pmap.c revision 119139
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 119139 2003-08-19 18:20:34Z alc $");
46/*-
47 * Copyright (c) 2003 Networks Associates Technology, Inc.
48 * All rights reserved.
49 *
50 * This software was developed for the FreeBSD Project by Jake Burkholder,
51 * Safeport Network Services, and Network Associates Laboratories, the
52 * Security Research Division of Network Associates, Inc. under
53 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
54 * CHATS research program.
55 *
56 * Redistribution and use in source and binary forms, with or without
57 * modification, are permitted provided that the following conditions
58 * are met:
59 * 1. Redistributions of source code must retain the above copyright
60 *    notice, this list of conditions and the following disclaimer.
61 * 2. Redistributions in binary form must reproduce the above copyright
62 *    notice, this list of conditions and the following disclaimer in the
63 *    documentation and/or other materials provided with the distribution.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 */
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_pmap.h"
105#include "opt_msgbuf.h"
106#include "opt_kstack_pages.h"
107
108#include <sys/param.h>
109#include <sys/systm.h>
110#include <sys/kernel.h>
111#include <sys/lock.h>
112#include <sys/mman.h>
113#include <sys/msgbuf.h>
114#include <sys/mutex.h>
115#include <sys/proc.h>
116#include <sys/sx.h>
117#include <sys/user.h>
118#include <sys/vmmeter.h>
119#include <sys/sysctl.h>
120#ifdef SMP
121#include <sys/smp.h>
122#endif
123
124#include <vm/vm.h>
125#include <vm/vm_param.h>
126#include <vm/vm_kern.h>
127#include <vm/vm_page.h>
128#include <vm/vm_map.h>
129#include <vm/vm_object.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_pageout.h>
132#include <vm/vm_pager.h>
133#include <vm/uma.h>
134
135#include <machine/cpu.h>
136#include <machine/cputypes.h>
137#include <machine/md_var.h>
138#include <machine/specialreg.h>
139#if defined(SMP) || defined(APIC_IO)
140#include <machine/smp.h>
141#include <machine/apic.h>
142#include <machine/segments.h>
143#include <machine/tss.h>
144#endif /* SMP || APIC_IO */
145
146#define PMAP_KEEP_PDIRS
147#ifndef PMAP_SHPGPERPROC
148#define PMAP_SHPGPERPROC 200
149#endif
150
151#if defined(DIAGNOSTIC)
152#define PMAP_DIAGNOSTIC
153#endif
154
155#define MINPV 2048
156
157#if !defined(PMAP_DIAGNOSTIC)
158#define PMAP_INLINE __inline
159#else
160#define PMAP_INLINE
161#endif
162
163/*
164 * Get PDEs and PTEs for user/kernel address space
165 */
166#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
167#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
168
169#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
170#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
171#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
172#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
173#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
174
175#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
176#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
177
178/*
179 * Given a map and a machine independent protection code,
180 * convert to a vax protection code.
181 */
182#define pte_prot(m, p)	(protection_codes[p])
183static int protection_codes[8];
184
185struct pmap kernel_pmap_store;
186LIST_HEAD(pmaplist, pmap);
187static struct pmaplist allpmaps;
188static struct mtx allpmaps_lock;
189#ifdef SMP
190static struct mtx lazypmap_lock;
191#endif
192
193vm_paddr_t avail_start;	/* PA of first available physical page */
194vm_paddr_t avail_end;	/* PA of last available physical page */
195vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
196vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
197static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
198static int pgeflag;		/* PG_G or-in */
199static int pseflag;		/* PG_PS or-in */
200
201static int nkpt;
202vm_offset_t kernel_vm_end;
203extern u_int32_t KERNend;
204
205#ifdef PAE
206static uma_zone_t pdptzone;
207#endif
208
209/*
210 * Data for the pv entry allocation mechanism
211 */
212static uma_zone_t pvzone;
213static struct vm_object pvzone_obj;
214static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
215int pmap_pagedaemon_waken;
216
217/*
218 * All those kernel PT submaps that BSD is so fond of
219 */
220pt_entry_t *CMAP1 = 0;
221static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
222caddr_t CADDR1 = 0, ptvmmap = 0;
223static caddr_t CADDR2, CADDR3;
224static struct mtx CMAPCADDR12_lock;
225static pt_entry_t *msgbufmap;
226struct msgbuf *msgbufp = 0;
227
228/*
229 * Crashdump maps.
230 */
231static pt_entry_t *pt_crashdumpmap;
232static caddr_t crashdumpmap;
233
234#ifdef SMP
235extern pt_entry_t *SMPpt;
236#endif
237static pt_entry_t *PMAP1 = 0;
238static pt_entry_t *PADDR1 = 0;
239
240static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
241static pv_entry_t get_pv_entry(void);
242static void	i386_protection_init(void);
243static void	pmap_clear_ptes(vm_page_t m, int bit)
244    __always_inline;
245
246static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
247static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
248static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
249					vm_offset_t va);
250static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
251		vm_page_t mpte, vm_page_t m);
252
253static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
254
255static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
256static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
257static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
258static void *pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
259#ifdef PAE
260static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
261#endif
262
263static pd_entry_t pdir4mb;
264
265CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
266CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
267
268/*
269 * Move the kernel virtual free pointer to the next
270 * 4MB.  This is used to help improve performance
271 * by using a large (4MB) page for much of the kernel
272 * (.text, .data, .bss)
273 */
274static vm_offset_t
275pmap_kmem_choose(vm_offset_t addr)
276{
277	vm_offset_t newaddr = addr;
278
279#ifdef I686_CPU_not	/* Problem seems to have gone away */
280	/* Deal with un-resolved Pentium4 issues */
281	if (cpu_class == CPUCLASS_686 &&
282	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
283	    (cpu_id & 0xf00) == 0xf00)
284		return newaddr;
285#endif
286#ifndef DISABLE_PSE
287	if (cpu_feature & CPUID_PSE)
288		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
289#endif
290	return newaddr;
291}
292
293/*
294 *	Bootstrap the system enough to run with virtual memory.
295 *
296 *	On the i386 this is called after mapping has already been enabled
297 *	and just syncs the pmap module with what has already been done.
298 *	[We can't call it easily with mapping off since the kernel is not
299 *	mapped with PA == VA, hence we would have to relocate every address
300 *	from the linked base (virtual) address "KERNBASE" to the actual
301 *	(physical) address starting relative to 0]
302 */
303void
304pmap_bootstrap(firstaddr, loadaddr)
305	vm_paddr_t firstaddr;
306	vm_paddr_t loadaddr;
307{
308	vm_offset_t va;
309	pt_entry_t *pte;
310	int i;
311
312	avail_start = firstaddr;
313
314	/*
315	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
316	 * large. It should instead be correctly calculated in locore.s and
317	 * not based on 'first' (which is a physical address, not a virtual
318	 * address, for the start of unused physical memory). The kernel
319	 * page tables are NOT double mapped and thus should not be included
320	 * in this calculation.
321	 */
322	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
323	virtual_avail = pmap_kmem_choose(virtual_avail);
324
325	virtual_end = VM_MAX_KERNEL_ADDRESS;
326
327	/*
328	 * Initialize protection array.
329	 */
330	i386_protection_init();
331
332	/*
333	 * Initialize the kernel pmap (which is statically allocated).
334	 */
335	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
336#ifdef PAE
337	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
338#endif
339	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
340	TAILQ_INIT(&kernel_pmap->pm_pvlist);
341	LIST_INIT(&allpmaps);
342#ifdef SMP
343	mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
344#endif
345	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
346	mtx_lock_spin(&allpmaps_lock);
347	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
348	mtx_unlock_spin(&allpmaps_lock);
349	nkpt = NKPT;
350
351	/*
352	 * Reserve some special page table entries/VA space for temporary
353	 * mapping of pages.
354	 */
355#define	SYSMAP(c, p, v, n)	\
356	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
357
358	va = virtual_avail;
359	pte = vtopte(va);
360
361	/*
362	 * CMAP1/CMAP2 are used for zeroing and copying pages.
363	 * CMAP3 is used for the idle process page zeroing.
364	 */
365	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
366	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
367	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
368
369	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
370
371	/*
372	 * Crashdump maps.
373	 */
374	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
375
376	/*
377	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
378	 * XXX ptmmap is not used.
379	 */
380	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
381
382	/*
383	 * msgbufp is used to map the system message buffer.
384	 * XXX msgbufmap is not used.
385	 */
386	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
387	       atop(round_page(MSGBUF_SIZE)))
388
389	/*
390	 * ptemap is used for pmap_pte_quick
391	 */
392	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
393
394	virtual_avail = va;
395
396	*CMAP1 = *CMAP2 = 0;
397	for (i = 0; i < NKPT; i++)
398		PTD[i] = 0;
399
400	pgeflag = 0;
401#ifndef DISABLE_PG_G
402	if (cpu_feature & CPUID_PGE)
403		pgeflag = PG_G;
404#endif
405#ifdef I686_CPU_not	/* Problem seems to have gone away */
406	/* Deal with un-resolved Pentium4 issues */
407	if (cpu_class == CPUCLASS_686 &&
408	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
409	    (cpu_id & 0xf00) == 0xf00) {
410		printf("Warning: Pentium 4 cpu: PG_G disabled (global flag)\n");
411		pgeflag = 0;
412	}
413#endif
414
415/*
416 * Initialize the 4MB page size flag
417 */
418	pseflag = 0;
419/*
420 * The 4MB page version of the initial
421 * kernel page mapping.
422 */
423	pdir4mb = 0;
424
425#ifndef DISABLE_PSE
426	if (cpu_feature & CPUID_PSE)
427		pseflag = PG_PS;
428#endif
429#ifdef I686_CPU_not	/* Problem seems to have gone away */
430	/* Deal with un-resolved Pentium4 issues */
431	if (cpu_class == CPUCLASS_686 &&
432	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
433	    (cpu_id & 0xf00) == 0xf00) {
434		printf("Warning: Pentium 4 cpu: PG_PS disabled (4MB pages)\n");
435		pseflag = 0;
436	}
437#endif
438#ifndef DISABLE_PSE
439	if (pseflag) {
440		pd_entry_t ptditmp;
441		/*
442		 * Note that we have enabled PSE mode
443		 */
444		ptditmp = *(PTmap + i386_btop(KERNBASE));
445		ptditmp &= ~(NBPDR - 1);
446		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
447		pdir4mb = ptditmp;
448	}
449#endif
450#ifndef SMP
451	/*
452	 * Turn on PGE/PSE.  SMP does this later on since the
453	 * 4K page tables are required for AP boot (for now).
454	 * XXX fixme.
455	 */
456	pmap_set_opt();
457#endif
458#ifdef SMP
459	if (cpu_apic_address == 0)
460		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
461
462	/* local apic is mapped on last page */
463	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
464	    (cpu_apic_address & PG_FRAME));
465#endif
466	invltlb();
467}
468
469/*
470 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
471 * BSP will run this after all the AP's have started up.
