pmap.c revision 117242
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 117242 2003-07-04 22:13:39Z alc $");
46/*-
47 * Copyright (c) 2003 Networks Associates Technology, Inc.
48 * All rights reserved.
49 *
50 * This software was developed for the FreeBSD Project by Jake Burkholder,
51 * Safeport Network Services, and Network Associates Laboratories, the
52 * Security Research Division of Network Associates, Inc. under
53 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
54 * CHATS research program.
55 *
56 * Redistribution and use in source and binary forms, with or without
57 * modification, are permitted provided that the following conditions
58 * are met:
59 * 1. Redistributions of source code must retain the above copyright
60 *    notice, this list of conditions and the following disclaimer.
61 * 2. Redistributions in binary form must reproduce the above copyright
62 *    notice, this list of conditions and the following disclaimer in the
63 *    documentation and/or other materials provided with the distribution.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 */
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_pmap.h"
105#include "opt_msgbuf.h"
106#include "opt_kstack_pages.h"
107#include "opt_swtch.h"
108
109#include <sys/param.h>
110#include <sys/systm.h>
111#include <sys/kernel.h>
112#include <sys/lock.h>
113#include <sys/mman.h>
114#include <sys/msgbuf.h>
115#include <sys/mutex.h>
116#include <sys/proc.h>
117#include <sys/sx.h>
118#include <sys/user.h>
119#include <sys/vmmeter.h>
120#include <sys/sysctl.h>
121#ifdef SMP
122#include <sys/smp.h>
123#endif
124
125#include <vm/vm.h>
126#include <vm/vm_param.h>
127#include <vm/vm_kern.h>
128#include <vm/vm_page.h>
129#include <vm/vm_map.h>
130#include <vm/vm_object.h>
131#include <vm/vm_extern.h>
132#include <vm/vm_pageout.h>
133#include <vm/vm_pager.h>
134#include <vm/uma.h>
135
136#include <machine/cpu.h>
137#include <machine/cputypes.h>
138#include <machine/md_var.h>
139#include <machine/specialreg.h>
140#if defined(SMP) || defined(APIC_IO)
141#include <machine/smp.h>
142#include <machine/apic.h>
143#include <machine/segments.h>
144#include <machine/tss.h>
145#endif /* SMP || APIC_IO */
146
147#define PMAP_KEEP_PDIRS
148#ifndef PMAP_SHPGPERPROC
149#define PMAP_SHPGPERPROC 200
150#endif
151
152#if defined(DIAGNOSTIC)
153#define PMAP_DIAGNOSTIC
154#endif
155
156#define MINPV 2048
157
158#if !defined(PMAP_DIAGNOSTIC)
159#define PMAP_INLINE __inline
160#else
161#define PMAP_INLINE
162#endif
163
164/*
165 * Get PDEs and PTEs for user/kernel address space
166 */
167#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
168#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
169
170#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
171#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
172#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
173#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
174#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
175
176#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
177#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
178
179/*
180 * Given a map and a machine independent protection code,
181 * convert to a vax protection code.
182 */
183#define pte_prot(m, p)	(protection_codes[p])
184static int protection_codes[8];
185
186struct pmap kernel_pmap_store;
187LIST_HEAD(pmaplist, pmap);
188static struct pmaplist allpmaps;
189static struct mtx allpmaps_lock;
190#if defined(SMP) && defined(LAZY_SWITCH)
191static struct mtx lazypmap_lock;
192#endif
193
194vm_paddr_t avail_start;	/* PA of first available physical page */
195vm_paddr_t avail_end;	/* PA of last available physical page */
196vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
197vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
198static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
199static int pgeflag;		/* PG_G or-in */
200static int pseflag;		/* PG_PS or-in */
201
202static int nkpt;
203vm_offset_t kernel_vm_end;
204extern u_int32_t KERNend;
205
206#ifdef PAE
207static uma_zone_t pdptzone;
208#endif
209
210/*
211 * Data for the pv entry allocation mechanism
212 */
213static uma_zone_t pvzone;
214static struct vm_object pvzone_obj;
215static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
216int pmap_pagedaemon_waken;
217
218/*
219 * All those kernel PT submaps that BSD is so fond of
220 */
221pt_entry_t *CMAP1 = 0;
222static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
223caddr_t CADDR1 = 0, ptvmmap = 0;
224static caddr_t CADDR2, CADDR3;
225static struct mtx CMAPCADDR12_lock;
226static pt_entry_t *msgbufmap;
227struct msgbuf *msgbufp = 0;
228
229/*
230 * Crashdump maps.
231 */
232static pt_entry_t *pt_crashdumpmap;
233static caddr_t crashdumpmap;
234
235#ifdef SMP
236extern pt_entry_t *SMPpt;
237#endif
238static pt_entry_t *PMAP1 = 0;
239static pt_entry_t *PADDR1 = 0;
240
241static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
242static pv_entry_t get_pv_entry(void);
243static void	i386_protection_init(void);
244static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
245
246static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
247static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
248static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
249					vm_offset_t va);
250static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
251		vm_page_t mpte, vm_page_t m);
252
253static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
254
255static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
256static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
257static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
258static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
259static void *pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
260#ifdef PAE
261static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
262#endif
263
264static pd_entry_t pdir4mb;
265
266CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
267CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
268
269/*
270 * Move the kernel virtual free pointer to the next
271 * 4MB.  This is used to help improve performance
272 * by using a large (4MB) page for much of the kernel
273 * (.text, .data, .bss)
274 */
275static vm_offset_t
276pmap_kmem_choose(vm_offset_t addr)
277{
278	vm_offset_t newaddr = addr;
279
280#ifdef I686_CPU_not	/* Problem seems to have gone away */
281	/* Deal with un-resolved Pentium4 issues */
282	if (cpu_class == CPUCLASS_686 &&
283	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
284	    (cpu_id & 0xf00) == 0xf00)
285		return newaddr;
286#endif
287#ifndef DISABLE_PSE
288	if (cpu_feature & CPUID_PSE)
289		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
290#endif
291	return newaddr;
292}
293
294/*
295 *	Bootstrap the system enough to run with virtual memory.
