pmap.c revision 120322
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43/*-
44 * Copyright (c) 2003 Networks Associates Technology, Inc.
45 * All rights reserved.
46 *
47 * This software was developed for the FreeBSD Project by Jake Burkholder,
48 * Safeport Network Services, and Network Associates Laboratories, the
49 * Security Research Division of Network Associates, Inc. under
50 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
51 * CHATS research program.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 *    notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 *    notice, this list of conditions and the following disclaimer in the
60 *    documentation and/or other materials provided with the distribution.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 120322 2003-09-21 21:36:13Z alc $");
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_pmap.h"
105#include "opt_msgbuf.h"
106#include "opt_kstack_pages.h"
107
108#include <sys/param.h>
109#include <sys/systm.h>
110#include <sys/kernel.h>
111#include <sys/lock.h>
112#include <sys/mman.h>
113#include <sys/msgbuf.h>
114#include <sys/mutex.h>
115#include <sys/proc.h>
116#include <sys/sx.h>
117#include <sys/user.h>
118#include <sys/vmmeter.h>
119#include <sys/sysctl.h>
120#ifdef SMP
121#include <sys/smp.h>
122#endif
123
124#include <vm/vm.h>
125#include <vm/vm_param.h>
126#include <vm/vm_kern.h>
127#include <vm/vm_page.h>
128#include <vm/vm_map.h>
129#include <vm/vm_object.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_pageout.h>
132#include <vm/vm_pager.h>
133#include <vm/uma.h>
134
135#include <machine/cpu.h>
136#include <machine/cputypes.h>
137#include <machine/md_var.h>
138#include <machine/specialreg.h>
139#if defined(SMP) || defined(APIC_IO)
140#include <machine/smp.h>
141#include <machine/apic.h>
142#include <machine/segments.h>
143#include <machine/tss.h>
144#endif /* SMP || APIC_IO */
145
146#define PMAP_KEEP_PDIRS
147#ifndef PMAP_SHPGPERPROC
148#define PMAP_SHPGPERPROC 200
149#endif
150
151#if defined(DIAGNOSTIC)
152#define PMAP_DIAGNOSTIC
153#endif
154
155#define MINPV 2048
156
157#if !defined(PMAP_DIAGNOSTIC)
158#define PMAP_INLINE __inline
159#else
160#define PMAP_INLINE
161#endif
162
163/*
164 * Get PDEs and PTEs for user/kernel address space
165 */
166#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
167#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
168
169#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
170#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
171#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
172#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
173#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
174
175#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
176#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
177
178/*
179 * Given a map and a machine independent protection code,
180 * convert to a vax protection code.
181 */
182#define pte_prot(m, p)	(protection_codes[p])
183static int protection_codes[8];
184
185struct pmap kernel_pmap_store;
186LIST_HEAD(pmaplist, pmap);
187static struct pmaplist allpmaps;
188static struct mtx allpmaps_lock;
189#ifdef SMP
190static struct mtx lazypmap_lock;
191#endif
192
193vm_paddr_t avail_start;	/* PA of first available physical page */
194vm_paddr_t avail_end;	/* PA of last available physical page */
195vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
196vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
197static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
198static int pgeflag;		/* PG_G or-in */
199static int pseflag;		/* PG_PS or-in */
200
201static int nkpt;
202vm_offset_t kernel_vm_end;
203extern u_int32_t KERNend;
204
205#ifdef PAE
206static uma_zone_t pdptzone;
207#endif
208
209/*
210 * Data for the pv entry allocation mechanism
211 */
212static uma_zone_t pvzone;
213static struct vm_object pvzone_obj;
214static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
215int pmap_pagedaemon_waken;
216
217/*
218 * All those kernel PT submaps that BSD is so fond of
219 */
220pt_entry_t *CMAP1 = 0;
221static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
222caddr_t CADDR1 = 0, ptvmmap = 0;
223static caddr_t CADDR2, CADDR3;
224static struct mtx CMAPCADDR12_lock;
225static pt_entry_t *msgbufmap;
226struct msgbuf *msgbufp = 0;
227
228/*
229 * Crashdump maps.
230 */
231static pt_entry_t *pt_crashdumpmap;
232static caddr_t crashdumpmap;
233
234#ifdef SMP
235extern pt_entry_t *SMPpt;
236#endif
237static pt_entry_t *PMAP1 = 0;
238static pt_entry_t *PADDR1 = 0;
239
240static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
241static pv_entry_t get_pv_entry(void);
242static void	i386_protection_init(void);
243static void	pmap_clear_ptes(vm_page_t m, int bit)
244    __always_inline;
245
246static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
247static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
248static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
249					vm_offset_t va);
250static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
251		vm_page_t mpte, vm_page_t m);
252
253static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
254
255static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
256static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
257static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
258static void *pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
259#ifdef PAE
260static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
261#endif
262
263static pd_entry_t pdir4mb;
264
265CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
266CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
267
268/*
269 * Move the kernel virtual free pointer to the next
270 * 4MB.  This is used to help improve performance
271 * by using a large (4MB) page for much of the kernel
272 * (.text, .data, .bss)
273 */
274static vm_offset_t
275pmap_kmem_choose(vm_offset_t addr)
276{
277	vm_offset_t newaddr = addr;
278
279#ifdef I686_CPU_not	/* Problem seems to have gone away */
280	/* Deal with un-resolved Pentium4 issues */
281	if (cpu_class == CPUCLASS_686 &&
282	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
283	    (cpu_id & 0xf00) == 0xf00)
284		return newaddr;
285#endif
286#ifndef DISABLE_PSE
287	if (cpu_feature & CPUID_PSE)
288		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
289#endif
290	return newaddr;
291}
292
293/*
294 *	Bootstrap the system enough to run with virtual memory.
295 *
296 *	On the i386 this is called after mapping has already been enabled
297 *	and just syncs the pmap module with what has already been done.
298 *	[We can't call it easily with mapping off since the kernel is not
299 *	mapped with PA == VA, hence we would have to relocate every address
300 *	from the linked base (virtual) address "KERNBASE" to the actual
301 *	(physical) address starting relative to 0]
302 */
303void
304pmap_bootstrap(firstaddr, loadaddr)
305	vm_paddr_t firstaddr;
306	vm_paddr_t loadaddr;
307{
308	vm_offset_t va;
309	pt_entry_t *pte;
310	int i;
311
312	avail_start = firstaddr;
313
314	/*
315	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
316	 * large. It should instead be correctly calculated in locore.s and
317	 * not based on 'first' (which is a physical address, not a virtual
318	 * address, for the start of unused physical memory). The kernel
319	 * page tables are NOT double mapped and thus should not be included
320	 * in this calculation.
321	 */
322	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
323	virtual_avail = pmap_kmem_choose(virtual_avail);
324
325	virtual_end = VM_MAX_KERNEL_ADDRESS;
326
327	/*
328	 * Initialize protection array.
329	 */
330	i386_protection_init();
331
332	/*
333	 * Initialize the kernel pmap (which is statically allocated).
334	 */
335	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
336#ifdef PAE
337	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
338#endif
339	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
340	TAILQ_INIT(&kernel_pmap->pm_pvlist);
341	LIST_INIT(&allpmaps);
342#ifdef SMP
343	mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
344#endif
345	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
346	mtx_lock_spin(&allpmaps_lock);
347	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
348	mtx_unlock_spin(&allpmaps_lock);
349	nkpt = NKPT;
350
351	/*
352	 * Reserve some special page table entries/VA space for temporary
353	 * mapping of pages.
354	 */
355#define	SYSMAP(c, p, v, n)	\
356	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
357
358	va = virtual_avail;
359	pte = vtopte(va);
360
361	/*
362	 * CMAP1/CMAP2 are used for zeroing and copying pages.
363	 * CMAP3 is used for the idle process page zeroing.
364	 */
365	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
366	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
367	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
368
369	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
370
371	/*
372	 * Crashdump maps.
373	 */
374	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
375
376	/*
377	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
378	 * XXX ptmmap is not used.
379	 */
380	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
381
382	/*
383	 * msgbufp is used to map the system message buffer.
384	 * XXX msgbufmap is not used.
385	 */
386	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
387	       atop(round_page(MSGBUF_SIZE)))
388
389	/*
390	 * ptemap is used for pmap_pte_quick
391	 */
392	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
393
394	virtual_avail = va;
395
396	*CMAP1 = *CMAP2 = 0;
397	for (i = 0; i < NKPT; i++)
398		PTD[i] = 0;
399
400	pgeflag = 0;
401#ifndef DISABLE_PG_G
402	if (cpu_feature & CPUID_PGE)
403		pgeflag = PG_G;
404#endif
405#ifdef I686_CPU_not	/* Problem seems to have gone away */
406	/* Deal with un-resolved Pentium4 issues */
407	if (cpu_class == CPUCLASS_686 &&
408	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
409	    (cpu_id & 0xf00) == 0xf00) {
410		printf("Warning: Pentium 4 cpu: PG_G disabled (global flag)\n");
411		pgeflag = 0;
412	}
413#endif
414
415/*
416 * Initialize the 4MB page size flag
417 */
418	pseflag = 0;
419/*
420 * The 4MB page version of the initial
421 * kernel page mapping.
422 */
423	pdir4mb = 0;
424
425#ifndef DISABLE_PSE
426	if (cpu_feature & CPUID_PSE)
427		pseflag = PG_PS;
428#endif
429#ifdef I686_CPU_not	/* Problem seems to have gone away */
430	/* Deal with un-resolved Pentium4 issues */
431	if (cpu_class == CPUCLASS_686 &&
432	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
433	    (cpu_id & 0xf00) == 0xf00) {
434		printf("Warning: Pentium 4 cpu: PG_PS disabled (4MB pages)\n");
435		pseflag = 0;
436	}
437#endif
438#ifndef DISABLE_PSE
439	if (pseflag) {
440		pd_entry_t ptditmp;
441		/*
442		 * Note that we have enabled PSE mode
443		 */
444		ptditmp = *(PTmap + i386_btop(KERNBASE));
445		ptditmp &= ~(NBPDR - 1);
446		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
447		pdir4mb = ptditmp;
448	}
449#endif
450#ifndef SMP
451	/*
452	 * Turn on PGE/PSE.  SMP does this later on since the
453	 * 4K page tables are required for AP boot (for now).
454	 * XXX fixme.
455	 */
456	pmap_set_opt();
457#endif
458#ifdef SMP
459	if (cpu_apic_address == 0)
460		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
461
462	/* local apic is mapped on last page */
463	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
464	    (cpu_apic_address & PG_FRAME));
465#endif
466	invltlb();
467}
468
469/*
470 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
471 * BSP will run this after all the AP's have started up.