472 */
473void
474pmap_set_opt(void)
475{
476	pt_entry_t *pte;
477	vm_offset_t va, endva;
478
479	if (pgeflag && (cpu_feature & CPUID_PGE)) {
480		load_cr4(rcr4() | CR4_PGE);
481		invltlb();		/* Insurance */
482	}
483#ifndef DISABLE_PSE
484	if (pseflag && (cpu_feature & CPUID_PSE)) {
485		load_cr4(rcr4() | CR4_PSE);
486		invltlb();		/* Insurance */
487	}
488#endif
489	if (PCPU_GET(cpuid) == 0) {
490#ifndef DISABLE_PSE
491		if (pdir4mb) {
492			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
493			invltlb();	/* Insurance */
494		}
495#endif
496		if (pgeflag) {
497			/* Turn on PG_G for text, data, bss pages. */
498			va = (vm_offset_t)btext;
499#ifndef DISABLE_PSE
500			if (pseflag && (cpu_feature & CPUID_PSE)) {
501				if (va < KERNBASE + (1 << PDRSHIFT))
502					va = KERNBASE + (1 << PDRSHIFT);
503			}
504#endif
505			endva = KERNBASE + KERNend;
506			while (va < endva) {
507				pte = vtopte(va);
508				if (*pte)
509					*pte |= pgeflag;
510				va += PAGE_SIZE;
511			}
512			invltlb();	/* Insurance */
513		}
514		/*
515		 * We do not need to broadcast the invltlb here, because
516		 * each AP does it the moment it is released from the boot
517		 * lock.  See ap_init().
518		 */
519	}
520}
521
522static void *
523pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
524{
525	*flags = UMA_SLAB_PRIV;
526	return (void *)kmem_alloc(kernel_map, bytes);
527}
528
529#ifdef PAE
530static void *
531pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
532{
533	*flags = UMA_SLAB_PRIV;
534	return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
535}
536#endif
537
538/*
539 *	Initialize the pmap module.
540 *	Called by vm_init, to initialize any structures that the pmap
541 *	system needs to map virtual memory.
542 *	pmap_init has been enhanced to support in a fairly consistant
543 *	way, discontiguous physical memory.
544 */
545void
546pmap_init(phys_start, phys_end)
547	vm_paddr_t phys_start, phys_end;
548{
549	int i;
550	int initial_pvs;
551
552	/*
553	 * Allocate memory for random pmap data structures.  Includes the
554	 * pv_head_table.
555	 */
556
557	for(i = 0; i < vm_page_array_size; i++) {
558		vm_page_t m;
559
560		m = &vm_page_array[i];
561		TAILQ_INIT(&m->md.pv_list);
562		m->md.pv_list_count = 0;
563	}
564
565	/*
566	 * init the pv free list
567	 */
568	initial_pvs = vm_page_array_size;
569	if (initial_pvs < MINPV)
570		initial_pvs = MINPV;
571	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
572	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
573	uma_zone_set_allocf(pvzone, pmap_pv_allocf);
574	uma_prealloc(pvzone, initial_pvs);
575
576#ifdef PAE
577	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
578	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
579	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
580	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
581#endif
582
583	/*
584	 * Now it is safe to enable pv_table recording.
585	 */
586	pmap_initialized = TRUE;
587}
588
589/*
590 * Initialize the address space (zone) for the pv_entries.  Set a
591 * high water mark so that the system can recover from excessive
592 * numbers of pv entries.
593 */
594void
595pmap_init2()
596{
597	int shpgperproc = PMAP_SHPGPERPROC;
598
599	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
600	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
601	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
602	pv_entry_high_water = 9 * (pv_entry_max / 10);
603	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
604}
605
606
607/***************************************************
608 * Low level helper routines.....
609 ***************************************************/
610
611#if defined(PMAP_DIAGNOSTIC)
612
613/*
614 * This code checks for non-writeable/modified pages.
615 * This should be an invalid condition.
616 */
617static int
618pmap_nw_modified(pt_entry_t ptea)
619{
620	int pte;
621
622	pte = (int) ptea;
623
624	if ((pte & (PG_M|PG_RW)) == PG_M)
625		return 1;
626	else
627		return 0;
628}
629#endif
630
631
632/*
633 * this routine defines the region(s) of memory that should
634 * not be tested for the modified bit.
635 */
636static PMAP_INLINE int
637pmap_track_modified(vm_offset_t va)
638{
639	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
640		return 1;
641	else
642		return 0;
643}
644
645#ifdef I386_CPU
646/*
647 * i386 only has "invalidate everything" and no SMP to worry about.
648 */
649PMAP_INLINE void
650pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
651{
652
653	if (pmap == kernel_pmap || pmap->pm_active)
654		invltlb();
655}
656
657PMAP_INLINE void
658pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
659{
660
661	if (pmap == kernel_pmap || pmap->pm_active)
662		invltlb();
663}
664
665PMAP_INLINE void
666pmap_invalidate_all(pmap_t pmap)
667{
668
669	if (pmap == kernel_pmap || pmap->pm_active)
670		invltlb();
671}
672#else /* !I386_CPU */
673#ifdef SMP
674/*
675 * For SMP, these functions have to use the IPI mechanism for coherence.
676 */
677void
678pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
679{
680	u_int cpumask;
681	u_int other_cpus;
682
683	critical_enter();
684	/*
685	 * We need to disable interrupt preemption but MUST NOT have
686	 * interrupts disabled here.
687	 * XXX we may need to hold schedlock to get a coherent pm_active
688	 */
689	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
690		invlpg(va);
691		smp_invlpg(va);
692	} else {
693		cpumask = PCPU_GET(cpumask);
694		other_cpus = PCPU_GET(other_cpus);
695		if (pmap->pm_active & cpumask)
696			invlpg(va);
697		if (pmap->pm_active & other_cpus)
698			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
699	}
700	critical_exit();
701}
702
703void
704pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
705{
706	u_int cpumask;
707	u_int other_cpus;
708	vm_offset_t addr;
709
710	critical_enter();
711	/*
712	 * We need to disable interrupt preemption but MUST NOT have
713	 * interrupts disabled here.
714	 * XXX we may need to hold schedlock to get a coherent pm_active
715	 */
716	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
717		for (addr = sva; addr < eva; addr += PAGE_SIZE)
718			invlpg(addr);
719		smp_invlpg_range(sva, eva);
720	} else {
721		cpumask = PCPU_GET(cpumask);
722		other_cpus = PCPU_GET(other_cpus);
723		if (pmap->pm_active & cpumask)
724			for (addr = sva; addr < eva; addr += PAGE_SIZE)
725				invlpg(addr);
726		if (pmap->pm_active & other_cpus)
727			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
728			    sva, eva);
729	}
730	critical_exit();
731}
732
733void
734pmap_invalidate_all(pmap_t pmap)
735{
736	u_int cpumask;
737	u_int other_cpus;
738
739	critical_enter();
740	/*
741	 * We need to disable interrupt preemption but MUST NOT have
742	 * interrupts disabled here.
743	 * XXX we may need to hold schedlock to get a coherent pm_active
744	 */
745	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
746		invltlb();
747		smp_invltlb();
748	} else {
749		cpumask = PCPU_GET(cpumask);
750		other_cpus = PCPU_GET(other_cpus);
751		if (pmap->pm_active & cpumask)
752			invltlb();
753		if (pmap->pm_active & other_cpus)
754			smp_masked_invltlb(pmap->pm_active & other_cpus);
755	}
756	critical_exit();
757}
758#else /* !SMP */
759/*
760 * Normal, non-SMP, 486+ invalidation functions.
761 * We inline these within pmap.c for speed.
762 */
763PMAP_INLINE void
764pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
765{
766
767	if (pmap == kernel_pmap || pmap->pm_active)
768		invlpg(va);
769}
770
771PMAP_INLINE void
772pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
773{
774	vm_offset_t addr;
775
776	if (pmap == kernel_pmap || pmap->pm_active)
777		for (addr = sva; addr < eva; addr += PAGE_SIZE)
778			invlpg(addr);
779}
780
781PMAP_INLINE void
782pmap_invalidate_all(pmap_t pmap)
783{
784
785	if (pmap == kernel_pmap || pmap->pm_active)
786		invltlb();
787}
788#endif /* !SMP */
789#endif /* !I386_CPU */
790
791/*
792 * Are we current address space or kernel?
793 */
794static __inline int
795pmap_is_current(pmap_t pmap)
796{
797	return (pmap == kernel_pmap ||
798	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME));
799}
800
801/*
802 * Super fast pmap_pte routine best used when scanning
803 * the pv lists.  This eliminates many coarse-grained
804 * invltlb calls.  Note that many of the pv list
805 * scans are across different pmaps.  It is very wasteful
806 * to do an entire invltlb for checking a single mapping.
807 */
808pt_entry_t *
809pmap_pte_quick(pmap, va)
810	register pmap_t pmap;
811	vm_offset_t va;
812{
813	pd_entry_t newpf;
814	pd_entry_t *pde;
815
816	pde = pmap_pde(pmap, va);
817	if (*pde & PG_PS)
818		return (pde);
819	if (*pde != 0) {
820		/* are we current address space or kernel? */
821		if (pmap_is_current(pmap))
822			return vtopte(va);
823		newpf = *pde & PG_FRAME;
824		if (((*PMAP1) & PG_FRAME) != newpf) {
825			*PMAP1 = newpf | PG_RW | PG_V;
826			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
827		}
828		return PADDR1 + (i386_btop(va) & (NPTEPG - 1));
829	}
830	return (0);
831}
832
833/*
834 *	Routine:	pmap_extract
835 *	Function:
836 *		Extract the physical page address associated
837 *		with the given map/virtual_address pair.
838 */
839vm_paddr_t
840pmap_extract(pmap, va)
841	register pmap_t pmap;
842	vm_offset_t va;
843{
844	vm_paddr_t rtval;
845	pt_entry_t *pte;
846	pd_entry_t pde;
847
848	if (pmap == 0)
849		return 0;
850	pde = pmap->pm_pdir[va >> PDRSHIFT];
851	if (pde != 0) {
852		if ((pde & PG_PS) != 0) {
853			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
854			return rtval;
855		}
856		pte = pmap_pte_quick(pmap, va);
857		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
858		return rtval;
859	}
860	return 0;
861
862}
863
864/***************************************************
865 * Low level mapping routines.....
866 ***************************************************/
867
868/*
869 * Add a wired page to the kva.
870 * Note: not SMP coherent.
871 */
872PMAP_INLINE void
873pmap_kenter(vm_offset_t va, vm_paddr_t pa)
874{
875	pt_entry_t *pte;
876
877	pte = vtopte(va);
878	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
879}
880
881/*
882 * Remove a page from the kernel pagetables.
883 * Note: not SMP coherent.
884 */
885PMAP_INLINE void
886pmap_kremove(vm_offset_t va)
887{
888	pt_entry_t *pte;
889
890	pte = vtopte(va);
891	pte_clear(pte);
892}
893
894/*
895 *	Used to map a range of physical addresses into kernel
896 *	virtual address space.
897 *
898 *	The value passed in '*virt' is a suggested virtual address for
899 *	the mapping. Architectures which can support a direct-mapped
900 *	physical to virtual region can return the appropriate address
901 *	within that region, leaving '*virt' unchanged. Other
902 *	architectures should map the pages starting at '*virt' and
903 *	update '*virt' with the first usable address after the mapped
904 *	region.