296 *
297 *	On the i386 this is called after mapping has already been enabled
298 *	and just syncs the pmap module with what has already been done.
299 *	[We can't call it easily with mapping off since the kernel is not
300 *	mapped with PA == VA, hence we would have to relocate every address
301 *	from the linked base (virtual) address "KERNBASE" to the actual
302 *	(physical) address starting relative to 0]
303 */
304void
305pmap_bootstrap(firstaddr, loadaddr)
306	vm_paddr_t firstaddr;
307	vm_paddr_t loadaddr;
308{
309	vm_offset_t va;
310	pt_entry_t *pte;
311	int i;
312
313	avail_start = firstaddr;
314
315	/*
316	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
317	 * large. It should instead be correctly calculated in locore.s and
318	 * not based on 'first' (which is a physical address, not a virtual
319	 * address, for the start of unused physical memory). The kernel
320	 * page tables are NOT double mapped and thus should not be included
321	 * in this calculation.
322	 */
323	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
324	virtual_avail = pmap_kmem_choose(virtual_avail);
325
326	virtual_end = VM_MAX_KERNEL_ADDRESS;
327
328	/*
329	 * Initialize protection array.
330	 */
331	i386_protection_init();
332
333	/*
334	 * Initialize the kernel pmap (which is statically allocated).
335	 */
336	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
337#ifdef PAE
338	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
339#endif
340	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
341	TAILQ_INIT(&kernel_pmap->pm_pvlist);
342	LIST_INIT(&allpmaps);
343#if defined(SMP) && defined(LAZY_SWITCH)
344	mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
345#endif
346	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
347	mtx_lock_spin(&allpmaps_lock);
348	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
349	mtx_unlock_spin(&allpmaps_lock);
350	nkpt = NKPT;
351
352	/*
353	 * Reserve some special page table entries/VA space for temporary
354	 * mapping of pages.
355	 */
356#define	SYSMAP(c, p, v, n)	\
357	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
358
359	va = virtual_avail;
360	pte = vtopte(va);
361
362	/*
363	 * CMAP1/CMAP2 are used for zeroing and copying pages.
364	 * CMAP3 is used for the idle process page zeroing.
365	 */
366	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
367	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
368	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
369
370	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
371
372	/*
373	 * Crashdump maps.
374	 */
375	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
376
377	/*
378	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
379	 * XXX ptmmap is not used.
380	 */
381	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
382
383	/*
384	 * msgbufp is used to map the system message buffer.
385	 * XXX msgbufmap is not used.
386	 */
387	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
388	       atop(round_page(MSGBUF_SIZE)))
389
390	/*
391	 * ptemap is used for pmap_pte_quick
392	 */
393	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
394
395	virtual_avail = va;
396
397	*CMAP1 = *CMAP2 = 0;
398	for (i = 0; i < NKPT; i++)
399		PTD[i] = 0;
400
401	pgeflag = 0;
402#ifndef DISABLE_PG_G
403	if (cpu_feature & CPUID_PGE)
404		pgeflag = PG_G;
405#endif
406#ifdef I686_CPU_not	/* Problem seems to have gone away */
407	/* Deal with un-resolved Pentium4 issues */
408	if (cpu_class == CPUCLASS_686 &&
409	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
410	    (cpu_id & 0xf00) == 0xf00) {
411		printf("Warning: Pentium 4 cpu: PG_G disabled (global flag)\n");
412		pgeflag = 0;
413	}
414#endif
415
416/*
417 * Initialize the 4MB page size flag
418 */
419	pseflag = 0;
420/*
421 * The 4MB page version of the initial
422 * kernel page mapping.
423 */
424	pdir4mb = 0;
425
426#ifndef DISABLE_PSE
427	if (cpu_feature & CPUID_PSE)
428		pseflag = PG_PS;
429#endif
430#ifdef I686_CPU_not	/* Problem seems to have gone away */
431	/* Deal with un-resolved Pentium4 issues */
432	if (cpu_class == CPUCLASS_686 &&
433	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
434	    (cpu_id & 0xf00) == 0xf00) {
435		printf("Warning: Pentium 4 cpu: PG_PS disabled (4MB pages)\n");
436		pseflag = 0;
437	}
438#endif
439#ifndef DISABLE_PSE
440	if (pseflag) {
441		pd_entry_t ptditmp;
442		/*
443		 * Note that we have enabled PSE mode
444		 */
445		ptditmp = *(PTmap + i386_btop(KERNBASE));
446		ptditmp &= ~(NBPDR - 1);
447		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
448		pdir4mb = ptditmp;
449	}
450#endif
451#ifndef SMP
452	/*
453	 * Turn on PGE/PSE.  SMP does this later on since the
454	 * 4K page tables are required for AP boot (for now).
455	 * XXX fixme.
456	 */
457	pmap_set_opt();
458#endif
459#ifdef SMP
460	if (cpu_apic_address == 0)
461		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
462
463	/* local apic is mapped on last page */
464	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
465	    (cpu_apic_address & PG_FRAME));
466#endif
467	invltlb();
468}
469
470/*
471 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
472 * BSP will run this after all the AP's have started up.