472 */
473void
474pmap_set_opt(void)
475{
476	pt_entry_t *pte;
477	vm_offset_t va, endva;
478
479	if (pgeflag && (cpu_feature & CPUID_PGE)) {
480		load_cr4(rcr4() | CR4_PGE);
481		invltlb();		/* Insurance */
482	}
483#ifndef DISABLE_PSE
484	if (pseflag && (cpu_feature & CPUID_PSE)) {
485		load_cr4(rcr4() | CR4_PSE);
486		invltlb();		/* Insurance */
487	}
488#endif
489	if (PCPU_GET(cpuid) == 0) {
490#ifndef DISABLE_PSE
491		if (pdir4mb) {
492			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
493			invltlb();	/* Insurance */
494		}
495#endif
496		if (pgeflag) {
497			/* Turn on PG_G for text, data, bss pages. */
498			va = (vm_offset_t)btext;
499#ifndef DISABLE_PSE
500			if (pseflag && (cpu_feature & CPUID_PSE)) {
501				if (va < KERNBASE + (1 << PDRSHIFT))
502					va = KERNBASE + (1 << PDRSHIFT);
503			}
504#endif
505			endva = KERNBASE + KERNend;
506			while (va < endva) {
507				pte = vtopte(va);
508				if (*pte)
509					*pte |= pgeflag;
510				va += PAGE_SIZE;
511			}
512			invltlb();	/* Insurance */
513		}
514		/*
515		 * We do not need to broadcast the invltlb here, because
516		 * each AP does it the moment it is released from the boot
517		 * lock.  See ap_init().
518		 */
519	}
520}
521
522static void *
523pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
524{
525	*flags = UMA_SLAB_PRIV;
526	return (void *)kmem_alloc(kernel_map, bytes);
527}
528
529#ifdef PAE
530static void *
531pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
532{
533	*flags = UMA_SLAB_PRIV;
534	return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
535}
536#endif
537
538/*
539 *	Initialize the pmap module.
540 *	Called by vm_init, to initialize any structures that the pmap
541 *	system needs to map virtual memory.
542 *	pmap_init has been enhanced to support in a fairly consistant
543 *	way, discontiguous physical memory.
544 */
545void
546pmap_init(phys_start, phys_end)
547	vm_paddr_t phys_start, phys_end;
548{
549	int i;
550	int initial_pvs;
551
552	/*
553	 * Allocate memory for random pmap data structures.  Includes the
554	 * pv_head_table.
555	 */
556
557	for(i = 0; i < vm_page_array_size; i++) {
558		vm_page_t m;
559
560		m = &vm_page_array[i];
561		TAILQ_INIT(&m->md.pv_list);
562		m->md.pv_list_count = 0;
563	}
564
565	/*
566	 * init the pv free list
567	 */
568	initial_pvs = vm_page_array_size;
569	if (initial_pvs < MINPV)
570		initial_pvs = MINPV;
571	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
572	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
573	uma_zone_set_allocf(pvzone, pmap_pv_allocf);
574	uma_prealloc(pvzone, initial_pvs);
575
576#ifdef PAE
577	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
578	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
579	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
580	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
581#endif
582
583	/*
584	 * Now it is safe to enable pv_table recording.
585	 */
586	pmap_initialized = TRUE;
587}
588
589/*
590 * Initialize the address space (zone) for the pv_entries.  Set a
591 * high water mark so that the system can recover from excessive
592 * numbers of pv entries.
593 */
594void
595pmap_init2()
596{
597	int shpgperproc = PMAP_SHPGPERPROC;
598
599	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
600	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
601	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
602	pv_entry_high_water = 9 * (pv_entry_max / 10);
603	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
604}
605
606
607/***************************************************
608 * Low level helper routines.....
609 ***************************************************/
610
611#if defined(PMAP_DIAGNOSTIC)
612
613/*
614 * This code checks for non-writeable/modified pages.
615 * This should be an invalid condition.
616 */
617static int
618pmap_nw_modified(pt_entry_t ptea)
619{
620	int pte;
621
622	pte = (int) ptea;
623
624	if ((pte & (PG_M|PG_RW)) == PG_M)
625		return 1;
626	else
627		return 0;
628}
629#endif
630
631
632/*
633 * this routine defines the region(s) of memory that should
634 * not be tested for the modified bit.
635 */
636static PMAP_INLINE int
637pmap_track_modified(vm_offset_t va)
638{
639	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
640		return 1;
641	else
642		return 0;
643}
644
645#ifdef I386_CPU
646/*
647 * i386 only has "invalidate everything" and no SMP to worry about.
648 */
649PMAP_INLINE void
650pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
651{
652
653	if (pmap == kernel_pmap || pmap->pm_active)
654		invltlb();
655}
656
657PMAP_INLINE void
658pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
659{
660
661	if (pmap == kernel_pmap || pmap->pm_active)
662		invltlb();
663}
664
665PMAP_INLINE void
666pmap_invalidate_all(pmap_t pmap)
667{
668
669	if (pmap == kernel_pmap || pmap->pm_active)
670		invltlb();
671}
672#else /* !I386_CPU */
673#ifdef SMP
674/*
675 * For SMP, these functions have to use the IPI mechanism for coherence.
676 */
677void
678pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
679{
680	u_int cpumask;
681	u_int other_cpus;
682
683	critical_enter();
684	/*
685	 * We need to disable interrupt preemption but MUST NOT have
686	 * interrupts disabled here.
687	 * XXX we may need to hold schedlock to get a coherent pm_active
688	 */
689	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
690		invlpg(va);
691		smp_invlpg(va);
692	} else {
693		cpumask = PCPU_GET(cpumask);
694		other_cpus = PCPU_GET(other_cpus);
695		if (pmap->pm_active & cpumask)
696			invlpg(va);
697		if (pmap->pm_active & other_cpus)
698			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
699	}
700	critical_exit();
701}
702
703void
704pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
705{
706	u_int cpumask;
707	u_int other_cpus;
708	vm_offset_t addr;
709
710	critical_enter();
711	/*
712	 * We need to disable interrupt preemption but MUST NOT have
713	 * interrupts disabled here.
714	 * XXX we may need to hold schedlock to get a coherent pm_active
715	 */
716	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
717		for (addr = sva; addr < eva; addr += PAGE_SIZE)
718			invlpg(addr);
719		smp_invlpg_range(sva, eva);
720	} else {
721		cpumask = PCPU_GET(cpumask);
722		other_cpus = PCPU_GET(other_cpus);
723		if (pmap->pm_active & cpumask)
724			for (addr = sva; addr < eva; addr += PAGE_SIZE)
725				invlpg(addr);
726		if (pmap->pm_active & other_cpus)
727			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
728			    sva, eva);
729	}
730	critical_exit();
731}
732
733void
734pmap_invalidate_all(pmap_t pmap)
735{
736	u_int cpumask;
737	u_int other_cpus;
738
739	critical_enter();
740	/*
741	 * We need to disable interrupt preemption but MUST NOT have
742	 * interrupts disabled here.
743	 * XXX we may need to hold schedlock to get a coherent pm_active
744	 */
745	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
746		invltlb();
747		smp_invltlb();
748	} else {
749		cpumask = PCPU_GET(cpumask);
750		other_cpus = PCPU_GET(other_cpus);
751		if (pmap->pm_active & cpumask)
752			invltlb();
753		if (pmap->pm_active & other_cpus)
754			smp_masked_invltlb(pmap->pm_active & other_cpus);
755	}
756	critical_exit();
757}
758#else /* !SMP */
759/*
760 * Normal, non-SMP, 486+ invalidation functions.
761 * We inline these within pmap.c for speed.
762 */
763PMAP_INLINE void
764pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
765{
766
767	if (pmap == kernel_pmap || pmap->pm_active)
768		invlpg(va);
769}
770
771PMAP_INLINE void
772pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
773{
774	vm_offset_t addr;
775
776	if (pmap == kernel_pmap || pmap->pm_active)
777		for (addr = sva; addr < eva; addr += PAGE_SIZE)
778			invlpg(addr);
779}
780
781PMAP_INLINE void
782pmap_invalidate_all(pmap_t pmap)
783{
784
785	if (pmap == kernel_pmap || pmap->pm_active)
786		invltlb();
787}
788#endif /* !SMP */
789#endif /* !I386_CPU */
790
791/*
792 * Are we current address space or kernel?
793 */
794static __inline int
795pmap_is_current(pmap_t pmap)
796{
797	return (pmap == kernel_pmap ||
798	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME));
799}
800
801/*
802 * Super fast pmap_pte routine best used when scanning
803 * the pv lists.  This eliminates many coarse-grained
804 * invltlb calls.  Note that many of the pv list
805 * scans are across different pmaps.  It is very wasteful
806 * to do an entire invltlb for checking a single mapping.
807 */
808pt_entry_t *
809pmap_pte_quick(pmap, va)
810	register pmap_t pmap;
811	vm_offset_t va;
812{
813	pd_entry_t newpf;
814	pd_entry_t *pde;
815
816	pde = pmap_pde(pmap, va);
817	if (*pde & PG_PS)
818		return (pde);
819	if (*pde != 0) {
820		/* are we current address space or kernel? */
821		if (pmap_is_current(pmap))
822			return vtopte(va);
823		newpf = *pde & PG_FRAME;
824		if (((*PMAP1) & PG_FRAME) != newpf) {
825			*PMAP1 = newpf | PG_RW | PG_V;
826			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
827		}
828		return PADDR1 + (i386_btop(va) & (NPTEPG - 1));
829	}
830	return (0);
831}
832
833/*
834 *	Routine:	pmap_extract
835 *	Function:
836 *		Extract the physical page address associated
837 *		with the given map/virtual_address pair.
838 */
839vm_paddr_t
840pmap_extract(pmap, va)
841	register pmap_t pmap;
842	vm_offset_t va;
843{
844	vm_paddr_t rtval;
845	pt_entry_t *pte;
846	pd_entry_t pde;
847
848	if (pmap == 0)
849		return 0;
850	pde = pmap->pm_pdir[va >> PDRSHIFT];
851	if (pde != 0) {
852		if ((pde & PG_PS) != 0) {
853			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
854			return rtval;
855		}
856		pte = pmap_pte_quick(pmap, va);
857		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
858		return rtval;
859	}
860	return 0;
861
862}
863
864/*
865 *	Routine:	pmap_extract_and_hold
866 *	Function:
867 *		Atomically extract and hold the physical page
868 *		with the given pmap and virtual address pair
869 *		if that mapping permits the given protection.
870 */
871vm_page_t
872pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
873{
874	vm_paddr_t pa;
875	vm_page_t m;
876
877	m = NULL;
878	mtx_lock(&Giant);
879	if ((pa = pmap_extract(pmap, va)) != 0) {
880		m = PHYS_TO_VM_PAGE(pa);
881		vm_page_lock_queues();
882		vm_page_hold(m);
883		vm_page_unlock_queues();
884	}
885	mtx_unlock(&Giant);
886	return (m);
887}
888
889/***************************************************
890 * Low level mapping routines.....
891 ***************************************************/
892
893/*
894 * Add a wired page to the kva.
895 * Note: not SMP coherent.
896 */
897PMAP_INLINE void
898pmap_kenter(vm_offset_t va, vm_paddr_t pa)
899{
900	pt_entry_t *pte;
901
902	pte = vtopte(va);
903	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
904}
905
906/*
907 * Remove a page from the kernel pagetables.
908 * Note: not SMP coherent.