905 */
906vm_offset_t
907pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
908{
909	vm_offset_t va, sva;
910
911	va = sva = *virt;
912	while (start < end) {
913		pmap_kenter(va, start);
914		va += PAGE_SIZE;
915		start += PAGE_SIZE;
916	}
917	pmap_invalidate_range(kernel_pmap, sva, va);
918	*virt = va;
919	return (sva);
920}
921
922
923/*
924 * Add a list of wired pages to the kva
925 * this routine is only used for temporary
926 * kernel mappings that do not need to have
927 * page modification or references recorded.
928 * Note that old mappings are simply written
929 * over.  The page *must* be wired.
930 * Note: SMP coherent.  Uses a ranged shootdown IPI.
931 */
932void
933pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
934{
935	vm_offset_t va;
936
937	va = sva;
938	while (count-- > 0) {
939		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
940		va += PAGE_SIZE;
941		m++;
942	}
943	pmap_invalidate_range(kernel_pmap, sva, va);
944}
945
946/*
947 * This routine tears out page mappings from the
948 * kernel -- it is meant only for temporary mappings.
949 * Note: SMP coherent.  Uses a ranged shootdown IPI.
950 */
951void
952pmap_qremove(vm_offset_t sva, int count)
953{
954	vm_offset_t va;
955
956	va = sva;
957	while (count-- > 0) {
958		pmap_kremove(va);
959		va += PAGE_SIZE;
960	}
961	pmap_invalidate_range(kernel_pmap, sva, va);
962}
963
964/***************************************************
965 * Page table page management routines.....
966 ***************************************************/
967
968/*
969 * This routine unholds page table pages, and if the hold count
970 * drops to zero, then it decrements the wire count.
971 */
972static int
973_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
974{
975
976	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
977		vm_page_lock_queues();
978
979	if (m->hold_count == 0) {
980		vm_offset_t pteva;
981		/*
982		 * unmap the page table page
983		 */
984		pmap->pm_pdir[m->pindex] = 0;
985		--pmap->pm_stats.resident_count;
986		if (pmap_is_current(pmap)) {
987			/*
988			 * Do an invltlb to make the invalidated mapping
989			 * take effect immediately.
990			 */
991			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
992			pmap_invalidate_page(pmap, pteva);
993		}
994
995		/*
996		 * If the page is finally unwired, simply free it.
997		 */
998		--m->wire_count;
999		if (m->wire_count == 0) {
1000			vm_page_busy(m);
1001			vm_page_free_zero(m);
1002			atomic_subtract_int(&cnt.v_wire_count, 1);
1003		}
1004		return 1;
1005	}
1006	return 0;
1007}
1008
1009static PMAP_INLINE int
1010pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1011{
1012	vm_page_unhold(m);
1013	if (m->hold_count == 0)
1014		return _pmap_unwire_pte_hold(pmap, m);
1015	else
1016		return 0;
1017}
1018
1019/*
1020 * After removing a page table entry, this routine is used to
1021 * conditionally free the page, and manage the hold/wire counts.
1022 */
1023static int
1024pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1025{
1026	unsigned ptepindex;
1027	if (va >= VM_MAXUSER_ADDRESS)
1028		return 0;
1029
1030	if (mpte == NULL) {
1031		ptepindex = (va >> PDRSHIFT);
1032		if (pmap->pm_pteobj->root &&
1033			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1034			mpte = pmap->pm_pteobj->root;
1035		} else {
1036			while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
1037			       vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
1038				vm_page_lock_queues();
1039		}
1040	}
1041
1042	return pmap_unwire_pte_hold(pmap, mpte);
1043}
1044
1045void
1046pmap_pinit0(pmap)
1047	struct pmap *pmap;
1048{
1049
1050	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1051#ifdef PAE
1052	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1053#endif
1054	pmap->pm_active = 0;
1055	PCPU_SET(curpmap, pmap);
1056	TAILQ_INIT(&pmap->pm_pvlist);
1057	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1058	mtx_lock_spin(&allpmaps_lock);
1059	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1060	mtx_unlock_spin(&allpmaps_lock);
1061}
1062
1063/*
1064 * Initialize a preallocated and zeroed pmap structure,
1065 * such as one in a vmspace structure.
1066 */
1067void
1068pmap_pinit(pmap)
1069	register struct pmap *pmap;
1070{
1071	vm_page_t ptdpg[NPGPTD];
1072	vm_paddr_t pa;
1073	int i;
1074
1075	/*
1076	 * No need to allocate page table space yet but we do need a valid
1077	 * page directory table.
1078	 */
1079	if (pmap->pm_pdir == NULL) {
1080		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_pageable(kernel_map,
1081		    NBPTD);
1082#ifdef PAE
1083		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1084		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1085		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1086		    ("pmap_pinit: pdpt misaligned"));
1087		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1088		    ("pmap_pinit: pdpt above 4g"));
1089#endif
1090	}
1091
1092	/*
1093	 * allocate object for the ptes
1094	 */
1095	if (pmap->pm_pteobj == NULL)
1096		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI +
1097		    NPGPTD);
1098
1099	/*
1100	 * allocate the page directory page(s)
1101	 */
1102	for (i = 0; i < NPGPTD; i++) {
1103		VM_OBJECT_LOCK(pmap->pm_pteobj);
1104		ptdpg[i] = vm_page_grab(pmap->pm_pteobj, PTDPTDI + i,
1105		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED |
1106		    VM_ALLOC_ZERO);
1107		vm_page_lock_queues();
1108		vm_page_flag_clear(ptdpg[i], PG_BUSY);
1109		ptdpg[i]->valid = VM_PAGE_BITS_ALL;
1110		vm_page_unlock_queues();
1111		VM_OBJECT_UNLOCK(pmap->pm_pteobj);
1112	}
1113
1114	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1115
1116	for (i = 0; i < NPGPTD; i++) {
1117		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1118			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1119	}
1120
1121	mtx_lock_spin(&allpmaps_lock);
1122	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1123	mtx_unlock_spin(&allpmaps_lock);
1124	/* Wire in kernel global address entries. */
1125	/* XXX copies current process, does not fill in MPPTDI */
1126	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1127#ifdef SMP
1128	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1129#endif
1130
1131	/* install self-referential address mapping entry(s) */
1132	for (i = 0; i < NPGPTD; i++) {
1133		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1134		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1135#ifdef PAE
1136		pmap->pm_pdpt[i] = pa | PG_V;
1137#endif
1138	}
1139
1140	pmap->pm_active = 0;
1141	TAILQ_INIT(&pmap->pm_pvlist);
1142	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1143}
1144
1145/*
1146 * Wire in kernel global address entries.  To avoid a race condition
1147 * between pmap initialization and pmap_growkernel, this procedure
1148 * should be called after the vmspace is attached to the process
1149 * but before this pmap is activated.
1150 */
1151void
1152pmap_pinit2(pmap)
1153	struct pmap *pmap;
1154{
1155	/* XXX: Remove this stub when no longer called */
1156}
1157
1158/*
1159 * this routine is called if the page table page is not
1160 * mapped correctly.
1161 */
1162static vm_page_t
1163_pmap_allocpte(pmap, ptepindex)
1164	pmap_t	pmap;
1165	unsigned ptepindex;
1166{
1167	vm_paddr_t ptepa;
1168	vm_page_t m;
1169
1170	/*
1171	 * Find or fabricate a new pagetable page
1172	 */
1173	VM_OBJECT_LOCK(pmap->pm_pteobj);
1174	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1175	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1176	if ((m->flags & PG_ZERO) == 0)
1177		pmap_zero_page(m);
1178
1179	KASSERT(m->queue == PQ_NONE,
1180		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1181
1182	/*
1183	 * Increment the hold count for the page table page
1184	 * (denoting a new mapping.)
1185	 */
1186	m->hold_count++;
1187
1188	/*
1189	 * Map the pagetable page into the process address space, if
1190	 * it isn't already there.
1191	 */
1192
1193	pmap->pm_stats.resident_count++;
1194
1195	ptepa = VM_PAGE_TO_PHYS(m);
1196	pmap->pm_pdir[ptepindex] =
1197		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1198
1199	vm_page_lock_queues();
1200	m->valid = VM_PAGE_BITS_ALL;
1201	vm_page_flag_clear(m, PG_ZERO);
1202	vm_page_wakeup(m);
1203	vm_page_unlock_queues();
1204	VM_OBJECT_UNLOCK(pmap->pm_pteobj);
1205
1206	return m;
1207}
1208
1209static vm_page_t
1210pmap_allocpte(pmap_t pmap, vm_offset_t va)
1211{
1212	unsigned ptepindex;
1213	pd_entry_t ptepa;
1214	vm_page_t m;
1215
1216	/*
1217	 * Calculate pagetable page index
1218	 */
1219	ptepindex = va >> PDRSHIFT;
1220
1221	/*
1222	 * Get the page directory entry
1223	 */
1224	ptepa = pmap->pm_pdir[ptepindex];
1225
1226	/*
1227	 * This supports switching from a 4MB page to a
1228	 * normal 4K page.
1229	 */
1230	if (ptepa & PG_PS) {
1231		pmap->pm_pdir[ptepindex] = 0;
1232		ptepa = 0;
1233		pmap_invalidate_all(kernel_pmap);
1234	}
1235
1236	/*
1237	 * If the page table page is mapped, we just increment the
1238	 * hold count, and activate it.
1239	 */
1240	if (ptepa) {
1241		m = PHYS_TO_VM_PAGE(ptepa);
1242		m->hold_count++;
1243		return m;
1244	}
1245	/*
1246	 * Here if the pte page isn't mapped, or if it has been deallocated.
1247	 */
1248	return _pmap_allocpte(pmap, ptepindex);
1249}
1250
1251
1252/***************************************************
1253* Pmap allocation/deallocation routines.
1254 ***************************************************/
1255
1256#ifdef SMP
1257/*
1258 * Deal with a SMP shootdown of other users of the pmap that we are
1259 * trying to dispose of.  This can be a bit hairy.