473 */
474void
475pmap_set_opt(void)
476{
477	pt_entry_t *pte;
478	vm_offset_t va, endva;
479
480	if (pgeflag && (cpu_feature & CPUID_PGE)) {
481		load_cr4(rcr4() | CR4_PGE);
482		invltlb();		/* Insurance */
483	}
484#ifndef DISABLE_PSE
485	if (pseflag && (cpu_feature & CPUID_PSE)) {
486		load_cr4(rcr4() | CR4_PSE);
487		invltlb();		/* Insurance */
488	}
489#endif
490	if (PCPU_GET(cpuid) == 0) {
491#ifndef DISABLE_PSE
492		if (pdir4mb) {
493			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
494			invltlb();	/* Insurance */
495		}
496#endif
497		if (pgeflag) {
498			/* Turn on PG_G for text, data, bss pages. */
499			va = (vm_offset_t)btext;
500#ifndef DISABLE_PSE
501			if (pseflag && (cpu_feature & CPUID_PSE)) {
502				if (va < KERNBASE + (1 << PDRSHIFT))
503					va = KERNBASE + (1 << PDRSHIFT);
504			}
505#endif
506			endva = KERNBASE + KERNend;
507			while (va < endva) {
508				pte = vtopte(va);
509				if (*pte)
510					*pte |= pgeflag;
511				va += PAGE_SIZE;
512			}
513			invltlb();	/* Insurance */
514		}
515		/*
516		 * We do not need to broadcast the invltlb here, because
517		 * each AP does it the moment it is released from the boot
518		 * lock.  See ap_init().
519		 */
520	}
521}
522
523static void *
524pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
525{
526	*flags = UMA_SLAB_PRIV;
527	return (void *)kmem_alloc(kernel_map, bytes);
528}
529
530#ifdef PAE
531static void *
532pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
533{
534	*flags = UMA_SLAB_PRIV;
535	return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
536}
537#endif
538
539/*
540 *	Initialize the pmap module.
541 *	Called by vm_init, to initialize any structures that the pmap
542 *	system needs to map virtual memory.
543 *	pmap_init has been enhanced to support in a fairly consistant
544 *	way, discontiguous physical memory.
545 */
546void
547pmap_init(phys_start, phys_end)
548	vm_paddr_t phys_start, phys_end;
549{
550	int i;
551	int initial_pvs;
552
553	/*
554	 * Allocate memory for random pmap data structures.  Includes the
555	 * pv_head_table.
556	 */
557
558	for(i = 0; i < vm_page_array_size; i++) {
559		vm_page_t m;
560
561		m = &vm_page_array[i];
562		TAILQ_INIT(&m->md.pv_list);
563		m->md.pv_list_count = 0;
564	}
565
566	/*
567	 * init the pv free list
568	 */
569	initial_pvs = vm_page_array_size;
570	if (initial_pvs < MINPV)
571		initial_pvs = MINPV;
572	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
573	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
574	uma_zone_set_allocf(pvzone, pmap_pv_allocf);
575	uma_prealloc(pvzone, initial_pvs);
576
577#ifdef PAE
578	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
579	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1, 0);
580	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
581#endif
582
583	/*
584	 * Now it is safe to enable pv_table recording.
585	 */
586	pmap_initialized = TRUE;
587}
588
589/*
590 * Initialize the address space (zone) for the pv_entries.  Set a
591 * high water mark so that the system can recover from excessive
592 * numbers of pv entries.
593 */
594void
595pmap_init2()
596{
597	int shpgperproc = PMAP_SHPGPERPROC;
598
599	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
600	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
601	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
602	pv_entry_high_water = 9 * (pv_entry_max / 10);
603	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
604}
605
606
607/***************************************************
608 * Low level helper routines.....
609 ***************************************************/
610
611#if defined(PMAP_DIAGNOSTIC)
612
613/*
614 * This code checks for non-writeable/modified pages.
615 * This should be an invalid condition.
616 */
617static int
618pmap_nw_modified(pt_entry_t ptea)
619{
620	int pte;
621
622	pte = (int) ptea;
623
624	if ((pte & (PG_M|PG_RW)) == PG_M)
625		return 1;
626	else
627		return 0;
628}
629#endif
630
631
632/*
633 * this routine defines the region(s) of memory that should
634 * not be tested for the modified bit.
635 */
636static PMAP_INLINE int
637pmap_track_modified(vm_offset_t va)
638{
639	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
640		return 1;
641	else
642		return 0;
643}
644
645#ifdef I386_CPU
646/*
647 * i386 only has "invalidate everything" and no SMP to worry about.
648 */
649PMAP_INLINE void
650pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
651{
652
653	if (pmap == kernel_pmap || pmap->pm_active)
654		invltlb();
655}
656
657PMAP_INLINE void
658pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
659{
660
661	if (pmap == kernel_pmap || pmap->pm_active)
662		invltlb();
663}
664
665PMAP_INLINE void
666pmap_invalidate_all(pmap_t pmap)
667{
668
669	if (pmap == kernel_pmap || pmap->pm_active)
670		invltlb();
671}
672#else /* !I386_CPU */
673#ifdef SMP
674/*
675 * For SMP, these functions have to use the IPI mechanism for coherence.
676 */
677void
678pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
679{
680	u_int cpumask;
681	u_int other_cpus;
682
683	critical_enter();
684	/*
685	 * We need to disable interrupt preemption but MUST NOT have
686	 * interrupts disabled here.
687	 * XXX we may need to hold schedlock to get a coherent pm_active
688	 */
689	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
690		invlpg(va);
691		smp_invlpg(va);
692	} else {
693		cpumask = PCPU_GET(cpumask);
694		other_cpus = PCPU_GET(other_cpus);
695		if (pmap->pm_active & cpumask)
696			invlpg(va);
697		if (pmap->pm_active & other_cpus)
698			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
699	}
700	critical_exit();
701}
702
703void
704pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
705{
706	u_int cpumask;
707	u_int other_cpus;
708	vm_offset_t addr;
709
710	critical_enter();
711	/*
712	 * We need to disable interrupt preemption but MUST NOT have
713	 * interrupts disabled here.
714	 * XXX we may need to hold schedlock to get a coherent pm_active
715	 */
716	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
717		for (addr = sva; addr < eva; addr += PAGE_SIZE)
718			invlpg(addr);
719		smp_invlpg_range(sva, eva);
720	} else {
721		cpumask = PCPU_GET(cpumask);
722		other_cpus = PCPU_GET(other_cpus);
723		if (pmap->pm_active & cpumask)
724			for (addr = sva; addr < eva; addr += PAGE_SIZE)
725				invlpg(addr);
726		if (pmap->pm_active & other_cpus)
727			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
728			    sva, eva);
729	}
730	critical_exit();
731}
732
733void
734pmap_invalidate_all(pmap_t pmap)
735{
736	u_int cpumask;
737	u_int other_cpus;
738
739	critical_enter();
740	/*
741	 * We need to disable interrupt preemption but MUST NOT have
742	 * interrupts disabled here.