909 */
910PMAP_INLINE void
911pmap_kremove(vm_offset_t va)
912{
913	pt_entry_t *pte;
914
915	pte = vtopte(va);
916	pte_clear(pte);
917}
918
919/*
920 *	Used to map a range of physical addresses into kernel
921 *	virtual address space.
922 *
923 *	The value passed in '*virt' is a suggested virtual address for
924 *	the mapping. Architectures which can support a direct-mapped
925 *	physical to virtual region can return the appropriate address
926 *	within that region, leaving '*virt' unchanged. Other
927 *	architectures should map the pages starting at '*virt' and
928 *	update '*virt' with the first usable address after the mapped
929 *	region.
930 */
931vm_offset_t
932pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
933{
934	vm_offset_t va, sva;
935
936	va = sva = *virt;
937	while (start < end) {
938		pmap_kenter(va, start);
939		va += PAGE_SIZE;
940		start += PAGE_SIZE;
941	}
942	pmap_invalidate_range(kernel_pmap, sva, va);
943	*virt = va;
944	return (sva);
945}
946
947
948/*
949 * Add a list of wired pages to the kva
950 * this routine is only used for temporary
951 * kernel mappings that do not need to have
952 * page modification or references recorded.
953 * Note that old mappings are simply written
954 * over.  The page *must* be wired.
955 * Note: SMP coherent.  Uses a ranged shootdown IPI.
956 */
957void
958pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
959{
960	vm_offset_t va;
961
962	va = sva;
963	while (count-- > 0) {
964		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
965		va += PAGE_SIZE;
966		m++;
967	}
968	pmap_invalidate_range(kernel_pmap, sva, va);
969}
970
971/*
972 * This routine tears out page mappings from the
973 * kernel -- it is meant only for temporary mappings.
974 * Note: SMP coherent.  Uses a ranged shootdown IPI.
975 */
976void
977pmap_qremove(vm_offset_t sva, int count)
978{
979	vm_offset_t va;
980
981	va = sva;
982	while (count-- > 0) {
983		pmap_kremove(va);
984		va += PAGE_SIZE;
985	}
986	pmap_invalidate_range(kernel_pmap, sva, va);
987}
988
989/***************************************************
990 * Page table page management routines.....
991 ***************************************************/
992
993/*
994 * This routine unholds page table pages, and if the hold count
995 * drops to zero, then it decrements the wire count.
996 */
997static int
998_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
999{
1000
1001	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1002		vm_page_lock_queues();
1003
1004	if (m->hold_count == 0) {
1005		vm_offset_t pteva;
1006		/*
1007		 * unmap the page table page
1008		 */
1009		pmap->pm_pdir[m->pindex] = 0;
1010		--pmap->pm_stats.resident_count;
1011		if (pmap_is_current(pmap)) {
1012			/*
1013			 * Do an invltlb to make the invalidated mapping
1014			 * take effect immediately.
1015			 */
1016			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1017			pmap_invalidate_page(pmap, pteva);
1018		}
1019
1020		/*
1021		 * If the page is finally unwired, simply free it.
1022		 */
1023		--m->wire_count;
1024		if (m->wire_count == 0) {
1025			vm_page_busy(m);
1026			vm_page_free_zero(m);
1027			atomic_subtract_int(&cnt.v_wire_count, 1);
1028		}
1029		return 1;
1030	}
1031	return 0;
1032}
1033
1034static PMAP_INLINE int
1035pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1036{
1037	vm_page_unhold(m);
1038	if (m->hold_count == 0)
1039		return _pmap_unwire_pte_hold(pmap, m);
1040	else
1041		return 0;
1042}
1043
1044/*
1045 * After removing a page table entry, this routine is used to
1046 * conditionally free the page, and manage the hold/wire counts.
1047 */
1048static int
1049pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1050{
1051
1052	if (va >= VM_MAXUSER_ADDRESS)
1053		return 0;
1054
1055	return pmap_unwire_pte_hold(pmap, mpte);
1056}
1057
1058void
1059pmap_pinit0(pmap)
1060	struct pmap *pmap;
1061{
1062
1063	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1064#ifdef PAE
1065	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1066#endif
1067	pmap->pm_active = 0;
1068	PCPU_SET(curpmap, pmap);
1069	TAILQ_INIT(&pmap->pm_pvlist);
1070	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1071	mtx_lock_spin(&allpmaps_lock);
1072	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1073	mtx_unlock_spin(&allpmaps_lock);
1074}
1075
1076/*
1077 * Initialize a preallocated and zeroed pmap structure,
1078 * such as one in a vmspace structure.
1079 */
1080void
1081pmap_pinit(pmap)
1082	register struct pmap *pmap;
1083{
1084	vm_page_t m, ptdpg[NPGPTD];
1085	vm_paddr_t pa;
1086	static int color;
1087	int i;
1088
1089	/*
1090	 * No need to allocate page table space yet but we do need a valid
1091	 * page directory table.
1092	 */
1093	if (pmap->pm_pdir == NULL) {
1094		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_pageable(kernel_map,
1095		    NBPTD);
1096#ifdef PAE
1097		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1098		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1099		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1100		    ("pmap_pinit: pdpt misaligned"));
1101		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1102		    ("pmap_pinit: pdpt above 4g"));
1103#endif
1104	}
1105
1106	/*
1107	 * allocate object for the ptes
1108	 */
1109	if (pmap->pm_pteobj == NULL)
1110		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI +
1111		    NPGPTD);
1112
1113	/*
1114	 * allocate the page directory page(s)
1115	 */
1116	for (i = 0; i < NPGPTD;) {
1117		m = vm_page_alloc(NULL, color++,
1118		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1119		    VM_ALLOC_ZERO);
1120		if (m == NULL)
1121			VM_WAIT;
1122		else {
1123			vm_page_lock_queues();
1124			vm_page_flag_clear(m, PG_BUSY);
1125			m->valid = VM_PAGE_BITS_ALL;
1126			vm_page_unlock_queues();
1127			ptdpg[i++] = m;
1128		}
1129	}
1130
1131	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1132
1133	for (i = 0; i < NPGPTD; i++) {
1134		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1135			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1136	}
1137
1138	mtx_lock_spin(&allpmaps_lock);
1139	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1140	mtx_unlock_spin(&allpmaps_lock);
1141	/* Wire in kernel global address entries. */
1142	/* XXX copies current process, does not fill in MPPTDI */
1143	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1144#ifdef SMP
1145	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1146#endif
1147
1148	/* install self-referential address mapping entry(s) */
1149	for (i = 0; i < NPGPTD; i++) {
1150		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1151		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1152#ifdef PAE
1153		pmap->pm_pdpt[i] = pa | PG_V;
1154#endif
1155	}
1156
1157	pmap->pm_active = 0;
1158	TAILQ_INIT(&pmap->pm_pvlist);
1159	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1160}
1161
1162/*
1163 * Wire in kernel global address entries.  To avoid a race condition
1164 * between pmap initialization and pmap_growkernel, this procedure
1165 * should be called after the vmspace is attached to the process
1166 * but before this pmap is activated.
1167 */
1168void
1169pmap_pinit2(pmap)
1170	struct pmap *pmap;
1171{
1172	/* XXX: Remove this stub when no longer called */
1173}
1174
1175/*
1176 * this routine is called if the page table page is not
1177 * mapped correctly.
1178 */
1179static vm_page_t
1180_pmap_allocpte(pmap, ptepindex)
1181	pmap_t	pmap;
1182	unsigned ptepindex;
1183{
1184	vm_paddr_t ptepa;
1185	vm_page_t m;
1186
1187	/*
1188	 * Find or fabricate a new pagetable page
1189	 */
1190	VM_OBJECT_LOCK(pmap->pm_pteobj);
1191	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1192	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1193	if ((m->flags & PG_ZERO) == 0)
1194		pmap_zero_page(m);
1195
1196	KASSERT(m->queue == PQ_NONE,
1197		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1198
1199	/*
1200	 * Increment the hold count for the page table page
1201	 * (denoting a new mapping.)
1202	 */
1203	m->hold_count++;
1204
1205	/*
1206	 * Map the pagetable page into the process address space, if
1207	 * it isn't already there.
1208	 */
1209
1210	pmap->pm_stats.resident_count++;
1211
1212	ptepa = VM_PAGE_TO_PHYS(m);
1213	pmap->pm_pdir[ptepindex] =
1214		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1215
1216	vm_page_lock_queues();
1217	m->valid = VM_PAGE_BITS_ALL;
1218	vm_page_flag_clear(m, PG_ZERO);
1219	vm_page_wakeup(m);
1220	vm_page_unlock_queues();
1221	VM_OBJECT_UNLOCK(pmap->pm_pteobj);
1222
1223	return m;
1224}
1225
1226static vm_page_t
1227pmap_allocpte(pmap_t pmap, vm_offset_t va)
1228{
1229	unsigned ptepindex;
1230	pd_entry_t ptepa;
1231	vm_page_t m;
1232
1233	/*
1234	 * Calculate pagetable page index
1235	 */
1236	ptepindex = va >> PDRSHIFT;
1237
1238	/*
1239	 * Get the page directory entry
1240	 */
1241	ptepa = pmap->pm_pdir[ptepindex];
1242
1243	/*
1244	 * This supports switching from a 4MB page to a
1245	 * normal 4K page.
1246	 */
1247	if (ptepa & PG_PS) {
1248		pmap->pm_pdir[ptepindex] = 0;
1249		ptepa = 0;
1250		pmap_invalidate_all(kernel_pmap);
1251	}
1252
1253	/*
1254	 * If the page table page is mapped, we just increment the
1255	 * hold count, and activate it.
1256	 */
1257	if (ptepa) {
1258		m = PHYS_TO_VM_PAGE(ptepa);
1259		m->hold_count++;
1260		return m;
1261	}
1262	/*
1263	 * Here if the pte page isn't mapped, or if it has been deallocated.
1264	 */
1265	return _pmap_allocpte(pmap, ptepindex);
1266}
1267
1268
1269/***************************************************
1270* Pmap allocation/deallocation routines.
1271 ***************************************************/
1272
1273#ifdef SMP
1274/*
1275 * Deal with a SMP shootdown of other users of the pmap that we are
1276 * trying to dispose of.  This can be a bit hairy.