1260 */
1261static u_int *lazymask;
1262static u_int lazyptd;
1263static volatile u_int lazywait;
1264
1265void pmap_lazyfix_action(void);
1266
1267void
1268pmap_lazyfix_action(void)
1269{
1270	u_int mymask = PCPU_GET(cpumask);
1271
1272	if (rcr3() == lazyptd)
1273		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1274	atomic_clear_int(lazymask, mymask);
1275	atomic_store_rel_int(&lazywait, 1);
1276}
1277
1278static void
1279pmap_lazyfix_self(u_int mymask)
1280{
1281
1282	if (rcr3() == lazyptd)
1283		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1284	atomic_clear_int(lazymask, mymask);
1285}
1286
1287
1288static void
1289pmap_lazyfix(pmap_t pmap)
1290{
1291	u_int mymask = PCPU_GET(cpumask);
1292	u_int mask;
1293	register u_int spins;
1294
1295	while ((mask = pmap->pm_active) != 0) {
1296		spins = 50000000;
1297		mask = mask & -mask;	/* Find least significant set bit */
1298		mtx_lock_spin(&lazypmap_lock);
1299#ifdef PAE
1300		lazyptd = vtophys(pmap->pm_pdpt);
1301#else
1302		lazyptd = vtophys(pmap->pm_pdir);
1303#endif
1304		if (mask == mymask) {
1305			lazymask = &pmap->pm_active;
1306			pmap_lazyfix_self(mymask);
1307		} else {
1308			atomic_store_rel_int((u_int *)&lazymask,
1309			    (u_int)&pmap->pm_active);
1310			atomic_store_rel_int(&lazywait, 0);
1311			ipi_selected(mask, IPI_LAZYPMAP);
1312			while (lazywait == 0) {
1313				ia32_pause();
1314				if (--spins == 0)
1315					break;
1316			}
1317		}
1318		mtx_unlock_spin(&lazypmap_lock);
1319		if (spins == 0)
1320			printf("pmap_lazyfix: spun for 50000000\n");
1321	}
1322}
1323
1324#else	/* SMP */
1325
1326/*
1327 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1328 * unlikely to have to even execute this code, including the fact
1329 * that the cleanup is deferred until the parent does a wait(2), which
1330 * means that another userland process has run.
1331 */
1332static void
1333pmap_lazyfix(pmap_t pmap)
1334{
1335	u_int cr3;
1336
1337	cr3 = vtophys(pmap->pm_pdir);
1338	if (cr3 == rcr3()) {
1339		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1340		pmap->pm_active &= ~(PCPU_GET(cpumask));
1341	}
1342}
1343#endif	/* SMP */
1344
1345/*
1346 * Release any resources held by the given physical map.
1347 * Called when a pmap initialized by pmap_pinit is being released.
1348 * Should only be called if the map contains no valid mappings.
1349 */
1350void
1351pmap_release(pmap_t pmap)
1352{
1353	vm_object_t object;
1354	vm_page_t m;
1355	int i;
1356
1357	object = pmap->pm_pteobj;
1358
1359	KASSERT(object->ref_count == 1,
1360	    ("pmap_release: pteobj reference count %d != 1",
1361	    object->ref_count));
1362	KASSERT(pmap->pm_stats.resident_count == 0,
1363	    ("pmap_release: pmap resident count %ld != 0",
1364	    pmap->pm_stats.resident_count));
1365
1366	pmap_lazyfix(pmap);
1367	mtx_lock_spin(&allpmaps_lock);
1368	LIST_REMOVE(pmap, pm_list);
1369	mtx_unlock_spin(&allpmaps_lock);
1370
1371	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1372	    sizeof(*pmap->pm_pdir));
1373#ifdef SMP
1374	pmap->pm_pdir[MPPTDI] = 0;
1375#endif
1376
1377	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1378
1379	vm_page_lock_queues();
1380	for (i = 0; i < NPGPTD; i++) {
1381		m = TAILQ_FIRST(&object->memq);
1382#ifdef PAE
1383		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1384		    ("pmap_release: got wrong ptd page"));
1385#endif
1386		m->wire_count--;
1387		atomic_subtract_int(&cnt.v_wire_count, 1);
1388		vm_page_busy(m);
1389		vm_page_free_zero(m);
1390	}
1391	KASSERT(TAILQ_EMPTY(&object->memq),
1392	    ("pmap_release: leaking page table pages"));
1393	vm_page_unlock_queues();
1394}
1395
1396static int
1397kvm_size(SYSCTL_HANDLER_ARGS)
1398{
1399	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1400
1401	return sysctl_handle_long(oidp, &ksize, 0, req);
1402}
1403SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1404    0, 0, kvm_size, "IU", "Size of KVM");
1405
1406static int
1407kvm_free(SYSCTL_HANDLER_ARGS)
1408{
1409	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1410
1411	return sysctl_handle_long(oidp, &kfree, 0, req);
1412}
1413SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1414    0, 0, kvm_free, "IU", "Amount of KVM free");
1415
1416/*
1417 * grow the number of kernel page table entries, if needed
1418 */
1419void
1420pmap_growkernel(vm_offset_t addr)
1421{
1422	struct pmap *pmap;
1423	int s;
1424	vm_paddr_t ptppaddr;
1425	vm_page_t nkpg;
1426	pd_entry_t newpdir;
1427	pt_entry_t *pde;
1428
1429	s = splhigh();
1430	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1431	if (kernel_vm_end == 0) {
1432		kernel_vm_end = KERNBASE;
1433		nkpt = 0;
1434		while (pdir_pde(PTD, kernel_vm_end)) {
1435			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1436			nkpt++;
1437		}
1438	}
1439	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1440	while (kernel_vm_end < addr) {
1441		if (pdir_pde(PTD, kernel_vm_end)) {
1442			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1443			continue;
1444		}
1445
1446		/*
1447		 * This index is bogus, but out of the way
1448		 */
1449		nkpg = vm_page_alloc(NULL, nkpt,
1450		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1451		if (!nkpg)
1452			panic("pmap_growkernel: no memory to grow kernel");
1453
1454		nkpt++;
1455
1456		pmap_zero_page(nkpg);
1457		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1458		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1459		pdir_pde(PTD, kernel_vm_end) = newpdir;
1460
1461		mtx_lock_spin(&allpmaps_lock);
1462		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1463			pde = pmap_pde(pmap, kernel_vm_end);
1464			pde_store(pde, newpdir);
1465		}
1466		mtx_unlock_spin(&allpmaps_lock);
1467		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1468	}
1469	splx(s);
1470}
1471
1472
1473/***************************************************
1474 * page management routines.
1475 ***************************************************/
1476
1477/*
1478 * free the pv_entry back to the free list
1479 */
1480static PMAP_INLINE void
1481free_pv_entry(pv_entry_t pv)
1482{
1483	pv_entry_count--;
1484	uma_zfree(pvzone, pv);
1485}
1486
1487/*
1488 * get a new pv_entry, allocating a block from the system
1489 * when needed.
1490 * the memory allocation is performed bypassing the malloc code
1491 * because of the possibility of allocations at interrupt time.
1492 */
1493static pv_entry_t
1494get_pv_entry(void)
1495{
1496	pv_entry_count++;
1497	if (pv_entry_high_water &&
1498		(pv_entry_count > pv_entry_high_water) &&
1499		(pmap_pagedaemon_waken == 0)) {
1500		pmap_pagedaemon_waken = 1;
1501		wakeup (&vm_pages_needed);
1502	}
1503	return uma_zalloc(pvzone, M_NOWAIT);
1504}
1505
1506/*
1507 * If it is the first entry on the list, it is actually
1508 * in the header and we must copy the following entry up
1509 * to the header.  Otherwise we must search the list for
1510 * the entry.  In either case we free the now unused entry.
1511 */
1512
1513static int
1514pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1515{
1516	pv_entry_t pv;
1517	int rtval;
1518	int s;
1519
1520	s = splvm();
1521	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1522	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1523		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1524			if (pmap == pv->pv_pmap && va == pv->pv_va)
1525				break;
1526		}
1527	} else {
1528		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1529			if (va == pv->pv_va)
1530				break;
1531		}
1532	}
1533
1534	rtval = 0;
1535	if (pv) {
1536		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1537		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1538		m->md.pv_list_count--;
1539		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1540			vm_page_flag_clear(m, PG_WRITEABLE);
1541
1542		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1543		free_pv_entry(pv);
1544	}
1545
1546	splx(s);
1547	return rtval;
1548}
1549
1550/*
1551 * Create a pv entry for page at pa for
1552 * (pmap, va).
1553 */
1554static void
1555pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1556{
1557
1558	int s;
1559	pv_entry_t pv;
1560
1561	s = splvm();
1562	pv = get_pv_entry();
1563	pv->pv_va = va;
1564	pv->pv_pmap = pmap;
1565	pv->pv_ptem = mpte;
1566
1567	vm_page_lock_queues();
1568	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1569	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1570	m->md.pv_list_count++;
1571
1572	vm_page_unlock_queues();
1573	splx(s);
1574}
1575
1576/*
1577 * pmap_remove_pte: do the things to unmap a page in a process
1578 */
1579static int
1580pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1581{
1582	pt_entry_t oldpte;
1583	vm_page_t m;
1584
1585	oldpte = pte_load_clear(ptq);
1586	if (oldpte & PG_W)
1587		pmap->pm_stats.wired_count -= 1;
1588	/*
1589	 * Machines that don't support invlpg, also don't support
1590	 * PG_G.
1591	 */
1592	if (oldpte & PG_G)
1593		pmap_invalidate_page(kernel_pmap, va);
1594	pmap->pm_stats.resident_count -= 1;
1595	if (oldpte & PG_MANAGED) {
1596		m = PHYS_TO_VM_PAGE(oldpte);
1597		if (oldpte & PG_M) {
1598#if defined(PMAP_DIAGNOSTIC)
1599			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1600				printf(
1601	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1602				    va, oldpte);
1603			}
1604#endif
1605			if (pmap_track_modified(va))
1606				vm_page_dirty(m);
1607		}
1608		if (oldpte & PG_A)
1609			vm_page_flag_set(m, PG_REFERENCED);
1610		return pmap_remove_entry(pmap, m, va);
1611	} else {
1612		return pmap_unuse_pt(pmap, va, NULL);
1613	}
1614
1615	return 0;
1616}
1617
1618/*
1619 * Remove a single page from a process address space
1620 */
1621static void
1622pmap_remove_page(pmap_t pmap, vm_offset_t va)
1623{
1624	pt_entry_t *pte;
1625
1626	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1627		return;
1628	pmap_remove_pte(pmap, pte, va);
1629	pmap_invalidate_page(pmap, va);
1630}
1631
1632/*
1633 *	Remove the given range of addresses from the specified map.
1634 *
1635 *	It is assumed that the start and end are properly
1636 *	rounded to the page size.
1637 */
1638void
1639pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1640{
1641	vm_offset_t pdnxt;
1642	pd_entry_t ptpaddr;
1643	pt_entry_t *pte;
1644	int anyvalid;
1645
1646	if (pmap == NULL)
1647		return;
1648
1649	if (pmap->pm_stats.resident_count == 0)
1650		return;
1651
1652	/*
1653	 * special handling of removing one page.  a very
1654	 * common operation and easy to short circuit some
1655	 * code.
1656	 */
1657	if ((sva + PAGE_SIZE == eva) &&
1658	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1659		pmap_remove_page(pmap, sva);
1660		return;
1661	}
1662
1663	anyvalid = 0;
1664
1665	for (; sva < eva; sva = pdnxt) {
1666		unsigned pdirindex;
1667
1668		/*
1669		 * Calculate index for next page table.
1670		 */
1671		pdnxt = (sva + NBPDR) & ~PDRMASK;
1672		if (pmap->pm_stats.resident_count == 0)
1673			break;
1674
1675		pdirindex = sva >> PDRSHIFT;
1676		ptpaddr = pmap->pm_pdir[pdirindex];
1677
1678		/*
1679		 * Weed out invalid mappings. Note: we assume that the page
1680		 * directory table is always allocated, and in kernel virtual.