743	 * XXX we may need to hold schedlock to get a coherent pm_active
744	 */
745	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
746		invltlb();
747		smp_invltlb();
748	} else {
749		cpumask = PCPU_GET(cpumask);
750		other_cpus = PCPU_GET(other_cpus);
751		if (pmap->pm_active & cpumask)
752			invltlb();
753		if (pmap->pm_active & other_cpus)
754			smp_masked_invltlb(pmap->pm_active & other_cpus);
755	}
756	critical_exit();
757}
758#else /* !SMP */
759/*
760 * Normal, non-SMP, 486+ invalidation functions.
761 * We inline these within pmap.c for speed.
762 */
763PMAP_INLINE void
764pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
765{
766
767	if (pmap == kernel_pmap || pmap->pm_active)
768		invlpg(va);
769}
770
771PMAP_INLINE void
772pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
773{
774	vm_offset_t addr;
775
776	if (pmap == kernel_pmap || pmap->pm_active)
777		for (addr = sva; addr < eva; addr += PAGE_SIZE)
778			invlpg(addr);
779}
780
781PMAP_INLINE void
782pmap_invalidate_all(pmap_t pmap)
783{
784
785	if (pmap == kernel_pmap || pmap->pm_active)
786		invltlb();
787}
788#endif /* !SMP */
789#endif /* !I386_CPU */
790
791/*
792 * Are we current address space or kernel?
793 */
794static __inline int
795pmap_is_current(pmap_t pmap)
796{
797	return (pmap == kernel_pmap ||
798	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME));
799}
800
801/*
802 * Super fast pmap_pte routine best used when scanning
803 * the pv lists.  This eliminates many coarse-grained
804 * invltlb calls.  Note that many of the pv list
805 * scans are across different pmaps.  It is very wasteful
806 * to do an entire invltlb for checking a single mapping.
807 */
808pt_entry_t *
809pmap_pte_quick(pmap, va)
810	register pmap_t pmap;
811	vm_offset_t va;
812{
813	pd_entry_t newpf;
814	pd_entry_t *pde;
815
816	pde = pmap_pde(pmap, va);
817	if (*pde & PG_PS)
818		return (pde);
819	if (*pde != 0) {
820		/* are we current address space or kernel? */
821		if (pmap_is_current(pmap))
822			return vtopte(va);
823		newpf = *pde & PG_FRAME;
824		if (((*PMAP1) & PG_FRAME) != newpf) {
825			*PMAP1 = newpf | PG_RW | PG_V;
826			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
827		}
828		return PADDR1 + (i386_btop(va) & (NPTEPG - 1));
829	}
830	return (0);
831}
832
833/*
834 *	Routine:	pmap_extract
835 *	Function:
836 *		Extract the physical page address associated
837 *		with the given map/virtual_address pair.
838 */
839vm_paddr_t
840pmap_extract(pmap, va)
841	register pmap_t pmap;
842	vm_offset_t va;
843{
844	vm_paddr_t rtval;
845	pt_entry_t *pte;
846	pd_entry_t pde;
847
848	if (pmap == 0)
849		return 0;
850	pde = pmap->pm_pdir[va >> PDRSHIFT];
851	if (pde != 0) {
852		if ((pde & PG_PS) != 0) {
853			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
854			return rtval;
855		}
856		pte = pmap_pte_quick(pmap, va);
857		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
858		return rtval;
859	}
860	return 0;
861
862}
863
864/***************************************************
865 * Low level mapping routines.....
866 ***************************************************/
867
868/*
869 * Add a wired page to the kva.
870 * Note: not SMP coherent.
871 */
872PMAP_INLINE void
873pmap_kenter(vm_offset_t va, vm_paddr_t pa)
874{
875	pt_entry_t *pte;
876
877	pte = vtopte(va);
878	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
879}
880
881/*
882 * Remove a page from the kernel pagetables.
883 * Note: not SMP coherent.
884 */
885PMAP_INLINE void
886pmap_kremove(vm_offset_t va)
887{
888	pt_entry_t *pte;
889
890	pte = vtopte(va);
891	pte_clear(pte);
892}
893
894/*
895 *	Used to map a range of physical addresses into kernel
896 *	virtual address space.
897 *
898 *	The value passed in '*virt' is a suggested virtual address for
899 *	the mapping. Architectures which can support a direct-mapped
900 *	physical to virtual region can return the appropriate address
901 *	within that region, leaving '*virt' unchanged. Other
902 *	architectures should map the pages starting at '*virt' and
903 *	update '*virt' with the first usable address after the mapped
904 *	region.
905 */
906vm_offset_t
907pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
908{
909	vm_offset_t va, sva;
910
911	va = sva = *virt;
912	while (start < end) {
913		pmap_kenter(va, start);
914		va += PAGE_SIZE;
915		start += PAGE_SIZE;
916	}
917	pmap_invalidate_range(kernel_pmap, sva, va);
918	*virt = va;
919	return (sva);
920}
921
922
923/*
924 * Add a list of wired pages to the kva
925 * this routine is only used for temporary
926 * kernel mappings that do not need to have
927 * page modification or references recorded.
928 * Note that old mappings are simply written
929 * over.  The page *must* be wired.
930 * Note: SMP coherent.  Uses a ranged shootdown IPI.
931 */
932void
933pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
934{
935	vm_offset_t va;
936
937	va = sva;
938	while (count-- > 0) {
939		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
940		va += PAGE_SIZE;
941		m++;
942	}
943	pmap_invalidate_range(kernel_pmap, sva, va);
944}
945
946/*
947 * This routine tears out page mappings from the
948 * kernel -- it is meant only for temporary mappings.
