined(PMAP_DIAGNOSTIC)
2802		if (!pv->pv_pmap) {
2803			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2804			continue;
2805		}
2806#endif
2807		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2808		if (*pte & PG_M) {
2809			splx(s);
2810			return TRUE;
2811		}
2812	}
2813	splx(s);
2814	return (FALSE);
2815}
2816
2817/*
2818 *	Clear the given bit in each of the given page's ptes.
2819 */
2820static __inline void
2821pmap_clear_ptes(vm_page_t m, int bit)
2822{
2823	register pv_entry_t pv;
2824	pt_entry_t pbits, *pte;
2825	int s;
2826
2827	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2828	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2829		return;
2830
2831	s = splvm();
2832	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2833	/*
2834	 * Loop over all current mappings setting/clearing as appropos If
2835	 * setting RO do we need to clear the VAC?
2836	 */
2837	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2838		/*
2839		 * don't write protect pager mappings
2840		 */
2841		if (bit == PG_RW) {
2842			if (!pmap_track_modified(pv->pv_va))
2843				continue;
2844		}
2845
2846#if defined(PMAP_DIAGNOSTIC)
2847		if (!pv->pv_pmap) {
2848			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2849			continue;
2850		}
2851#endif
2852
2853		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2854		pbits = *pte;
2855		if (pbits & bit) {
2856			if (bit == PG_RW) {
2857				if (pbits & PG_M) {
2858					vm_page_dirty(m);
2859				}
2860				pte_store(pte, pbits & ~(PG_M|PG_RW));
2861			} else {
2862				pte_store(pte, pbits & ~bit);
2863			}
2864			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2865		}
2866	}
2867	if (bit == PG_RW)
2868		vm_page_flag_clear(m, PG_WRITEABLE);
2869	splx(s);
2870}
2871
2872/*
2873 *      pmap_page_protect:
2874 *
2875 *      Lower the permission for all mappings to a given page.
2876 */
2877void
2878pmap_page_protect(vm_page_t m, vm_prot_t prot)
2879{
2880	if ((prot & VM_PROT_WRITE) == 0) {
2881		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2882			pmap_clear_ptes(m, PG_RW);
2883		} else {
2884			pmap_remove_all(m);
2885		}
2886	}
2887}
2888
2889/*
2890 *	pmap_ts_referenced:
2891 *
2892 *	Return a count of reference bits for a page, clearing those bits.
2893 *	It is not necessary for every reference bit to be cleared, but it
2894 *	is necessary that 0 only be returned when there are truly no
2895 *	reference bits set.
2896 *
2897 *	XXX: The exact number of bits to check and clear is a matter that
2898 *	should be tested and standardized at some point in the future for
2899 *	optimal aging of shared pages.
2900 */
2901int
2902pmap_ts_referenced(vm_page_t m)
2903{
2904	register pv_entry_t pv, pvf, pvn;
2905	pt_entry_t *pte;
2906	pt_entry_t v;
2907	int s;
2908	int rtval = 0;
2909
2910	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2911		return (rtval);
2912
2913	s = splvm();
2914	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2915	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2916
2917		pvf = pv;
2918
2919		do {
2920			pvn = TAILQ_NEXT(pv, pv_list);
2921
2922			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2923
2924			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2925
2926			if (!pmap_track_modified(pv->pv_va))
2927				continue;
2928
2929			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2930
2931			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2932				pte_store(pte, v & ~PG_A);
2933				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2934
2935				rtval++;
2936				if (rtval > 4) {
2937					break;
2938				}
2939			}
2940		} while ((pv = pvn) != NULL && pv != pvf);
2941	}
2942	splx(s);
2943
2944	return (rtval);
2945}
2946
2947/*
2948 *	Clear the modify bits on the specified physical page.
2949 */
2950void
2951pmap_clear_modify(vm_page_t m)
2952{
2953	pmap_clear_ptes(m, PG_M);
2954}
2955
2956/*
2957 *	pmap_clear_reference:
2958 *
2959 *	Clear the reference bit on the specified physical page.