1681		 */
1682		if (ptpaddr == 0)
1683			continue;
1684
1685		/*
1686		 * Check for large page.
1687		 */
1688		if ((ptpaddr & PG_PS) != 0) {
1689			pmap->pm_pdir[pdirindex] = 0;
1690			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1691			anyvalid = 1;
1692			continue;
1693		}
1694
1695		/*
1696		 * Limit our scan to either the end of the va represented
1697		 * by the current page table page, or to the end of the
1698		 * range being removed.
1699		 */
1700		if (pdnxt > eva)
1701			pdnxt = eva;
1702
1703		for (; sva != pdnxt; sva += PAGE_SIZE) {
1704			if ((pte = pmap_pte_quick(pmap, sva)) == NULL ||
1705			    *pte == 0)
1706				continue;
1707			anyvalid = 1;
1708			if (pmap_remove_pte(pmap, pte, sva))
1709				break;
1710		}
1711	}
1712
1713	if (anyvalid)
1714		pmap_invalidate_all(pmap);
1715}
1716
1717/*
1718 *	Routine:	pmap_remove_all
1719 *	Function:
1720 *		Removes this physical page from
1721 *		all physical maps in which it resides.
1722 *		Reflects back modify bits to the pager.
1723 *
1724 *	Notes:
1725 *		Original versions of this routine were very
1726 *		inefficient because they iteratively called
1727 *		pmap_remove (slow...)
1728 */
1729
1730void
1731pmap_remove_all(vm_page_t m)
1732{
1733	register pv_entry_t pv;
1734	pt_entry_t *pte, tpte;
1735	int s;
1736
1737#if defined(PMAP_DIAGNOSTIC)
1738	/*
1739	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1740	 */
1741	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1742		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1743		    VM_PAGE_TO_PHYS(m));
1744	}
1745#endif
1746	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1747	s = splvm();
1748	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1749		pv->pv_pmap->pm_stats.resident_count--;
1750		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1751		tpte = pte_load_clear(pte);
1752		if (tpte & PG_W)
1753			pv->pv_pmap->pm_stats.wired_count--;
1754		if (tpte & PG_A)
1755			vm_page_flag_set(m, PG_REFERENCED);
1756
1757		/*
1758		 * Update the vm_page_t clean and reference bits.
1759		 */
1760		if (tpte & PG_M) {
1761#if defined(PMAP_DIAGNOSTIC)
1762			if (pmap_nw_modified((pt_entry_t) tpte)) {
1763				printf(
1764	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1765				    pv->pv_va, tpte);
1766			}
1767#endif
1768			if (pmap_track_modified(pv->pv_va))
1769				vm_page_dirty(m);
1770		}
1771		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1772		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1773		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1774		m->md.pv_list_count--;
1775		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1776		free_pv_entry(pv);
1777	}
1778	vm_page_flag_clear(m, PG_WRITEABLE);
1779	splx(s);
1780}
1781
1782/*
1783 *	Set the physical protection on the
1784 *	specified range of this map as requested.
1785 */
1786void
1787pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1788{
1789	vm_offset_t pdnxt;
1790	pd_entry_t ptpaddr;
1791	int anychanged;
1792
1793	if (pmap == NULL)
1794		return;
1795
1796	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1797		pmap_remove(pmap, sva, eva);
1798		return;
1799	}
1800
1801	if (prot & VM_PROT_WRITE)
1802		return;
1803
1804	anychanged = 0;
1805
1806	for (; sva < eva; sva = pdnxt) {
1807		unsigned pdirindex;
1808
1809		pdnxt = (sva + NBPDR) & ~PDRMASK;
1810
1811		pdirindex = sva >> PDRSHIFT;
1812		ptpaddr = pmap->pm_pdir[pdirindex];
1813
1814		/*
1815		 * Weed out invalid mappings. Note: we assume that the page
1816		 * directory table is always allocated, and in kernel virtual.
1817		 */
1818		if (ptpaddr == 0)
1819			continue;
1820
1821		/*
1822		 * Check for large page.
1823		 */
1824		if ((ptpaddr & PG_PS) != 0) {
1825			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1826			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1827			anychanged = 1;
1828			continue;
1829		}
1830
1831		if (pdnxt > eva)
1832			pdnxt = eva;
1833
1834		for (; sva != pdnxt; sva += PAGE_SIZE) {
1835			pt_entry_t pbits;
1836			pt_entry_t *pte;
1837			vm_page_t m;
1838
1839			if ((pte = pmap_pte_quick(pmap, sva)) == NULL)
1840				continue;
1841			pbits = *pte;
1842			if (pbits & PG_MANAGED) {
1843				m = NULL;
1844				if (pbits & PG_A) {
1845					m = PHYS_TO_VM_PAGE(pbits);
1846					vm_page_flag_set(m, PG_REFERENCED);
1847					pbits &= ~PG_A;
1848				}
1849				if ((pbits & PG_M) != 0 &&
1850				    pmap_track_modified(sva)) {
1851					if (m == NULL)
1852						m = PHYS_TO_VM_PAGE(pbits);
1853					vm_page_dirty(m);
1854					pbits &= ~PG_M;
1855				}
1856			}
1857
1858			pbits &= ~PG_RW;
1859
1860			if (pbits != *pte) {
1861				pte_store(pte, pbits);
1862				anychanged = 1;
1863			}
1864		}
1865	}
1866	if (anychanged)
1867		pmap_invalidate_all(pmap);
1868}
1869
1870/*
1871 *	Insert the given physical page (p) at
1872 *	the specified virtual address (v) in the
1873 *	target physical map with the protection requested.
1874 *
1875 *	If specified, the page will be wired down, meaning
1876 *	that the related pte can not be reclaimed.
1877 *
1878 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1879 *	or lose information.  That is, this routine must actually
1880 *	insert this page into the given map NOW.
1881 */
1882void
1883pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1884	   boolean_t wired)
1885{
1886	vm_paddr_t pa;
1887	register pt_entry_t *pte;
1888	vm_paddr_t opa;
1889	pt_entry_t origpte, newpte;
1890	vm_page_t mpte;
1891
1892	if (pmap == NULL)
1893		return;
1894
1895	va &= PG_FRAME;
1896#ifdef PMAP_DIAGNOSTIC
1897	if (va > VM_MAX_KERNEL_ADDRESS)
1898		panic("pmap_enter: toobig");
1899	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1900		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1901#endif
1902
1903	mpte = NULL;
1904	/*
1905	 * In the case that a page table page is not
1906	 * resident, we are creating it here.
1907	 */
1908	if (va < VM_MAXUSER_ADDRESS) {
1909		mpte = pmap_allocpte(pmap, va);
1910	}
1911#if 0 && defined(PMAP_DIAGNOSTIC)
1912	else {
1913		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1914		origpte = *pdeaddr;
1915		if ((origpte & PG_V) == 0) {
1916			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1917				pmap->pm_pdir[PTDPTDI], origpte, va);
1918		}
1919	}
1920#endif
1921
1922	pte = pmap_pte_quick(pmap, va);
1923
1924	/*
1925	 * Page Directory table entry not valid, we need a new PT page
1926	 */
1927	if (pte == NULL) {
1928		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1929			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1930	}
1931
1932	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1933	origpte = *pte;
1934	opa = origpte & PG_FRAME;
1935
1936	if (origpte & PG_PS)
1937		panic("pmap_enter: attempted pmap_enter on 4MB page");
1938
1939	/*
1940	 * Mapping has not changed, must be protection or wiring change.
1941	 */
1942	if (origpte && (opa == pa)) {
1943		/*
1944		 * Wiring change, just update stats. We don't worry about
1945		 * wiring PT pages as they remain resident as long as there
1946		 * are valid mappings in them. Hence, if a user page is wired,
1947		 * the PT page will be also.
1948		 */
1949		if (wired && ((origpte & PG_W) == 0))
1950			pmap->pm_stats.wired_count++;
1951		else if (!wired && (origpte & PG_W))
1952			pmap->pm_stats.wired_count--;
1953
1954#if defined(PMAP_DIAGNOSTIC)
1955		if (pmap_nw_modified((pt_entry_t) origpte)) {
1956			printf(
1957	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1958			    va, origpte);
1959		}
1960#endif
1961
1962		/*
1963		 * Remove extra pte reference
1964		 */
1965		if (mpte)
1966			mpte->hold_count--;
1967
1968		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
1969			if ((origpte & PG_RW) == 0) {
1970				pte_store(pte, origpte | PG_RW);
1971				pmap_invalidate_page(pmap, va);
1972			}
1973			return;
1974		}
1975
1976		/*
1977		 * We might be turning off write access to the page,
1978		 * so we go ahead and sense modify status.
1979		 */
1980		if (origpte & PG_MANAGED) {
1981			if ((origpte & PG_M) && pmap_track_modified(va)) {
1982				vm_page_t om;
1983				om = PHYS_TO_VM_PAGE(opa);
1984				vm_page_dirty(om);
1985			}
1986			pa |= PG_MANAGED;
1987		}
1988		goto validate;
1989	}
1990	/*
1991	 * Mapping has changed, invalidate old range and fall through to
1992	 * handle validating new mapping.
1993	 */
1994	if (opa) {
1995		int err;
1996		vm_page_lock_queues();
1997		err = pmap_remove_pte(pmap, pte, va);
1998		vm_page_unlock_queues();
1999		if (err)
2000			panic("pmap_enter: pte vanished, va: 0x%x", va);
2001	}
2002
2003	/*
2004	 * Enter on the PV list if part of our managed memory. Note that we
2005	 * raise IPL while manipulating pv_table since pmap_enter can be
2006	 * called at interrupt time.
2007	 */
2008	if (pmap_initialized &&
2009	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2010		pmap_insert_entry(pmap, va, mpte, m);
2011		pa |= PG_MANAGED;
2012	}
2013
2014	/*
2015	 * Increment counters
2016	 */
2017	pmap->pm_stats.resident_count++;
2018	if (wired)
2019		pmap->pm_stats.wired_count++;
2020
2021validate:
2022	/*
2023	 * Now validate mapping with desired protection/wiring.
2024	 */
2025	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V);
2026
2027	if (wired)
2028		newpte |= PG_W;
2029	if (va < VM_MAXUSER_ADDRESS)
2030		newpte |= PG_U;
2031	if (pmap == kernel_pmap)
2032		newpte |= pgeflag;
2033
2034	/*
2035	 * if the mapping or permission bits are different, we need
2036	 * to update the pte.
2037	 */
2038	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2039		pte_store(pte, newpte | PG_A);
2040		/*if (origpte)*/ {
2041			pmap_invalidate_page(pmap, va);
2042		}
2043	}
2044}
2045
2046/*
2047 * this code makes some *MAJOR* assumptions:
2048 * 1. Current pmap & pmap exists.
2049 * 2. Not wired.
2050 * 3. Read access.
2051 * 4. No page table pages.
2052 * 5. Tlbflush is deferred to calling procedure.
2053 * 6. Page IS managed.
2054 * but is *MUCH* faster than pmap_enter...