949 * Note: SMP coherent.  Uses a ranged shootdown IPI.
950 */
951void
952pmap_qremove(vm_offset_t sva, int count)
953{
954	vm_offset_t va;
955
956	va = sva;
957	while (count-- > 0) {
958		pmap_kremove(va);
959		va += PAGE_SIZE;
960	}
961	pmap_invalidate_range(kernel_pmap, sva, va);
962}
963
964static vm_page_t
965pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
966{
967	vm_page_t m;
968
969retry:
970	m = vm_page_lookup(object, pindex);
971	if (m != NULL) {
972		vm_page_lock_queues();
973		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
974			goto retry;
975		vm_page_unlock_queues();
976	}
977	return m;
978}
979
980/***************************************************
981 * Page table page management routines.....
982 ***************************************************/
983
984/*
985 * This routine unholds page table pages, and if the hold count
986 * drops to zero, then it decrements the wire count.
987 */
988static int
989_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
990{
991
992	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
993		vm_page_lock_queues();
994
995	if (m->hold_count == 0) {
996		vm_offset_t pteva;
997		/*
998		 * unmap the page table page
999		 */
1000		pmap->pm_pdir[m->pindex] = 0;
1001		--pmap->pm_stats.resident_count;
1002		if (pmap_is_current(pmap)) {
1003			/*
1004			 * Do an invltlb to make the invalidated mapping
1005			 * take effect immediately.
1006			 */
1007			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1008			pmap_invalidate_page(pmap, pteva);
1009		}
1010
1011		/*
1012		 * If the page is finally unwired, simply free it.
1013		 */
1014		--m->wire_count;
1015		if (m->wire_count == 0) {
1016			vm_page_busy(m);
1017			vm_page_free_zero(m);
1018			atomic_subtract_int(&cnt.v_wire_count, 1);
1019		}
1020		return 1;
1021	}
1022	return 0;
1023}
1024
1025static PMAP_INLINE int
1026pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1027{
1028	vm_page_unhold(m);
1029	if (m->hold_count == 0)
1030		return _pmap_unwire_pte_hold(pmap, m);
1031	else
1032		return 0;
1033}
1034
1035/*
1036 * After removing a page table entry, this routine is used to
1037 * conditionally free the page, and manage the hold/wire counts.
1038 */
1039static int
1040pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1041{
1042	unsigned ptepindex;
1043	if (va >= VM_MAXUSER_ADDRESS)
1044		return 0;
1045
1046	if (mpte == NULL) {
1047		ptepindex = (va >> PDRSHIFT);
1048		if (pmap->pm_pteobj->root &&
1049			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1050			mpte = pmap->pm_pteobj->root;
1051		} else {
1052			while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
1053			       vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
1054				vm_page_lock_queues();
1055		}
1056	}
1057
1058	return pmap_unwire_pte_hold(pmap, mpte);
1059}
1060
1061void
1062pmap_pinit0(pmap)
1063	struct pmap *pmap;
1064{
1065
1066	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1067#ifdef PAE
1068	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1069#endif
1070	pmap->pm_active = 0;
1071	PCPU_SET(curpmap, pmap);
1072	TAILQ_INIT(&pmap->pm_pvlist);
1073	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1074	mtx_lock_spin(&allpmaps_lock);
1075	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1076	mtx_unlock_spin(&allpmaps_lock);
1077}
1078
1079/*
1080 * Initialize a preallocated and zeroed pmap structure,
1081 * such as one in a vmspace structure.
1082 */
1083void
1084pmap_pinit(pmap)
1085	register struct pmap *pmap;
1086{
1087	vm_page_t ptdpg[NPGPTD];
1088	vm_paddr_t pa;
1089	int i;
1090
1091	/*
1092	 * No need to allocate page table space yet but we do need a valid
1093	 * page directory table.
1094	 */
1095	if (pmap->pm_pdir == NULL) {
1096		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_pageable(kernel_map,
1097		    NBPTD);
1098#ifdef PAE
1099		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1100		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1101		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1102		    ("pmap_pinit: pdpt misaligned"));
1103		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1104		    ("pmap_pinit: pdpt above 4g"));
1105#endif
1106	}
1107
1108	/*
1109	 * allocate object for the ptes
1110	 */
1111	if (pmap->pm_pteobj == NULL)
1112		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI +
1113		    NPGPTD);
1114
1115	/*
1116	 * allocate the page directory page(s)
1117	 */
1118	for (i = 0; i < NPGPTD; i++) {
1119		ptdpg[i] = vm_page_grab(pmap->pm_pteobj, PTDPTDI + i,
1120		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED |
1121		    VM_ALLOC_ZERO);
1122		vm_page_lock_queues();
1123		vm_page_flag_clear(ptdpg[i], PG_BUSY);
1124		ptdpg[i]->valid = VM_PAGE_BITS_ALL;
1125		vm_page_unlock_queues();
1126	}
1127
1128	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1129
1130	for (i = 0; i < NPGPTD; i++) {
1131		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1132			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1133	}
1134
1135	mtx_lock_spin(&allpmaps_lock);
1136	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1137	mtx_unlock_spin(&allpmaps_lock);
1138	/* Wire in kernel global address entries. */
1139	/* XXX copies current process, does not fill in MPPTDI */
1140	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1141#ifdef SMP
1142	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1143#endif
1144
1145	/* install self-referential address mapping entry(s) */
1146	for (i = 0; i < NPGPTD; i++) {
1147		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1148		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1149#ifdef PAE
1150		pmap->pm_pdpt[i] = pa | PG_V;
1151#endif
1152	}
1153
1154	pmap->pm_active = 0;
1155	TAILQ_INIT(&pmap->pm_pvlist);
1156	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1157}
1158
1159/*
1160 * Wire in kernel global address entries.  To avoid a race condition
1161 * between pmap initialization and pmap_growkernel, this procedure
1162 * should be called after the vmspace is attached to the process
1163 * but before this pmap is activated.