2960 */
2961void
2962pmap_clear_reference(vm_page_t m)
2963{
2964	pmap_clear_ptes(m, PG_A);
2965}
2966
2967/*
2968 * Miscellaneous support routines follow
2969 */
2970
2971static void
2972i386_protection_init()
2973{
2974	register int *kp, prot;
2975
2976	kp = protection_codes;
2977	for (prot = 0; prot < 8; prot++) {
2978		switch (prot) {
2979		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2980			/*
2981			 * Read access is also 0. There isn't any execute bit,
2982			 * so just make it readable.
2983			 */
2984		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2985		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2986		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2987			*kp++ = 0;
2988			break;
2989		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2990		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2991		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2992		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2993			*kp++ = PG_RW;
2994			break;
2995		}
2996	}
2997}
2998
2999/*
3000 * Map a set of physical memory pages into the kernel virtual
3001 * address space. Return a pointer to where it is mapped. This
3002 * routine is intended to be used for mapping device memory,
3003 * NOT real memory.
3004 */
3005void *
3006pmap_mapdev(pa, size)
3007	vm_paddr_t pa;
3008	vm_size_t size;
3009{
3010	vm_offset_t va, tmpva, offset;
3011
3012	offset = pa & PAGE_MASK;
3013	size = roundup(offset + size, PAGE_SIZE);
3014
3015	va = kmem_alloc_nofault(kernel_map, size);
3016	if (!va)
3017		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3018
3019	pa = pa & PG_FRAME;
3020	for (tmpva = va; size > 0; ) {
3021		pmap_kenter(tmpva, pa);
3022		size -= PAGE_SIZE;
3023		tmpva += PAGE_SIZE;
3024		pa += PAGE_SIZE;
3025	}
3026	pmap_invalidate_range(kernel_pmap, va, tmpva);
3027	return ((void *)(va + offset));
3028}
3029
3030void
3031pmap_unmapdev(va, size)
3032	vm_offset_t va;
3033	vm_size_t size;
3034{
3035	vm_offset_t base, offset, tmpva;
3036	pt_entry_t *pte;
3037
3038	base = va & PG_FRAME;
3039	offset = va & PAGE_MASK;
3040	size = roundup(offset + size, PAGE_SIZE);
3041	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3042		pte = vtopte(tmpva);
3043		pte_clear(pte);
3044	}
3045	pmap_invalidate_range(kernel_pmap, va, tmpva);
3046	kmem_free(kernel_map, base, size);
3047}
3048
3049/*
3050 * perform the pmap work for mincore
3051 */
3052int
3053pmap_mincore(pmap, addr)
3054	pmap_t pmap;
3055	vm_offset_t addr;
3056{
3057	pt_entry_t *ptep, pte;
3058	vm_page_t m;
3059	int val = 0;
3060
3061	ptep = pmap_pte_quick(pmap, addr);
3062	if (ptep == 0) {
3063		return 0;
3064	}
3065
3066	if ((pte = *ptep) != 0) {
3067		vm_paddr_t pa;
3068
3069		val = MINCORE_INCORE;
3070		if ((pte & PG_MANAGED) == 0)
3071			return val;
3072
3073		pa = pte & PG_FRAME;
3074
3075		m = PHYS_TO_VM_PAGE(pa);
3076
3077		/*
3078		 * Modified by us
3079		 */
3080		if (pte & PG_M)
3081			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3082		else {
3083			/*
3084			 * Modified by someone else
3085			 */
3086			vm_page_lock_queues();
3087			if (m->dirty || pmap_is_modified(m))
3088				val |= MINCORE_MODIFIED_OTHER;
3089			vm_page_unlock_queues();
3090		}
3091		/*
3092		 * Referenced by us
3093		 */
3094		if (pte & PG_A)
3095			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3096		else {
3097			/*
3098			 * Referenced by someone else
3099			 */
3100			vm_page_lock_queues();
3101			if ((m->flags & PG_REFERENCED) ||
3102			    pmap_ts_referenced(m)) {
3103				val |= MINCORE_REFERENCED_OTHER;
3104				vm_page_flag_set(m, PG_REFERENCED);
3105			}
3106			vm_page_unlock_queues();
3107		}
3108	}
3109	return val;
3110}
3111
3112void
3113pmap_activate(struct thread *td)
3114{
3115	struct proc *p = td->td_proc;
3116	pmap_t	pmap, oldpmap;
3117	u_int32_t  cr3;
3118
3119	critical_enter();
3120	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3121	oldpmap = PCPU_GET(curpmap);
3122#if defined(SMP)
3123	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3124	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3125#else
3126	oldpmap->pm_active &= ~1;
3127	pmap->pm_active |= 1;
3128#endif
3129#ifdef PAE
3130	cr3 = vtophys(pmap->pm_pdpt);
3131#else
3132	cr3 = vtophys(pmap->pm_pdir);
3133#endif
3134	/* XXXKSE this is wrong.