1277 */
1278static u_int *lazymask;
1279static u_int lazyptd;
1280static volatile u_int lazywait;
1281
1282void pmap_lazyfix_action(void);
1283
1284void
1285pmap_lazyfix_action(void)
1286{
1287	u_int mymask = PCPU_GET(cpumask);
1288
1289	if (rcr3() == lazyptd)
1290		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1291	atomic_clear_int(lazymask, mymask);
1292	atomic_store_rel_int(&lazywait, 1);
1293}
1294
1295static void
1296pmap_lazyfix_self(u_int mymask)
1297{
1298
1299	if (rcr3() == lazyptd)
1300		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1301	atomic_clear_int(lazymask, mymask);
1302}
1303
1304
1305static void
1306pmap_lazyfix(pmap_t pmap)
1307{
1308	u_int mymask = PCPU_GET(cpumask);
1309	u_int mask;
1310	register u_int spins;
1311
1312	while ((mask = pmap->pm_active) != 0) {
1313		spins = 50000000;
1314		mask = mask & -mask;	/* Find least significant set bit */
1315		mtx_lock_spin(&lazypmap_lock);
1316#ifdef PAE
1317		lazyptd = vtophys(pmap->pm_pdpt);
1318#else
1319		lazyptd = vtophys(pmap->pm_pdir);
1320#endif
1321		if (mask == mymask) {
1322			lazymask = &pmap->pm_active;
1323			pmap_lazyfix_self(mymask);
1324		} else {
1325			atomic_store_rel_int((u_int *)&lazymask,
1326			    (u_int)&pmap->pm_active);
1327			atomic_store_rel_int(&lazywait, 0);
1328			ipi_selected(mask, IPI_LAZYPMAP);
1329			while (lazywait == 0) {
1330				ia32_pause();
1331				if (--spins == 0)
1332					break;
1333			}
1334		}
1335		mtx_unlock_spin(&lazypmap_lock);
1336		if (spins == 0)
1337			printf("pmap_lazyfix: spun for 50000000\n");
1338	}
1339}
1340
1341#else	/* SMP */
1342
1343/*
1344 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1345 * unlikely to have to even execute this code, including the fact
1346 * that the cleanup is deferred until the parent does a wait(2), which
1347 * means that another userland process has run.
1348 */
1349static void
1350pmap_lazyfix(pmap_t pmap)
1351{
1352	u_int cr3;
1353
1354	cr3 = vtophys(pmap->pm_pdir);
1355	if (cr3 == rcr3()) {
1356		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1357		pmap->pm_active &= ~(PCPU_GET(cpumask));
1358	}
1359}
1360#endif	/* SMP */
1361
1362/*
1363 * Release any resources held by the given physical map.
1364 * Called when a pmap initialized by pmap_pinit is being released.
1365 * Should only be called if the map contains no valid mappings.
1366 */
1367void
1368pmap_release(pmap_t pmap)
1369{
1370	vm_page_t m, ptdpg[NPGPTD];
1371	int i;
1372
1373	KASSERT(pmap->pm_stats.resident_count == 0,
1374	    ("pmap_release: pmap resident count %ld != 0",
1375	    pmap->pm_stats.resident_count));
1376
1377	pmap_lazyfix(pmap);
1378	mtx_lock_spin(&allpmaps_lock);
1379	LIST_REMOVE(pmap, pm_list);
1380	mtx_unlock_spin(&allpmaps_lock);
1381
1382	for (i = 0; i < NPGPTD; i++)
1383		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1384
1385	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1386	    sizeof(*pmap->pm_pdir));
1387#ifdef SMP
1388	pmap->pm_pdir[MPPTDI] = 0;
1389#endif
1390
1391	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1392
1393	vm_page_lock_queues();
1394	for (i = 0; i < NPGPTD; i++) {
1395		m = ptdpg[i];
1396#ifdef PAE
1397		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1398		    ("pmap_release: got wrong ptd page"));
1399#endif
1400		m->wire_count--;
1401		atomic_subtract_int(&cnt.v_wire_count, 1);
1402		vm_page_busy(m);
1403		vm_page_free_zero(m);
1404	}
1405	vm_page_unlock_queues();
1406}
1407
1408static int
1409kvm_size(SYSCTL_HANDLER_ARGS)
1410{
1411	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1412
1413	return sysctl_handle_long(oidp, &ksize, 0, req);
1414}
1415SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1416    0, 0, kvm_size, "IU", "Size of KVM");
1417
1418static int
1419kvm_free(SYSCTL_HANDLER_ARGS)
1420{
1421	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1422
1423	return sysctl_handle_long(oidp, &kfree, 0, req);
1424}
1425SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1426    0, 0, kvm_free, "IU", "Amount of KVM free");
1427
1428/*
1429 * grow the number of kernel page table entries, if needed
1430 */
1431void
1432pmap_growkernel(vm_offset_t addr)
1433{
1434	struct pmap *pmap;
1435	int s;
1436	vm_paddr_t ptppaddr;
1437	vm_page_t nkpg;
1438	pd_entry_t newpdir;
1439	pt_entry_t *pde;
1440
1441	s = splhigh();
1442	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1443	if (kernel_vm_end == 0) {
1444		kernel_vm_end = KERNBASE;
1445		nkpt = 0;
1446		while (pdir_pde(PTD, kernel_vm_end)) {
1447			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1448			nkpt++;
1449		}
1450	}
1451	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1452	while (kernel_vm_end < addr) {
1453		if (pdir_pde(PTD, kernel_vm_end)) {
1454			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1455			continue;
1456		}
1457
1458		/*
1459		 * This index is bogus, but out of the way
1460		 */
1461		nkpg = vm_page_alloc(NULL, nkpt,
1462		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1463		if (!nkpg)
1464			panic("pmap_growkernel: no memory to grow kernel");
1465
1466		nkpt++;
1467
1468		pmap_zero_page(nkpg);
1469		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1470		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1471		pdir_pde(PTD, kernel_vm_end) = newpdir;
1472
1473		mtx_lock_spin(&allpmaps_lock);
1474		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1475			pde = pmap_pde(pmap, kernel_vm_end);
1476			pde_store(pde, newpdir);
1477		}
1478		mtx_unlock_spin(&allpmaps_lock);
1479		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1480	}
1481	splx(s);
1482}
1483
1484
1485/***************************************************
1486 * page management routines.
1487 ***************************************************/
1488
1489/*
1490 * free the pv_entry back to the free list
1491 */
1492static PMAP_INLINE void
1493free_pv_entry(pv_entry_t pv)
1494{
1495	pv_entry_count--;
1496	uma_zfree(pvzone, pv);
1497}
1498
1499/*
1500 * get a new pv_entry, allocating a block from the system
1501 * when needed.
1502 * the memory allocation is performed bypassing the malloc code
1503 * because of the possibility of allocations at interrupt time.
1504 */
1505static pv_entry_t
1506get_pv_entry(void)
1507{
1508	pv_entry_count++;
1509	if (pv_entry_high_water &&
1510		(pv_entry_count > pv_entry_high_water) &&
1511		(pmap_pagedaemon_waken == 0)) {
1512		pmap_pagedaemon_waken = 1;
1513		wakeup (&vm_pages_needed);
1514	}
1515	return uma_zalloc(pvzone, M_NOWAIT);
1516}
1517
1518/*
1519 * If it is the first entry on the list, it is actually
1520 * in the header and we must copy the following entry up
1521 * to the header.  Otherwise we must search the list for
1522 * the entry.  In either case we free the now unused entry.
1523 */
1524
1525static int
1526pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1527{
1528	pv_entry_t pv;
1529	int rtval;
1530	int s;
1531
1532	s = splvm();
1533	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1534	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1535		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1536			if (pmap == pv->pv_pmap && va == pv->pv_va)
1537				break;
1538		}
1539	} else {
1540		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1541			if (va == pv->pv_va)
1542				break;
1543		}
1544	}
1545
1546	rtval = 0;
1547	if (pv) {
1548		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1549		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1550		m->md.pv_list_count--;
1551		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1552			vm_page_flag_clear(m, PG_WRITEABLE);
1553
1554		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1555		free_pv_entry(pv);
1556	}
1557
1558	splx(s);
1559	return rtval;
1560}
1561
1562/*
1563 * Create a pv entry for page at pa for
1564 * (pmap, va).
1565 */
1566static void
1567pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1568{
1569
1570	int s;
1571	pv_entry_t pv;
1572
1573	s = splvm();
1574	pv = get_pv_entry();
1575	pv->pv_va = va;
1576	pv->pv_pmap = pmap;
1577	pv->pv_ptem = mpte;
1578
1579	vm_page_lock_queues();
1580	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1581	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1582	m->md.pv_list_count++;
1583
1584	vm_page_unlock_queues();
1585	splx(s);
1586}
1587
1588/*
1589 * pmap_remove_pte: do the things to unmap a page in a process
1590 */
1591static int
1592pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1593{
1594	pt_entry_t oldpte;
1595	vm_page_t m, mpte;
1596
1597	oldpte = pte_load_clear(ptq);
1598	if (oldpte & PG_W)
1599		pmap->pm_stats.wired_count -= 1;
1600	/*
1601	 * Machines that don't support invlpg, also don't support
1602	 * PG_G.
1603	 */
1604	if (oldpte & PG_G)
1605		pmap_invalidate_page(kernel_pmap, va);
1606	pmap->pm_stats.resident_count -= 1;
1607	if (oldpte & PG_MANAGED) {
1608		m = PHYS_TO_VM_PAGE(oldpte);
1609		if (oldpte & PG_M) {
1610#if defined(PMAP_DIAGNOSTIC)
1611			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1612				printf(
1613	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1614				    va, oldpte);
1615			}
1616#endif
1617			if (pmap_track_modified(va))
1618				vm_page_dirty(m);
1619		}
1620		if (oldpte & PG_A)
1621			vm_page_flag_set(m, PG_REFERENCED);
1622		return pmap_remove_entry(pmap, m, va);
1623	} else {
1624		mpte = PHYS_TO_VM_PAGE(*pmap_pde(pmap, va));
1625		return pmap_unuse_pt(pmap, va, mpte);
1626	}
1627}
1628
1629/*
1630 * Remove a single page from a process address space
1631 */
1632static void
1633pmap_remove_page(pmap_t pmap, vm_offset_t va)
1634{
1635	pt_entry_t *pte;
1636
1637	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1638		return;
1639	pmap_remove_pte(pmap, pte, va);
1640	pmap_invalidate_page(pmap, va);
1641}
1642
1643/*
1644 *	Remove the given range of addresses from the specified map.
1645 *
1646 *	It is assumed that the start and end are properly
1647 *	rounded to the page size.
1648 */
1649void
1650pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1651{
1652	vm_offset_t pdnxt;
1653	pd_entry_t ptpaddr;
1654	pt_entry_t *pte;
1655	int anyvalid;
1656
1657	if (pmap == NULL)
1658		return;
1659
1660	if (pmap->pm_stats.resident_count == 0)
1661		return;
1662
1663	/*
1664	 * special handling of removing one page.  a very
1665	 * common operation and easy to short circuit some
1666	 * code.
1667	 */
1668	if ((sva + PAGE_SIZE == eva) &&
1669	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1670		pmap_remove_page(pmap, sva);
1671		return;
1672	}
1673
1674	anyvalid = 0;
1675
1676	for (; sva < eva; sva = pdnxt) {
1677		unsigned pdirindex;
1678
1679		/*
1680		 * Calculate index for next page table.
1681		 */
1682		pdnxt = (sva + NBPDR) & ~PDRMASK;
1683		if (pmap->pm_stats.resident_count == 0)
1684			break;
1685
1686		pdirindex = sva >> PDRSHIFT;
1687		ptpaddr = pmap->pm_pdir[pdirindex];
1688
1689		/*
1690		 * Weed out invalid mappings. Note: we assume that the page
1691		 * directory table is always allocated, and in kernel virtual.
1692		 */
1693		if (ptpaddr == 0)
1694			continue;
1695
1696		/*
1697		 * Check for large page.