2055 */
2056
2057vm_page_t
2058pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2059{
2060	pt_entry_t *pte;
2061	vm_paddr_t pa;
2062
2063	/*
2064	 * In the case that a page table page is not
2065	 * resident, we are creating it here.
2066	 */
2067	if (va < VM_MAXUSER_ADDRESS) {
2068		unsigned ptepindex;
2069		pd_entry_t ptepa;
2070
2071		/*
2072		 * Calculate pagetable page index
2073		 */
2074		ptepindex = va >> PDRSHIFT;
2075		if (mpte && (mpte->pindex == ptepindex)) {
2076			mpte->hold_count++;
2077		} else {
2078			/*
2079			 * Get the page directory entry
2080			 */
2081			ptepa = pmap->pm_pdir[ptepindex];
2082
2083			/*
2084			 * If the page table page is mapped, we just increment
2085			 * the hold count, and activate it.
2086			 */
2087			if (ptepa) {
2088				if (ptepa & PG_PS)
2089					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2090				mpte = PHYS_TO_VM_PAGE(ptepa);
2091				mpte->hold_count++;
2092			} else {
2093				mpte = _pmap_allocpte(pmap, ptepindex);
2094			}
2095		}
2096	} else {
2097		mpte = NULL;
2098	}
2099
2100	/*
2101	 * This call to vtopte makes the assumption that we are
2102	 * entering the page into the current pmap.  In order to support
2103	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2104	 * But that isn't as quick as vtopte.
2105	 */
2106	pte = vtopte(va);
2107	if (*pte) {
2108		if (mpte != NULL) {
2109			vm_page_lock_queues();
2110			pmap_unwire_pte_hold(pmap, mpte);
2111			vm_page_unlock_queues();
2112		}
2113		return 0;
2114	}
2115
2116	/*
2117	 * Enter on the PV list if part of our managed memory. Note that we
2118	 * raise IPL while manipulating pv_table since pmap_enter can be
2119	 * called at interrupt time.
2120	 */
2121	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2122		pmap_insert_entry(pmap, va, mpte, m);
2123
2124	/*
2125	 * Increment counters
2126	 */
2127	pmap->pm_stats.resident_count++;
2128
2129	pa = VM_PAGE_TO_PHYS(m);
2130
2131	/*
2132	 * Now validate mapping with RO protection
2133	 */
2134	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2135		pte_store(pte, pa | PG_V | PG_U);
2136	else
2137		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2138
2139	return mpte;
2140}
2141
2142/*
2143 * Make a temporary mapping for a physical address.  This is only intended
2144 * to be used for panic dumps.
2145 */
2146void *
2147pmap_kenter_temporary(vm_offset_t pa, int i)
2148{
2149	vm_offset_t va;
2150
2151	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2152	pmap_kenter(va, pa);
2153#ifndef I386_CPU
2154	invlpg(va);
2155#else
2156	invltlb();
2157#endif
2158	return ((void *)crashdumpmap);
2159}
2160
2161/*
2162 * This code maps large physical mmap regions into the
2163 * processor address space.  Note that some shortcuts
2164 * are taken, but the code works.
2165 */
2166void
2167pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2168		    vm_object_t object, vm_pindex_t pindex,
2169		    vm_size_t size)
2170{
2171	vm_page_t p;
2172
2173	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2174	KASSERT(object->type == OBJT_DEVICE,
2175	    ("pmap_object_init_pt: non-device object"));
2176	if (pseflag &&
2177	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2178		int i;
2179		vm_page_t m[1];
2180		unsigned int ptepindex;
2181		int npdes;
2182		pd_entry_t ptepa;
2183
2184		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2185			return;
2186retry:
2187		p = vm_page_lookup(object, pindex);
2188		if (p != NULL) {
2189			vm_page_lock_queues();
2190			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2191				goto retry;
2192		} else {
2193			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2194			if (p == NULL)
2195				return;
2196			m[0] = p;
2197
2198			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2199				vm_page_lock_queues();
2200				vm_page_free(p);
2201				vm_page_unlock_queues();
2202				return;
2203			}
2204
2205			p = vm_page_lookup(object, pindex);
2206			vm_page_lock_queues();
2207			vm_page_wakeup(p);
2208		}
2209		vm_page_unlock_queues();
2210
2211		ptepa = VM_PAGE_TO_PHYS(p);
2212		if (ptepa & (NBPDR - 1))
2213			return;
2214
2215		p->valid = VM_PAGE_BITS_ALL;
2216
2217		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2218		npdes = size >> PDRSHIFT;
2219		for(i = 0; i < npdes; i++) {
2220			pde_store(&pmap->pm_pdir[ptepindex],
2221			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2222			ptepa += NBPDR;
2223			ptepindex += 1;
2224		}
2225		pmap_invalidate_all(pmap);
2226	}
2227}
2228
2229/*
2230 * pmap_prefault provides a quick way of clustering
2231 * pagefaults into a processes address space.  It is a "cousin"
2232 * of pmap_object_init_pt, except it runs at page fault time instead
2233 * of mmap time.
2234 */
2235#define PFBAK 4
2236#define PFFOR 4
2237#define PAGEORDER_SIZE (PFBAK+PFFOR)
2238
2239static int pmap_prefault_pageorder[] = {
2240	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2241	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2242	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2243	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2244};
2245
2246void
2247pmap_prefault(pmap, addra, entry)
2248	pmap_t pmap;
2249	vm_offset_t addra;
2250	vm_map_entry_t entry;
2251{
2252	int i;
2253	vm_offset_t starta;
2254	vm_offset_t addr;
2255	vm_pindex_t pindex;
2256	vm_page_t m, mpte;
2257	vm_object_t object;
2258
2259	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2260		return;
2261
2262	object = entry->object.vm_object;
2263
2264	starta = addra - PFBAK * PAGE_SIZE;
2265	if (starta < entry->start) {
2266		starta = entry->start;
2267	} else if (starta > addra) {
2268		starta = 0;
2269	}
2270
2271	mpte = NULL;
2272	for (i = 0; i < PAGEORDER_SIZE; i++) {
2273		vm_object_t backing_object, lobject;
2274		pt_entry_t *pte;
2275
2276		addr = addra + pmap_prefault_pageorder[i];
2277		if (addr > addra + (PFFOR * PAGE_SIZE))
2278			addr = 0;
2279
2280		if (addr < starta || addr >= entry->end)
2281			continue;
2282
2283		if ((*pmap_pde(pmap, addr)) == 0)
2284			continue;
2285
2286		pte = vtopte(addr);
2287		if (*pte)
2288			continue;
2289
2290		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2291		lobject = object;
2292		VM_OBJECT_LOCK(lobject);
2293		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
2294		    lobject->type == OBJT_DEFAULT &&
2295		    (backing_object = lobject->backing_object) != NULL) {
2296			if (lobject->backing_object_offset & PAGE_MASK)
2297				break;
2298			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2299			VM_OBJECT_LOCK(backing_object);
2300			VM_OBJECT_UNLOCK(lobject);
2301			lobject = backing_object;
2302		}
2303		VM_OBJECT_UNLOCK(lobject);
2304		/*
2305		 * give-up when a page is not in memory
2306		 */
2307		if (m == NULL)
2308			break;
2309		vm_page_lock_queues();
2310		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2311			(m->busy == 0) &&
2312		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2313
2314			if ((m->queue - m->pc) == PQ_CACHE) {
2315				vm_page_deactivate(m);
2316			}
2317			vm_page_busy(m);
2318			vm_page_unlock_queues();
2319			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2320			vm_page_lock_queues();
2321			vm_page_wakeup(m);
2322		}
2323		vm_page_unlock_queues();
2324	}
2325}
2326
2327/*
2328 *	Routine:	pmap_change_wiring
2329 *	Function:	Change the wiring attribute for a map/virtual-address
2330 *			pair.
2331 *	In/out conditions:
2332 *			The mapping must already exist in the pmap.
2333 */
2334void
2335pmap_change_wiring(pmap, va, wired)
2336	register pmap_t pmap;
2337	vm_offset_t va;
2338	boolean_t wired;
2339{
2340	register pt_entry_t *pte;
2341
2342	if (pmap == NULL)
2343		return;
2344
2345	pte = pmap_pte_quick(pmap, va);
2346
2347	if (wired && !pmap_pte_w(pte))
2348		pmap->pm_stats.wired_count++;
2349	else if (!wired && pmap_pte_w(pte))
2350		pmap->pm_stats.wired_count--;
2351
2352	/*
2353	 * Wiring is not a hardware characteristic so there is no need to
2354	 * invalidate TLB.
2355	 */
2356	pmap_pte_set_w(pte, wired);
2357}
2358
2359
2360
2361/*
2362 *	Copy the range specified by src_addr/len
2363 *	from the source map to the range dst_addr/len
2364 *	in the destination map.
2365 *
2366 *	This routine is only advisory and need not do anything.
2367 */
2368
2369void
2370pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2371	  vm_offset_t src_addr)
2372{
2373	vm_offset_t addr;
2374	vm_offset_t end_addr = src_addr + len;
2375	vm_offset_t pdnxt;
2376	vm_page_t m;
2377
2378	if (dst_addr != src_addr)
2379		return;
2380
2381	if (!pmap_is_current(src_pmap))
2382		return;
2383
2384	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2385		pt_entry_t *src_pte, *dst_pte;
2386		vm_page_t dstmpte, srcmpte;
2387		pd_entry_t srcptepaddr;
2388		unsigned ptepindex;
2389
2390		if (addr >= UPT_MIN_ADDRESS)
2391			panic("pmap_copy: invalid to pmap_copy page tables\n");
2392
2393		/*
2394		 * Don't let optional prefaulting of pages make us go
2395		 * way below the low water mark of free pages or way
2396		 * above high water mark of used pv entries.
2397		 */
2398		if (cnt.v_free_count < cnt.v_free_reserved ||
2399		    pv_entry_count > pv_entry_high_water)
2400			break;
2401
2402		pdnxt = (addr + NBPDR) & ~PDRMASK;
2403		ptepindex = addr >> PDRSHIFT;
2404
2405		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2406		if (srcptepaddr == 0)
2407			continue;
2408
2409		if (srcptepaddr & PG_PS) {
2410			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2411				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2412				dst_pmap->pm_stats.resident_count +=
2413				    NBPDR / PAGE_SIZE;
2414			}
2415			continue;
2416		}
2417
2418		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2419		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2420			continue;
2421
2422		if (pdnxt > end_addr)
2423			pdnxt = end_addr;
2424
2425		src_pte = vtopte(addr);
2426		while (addr < pdnxt) {
2427			pt_entry_t ptetemp;
2428			ptetemp = *src_pte;
2429			/*
2430			 * we only virtual copy managed pages
2431			 */
2432			if ((ptetemp & PG_MANAGED) != 0) {
2433				/*
2434				 * We have to check after allocpte for the
2435				 * pte still being around...  allocpte can
2436				 * block.
2437				 */
2438				dstmpte = pmap_allocpte(dst_pmap, addr);
2439				dst_pte = pmap_pte_quick(dst_pmap, addr);
2440				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2441					/*
2442					 * Clear the modified and
2443					 * accessed (referenced) bits
2444					 * during the copy.