1164 */
1165void
1166pmap_pinit2(pmap)
1167	struct pmap *pmap;
1168{
1169	/* XXX: Remove this stub when no longer called */
1170}
1171
1172/*
1173 * this routine is called if the page table page is not
1174 * mapped correctly.
1175 */
1176static vm_page_t
1177_pmap_allocpte(pmap, ptepindex)
1178	pmap_t	pmap;
1179	unsigned ptepindex;
1180{
1181	vm_paddr_t ptepa;
1182	vm_offset_t pteva;
1183	vm_page_t m;
1184
1185	/*
1186	 * Find or fabricate a new pagetable page
1187	 */
1188	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1189	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1190
1191	KASSERT(m->queue == PQ_NONE,
1192		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1193
1194	/*
1195	 * Increment the hold count for the page table page
1196	 * (denoting a new mapping.)
1197	 */
1198	m->hold_count++;
1199
1200	/*
1201	 * Map the pagetable page into the process address space, if
1202	 * it isn't already there.
1203	 */
1204
1205	pmap->pm_stats.resident_count++;
1206
1207	ptepa = VM_PAGE_TO_PHYS(m);
1208	pmap->pm_pdir[ptepindex] =
1209		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1210
1211	/*
1212	 * Try to use the new mapping, but if we cannot, then
1213	 * do it with the routine that maps the page explicitly.
1214	 */
1215	if ((m->flags & PG_ZERO) == 0) {
1216		if (pmap_is_current(pmap)) {
1217			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1218			bzero((caddr_t) pteva, PAGE_SIZE);
1219		} else {
1220			pmap_zero_page(m);
1221		}
1222	}
1223	vm_page_lock_queues();
1224	m->valid = VM_PAGE_BITS_ALL;
1225	vm_page_flag_clear(m, PG_ZERO);
1226	vm_page_wakeup(m);
1227	vm_page_unlock_queues();
1228
1229	return m;
1230}
1231
1232static vm_page_t
1233pmap_allocpte(pmap_t pmap, vm_offset_t va)
1234{
1235	unsigned ptepindex;
1236	pd_entry_t ptepa;
1237	vm_page_t m;
1238
1239	/*
1240	 * Calculate pagetable page index
1241	 */
1242	ptepindex = va >> PDRSHIFT;
1243
1244	/*
1245	 * Get the page directory entry
1246	 */
1247	ptepa = pmap->pm_pdir[ptepindex];
1248
1249	/*
1250	 * This supports switching from a 4MB page to a
1251	 * normal 4K page.
1252	 */
1253	if (ptepa & PG_PS) {
1254		pmap->pm_pdir[ptepindex] = 0;
1255		ptepa = 0;
1256		pmap_invalidate_all(kernel_pmap);
1257	}
1258
1259	/*
1260	 * If the page table page is mapped, we just increment the
1261	 * hold count, and activate it.
1262	 */
1263	if (ptepa) {
1264		/*
1265		 * In order to get the page table page, try the
1266		 * hint first.
1267		 */
1268		if (pmap->pm_pteobj->root &&
1269			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1270			m = pmap->pm_pteobj->root;
1271		} else {
1272			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1273		}
1274		m->hold_count++;
1275		return m;
1276	}
1277	/*
1278	 * Here if the pte page isn't mapped, or if it has been deallocated.
1279	 */
1280	return _pmap_allocpte(pmap, ptepindex);
1281}
1282
1283
1284/***************************************************
1285* Pmap allocation/deallocation routines.
1286 ***************************************************/
1287
1288#ifdef LAZY_SWITCH
1289#ifdef SMP
1290/*
1291 * Deal with a SMP shootdown of other users of the pmap that we are
1292 * trying to dispose of.  This can be a bit hairy.
1293 */
1294static u_int *lazymask;
1295static u_int lazyptd;
1296static volatile u_int lazywait;
1297
1298void pmap_lazyfix_action(void);
1299
1300void
1301pmap_lazyfix_action(void)
1302{
1303	u_int mymask = PCPU_GET(cpumask);
1304
1305	if (rcr3() == lazyptd)
1306		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1307	atomic_clear_int(lazymask, mymask);
1308	atomic_store_rel_int(&lazywait, 1);
1309}
1310
1311static void
1312pmap_lazyfix_self(u_int mymask)
1313{
1314
1315	if (rcr3() == lazyptd)
1316		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1317	atomic_clear_int(lazymask, mymask);
1318}
1319
1320
1321static void
1322pmap_lazyfix(pmap_t pmap)
1323{
1324	u_int mymask = PCPU_GET(cpumask);
1325	u_int mask;
1326	register u_int spins;
1327
1328	while ((mask = pmap->pm_active) != 0) {
1329		spins = 50000000;
1330		mask = mask & -mask;	/* Find least significant set bit */
1331		mtx_lock_spin(&lazypmap_lock);
1332#ifdef PAE
1333		lazyptd = vtophys(pmap->pm_pdpt);
1334#else
1335		lazyptd = vtophys(pmap->pm_pdir);
1336#endif
1337		if (mask == mymask) {
1338			lazymask = &pmap->pm_active;
1339			pmap_lazyfix_self(mymask);
1340		} else {
1341			atomic_store_rel_int((u_int *)&lazymask,
1342			    (u_int)&pmap->pm_active);
1343			atomic_store_rel_int(&lazywait, 0);
1344			ipi_selected(mask, IPI_LAZYPMAP);
1345			while (lazywait == 0) {
1346				ia32_pause();
1347				if (--spins == 0)
1348					break;
1349			}
1350		}
1351		mtx_unlock_spin(&lazypmap_lock);
1352		if (spins == 0)
1353			printf("pmap_lazyfix: spun for 50000000\n");
1354	}
1355}
1356
1357#else	/* SMP */
1358
1359/*
1360 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1361 * unlikely to have to even execute this code, including the fact
1362 * that the cleanup is deferred until the parent does a wait(2), which
1363 * means that another userland process has run.