1698		 */
1699		if ((ptpaddr & PG_PS) != 0) {
1700			pmap->pm_pdir[pdirindex] = 0;
1701			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1702			anyvalid = 1;
1703			continue;
1704		}
1705
1706		/*
1707		 * Limit our scan to either the end of the va represented
1708		 * by the current page table page, or to the end of the
1709		 * range being removed.
1710		 */
1711		if (pdnxt > eva)
1712			pdnxt = eva;
1713
1714		for (; sva != pdnxt; sva += PAGE_SIZE) {
1715			if ((pte = pmap_pte_quick(pmap, sva)) == NULL ||
1716			    *pte == 0)
1717				continue;
1718			anyvalid = 1;
1719			if (pmap_remove_pte(pmap, pte, sva))
1720				break;
1721		}
1722	}
1723
1724	if (anyvalid)
1725		pmap_invalidate_all(pmap);
1726}
1727
1728/*
1729 *	Routine:	pmap_remove_all
1730 *	Function:
1731 *		Removes this physical page from
1732 *		all physical maps in which it resides.
1733 *		Reflects back modify bits to the pager.
1734 *
1735 *	Notes:
1736 *		Original versions of this routine were very
1737 *		inefficient because they iteratively called
1738 *		pmap_remove (slow...)
1739 */
1740
1741void
1742pmap_remove_all(vm_page_t m)
1743{
1744	register pv_entry_t pv;
1745	pt_entry_t *pte, tpte;
1746	int s;
1747
1748#if defined(PMAP_DIAGNOSTIC)
1749	/*
1750	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1751	 */
1752	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1753		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1754		    VM_PAGE_TO_PHYS(m));
1755	}
1756#endif
1757	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1758	s = splvm();
1759	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1760		pv->pv_pmap->pm_stats.resident_count--;
1761		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1762		tpte = pte_load_clear(pte);
1763		if (tpte & PG_W)
1764			pv->pv_pmap->pm_stats.wired_count--;
1765		if (tpte & PG_A)
1766			vm_page_flag_set(m, PG_REFERENCED);
1767
1768		/*
1769		 * Update the vm_page_t clean and reference bits.
1770		 */
1771		if (tpte & PG_M) {
1772#if defined(PMAP_DIAGNOSTIC)
1773			if (pmap_nw_modified((pt_entry_t) tpte)) {
1774				printf(
1775	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1776				    pv->pv_va, tpte);
1777			}
1778#endif
1779			if (pmap_track_modified(pv->pv_va))
1780				vm_page_dirty(m);
1781		}
1782		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1783		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1784		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1785		m->md.pv_list_count--;
1786		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1787		free_pv_entry(pv);
1788	}
1789	vm_page_flag_clear(m, PG_WRITEABLE);
1790	splx(s);
1791}
1792
1793/*
1794 *	Set the physical protection on the
1795 *	specified range of this map as requested.
1796 */
1797void
1798pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1799{
1800	vm_offset_t pdnxt;
1801	pd_entry_t ptpaddr;
1802	int anychanged;
1803
1804	if (pmap == NULL)
1805		return;
1806
1807	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1808		pmap_remove(pmap, sva, eva);
1809		return;
1810	}
1811
1812	if (prot & VM_PROT_WRITE)
1813		return;
1814
1815	anychanged = 0;
1816
1817	for (; sva < eva; sva = pdnxt) {
1818		unsigned pdirindex;
1819
1820		pdnxt = (sva + NBPDR) & ~PDRMASK;
1821
1822		pdirindex = sva >> PDRSHIFT;
1823		ptpaddr = pmap->pm_pdir[pdirindex];
1824
1825		/*
1826		 * Weed out invalid mappings. Note: we assume that the page
1827		 * directory table is always allocated, and in kernel virtual.
1828		 */
1829		if (ptpaddr == 0)
1830			continue;
1831
1832		/*
1833		 * Check for large page.
1834		 */
1835		if ((ptpaddr & PG_PS) != 0) {
1836			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1837			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1838			anychanged = 1;
1839			continue;
1840		}
1841
1842		if (pdnxt > eva)
1843			pdnxt = eva;
1844
1845		for (; sva != pdnxt; sva += PAGE_SIZE) {
1846			pt_entry_t pbits;
1847			pt_entry_t *pte;
1848			vm_page_t m;
1849
1850			if ((pte = pmap_pte_quick(pmap, sva)) == NULL)
1851				continue;
1852			pbits = *pte;
1853			if (pbits & PG_MANAGED) {
1854				m = NULL;
1855				if (pbits & PG_A) {
1856					m = PHYS_TO_VM_PAGE(pbits);
1857					vm_page_flag_set(m, PG_REFERENCED);
1858					pbits &= ~PG_A;
1859				}
1860				if ((pbits & PG_M) != 0 &&
1861				    pmap_track_modified(sva)) {
1862					if (m == NULL)
1863						m = PHYS_TO_VM_PAGE(pbits);
1864					vm_page_dirty(m);
1865					pbits &= ~PG_M;
1866				}
1867			}
1868
1869			pbits &= ~PG_RW;
1870
1871			if (pbits != *pte) {
1872				pte_store(pte, pbits);
1873				anychanged = 1;
1874			}
1875		}
1876	}
1877	if (anychanged)
1878		pmap_invalidate_all(pmap);
1879}
1880
1881/*
1882 *	Insert the given physical page (p) at
1883 *	the specified virtual address (v) in the
1884 *	target physical map with the protection requested.
1885 *
1886 *	If specified, the page will be wired down, meaning
1887 *	that the related pte can not be reclaimed.
1888 *
1889 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1890 *	or lose information.  That is, this routine must actually
1891 *	insert this page into the given map NOW.
1892 */
1893void
1894pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1895	   boolean_t wired)
1896{
1897	vm_paddr_t pa;
1898	register pt_entry_t *pte;
1899	vm_paddr_t opa;
1900	pt_entry_t origpte, newpte;
1901	vm_page_t mpte;
1902
1903	if (pmap == NULL)
1904		return;
1905
1906	va &= PG_FRAME;
1907#ifdef PMAP_DIAGNOSTIC
1908	if (va > VM_MAX_KERNEL_ADDRESS)
1909		panic("pmap_enter: toobig");
1910	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1911		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1912#endif
1913
1914	mpte = NULL;
1915	/*
1916	 * In the case that a page table page is not
1917	 * resident, we are creating it here.
1918	 */
1919	if (va < VM_MAXUSER_ADDRESS) {
1920		mpte = pmap_allocpte(pmap, va);
1921	}
1922#if 0 && defined(PMAP_DIAGNOSTIC)
1923	else {
1924		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1925		origpte = *pdeaddr;
1926		if ((origpte & PG_V) == 0) {
1927			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1928				pmap->pm_pdir[PTDPTDI], origpte, va);
1929		}
1930	}
1931#endif
1932
1933	pte = pmap_pte_quick(pmap, va);
1934
1935	/*
1936	 * Page Directory table entry not valid, we need a new PT page
1937	 */
1938	if (pte == NULL) {
1939		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1940			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1941	}
1942
1943	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1944	origpte = *pte;
1945	opa = origpte & PG_FRAME;
1946
1947	if (origpte & PG_PS)
1948		panic("pmap_enter: attempted pmap_enter on 4MB page");
1949
1950	/*
1951	 * Mapping has not changed, must be protection or wiring change.
1952	 */
1953	if (origpte && (opa == pa)) {
1954		/*
1955		 * Wiring change, just update stats. We don't worry about
1956		 * wiring PT pages as they remain resident as long as there
1957		 * are valid mappings in them. Hence, if a user page is wired,
1958		 * the PT page will be also.
1959		 */
1960		if (wired && ((origpte & PG_W) == 0))
1961			pmap->pm_stats.wired_count++;
1962		else if (!wired && (origpte & PG_W))
1963			pmap->pm_stats.wired_count--;
1964
1965#if defined(PMAP_DIAGNOSTIC)
1966		if (pmap_nw_modified((pt_entry_t) origpte)) {
1967			printf(
1968	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1969			    va, origpte);
1970		}
1971#endif
1972
1973		/*
1974		 * Remove extra pte reference
1975		 */
1976		if (mpte)
1977			mpte->hold_count--;
1978
1979		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
1980			if ((origpte & PG_RW) == 0) {
1981				pte_store(pte, origpte | PG_RW);
1982				pmap_invalidate_page(pmap, va);
1983			}
1984			return;
1985		}
1986
1987		/*
1988		 * We might be turning off write access to the page,
1989		 * so we go ahead and sense modify status.
1990		 */
1991		if (origpte & PG_MANAGED) {
1992			if ((origpte & PG_M) && pmap_track_modified(va)) {
1993				vm_page_t om;
1994				om = PHYS_TO_VM_PAGE(opa);
1995				vm_page_dirty(om);
1996			}
1997			pa |= PG_MANAGED;
1998		}
1999		goto validate;
2000	}
2001	/*
2002	 * Mapping has changed, invalidate old range and fall through to
2003	 * handle validating new mapping.
2004	 */
2005	if (opa) {
2006		int err;
2007		vm_page_lock_queues();
2008		err = pmap_remove_pte(pmap, pte, va);
2009		vm_page_unlock_queues();
2010		if (err)
2011			panic("pmap_enter: pte vanished, va: 0x%x", va);
2012	}
2013
2014	/*
2015	 * Enter on the PV list if part of our managed memory. Note that we
2016	 * raise IPL while manipulating pv_table since pmap_enter can be
2017	 * called at interrupt time.
2018	 */
2019	if (pmap_initialized &&
2020	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2021		pmap_insert_entry(pmap, va, mpte, m);
2022		pa |= PG_MANAGED;
2023	}
2024
2025	/*
2026	 * Increment counters
2027	 */
2028	pmap->pm_stats.resident_count++;
2029	if (wired)
2030		pmap->pm_stats.wired_count++;
2031
2032validate:
2033	/*
2034	 * Now validate mapping with desired protection/wiring.
2035	 */
2036	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V);
2037
2038	if (wired)
2039		newpte |= PG_W;
2040	if (va < VM_MAXUSER_ADDRESS)
2041		newpte |= PG_U;
2042	if (pmap == kernel_pmap)
2043		newpte |= pgeflag;
2044
2045	/*
2046	 * if the mapping or permission bits are different, we need
2047	 * to update the pte.
2048	 */
2049	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2050		pte_store(pte, newpte | PG_A);
2051		/*if (origpte)*/ {
2052			pmap_invalidate_page(pmap, va);
2053		}
2054	}
2055}
2056
2057/*
2058 * this code makes some *MAJOR* assumptions:
2059 * 1. Current pmap & pmap exists.
2060 * 2. Not wired.
2061 * 3. Read access.
2062 * 4. No page table pages.
2063 * 5. Tlbflush is deferred to calling procedure.
2064 * 6. Page IS managed.
2065 * but is *MUCH* faster than pmap_enter...
2066 */
2067
2068vm_page_t
2069pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2070{
2071	pt_entry_t *pte;
2072	vm_paddr_t pa;
2073
2074	/*
2075	 * In the case that a page table page is not
2076	 * resident, we are creating it here.