2445					 */
2446					m = PHYS_TO_VM_PAGE(ptetemp);
2447					*dst_pte = ptetemp & ~(PG_M | PG_A);
2448					dst_pmap->pm_stats.resident_count++;
2449					pmap_insert_entry(dst_pmap, addr,
2450						dstmpte, m);
2451	 			} else {
2452					vm_page_lock_queues();
2453					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2454					vm_page_unlock_queues();
2455				}
2456				if (dstmpte->hold_count >= srcmpte->hold_count)
2457					break;
2458			}
2459			addr += PAGE_SIZE;
2460			src_pte++;
2461		}
2462	}
2463}
2464
2465#ifdef SMP
2466
2467/*
2468 *	pmap_zpi_switchin*()
2469 *
2470 *	These functions allow us to avoid doing IPIs alltogether in certain
2471 *	temporary page-mapping situations (page zeroing).  Instead to deal
2472 *	with being preempted and moved onto a different cpu we invalidate
2473 *	the page when the scheduler switches us in.  This does not occur
2474 *	very often so we remain relatively optimal with very little effort.
2475 */
2476static void
2477pmap_zpi_switchin12(void)
2478{
2479	invlpg((u_int)CADDR1);
2480	invlpg((u_int)CADDR2);
2481}
2482
2483static void
2484pmap_zpi_switchin2(void)
2485{
2486	invlpg((u_int)CADDR2);
2487}
2488
2489static void
2490pmap_zpi_switchin3(void)
2491{
2492	invlpg((u_int)CADDR3);
2493}
2494
2495#endif
2496
2497/*
2498 *	pmap_zero_page zeros the specified hardware page by mapping
2499 *	the page into KVM and using bzero to clear its contents.
2500 */
2501void
2502pmap_zero_page(vm_page_t m)
2503{
2504
2505	mtx_lock(&CMAPCADDR12_lock);
2506	if (*CMAP2)
2507		panic("pmap_zero_page: CMAP2 busy");
2508	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2509#ifdef I386_CPU
2510	invltlb();
2511#else
2512#ifdef SMP
2513	curthread->td_switchin = pmap_zpi_switchin2;
2514#endif
2515	invlpg((u_int)CADDR2);
2516#endif
2517#if defined(I686_CPU)
2518	if (cpu_class == CPUCLASS_686)
2519		i686_pagezero(CADDR2);
2520	else
2521#endif
2522		bzero(CADDR2, PAGE_SIZE);
2523#ifdef SMP
2524	curthread->td_switchin = NULL;
2525#endif
2526	*CMAP2 = 0;
2527	mtx_unlock(&CMAPCADDR12_lock);
2528}
2529
2530/*
2531 *	pmap_zero_page_area zeros the specified hardware page by mapping
2532 *	the page into KVM and using bzero to clear its contents.
2533 *
2534 *	off and size may not cover an area beyond a single hardware page.
2535 */
2536void
2537pmap_zero_page_area(vm_page_t m, int off, int size)
2538{
2539
2540	mtx_lock(&CMAPCADDR12_lock);
2541	if (*CMAP2)
2542		panic("pmap_zero_page: CMAP2 busy");
2543	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2544#ifdef I386_CPU
2545	invltlb();
2546#else
2547#ifdef SMP
2548	curthread->td_switchin = pmap_zpi_switchin2;
2549#endif
2550	invlpg((u_int)CADDR2);
2551#endif
2552#if defined(I686_CPU)
2553	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2554		i686_pagezero(CADDR2);
2555	else
2556#endif
2557		bzero((char *)CADDR2 + off, size);
2558#ifdef SMP
2559	curthread->td_switchin = NULL;
2560#endif
2561	*CMAP2 = 0;
2562	mtx_unlock(&CMAPCADDR12_lock);
2563}
2564
2565/*
2566 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2567 *	the page into KVM and using bzero to clear its contents.  This
2568 *	is intended to be called from the vm_pagezero process only and
2569 *	outside of Giant.
2570 */
2571void
2572pmap_zero_page_idle(vm_page_t m)
2573{
2574
2575	if (*CMAP3)
2576		panic("pmap_zero_page: CMAP3 busy");
2577	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2578#ifdef I386_CPU
2579	invltlb();
2580#else
2581#ifdef SMP
2582	curthread->td_switchin = pmap_zpi_switchin3;
2583#endif
2584	invlpg((u_int)CADDR3);
2585#endif
2586#if defined(I686_CPU)
2587	if (cpu_class == CPUCLASS_686)
2588		i686_pagezero(CADDR3);
2589	else
2590#endif
2591		bzero(CADDR3, PAGE_SIZE);
2592#ifdef SMP
2593	curthread->td_switchin = NULL;
2594#endif
2595	*CMAP3 = 0;
2596}
2597
2598/*
2599 *	pmap_copy_page copies the specified (machine independent)
2600 *	page by mapping the page into virtual memory and using
2601 *	bcopy to copy the page, one machine dependent page at a
2602 *	time.
2603 */
2604void
2605pmap_copy_page(vm_page_t src, vm_page_t dst)
2606{
2607
2608	mtx_lock(&CMAPCADDR12_lock);
2609	if (*CMAP1)
2610		panic("pmap_copy_page: CMAP1 busy");
2611	if (*CMAP2)
2612		panic("pmap_copy_page: CMAP2 busy");
2613	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2614	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2615#ifdef I386_CPU
2616	invltlb();
2617#else
2618#ifdef SMP
2619	curthread->td_switchin = pmap_zpi_switchin12;
2620#endif
2621	invlpg((u_int)CADDR1);
2622	invlpg((u_int)CADDR2);
2623#endif
2624	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2625#ifdef SMP
2626	curthread->td_switchin = NULL;
2627#endif
2628	*CMAP1 = 0;
2629	*CMAP2 = 0;
2630	mtx_unlock(&CMAPCADDR12_lock);
2631}
2632
2633/*
2634 * Returns true if the pmap's pv is one of the first
2635 * 16 pvs linked to from this page.  This count may
2636 * be changed upwards or downwards in the future; it
2637 * is only necessary that true be returned for a small
2638 * subset of pmaps for proper page aging.
2639 */
2640boolean_t
2641pmap_page_exists_quick(pmap, m)
2642	pmap_t pmap;
2643	vm_page_t m;
2644{
2645	pv_entry_t pv;
2646	int loops = 0;
2647	int s;
2648
2649	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2650		return FALSE;
2651
2652	s = splvm();
2653	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2654	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2655		if (pv->pv_pmap == pmap) {
2656			splx(s);
2657			return TRUE;
2658		}
2659		loops++;
2660		if (loops >= 16)
2661			break;
2662	}
2663	splx(s);
2664	return (FALSE);
2665}
2666
2667#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2668/*
2669 * Remove all pages from specified address space
2670 * this aids process exit speeds.  Also, this code
2671 * is special cased for current process only, but
2672 * can have the more generic (and slightly slower)
2673 * mode enabled.  This is much faster than pmap_remove
2674 * in the case of running down an entire address space.
2675 */
2676void
2677pmap_remove_pages(pmap, sva, eva)
2678	pmap_t pmap;
2679	vm_offset_t sva, eva;
2680{
2681	pt_entry_t *pte, tpte;
2682	vm_page_t m;
2683	pv_entry_t pv, npv;
2684	int s;
2685
2686#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2687	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2688		printf("warning: pmap_remove_pages called with non-current pmap\n");
2689		return;
2690	}
2691#endif
2692	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2693	s = splvm();
2694	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2695
2696		if (pv->pv_va >= eva || pv->pv_va < sva) {
2697			npv = TAILQ_NEXT(pv, pv_plist);
2698			continue;
2699		}
2700
2701#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2702		pte = vtopte(pv->pv_va);
2703#else
2704		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2705#endif
2706		tpte = *pte;
2707
2708		if (tpte == 0) {
2709			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2710							pte, pv->pv_va);
2711			panic("bad pte");
2712		}
2713
2714/*
2715 * We cannot remove wired pages from a process' mapping at this time
2716 */
2717		if (tpte & PG_W) {
2718			npv = TAILQ_NEXT(pv, pv_plist);
2719			continue;
2720		}
2721
2722		m = PHYS_TO_VM_PAGE(tpte);
2723		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2724		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2725		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2726
2727		KASSERT(m < &vm_page_array[vm_page_array_size],
2728			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2729
2730		pv->pv_pmap->pm_stats.resident_count--;
2731
2732		pte_clear(pte);
2733
2734		/*
2735		 * Update the vm_page_t clean and reference bits.
2736		 */
2737		if (tpte & PG_M) {
2738			vm_page_dirty(m);
2739		}
2740
2741		npv = TAILQ_NEXT(pv, pv_plist);
2742		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2743
2744		m->md.pv_list_count--;
2745		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2746		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2747			vm_page_flag_clear(m, PG_WRITEABLE);
2748		}
2749
2750		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2751		free_pv_entry(pv);
2752	}
2753	splx(s);
2754	pmap_invalidate_all(pmap);
2755}
2756
2757/*
2758 *	pmap_is_modified:
2759 *
2760 *	Return whether or not the specified physical page was modified
2761 *	in any physical maps.
2762 */
2763boolean_t
2764pmap_is_modified(vm_page_t m)
2765{
2766	pv_entry_t pv;
2767	pt_entry_t *pte;
2768	int s;
2769
2770	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2771		return FALSE;
2772
2773	s = splvm();
2774	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2775	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2776		/*
2777		 * if the bit being tested is the modified bit, then
2778		 * mark clean_map and ptes as never
2779		 * modified.
2780		 */
2781		if (!pmap_track_modified(pv->pv_va))
2782			continue;
2783#if defined(PMAP_DIAGNOSTIC)
2784		if (!pv->pv_pmap) {
2785			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2786			continue;
2787		}
2788#endif
2789		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2790		if (*pte & PG_M) {
2791			splx(s);
2792			return TRUE;
2793		}
2794	}
2795	splx(s);
2796	return (FALSE);
2797}
2798
2799/*
2800 *	Clear the given bit in each of the given page's ptes.
2801 */
2802static __inline void
2803pmap_clear_ptes(vm_page_t m, int bit)
2804{
2805	register pv_entry_t pv;
2806	pt_entry_t pbits, *pte;
2807	int s;
2808
2809	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2810	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2811		return;
2812
2813	s = splvm();
2814	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2815	/*
2816	 * Loop over all current mappings setting/clearing as appropos If
2817	 * setting RO do we need to clear the VAC?
2818	 */
2819	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2820		/*
2821		 * don't write protect pager mappings
2822		 */
2823		if (bit == PG_RW) {
2824			if (!pmap_track_modified(pv->pv_va))
2825				continue;
2826		}
2827
2828#if defined(PMAP_DIAGNOSTIC)
2829		if (!pv->pv_pmap) {
2830			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2831			continue;
2832		}
2833#endif
2834
2835		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2836		pbits = *pte;
2837		if (pbits & bit) {
2838			if (bit == PG_RW) {
2839				if (pbits & PG_M) {
2840					vm_page_dirty(m);
2841				}
2842				pte_store(pte, pbits & ~(PG_M|PG_RW));
2843			} else {
2844				pte_store(pte, pbits & ~bit);
2845			}
2846			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2847		}
2848	}
2849	if (bit == PG_RW)
2850		vm_page_flag_clear(m, PG_WRITEABLE);
2851	splx(s);
2852}
2853
2854/*
2855 *      pmap_page_protect:
2856 *
2857 *      Lower the permission for all mappings to a given page.