1364 */
1365static void
1366pmap_lazyfix(pmap_t pmap)
1367{
1368	u_int cr3;
1369
1370	cr3 = vtophys(pmap->pm_pdir);
1371	if (cr3 == rcr3()) {
1372		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1373		pmap->pm_active &= ~(PCPU_GET(cpumask));
1374	}
1375}
1376#endif	/* SMP */
1377#endif	/* LAZY_SWITCH */
1378
1379/*
1380 * Release any resources held by the given physical map.
1381 * Called when a pmap initialized by pmap_pinit is being released.
1382 * Should only be called if the map contains no valid mappings.
1383 */
1384void
1385pmap_release(pmap_t pmap)
1386{
1387	vm_object_t object;
1388	vm_page_t m;
1389	int i;
1390
1391	object = pmap->pm_pteobj;
1392
1393	KASSERT(object->ref_count == 1,
1394	    ("pmap_release: pteobj reference count %d != 1",
1395	    object->ref_count));
1396	KASSERT(pmap->pm_stats.resident_count == 0,
1397	    ("pmap_release: pmap resident count %ld != 0",
1398	    pmap->pm_stats.resident_count));
1399
1400#ifdef LAZY_SWITCH
1401	pmap_lazyfix(pmap);
1402#endif
1403	mtx_lock_spin(&allpmaps_lock);
1404	LIST_REMOVE(pmap, pm_list);
1405	mtx_unlock_spin(&allpmaps_lock);
1406
1407	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1408	    sizeof(*pmap->pm_pdir));
1409#ifdef SMP
1410	pmap->pm_pdir[MPPTDI] = 0;
1411#endif
1412
1413	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1414
1415	vm_page_lock_queues();
1416	for (i = 0; i < NPGPTD; i++) {
1417		m = TAILQ_FIRST(&object->memq);
1418#ifdef PAE
1419		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1420		    ("pmap_release: got wrong ptd page"));
1421#endif
1422		m->wire_count--;
1423		atomic_subtract_int(&cnt.v_wire_count, 1);
1424		vm_page_busy(m);
1425		vm_page_free_zero(m);
1426	}
1427	KASSERT(TAILQ_EMPTY(&object->memq),
1428	    ("pmap_release: leaking page table pages"));
1429	vm_page_unlock_queues();
1430}
1431
1432static int
1433kvm_size(SYSCTL_HANDLER_ARGS)
1434{
1435	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1436
1437	return sysctl_handle_long(oidp, &ksize, 0, req);
1438}
1439SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1440    0, 0, kvm_size, "IU", "Size of KVM");
1441
1442static int
1443kvm_free(SYSCTL_HANDLER_ARGS)
1444{
1445	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1446
1447	return sysctl_handle_long(oidp, &kfree, 0, req);
1448}
1449SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1450    0, 0, kvm_free, "IU", "Amount of KVM free");
1451
1452/*
1453 * grow the number of kernel page table entries, if needed
1454 */
1455void
1456pmap_growkernel(vm_offset_t addr)
1457{
1458	struct pmap *pmap;
1459	int s;
1460	vm_paddr_t ptppaddr;
1461	vm_page_t nkpg;
1462	pd_entry_t newpdir;
1463	pt_entry_t *pde;
1464
1465	s = splhigh();
1466	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1467	if (kernel_vm_end == 0) {
1468		kernel_vm_end = KERNBASE;
1469		nkpt = 0;
1470		while (pdir_pde(PTD, kernel_vm_end)) {
1471			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1472			nkpt++;
1473		}
1474	}
1475	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1476	while (kernel_vm_end < addr) {
1477		if (pdir_pde(PTD, kernel_vm_end)) {
1478			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1479			continue;
1480		}
1481
1482		/*
1483		 * This index is bogus, but out of the way
1484		 */
1485		nkpg = vm_page_alloc(NULL, nkpt,
1486		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1487		if (!nkpg)
1488			panic("pmap_growkernel: no memory to grow kernel");
1489
1490		nkpt++;
1491
1492		pmap_zero_page(nkpg);
1493		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1494		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1495		pdir_pde(PTD, kernel_vm_end) = newpdir;
1496
1497		mtx_lock_spin(&allpmaps_lock);
1498		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1499			pde = pmap_pde(pmap, kernel_vm_end);
1500			pde_store(pde, newpdir);
1501		}
1502		mtx_unlock_spin(&allpmaps_lock);
1503		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1504	}
1505	splx(s);
1506}
1507
1508
1509/***************************************************
1510 * page management routines.
1511 ***************************************************/
1512
1513/*
1514 * free the pv_entry back to the free list
1515 */
1516static PMAP_INLINE void
1517free_pv_entry(pv_entry_t pv)
1518{
1519	pv_entry_count--;
1520	uma_zfree(pvzone, pv);
1521}
1522
1523/*
1524 * get a new pv_entry, allocating a block from the system
1525 * when needed.
1526 * the memory allocation is performed bypassing the malloc code
1527 * because of the possibility of allocations at interrupt time.
1528 */
1529static pv_entry_t
1530get_pv_entry(void)
1531{
1532	pv_entry_count++;
1533	if (pv_entry_high_water &&
1534		(pv_entry_count > pv_entry_high_water) &&
1535		(pmap_pagedaemon_waken == 0)) {
1536		pmap_pagedaemon_waken = 1;
1537		wakeup (&vm_pages_needed);
1538	}
1539	return uma_zalloc(pvzone, M_NOWAIT);
1540}
1541
1542/*
1543 * If it is the first entry on the list, it is actually
1544 * in the header and we must copy the following entry up
1545 * to the header.  Otherwise we must search the list for
1546 * the entry.  In either case we free the now unused entry.