2077	 */
2078	if (va < VM_MAXUSER_ADDRESS) {
2079		unsigned ptepindex;
2080		pd_entry_t ptepa;
2081
2082		/*
2083		 * Calculate pagetable page index
2084		 */
2085		ptepindex = va >> PDRSHIFT;
2086		if (mpte && (mpte->pindex == ptepindex)) {
2087			mpte->hold_count++;
2088		} else {
2089			/*
2090			 * Get the page directory entry
2091			 */
2092			ptepa = pmap->pm_pdir[ptepindex];
2093
2094			/*
2095			 * If the page table page is mapped, we just increment
2096			 * the hold count, and activate it.
2097			 */
2098			if (ptepa) {
2099				if (ptepa & PG_PS)
2100					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2101				mpte = PHYS_TO_VM_PAGE(ptepa);
2102				mpte->hold_count++;
2103			} else {
2104				mpte = _pmap_allocpte(pmap, ptepindex);
2105			}
2106		}
2107	} else {
2108		mpte = NULL;
2109	}
2110
2111	/*
2112	 * This call to vtopte makes the assumption that we are
2113	 * entering the page into the current pmap.  In order to support
2114	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2115	 * But that isn't as quick as vtopte.
2116	 */
2117	pte = vtopte(va);
2118	if (*pte) {
2119		if (mpte != NULL) {
2120			vm_page_lock_queues();
2121			pmap_unwire_pte_hold(pmap, mpte);
2122			vm_page_unlock_queues();
2123		}
2124		return 0;
2125	}
2126
2127	/*
2128	 * Enter on the PV list if part of our managed memory. Note that we
2129	 * raise IPL while manipulating pv_table since pmap_enter can be
2130	 * called at interrupt time.
2131	 */
2132	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2133		pmap_insert_entry(pmap, va, mpte, m);
2134
2135	/*
2136	 * Increment counters
2137	 */
2138	pmap->pm_stats.resident_count++;
2139
2140	pa = VM_PAGE_TO_PHYS(m);
2141
2142	/*
2143	 * Now validate mapping with RO protection
2144	 */
2145	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2146		pte_store(pte, pa | PG_V | PG_U);
2147	else
2148		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2149
2150	return mpte;
2151}
2152
2153/*
2154 * Make a temporary mapping for a physical address.  This is only intended
2155 * to be used for panic dumps.
2156 */
2157void *
2158pmap_kenter_temporary(vm_offset_t pa, int i)
2159{
2160	vm_offset_t va;
2161
2162	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2163	pmap_kenter(va, pa);
2164#ifndef I386_CPU
2165	invlpg(va);
2166#else
2167	invltlb();
2168#endif
2169	return ((void *)crashdumpmap);
2170}
2171
2172/*
2173 * This code maps large physical mmap regions into the
2174 * processor address space.  Note that some shortcuts
2175 * are taken, but the code works.
2176 */
2177void
2178pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2179		    vm_object_t object, vm_pindex_t pindex,
2180		    vm_size_t size)
2181{
2182	vm_page_t p;
2183
2184	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2185	KASSERT(object->type == OBJT_DEVICE,
2186	    ("pmap_object_init_pt: non-device object"));
2187	if (pseflag &&
2188	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2189		int i;
2190		vm_page_t m[1];
2191		unsigned int ptepindex;
2192		int npdes;
2193		pd_entry_t ptepa;
2194
2195		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2196			return;
2197retry:
2198		p = vm_page_lookup(object, pindex);
2199		if (p != NULL) {
2200			vm_page_lock_queues();
2201			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2202				goto retry;
2203		} else {
2204			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2205			if (p == NULL)
2206				return;
2207			m[0] = p;
2208
2209			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2210				vm_page_lock_queues();
2211				vm_page_free(p);
2212				vm_page_unlock_queues();
2213				return;
2214			}
2215
2216			p = vm_page_lookup(object, pindex);
2217			vm_page_lock_queues();
2218			vm_page_wakeup(p);
2219		}
2220		vm_page_unlock_queues();
2221
2222		ptepa = VM_PAGE_TO_PHYS(p);
2223		if (ptepa & (NBPDR - 1))
2224			return;
2225
2226		p->valid = VM_PAGE_BITS_ALL;
2227
2228		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2229		npdes = size >> PDRSHIFT;
2230		for(i = 0; i < npdes; i++) {
2231			pde_store(&pmap->pm_pdir[ptepindex],
2232			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2233			ptepa += NBPDR;
2234			ptepindex += 1;
2235		}
2236		pmap_invalidate_all(pmap);
2237	}
2238}
2239
2240/*
2241 * pmap_prefault provides a quick way of clustering
2242 * pagefaults into a processes address space.  It is a "cousin"
2243 * of pmap_object_init_pt, except it runs at page fault time instead
2244 * of mmap time.
2245 */
2246#define PFBAK 4
2247#define PFFOR 4
2248#define PAGEORDER_SIZE (PFBAK+PFFOR)
2249
2250static int pmap_prefault_pageorder[] = {
2251	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2252	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2253	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2254	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2255};
2256
2257void
2258pmap_prefault(pmap, addra, entry)
2259	pmap_t pmap;
2260	vm_offset_t addra;
2261	vm_map_entry_t entry;
2262{
2263	int i;
2264	vm_offset_t starta;
2265	vm_offset_t addr;
2266	vm_pindex_t pindex;
2267	vm_page_t m, mpte;
2268	vm_object_t object;
2269
2270	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2271		return;
2272
2273	object = entry->object.vm_object;
2274
2275	starta = addra - PFBAK * PAGE_SIZE;
2276	if (starta < entry->start) {
2277		starta = entry->start;
2278	} else if (starta > addra) {
2279		starta = 0;
2280	}
2281
2282	mpte = NULL;
2283	for (i = 0; i < PAGEORDER_SIZE; i++) {
2284		vm_object_t backing_object, lobject;
2285		pt_entry_t *pte;
2286
2287		addr = addra + pmap_prefault_pageorder[i];
2288		if (addr > addra + (PFFOR * PAGE_SIZE))
2289			addr = 0;
2290
2291		if (addr < starta || addr >= entry->end)
2292			continue;
2293
2294		if ((*pmap_pde(pmap, addr)) == 0)
2295			continue;
2296
2297		pte = vtopte(addr);
2298		if (*pte)
2299			continue;
2300
2301		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2302		lobject = object;
2303		VM_OBJECT_LOCK(lobject);
2304		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
2305		    lobject->type == OBJT_DEFAULT &&
2306		    (backing_object = lobject->backing_object) != NULL) {
2307			if (lobject->backing_object_offset & PAGE_MASK)
2308				break;
2309			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2310			VM_OBJECT_LOCK(backing_object);
2311			VM_OBJECT_UNLOCK(lobject);
2312			lobject = backing_object;
2313		}
2314		VM_OBJECT_UNLOCK(lobject);
2315		/*
2316		 * give-up when a page is not in memory
2317		 */
2318		if (m == NULL)
2319			break;
2320		vm_page_lock_queues();
2321		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2322			(m->busy == 0) &&
2323		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2324
2325			if ((m->queue - m->pc) == PQ_CACHE) {
2326				vm_page_deactivate(m);
2327			}
2328			vm_page_busy(m);
2329			vm_page_unlock_queues();
2330			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2331			vm_page_lock_queues();
2332			vm_page_wakeup(m);
2333		}
2334		vm_page_unlock_queues();
2335	}
2336}
2337
2338/*
2339 *	Routine:	pmap_change_wiring
2340 *	Function:	Change the wiring attribute for a map/virtual-address
2341 *			pair.
2342 *	In/out conditions:
2343 *			The mapping must already exist in the pmap.
2344 */
2345void
2346pmap_change_wiring(pmap, va, wired)
2347	register pmap_t pmap;
2348	vm_offset_t va;
2349	boolean_t wired;
2350{
2351	register pt_entry_t *pte;
2352
2353	if (pmap == NULL)
2354		return;
2355
2356	pte = pmap_pte_quick(pmap, va);
2357
2358	if (wired && !pmap_pte_w(pte))
2359		pmap->pm_stats.wired_count++;
2360	else if (!wired && pmap_pte_w(pte))
2361		pmap->pm_stats.wired_count--;
2362
2363	/*
2364	 * Wiring is not a hardware characteristic so there is no need to
2365	 * invalidate TLB.
2366	 */
2367	pmap_pte_set_w(pte, wired);
2368}
2369
2370
2371
2372/*
2373 *	Copy the range specified by src_addr/len
2374 *	from the source map to the range dst_addr/len
2375 *	in the destination map.
2376 *
2377 *	This routine is only advisory and need not do anything.
2378 */
2379
2380void
2381pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2382	  vm_offset_t src_addr)
2383{
2384	vm_offset_t addr;
2385	vm_offset_t end_addr = src_addr + len;
2386	vm_offset_t pdnxt;
2387	vm_page_t m;
2388
2389	if (dst_addr != src_addr)
2390		return;
2391
2392	if (!pmap_is_current(src_pmap))
2393		return;
2394
2395	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2396		pt_entry_t *src_pte, *dst_pte;
2397		vm_page_t dstmpte, srcmpte;
2398		pd_entry_t srcptepaddr;
2399		unsigned ptepindex;
2400
2401		if (addr >= UPT_MIN_ADDRESS)
2402			panic("pmap_copy: invalid to pmap_copy page tables\n");
2403
2404		/*
2405		 * Don't let optional prefaulting of pages make us go
2406		 * way below the low water mark of free pages or way
2407		 * above high water mark of used pv entries.
2408		 */
2409		if (cnt.v_free_count < cnt.v_free_reserved ||
2410		    pv_entry_count > pv_entry_high_water)
2411			break;
2412
2413		pdnxt = (addr + NBPDR) & ~PDRMASK;
2414		ptepindex = addr >> PDRSHIFT;
2415
2416		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2417		if (srcptepaddr == 0)
2418			continue;
2419
2420		if (srcptepaddr & PG_PS) {
2421			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2422				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2423				dst_pmap->pm_stats.resident_count +=
2424				    NBPDR / PAGE_SIZE;
2425			}
2426			continue;
2427		}
2428
2429		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2430		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2431			continue;
2432
2433		if (pdnxt > end_addr)
2434			pdnxt = end_addr;
2435
2436		src_pte = vtopte(addr);
2437		while (addr < pdnxt) {
2438			pt_entry_t ptetemp;
2439			ptetemp = *src_pte;
2440			/*
2441			 * we only virtual copy managed pages
2442			 */
2443			if ((ptetemp & PG_MANAGED) != 0) {
2444				/*
2445				 * We have to check after allocpte for the
2446				 * pte still being around...  allocpte can
2447				 * block.
2448				 */
2449				dstmpte = pmap_allocpte(dst_pmap, addr);
2450				dst_pte = pmap_pte_quick(dst_pmap, addr);
2451				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2452					/*
2453					 * Clear the modified and
2454					 * accessed (referenced) bits
2455					 * during the copy.