3135	 * pmap_activate is for the current thread on the current cpu
3136	 */
3137	if (p->p_flag & P_SA) {
3138		/* Make sure all other cr3 entries are updated. */
3139		/* what if they are running?  XXXKSE (maybe abort them) */
3140		FOREACH_THREAD_IN_PROC(p, td) {
3141			td->td_pcb->pcb_cr3 = cr3;
3142		}
3143	} else {
3144		td->td_pcb->pcb_cr3 = cr3;
3145	}
3146	load_cr3(cr3);
3147	PCPU_SET(curpmap, pmap);
3148	critical_exit();
3149}
3150
3151vm_offset_t
3152pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3153{
3154
3155	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3156		return addr;
3157	}
3158
3159	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3160	return addr;
3161}
3162
3163
3164#if defined(PMAP_DEBUG)
3165pmap_pid_dump(int pid)
3166{
3167	pmap_t pmap;
3168	struct proc *p;
3169	int npte = 0;
3170	int index;
3171
3172	sx_slock(&allproc_lock);
3173	LIST_FOREACH(p, &allproc, p_list) {
3174		if (p->p_pid != pid)
3175			continue;
3176
3177		if (p->p_vmspace) {
3178			int i,j;
3179			index = 0;
3180			pmap = vmspace_pmap(p->p_vmspace);
3181			for (i = 0; i < NPDEPTD; i++) {
3182				pd_entry_t *pde;
3183				pt_entry_t *pte;
3184				vm_offset_t base = i << PDRSHIFT;
3185
3186				pde = &pmap->pm_pdir[i];
3187				if (pde && pmap_pde_v(pde)) {
3188					for (j = 0; j < NPTEPG; j++) {
3189						vm_offset_t va = base + (j << PAGE_SHIFT);
3190						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3191							if (index) {
3192								index = 0;
3193								printf("\n");
3194							}
3195							sx_sunlock(&allproc_lock);
3196							return npte;
3197						}
3198						pte = pmap_pte_quick(pmap, va);
3199						if (pte && pmap_pte_v(pte)) {
3200							pt_entry_t pa;
3201							vm_page_t m;
3202							pa = *pte;
3203							m = PHYS_TO_VM_PAGE(pa);
3204							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3205								va, pa, m->hold_count, m->wire_count, m->flags);
3206							npte++;
3207							index++;
3208							if (index >= 2) {
3209								index = 0;
3210								printf("\n");
3211							} else {
3212								printf(" ");
3213							}
3214						}
3215					}
3216				}
3217			}
3218		}
3219	}
3220	sx_sunlock(&allproc_lock);
3221	return npte;
3222}
3223#endif
3224
3225#if defined(DEBUG)
3226
3227static void	pads(pmap_t pm);
3228void		pmap_pvdump(vm_offset_t pa);
3229
3230/* print address space of pmap*/
3231static void
3232pads(pm)
3233	pmap_t pm;
3234{
3235	int i, j;
3236	vm_paddr_t va;
3237	pt_entry_t *ptep;
3238
3239	if (pm == kernel_pmap)
3240		return;
3241	for (i = 0; i < NPDEPTD; i++)
3242		if (pm->pm_pdir[i])
3243			for (j = 0; j < NPTEPG; j++) {
3244				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3245				if (pm == kernel_pmap && va < KERNBASE)
3246					continue;
3247				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3248					continue;
3249				ptep = pmap_pte_quick(pm, va);
3250				if (pmap_pte_v(ptep))
3251					printf("%x:%x ", va, *ptep);
3252			};
3253
3254}
3255
3256void
3257pmap_pvdump(pa)
3258	vm_paddr_t pa;
3259{
3260	pv_entry_t pv;
3261	vm_page_t m;
3262
3263	printf("pa %x", pa);
3264	m = PHYS_TO_VM_PAGE(pa);
3265	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3266		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3267		pads(pv->pv_pmap);
3268	}
3269	printf(" ");
3270}
3271#endif
3272