2858 */
2859void
2860pmap_page_protect(vm_page_t m, vm_prot_t prot)
2861{
2862	if ((prot & VM_PROT_WRITE) == 0) {
2863		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2864			pmap_clear_ptes(m, PG_RW);
2865		} else {
2866			pmap_remove_all(m);
2867		}
2868	}
2869}
2870
2871/*
2872 *	pmap_ts_referenced:
2873 *
2874 *	Return a count of reference bits for a page, clearing those bits.
2875 *	It is not necessary for every reference bit to be cleared, but it
2876 *	is necessary that 0 only be returned when there are truly no
2877 *	reference bits set.
2878 *
2879 *	XXX: The exact number of bits to check and clear is a matter that
2880 *	should be tested and standardized at some point in the future for
2881 *	optimal aging of shared pages.
2882 */
2883int
2884pmap_ts_referenced(vm_page_t m)
2885{
2886	register pv_entry_t pv, pvf, pvn;
2887	pt_entry_t *pte;
2888	pt_entry_t v;
2889	int s;
2890	int rtval = 0;
2891
2892	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2893		return (rtval);
2894
2895	s = splvm();
2896	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2897	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2898
2899		pvf = pv;
2900
2901		do {
2902			pvn = TAILQ_NEXT(pv, pv_list);
2903
2904			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2905
2906			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2907
2908			if (!pmap_track_modified(pv->pv_va))
2909				continue;
2910
2911			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2912
2913			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2914				pte_store(pte, v & ~PG_A);
2915				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2916
2917				rtval++;
2918				if (rtval > 4) {
2919					break;
2920				}
2921			}
2922		} while ((pv = pvn) != NULL && pv != pvf);
2923	}
2924	splx(s);
2925
2926	return (rtval);
2927}
2928
2929/*
2930 *	Clear the modify bits on the specified physical page.
2931 */
2932void
2933pmap_clear_modify(vm_page_t m)
2934{
2935	pmap_clear_ptes(m, PG_M);
2936}
2937
2938/*
2939 *	pmap_clear_reference:
2940 *
2941 *	Clear the reference bit on the specified physical page.
2942 */
2943void
2944pmap_clear_reference(vm_page_t m)
2945{
2946	pmap_clear_ptes(m, PG_A);
2947}
2948
2949/*
2950 * Miscellaneous support routines follow
2951 */
2952
2953static void
2954i386_protection_init()
2955{
2956	register int *kp, prot;
2957
2958	kp = protection_codes;
2959	for (prot = 0; prot < 8; prot++) {
2960		switch (prot) {
2961		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2962			/*
2963			 * Read access is also 0. There isn't any execute bit,
2964			 * so just make it readable.
2965			 */
2966		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2967		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2968		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2969			*kp++ = 0;
2970			break;
2971		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2972		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2973		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2974		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2975			*kp++ = PG_RW;
2976			break;
2977		}
2978	}
2979}
2980
2981/*
2982 * Map a set of physical memory pages into the kernel virtual
2983 * address space. Return a pointer to where it is mapped. This
2984 * routine is intended to be used for mapping device memory,
2985 * NOT real memory.
2986 */
2987void *
2988pmap_mapdev(pa, size)
2989	vm_paddr_t pa;
2990	vm_size_t size;
2991{
2992	vm_offset_t va, tmpva, offset;
2993
2994	offset = pa & PAGE_MASK;
2995	size = roundup(offset + size, PAGE_SIZE);
2996
2997	va = kmem_alloc_nofault(kernel_map, size);
2998	if (!va)
2999		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3000
3001	pa = pa & PG_FRAME;
3002	for (tmpva = va; size > 0; ) {
3003		pmap_kenter(tmpva, pa);
3004		size -= PAGE_SIZE;
3005		tmpva += PAGE_SIZE;
3006		pa += PAGE_SIZE;
3007	}
3008	pmap_invalidate_range(kernel_pmap, va, tmpva);
3009	return ((void *)(va + offset));
3010}
3011
3012void
3013pmap_unmapdev(va, size)
3014	vm_offset_t va;
3015	vm_size_t size;
3016{
3017	vm_offset_t base, offset, tmpva;
3018	pt_entry_t *pte;
3019
3020	base = va & PG_FRAME;
3021	offset = va & PAGE_MASK;
3022	size = roundup(offset + size, PAGE_SIZE);
3023	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3024		pte = vtopte(tmpva);
3025		pte_clear(pte);
3026	}
3027	pmap_invalidate_range(kernel_pmap, va, tmpva);
3028	kmem_free(kernel_map, base, size);
3029}
3030
3031/*
3032 * perform the pmap work for mincore
3033 */
3034int
3035pmap_mincore(pmap, addr)
3036	pmap_t pmap;
3037	vm_offset_t addr;
3038{
3039	pt_entry_t *ptep, pte;
3040	vm_page_t m;
3041	int val = 0;
3042
3043	ptep = pmap_pte_quick(pmap, addr);
3044	if (ptep == 0) {
3045		return 0;
3046	}
3047
3048	if ((pte = *ptep) != 0) {
3049		vm_paddr_t pa;
3050
3051		val = MINCORE_INCORE;
3052		if ((pte & PG_MANAGED) == 0)
3053			return val;
3054
3055		pa = pte & PG_FRAME;
3056
3057		m = PHYS_TO_VM_PAGE(pa);
3058
3059		/*
3060		 * Modified by us
3061		 */
3062		if (pte & PG_M)
3063			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3064		else {
3065			/*
3066			 * Modified by someone else
3067			 */
3068			vm_page_lock_queues();
3069			if (m->dirty || pmap_is_modified(m))
3070				val |= MINCORE_MODIFIED_OTHER;
3071			vm_page_unlock_queues();
3072		}
3073		/*
3074		 * Referenced by us
3075		 */
3076		if (pte & PG_A)
3077			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3078		else {
3079			/*
3080			 * Referenced by someone else
3081			 */
3082			vm_page_lock_queues();
3083			if ((m->flags & PG_REFERENCED) ||
3084			    pmap_ts_referenced(m)) {
3085				val |= MINCORE_REFERENCED_OTHER;
3086				vm_page_flag_set(m, PG_REFERENCED);
3087			}
3088			vm_page_unlock_queues();
3089		}
3090	}
3091	return val;
3092}
3093
3094void
3095pmap_activate(struct thread *td)
3096{
3097	struct proc *p = td->td_proc;
3098	pmap_t	pmap, oldpmap;
3099	u_int32_t  cr3;
3100
3101	critical_enter();
3102	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3103	oldpmap = PCPU_GET(curpmap);
3104#if defined(SMP)
3105	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3106	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3107#else
3108	oldpmap->pm_active &= ~1;
3109	pmap->pm_active |= 1;
3110#endif
3111#ifdef PAE
3112	cr3 = vtophys(pmap->pm_pdpt);
3113#else
3114	cr3 = vtophys(pmap->pm_pdir);
3115#endif
3116	/* XXXKSE this is wrong.
3117	 * pmap_activate is for the current thread on the current cpu
3118	 */
3119	if (p->p_flag & P_SA) {
3120		/* Make sure all other cr3 entries are updated. */
3121		/* what if they are running?  XXXKSE (maybe abort them) */
3122		FOREACH_THREAD_IN_PROC(p, td) {
3123			td->td_pcb->pcb_cr3 = cr3;
3124		}
3125	} else {
3126		td->td_pcb->pcb_cr3 = cr3;
3127	}
3128	load_cr3(cr3);
3129	PCPU_SET(curpmap, pmap);
3130	critical_exit();
3131}
3132
3133vm_offset_t
3134pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3135{
3136
3137	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3138		return addr;
3139	}
3140
3141	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3142	return addr;
3143}
3144
3145
3146#if defined(PMAP_DEBUG)
3147pmap_pid_dump(int pid)
3148{
3149	pmap_t pmap;
3150	struct proc *p;
3151	int npte = 0;
3152	int index;
3153
3154	sx_slock(&allproc_lock);
3155	LIST_FOREACH(p, &allproc, p_list) {
3156		if (p->p_pid != pid)
3157			continue;
3158
3159		if (p->p_vmspace) {
3160			int i,j;
3161			index = 0;
3162			pmap = vmspace_pmap(p->p_vmspace);
3163			for (i = 0; i < NPDEPTD; i++) {
3164				pd_entry_t *pde;
3165				pt_entry_t *pte;
3166				vm_offset_t base = i << PDRSHIFT;
3167
3168				pde = &pmap->pm_pdir[i];
3169				if (pde && pmap_pde_v(pde)) {
3170					for (j = 0; j < NPTEPG; j++) {
3171						vm_offset_t va = base + (j << PAGE_SHIFT);
3172						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3173							if (index) {
3174								index = 0;
3175								printf("\n");
3176							}
3177							sx_sunlock(&allproc_lock);
3178							return npte;
3179						}
3180						pte = pmap_pte_quick(pmap, va);
3181						if (pte && pmap_pte_v(pte)) {
3182							pt_entry_t pa;
3183							vm_page_t m;
3184							pa = *pte;
3185							m = PHYS_TO_VM_PAGE(pa);
3186							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3187								va, pa, m->hold_count, m->wire_count, m->flags);
3188							npte++;
3189							index++;
3190							if (index >= 2) {
3191								index = 0;
3192								printf("\n");
3193							} else {
3194								printf(" ");
3195							}
3196						}
3197					}
3198				}
3199			}
3200		}
3201	}
3202	sx_sunlock(&allproc_lock);
3203	return npte;
3204}
3205#endif
3206
3207#if defined(DEBUG)
3208
3209static void	pads(pmap_t pm);
3210void		pmap_pvdump(vm_offset_t pa);
3211
3212/* print address space of pmap*/
3213static void
3214pads(pm)
3215	pmap_t pm;
3216{
3217	int i, j;
3218	vm_paddr_t va;
3219	pt_entry_t *ptep;
3220
3221	if (pm == kernel_pmap)
3222		return;
3223	for (i = 0; i < NPDEPTD; i++)
3224		if (pm->pm_pdir[i])
3225			for (j = 0; j < NPTEPG; j++) {
3226				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3227				if (pm == kernel_pmap && va < KERNBASE)
3228					continue;
3229				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3230					continue;
3231				ptep = pmap_pte_quick(pm, va);
3232				if (pmap_pte_v(ptep))
3233					printf("%x:%x ", va, *ptep);
3234			};
3235
3236}
3237
3238void
3239pmap_pvdump(pa)
3240	vm_paddr_t pa;
3241{
3242	pv_entry_t pv;
3243	vm_page_t m;
3244
3245	printf("pa %x", pa);
3246	m = PHYS_TO_VM_PAGE(pa);
3247	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3248		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3249		pads(pv->pv_pmap);
3250	}
3251	printf(" ");
3252}
3253#endif
3254