2456					 */
2457					m = PHYS_TO_VM_PAGE(ptetemp);
2458					*dst_pte = ptetemp & ~(PG_M | PG_A);
2459					dst_pmap->pm_stats.resident_count++;
2460					pmap_insert_entry(dst_pmap, addr,
2461						dstmpte, m);
2462	 			} else {
2463					vm_page_lock_queues();
2464					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2465					vm_page_unlock_queues();
2466				}
2467				if (dstmpte->hold_count >= srcmpte->hold_count)
2468					break;
2469			}
2470			addr += PAGE_SIZE;
2471			src_pte++;
2472		}
2473	}
2474}
2475
2476#ifdef SMP
2477
2478/*
2479 *	pmap_zpi_switchin*()
2480 *
2481 *	These functions allow us to avoid doing IPIs alltogether in certain
2482 *	temporary page-mapping situations (page zeroing).  Instead to deal
2483 *	with being preempted and moved onto a different cpu we invalidate
2484 *	the page when the scheduler switches us in.  This does not occur
2485 *	very often so we remain relatively optimal with very little effort.
2486 */
2487static void
2488pmap_zpi_switchin12(void)
2489{
2490	invlpg((u_int)CADDR1);
2491	invlpg((u_int)CADDR2);
2492}
2493
2494static void
2495pmap_zpi_switchin2(void)
2496{
2497	invlpg((u_int)CADDR2);
2498}
2499
2500static void
2501pmap_zpi_switchin3(void)
2502{
2503	invlpg((u_int)CADDR3);
2504}
2505
2506#endif
2507
2508/*
2509 *	pmap_zero_page zeros the specified hardware page by mapping
2510 *	the page into KVM and using bzero to clear its contents.
2511 */
2512void
2513pmap_zero_page(vm_page_t m)
2514{
2515
2516	mtx_lock(&CMAPCADDR12_lock);
2517	if (*CMAP2)
2518		panic("pmap_zero_page: CMAP2 busy");
2519	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2520#ifdef I386_CPU
2521	invltlb();
2522#else
2523#ifdef SMP
2524	curthread->td_switchin = pmap_zpi_switchin2;
2525#endif
2526	invlpg((u_int)CADDR2);
2527#endif
2528#if defined(I686_CPU)
2529	if (cpu_class == CPUCLASS_686)
2530		i686_pagezero(CADDR2);
2531	else
2532#endif
2533		bzero(CADDR2, PAGE_SIZE);
2534#ifdef SMP
2535	curthread->td_switchin = NULL;
2536#endif
2537	*CMAP2 = 0;
2538	mtx_unlock(&CMAPCADDR12_lock);
2539}
2540
2541/*
2542 *	pmap_zero_page_area zeros the specified hardware page by mapping
2543 *	the page into KVM and using bzero to clear its contents.
2544 *
2545 *	off and size may not cover an area beyond a single hardware page.
2546 */
2547void
2548pmap_zero_page_area(vm_page_t m, int off, int size)
2549{
2550
2551	mtx_lock(&CMAPCADDR12_lock);
2552	if (*CMAP2)
2553		panic("pmap_zero_page: CMAP2 busy");
2554	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2555#ifdef I386_CPU
2556	invltlb();
2557#else
2558#ifdef SMP
2559	curthread->td_switchin = pmap_zpi_switchin2;
2560#endif
2561	invlpg((u_int)CADDR2);
2562#endif
2563#if defined(I686_CPU)
2564	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2565		i686_pagezero(CADDR2);
2566	else
2567#endif
2568		bzero((char *)CADDR2 + off, size);
2569#ifdef SMP
2570	curthread->td_switchin = NULL;
2571#endif
2572	*CMAP2 = 0;
2573	mtx_unlock(&CMAPCADDR12_lock);
2574}
2575
2576/*
2577 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2578 *	the page into KVM and using bzero to clear its contents.  This
2579 *	is intended to be called from the vm_pagezero process only and
2580 *	outside of Giant.
2581 */
2582void
2583pmap_zero_page_idle(vm_page_t m)
2584{
2585
2586	if (*CMAP3)
2587		panic("pmap_zero_page: CMAP3 busy");
2588	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2589#ifdef I386_CPU
2590	invltlb();
2591#else
2592#ifdef SMP
2593	curthread->td_switchin = pmap_zpi_switchin3;
2594#endif
2595	invlpg((u_int)CADDR3);
2596#endif
2597#if defined(I686_CPU)
2598	if (cpu_class == CPUCLASS_686)
2599		i686_pagezero(CADDR3);
2600	else
2601#endif
2602		bzero(CADDR3, PAGE_SIZE);
2603#ifdef SMP
2604	curthread->td_switchin = NULL;
2605#endif
2606	*CMAP3 = 0;
2607}
2608
2609/*
2610 *	pmap_copy_page copies the specified (machine independent)
2611 *	page by mapping the page into virtual memory and using
2612 *	bcopy to copy the page, one machine dependent page at a
2613 *	time.
2614 */
2615void
2616pmap_copy_page(vm_page_t src, vm_page_t dst)
2617{
2618
2619	mtx_lock(&CMAPCADDR12_lock);
2620	if (*CMAP1)
2621		panic("pmap_copy_page: CMAP1 busy");
2622	if (*CMAP2)
2623		panic("pmap_copy_page: CMAP2 busy");
2624	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2625	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2626#ifdef I386_CPU
2627	invltlb();
2628#else
2629#ifdef SMP
2630	curthread->td_switchin = pmap_zpi_switchin12;
2631#endif
2632	invlpg((u_int)CADDR1);
2633	invlpg((u_int)CADDR2);
2634#endif
2635	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2636#ifdef SMP
2637	curthread->td_switchin = NULL;
2638#endif
2639	*CMAP1 = 0;
2640	*CMAP2 = 0;
2641	mtx_unlock(&CMAPCADDR12_lock);
2642}
2643
2644/*
2645 * Returns true if the pmap's pv is one of the first
2646 * 16 pvs linked to from this page.  This count may
2647 * be changed upwards or downwards in the future; it
2648 * is only necessary that true be returned for a small
2649 * subset of pmaps for proper page aging.
2650 */
2651boolean_t
2652pmap_page_exists_quick(pmap, m)
2653	pmap_t pmap;
2654	vm_page_t m;
2655{
2656	pv_entry_t pv;
2657	int loops = 0;
2658	int s;
2659
2660	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2661		return FALSE;
2662
2663	s = splvm();
2664	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2665	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2666		if (pv->pv_pmap == pmap) {
2667			splx(s);
2668			return TRUE;
2669		}
2670		loops++;
2671		if (loops >= 16)
2672			break;
2673	}
2674	splx(s);
2675	return (FALSE);
2676}
2677
2678#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2679/*
2680 * Remove all pages from specified address space
2681 * this aids process exit speeds.  Also, this code
2682 * is special cased for current process only, but
2683 * can have the more generic (and slightly slower)
2684 * mode enabled.  This is much faster than pmap_remove
2685 * in the case of running down an entire address space.
2686 */
2687void
2688pmap_remove_pages(pmap, sva, eva)
2689	pmap_t pmap;
2690	vm_offset_t sva, eva;
2691{
2692	pt_entry_t *pte, tpte;
2693	vm_page_t m;
2694	pv_entry_t pv, npv;
2695	int s;
2696
2697#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2698	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2699		printf("warning: pmap_remove_pages called with non-current pmap\n");
2700		return;
2701	}
2702#endif
2703	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2704	s = splvm();
2705	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2706
2707		if (pv->pv_va >= eva || pv->pv_va < sva) {
2708			npv = TAILQ_NEXT(pv, pv_plist);
2709			continue;
2710		}
2711
2712#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2713		pte = vtopte(pv->pv_va);
2714#else
2715		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2716#endif
2717		tpte = *pte;
2718
2719		if (tpte == 0) {
2720			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2721							pte, pv->pv_va);
2722			panic("bad pte");
2723		}
2724
2725/*
2726 * We cannot remove wired pages from a process' mapping at this time
2727 */
2728		if (tpte & PG_W) {
2729			npv = TAILQ_NEXT(pv, pv_plist);
2730			continue;
2731		}
2732
2733		m = PHYS_TO_VM_PAGE(tpte);
2734		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2735		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2736		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2737
2738		KASSERT(m < &vm_page_array[vm_page_array_size],
2739			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2740
2741		pv->pv_pmap->pm_stats.resident_count--;
2742
2743		pte_clear(pte);
2744
2745		/*
2746		 * Update the vm_page_t clean and reference bits.
2747		 */
2748		if (tpte & PG_M) {
2749			vm_page_dirty(m);
2750		}
2751
2752		npv = TAILQ_NEXT(pv, pv_plist);
2753		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2754
2755		m->md.pv_list_count--;
2756		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2757		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2758			vm_page_flag_clear(m, PG_WRITEABLE);
2759		}
2760
2761		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2762		free_pv_entry(pv);
2763	}
2764	splx(s);
2765	pmap_invalidate_all(pmap);
2766}
2767
2768/*
2769 *	pmap_is_modified:
2770 *
2771 *	Return whether or not the specified physical page was modified
2772 *	in any physical maps.
2773 */
2774boolean_t
2775pmap_is_modified(vm_page_t m)
2776{
2777	pv_entry_t pv;
2778	pt_entry_t *pte;
2779	int s;
2780
2781	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2782		return FALSE;
2783
2784	s = splvm();
2785	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2786	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2787		/*
2788		 * if the bit being tested is the modified bit, then
2789		 * mark clean_map and ptes as never
2790		 * modified.
2791		 */
2792		if (!pmap_track_modified(pv->pv_va))
2793			continue;
2794#if defined(PMAP_DIAGNOSTIC)
2795		if (!pv->pv_pmap) {
2796			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2797			continue;
2798		}
2799#endif
2800		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2801		if (*pte & PG_M) {
2802			splx(s);
2803			return TRUE;
2804		}
2805	}
2806	splx(s);
2807	return (FALSE);
2808}
2809
2810/*
2811 *	Clear the given bit in each of the given page's ptes.
2812 */
2813static __inline void
2814pmap_clear_ptes(vm_page_t m, int bit)
2815{
2816	register pv_entry_t pv;
2817	pt_entry_t pbits, *pte;
2818	int s;
2819
2820	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2821	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2822		return;
2823
2824	s = splvm();
2825	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2826	/*
2827	 * Loop over all current mappings setting/clearing as appropos If
2828	 * setting RO do we need to clear the VAC?
2829	 */
2830	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2831		/*
2832		 * don't write protect pager mappings
2833		 */
2834		if (bit == PG_RW) {
2835			if (!pmap_track_modified(pv->pv_va))
2836				continue;
2837		}
2838
2839#if defined(PMAP_DIAGNOSTIC)
2840		if (!pv->pv_pmap) {
2841			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2842			continue;
2843		}
2844#endif
2845
2846		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2847		pbits = *pte;
2848		if (pbits & bit) {
2849			if (bit == PG_RW) {
2850				if (pbits & PG_M) {
2851					vm_page_dirty(m);
2852				}
2853				pte_store(pte, pbits & ~(PG_M|PG_RW));
2854			} else {
2855				pte_store(pte, pbits & ~bit);
2856			}
2857			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2858		}
2859	}
2860	if (bit == PG_RW)
2861		vm_page_flag_clear(m, PG_WRITEABLE);
2862	splx(s);
2863}
2864
2865/*
2866 *      pmap_page_protect:
2867 *
2868 *      Lower the permission for all mappings to a given page.
2869 */
2870void
2871pmap_page_protect(vm_page_t m, vm_prot_t prot)
2872{
2873	if ((prot & VM_PROT_WRITE) == 0) {
2874		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2875			pmap_clear_ptes(m, PG_RW);
2876		} else {
2877			pmap_remove_all(m);
2878		}
2879	}
2880}
2881
2882/*
2883 *	pmap_ts_referenced:
2884 *
2885 *	Return a count of reference bits for a page, clearing those bits.
2886 *	It is not necessary for every reference bit to be cleared, but it
2887 *	is necessary that 0 only be returned when there are truly no
2888 *	reference bits set.
2889 *
2890 *	XXX: The exact number of bits to check and clear is a matter that
2891 *	should be tested and standardized at some point in the future for
2892 *	optimal aging of shared pages.
2893 */
2894int
2895pmap_ts_referenced(vm_page_t m)
2896{
2897	register pv_entry_t pv, pvf, pvn;
2898	pt_entry_t *pte;
2899	pt_entry_t v;
2900	int s;
2901	int rtval = 0;
2902
2903	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2904		return (rtval);
2905
2906	s = splvm();
2907	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2908	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2909
2910		pvf = pv;
2911
2912		do {
2913			pvn = TAILQ_NEXT(pv, pv_list);
2914
2915			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2916
2917			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2918
2919			if (!pmap_track_modified(pv->pv_va))
2920				continue;
2921
2922			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2923
2924			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2925				pte_store(pte, v & ~PG_A);
2926				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2927
2928				rtval++;
2929				if (rtval > 4) {
2930					break;
2931				}
2932			}
2933		} while ((pv = pvn) != NULL && pv != pvf);
2934	}
2935	splx(s);
2936
2937	return (rtval);
2938}
2939
2940/*
2941 *	Clear the modify bits on the specified physical page.
2942 */
2943void
2944pmap_clear_modify(vm_page_t m)
2945{
2946	pmap_clear_ptes(m, PG_M);
2947}
2948
2949/*
2950 *	pmap_clear_reference:
2951 *
2952 *	Clear the reference bit on the specified physical page.
2953 */
2954void
2955pmap_clear_reference(vm_page_t m)
2956{
2957	pmap_clear_ptes(m, PG_A);
2958}
2959
2960/*
2961 * Miscellaneous support routines follow
2962 */
2963
2964static void
2965i386_protection_init()
2966{
2967	register int *kp, prot;
2968
2969	kp = protection_codes;
2970	for (prot = 0; prot < 8; prot++) {
2971		switch (prot) {
2972		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2973			/*
2974			 * Read access is also 0. There isn't any execute bit,
2975			 * so just make it readable.
2976			 */
2977		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2978		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2979		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2980			*kp++ = 0;
2981			break;
2982		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2983		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2984		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2985		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2986			*kp++ = PG_RW;
2987			break;
2988		}
2989	}
2990}
2991
2992/*
2993 * Map a set of physical memory pages into the kernel virtual
2994 * address space. Return a pointer to where it is mapped. This
2995 * routine is intended to be used for mapping device memory,
2996 * NOT real memory.
2997 */
2998void *
2999pmap_mapdev(pa, size)
3000	vm_paddr_t pa;
3001	vm_size_t size;
3002{
3003	vm_offset_t va, tmpva, offset;
3004
3005	offset = pa & PAGE_MASK;
3006	size = roundup(offset + size, PAGE_SIZE);
3007
3008	va = kmem_alloc_nofault(kernel_map, size);
3009	if (!va)
3010		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3011
3012	pa = pa & PG_FRAME;
3013	for (tmpva = va; size > 0; ) {
3014		pmap_kenter(tmpva, pa);
3015		size -= PAGE_SIZE;
3016		tmpva += PAGE_SIZE;
3017		pa += PAGE_SIZE;
3018	}
3019	pmap_invalidate_range(kernel_pmap, va, tmpva);
3020	return ((void *)(va + offset));
3021}
3022
3023void
3024pmap_unmapdev(va, size)
3025	vm_offset_t va;
3026	vm_size_t size;
3027{
3028	vm_offset_t base, offset, tmpva;
3029	pt_entry_t *pte;
3030
3031	base = va & PG_FRAME;
3032	offset = va & PAGE_MASK;
3033	size = roundup(offset + size, PAGE_SIZE);
3034	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3035		pte = vtopte(tmpva);
3036		pte_clear(pte);
3037	}
3038	pmap_invalidate_range(kernel_pmap, va, tmpva);
3039	kmem_free(kernel_map, base, size);
3040}
3041
3042/*
3043 * perform the pmap work for mincore
3044 */
3045int
3046pmap_mincore(pmap, addr)
3047	pmap_t pmap;
3048	vm_offset_t addr;
3049{
3050	pt_entry_t *ptep, pte;
3051	vm_page_t m;
3052	int val = 0;
3053
3054	ptep = pmap_pte_quick(pmap, addr);
3055	if (ptep == 0) {
3056		return 0;
3057	}
3058
3059	if ((pte = *ptep) != 0) {
3060		vm_paddr_t pa;
3061
3062		val = MINCORE_INCORE;
3063		if ((pte & PG_MANAGED) == 0)
3064			return val;
3065
3066		pa = pte & PG_FRAME;
3067
3068		m = PHYS_TO_VM_PAGE(pa);
3069
3070		/*
3071		 * Modified by us
3072		 */
3073		if (pte & PG_M)
3074			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3075		else {
3076			/*
3077			 * Modified by someone else
3078			 */
3079			vm_page_lock_queues();
3080			if (m->dirty || pmap_is_modified(m))
3081				val |= MINCORE_MODIFIED_OTHER;
3082			vm_page_unlock_queues();
3083		}
3084		/*
3085		 * Referenced by us
3086		 */
3087		if (pte & PG_A)
3088			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3089		else {
3090			/*
3091			 * Referenced by someone else
3092			 */
3093			vm_page_lock_queues();
3094			if ((m->flags & PG_REFERENCED) ||
3095			    pmap_ts_referenced(m)) {
3096				val |= MINCORE_REFERENCED_OTHER;
3097				vm_page_flag_set(m, PG_REFERENCED);
3098			}
3099			vm_page_unlock_queues();
3100		}
3101	}
3102	return val;
3103}
3104
3105void
3106pmap_activate(struct thread *td)
3107{
3108	struct proc *p = td->td_proc;
3109	pmap_t	pmap, oldpmap;
3110	u_int32_t  cr3;
3111
3112	critical_enter();
3113	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3114	oldpmap = PCPU_GET(curpmap);
3115#if defined(SMP)
3116	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3117	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3118#else
3119	oldpmap->pm_active &= ~1;
3120	pmap->pm_active |= 1;
3121#endif
3122#ifdef PAE
3123	cr3 = vtophys(pmap->pm_pdpt);
3124#else
3125	cr3 = vtophys(pmap->pm_pdir);
3126#endif
3127	/* XXXKSE this is wrong.
3128	 * pmap_activate is for the current thread on the current cpu
3129	 */
3130	if (p->p_flag & P_SA) {
3131		/* Make sure all other cr3 entries are updated. */
3132		/* what if they are running?  XXXKSE (maybe abort them) */
3133		FOREACH_THREAD_IN_PROC(p, td) {
3134			td->td_pcb->pcb_cr3 = cr3;
3135		}
3136	} else {
3137		td->td_pcb->pcb_cr3 = cr3;
3138	}
3139	load_cr3(cr3);
3140	PCPU_SET(curpmap, pmap);
3141	critical_exit();
3142}
3143
3144vm_offset_t
3145pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3146{
3147
3148	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3149		return addr;
3150	}
3151
3152	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3153	return addr;
3154}
3155
3156
3157#if defined(PMAP_DEBUG)
3158pmap_pid_dump(int pid)
3159{
3160	pmap_t pmap;
3161	struct proc *p;
3162	int npte = 0;
3163	int index;
3164
3165	sx_slock(&allproc_lock);
3166	LIST_FOREACH(p, &allproc, p_list) {
3167		if (p->p_pid != pid)
3168			continue;
3169
3170		if (p->p_vmspace) {
3171			int i,j;
3172			index = 0;
3173			pmap = vmspace_pmap(p->p_vmspace);
3174			for (i = 0; i < NPDEPTD; i++) {
3175				pd_entry_t *pde;
3176				pt_entry_t *pte;
3177				vm_offset_t base = i << PDRSHIFT;
3178
3179				pde = &pmap->pm_pdir[i];
3180				if (pde && pmap_pde_v(pde)) {
3181					for (j = 0; j < NPTEPG; j++) {
3182						vm_offset_t va = base + (j << PAGE_SHIFT);
3183						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3184							if (index) {
3185								index = 0;
3186								printf("\n");
3187							}
3188							sx_sunlock(&allproc_lock);
3189							return npte;
3190						}
3191						pte = pmap_pte_quick(pmap, va);
3192						if (pte && pmap_pte_v(pte)) {
3193							pt_entry_t pa;
3194							vm_page_t m;
3195							pa = *pte;
3196							m = PHYS_TO_VM_PAGE(pa);
3197							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3198								va, pa, m->hold_count, m->wire_count, m->flags);
3199							npte++;
3200							index++;
3201							if (index >= 2) {
3202								index = 0;
3203								printf("\n");
3204							} else {
3205								printf(" ");
3206							}
3207						}
3208					}
3209				}
3210			}
3211		}
3212	}
3213	sx_sunlock(&allproc_lock);
3214	return npte;
3215}
3216#endif
3217
3218#if defined(DEBUG)
3219
3220static void	pads(pmap_t pm);
3221void		pmap_pvdump(vm_offset_t pa);
3222
3223/* print address space of pmap*/
3224static void
3225pads(pm)
3226	pmap_t pm;
3227{
3228	int i, j;
3229	vm_paddr_t va;
3230	pt_entry_t *ptep;
3231
3232	if (pm == kernel_pmap)
3233		return;
3234	for (i = 0; i < NPDEPTD; i++)
3235		if (pm->pm_pdir[i])
3236			for (j = 0; j < NPTEPG; j++) {
3237				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3238				if (pm == kernel_pmap && va < KERNBASE)
3239					continue;
3240				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3241					continue;
3242				ptep = pmap_pte_quick(pm, va);
3243				if (pmap_pte_v(ptep))
3244					printf("%x:%x ", va, *ptep);
3245			};
3246
3247}
3248
3249void
3250pmap_pvdump(pa)
3251	vm_paddr_t pa;
3252{
3253	pv_entry_t pv;
3254	vm_page_t m;
3255
3256	printf("pa %x", pa);
3257	m = PHYS_TO_VM_PAGE(pa);
3258	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3259		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3260		pads(pv->pv_pmap);
3261	}
3262	printf(" ");
3263}
3264#endif
3265