1547 */
1548
1549static int
1550pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1551{
1552	pv_entry_t pv;
1553	int rtval;
1554	int s;
1555
1556	s = splvm();
1557	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1558	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1559		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1560			if (pmap == pv->pv_pmap && va == pv->pv_va)
1561				break;
1562		}
1563	} else {
1564		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1565			if (va == pv->pv_va)
1566				break;
1567		}
1568	}
1569
1570	rtval = 0;
1571	if (pv) {
1572		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1573		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1574		m->md.pv_list_count--;
1575		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1576			vm_page_flag_clear(m, PG_WRITEABLE);
1577
1578		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1579		free_pv_entry(pv);
1580	}
1581
1582	splx(s);
1583	return rtval;
1584}
1585
1586/*
1587 * Create a pv entry for page at pa for
1588 * (pmap, va).
1589 */
1590static void
1591pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1592{
1593
1594	int s;
1595	pv_entry_t pv;
1596
1597	s = splvm();
1598	pv = get_pv_entry();
1599	pv->pv_va = va;
1600	pv->pv_pmap = pmap;
1601	pv->pv_ptem = mpte;
1602
1603	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1604	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1605	m->md.pv_list_count++;
1606
1607	splx(s);
1608}
1609
1610/*
1611 * pmap_remove_pte: do the things to unmap a page in a process
1612 */
1613static int
1614pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1615{
1616	pt_entry_t oldpte;
1617	vm_page_t m;
1618
1619	oldpte = pte_load_clear(ptq);
1620	if (oldpte & PG_W)
1621		pmap->pm_stats.wired_count -= 1;
1622	/*
1623	 * Machines that don't support invlpg, also don't support
1624	 * PG_G.
1625	 */
1626	if (oldpte & PG_G)
1627		pmap_invalidate_page(kernel_pmap, va);
1628	pmap->pm_stats.resident_count -= 1;
1629	if (oldpte & PG_MANAGED) {
1630		m = PHYS_TO_VM_PAGE(oldpte);
1631		if (oldpte & PG_M) {
1632#if defined(PMAP_DIAGNOSTIC)
1633			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1634				printf(
1635	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1636				    va, oldpte);
1637			}
1638#endif
1639			if (pmap_track_modified(va))
1640				vm_page_dirty(m);
1641		}
1642		if (oldpte & PG_A)
1643			vm_page_flag_set(m, PG_REFERENCED);
1644		return pmap_remove_entry(pmap, m, va);
1645	} else {
1646		return pmap_unuse_pt(pmap, va, NULL);
1647	}
1648
1649	return 0;
1650}
1651
1652/*
1653 * Remove a single page from a process address space
1654 */
1655static void
1656pmap_remove_page(pmap_t pmap, vm_offset_t va)
1657{
1658	pt_entry_t *pte;
1659
1660	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1661		return;
1662	pmap_remove_pte(pmap, pte, va);
1663	pmap_invalidate_page(pmap, va);
1664}
1665
1666/*
1667 *	Remove the given range of addresses from the specified map.
1668 *
1669 *	It is assumed that the start and end are properly
1670 *	rounded to the page size.
1671 */
1672void
1673pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1674{
1675	vm_offset_t pdnxt;
1676	pd_entry_t ptpaddr;
1677	pt_entry_t *pte;
1678	int anyvalid;
1679
1680	if (pmap == NULL)
1681		return;
1682
1683	if (pmap->pm_stats.resident_count == 0)
1684		return;
1685
1686	/*
1687	 * special handling of removing one page.  a very
1688	 * common operation and easy to short circuit some
1689	 * code.
1690	 */
1691	if ((sva + PAGE_SIZE == eva) &&
1692	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1693		pmap_remove_page(pmap, sva);
1694		return;
1695	}
1696
1697	anyvalid = 0;
1698
1699	for (; sva < eva; sva = pdnxt) {
1700		unsigned pdirindex;
1701
1702		/*
1703		 * Calculate index for next page table.
1704		 */
1705		pdnxt = (sva + NBPDR) & ~PDRMASK;
1706		if (pmap->pm_stats.resident_count == 0)
1707			break;
1708
1709		pdirindex = sva >> PDRSHIFT;
1710		ptpaddr = pmap->pm_pdir[pdirindex];
1711
1712		/*
1713		 * Weed out invalid mappings. Note: we assume that the page
1714		 * directory table is always allocated, and in kernel virtual.
1715		 */
1716		if (ptpaddr == 0)
1717			continue;
1718
1719		/*
1720		 * Check for large page.
1721		 */
1722		if ((ptpaddr & PG_PS) != 0) {
1723			pmap->pm_pdir[pdirindex] = 0;
1724			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1725			anyvalid = 1;
1726			continue;
1727		}
1728
1729		/*
1730		 * Limit our scan to either the end of the va represented
1731		 * by the current page table page, or to the end of the
1732		 * range being removed.
1733		 */
1734		if (pdnxt > eva)
1735			pdnxt = eva;
1736
1737		for (; sva != pdnxt; sva += PAGE_SIZE) {
1738			if ((pte = pmap_pte_quick(pmap, sva)) == NULL ||
1739			    *pte == 0)
1740				continue;
1741			anyvalid = 1;
1742			if (pmap_remove_pte(pmap, pte, sva))
1743				break;
1744		}
1745	}
1746
1747	if (anyvalid)
1748		pmap_invalidate_all(pmap);
1749}
1750
1751/*
1752 *	Routine:	pmap_remove_all
1753 *	Function:
1754 *		Removes this physical page from
1755 *		all physical maps in which it resides.
1756 *		Reflects back modify bits to the pager.
1757 *
1758 *	Notes:
1759 *		Original versions of this routine were very
1760 *		inefficient because they iteratively called
1761 *		pmap_remove (slow...)
1762 */
1763
1764void
1765pmap_remove_all(vm_page_t m)
1766{
1767	register pv_entry_t pv;
1768	pt_entry_t *pte, tpte;
1769	int s;
1770
1771#if defined(PMAP_DIAGNOSTIC)
1772	/*
1773	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1774	 */
1775	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1776		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1777		    VM_PAGE_TO_PHYS(m));
1778	}
1779#endif
1780	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1781	s = splvm();
1782	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1783		pv->pv_pmap->pm_stats.resident_count--;
1784		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1785		tpte = pte_load_clear(pte);
1786		if (tpte & PG_W)
1787			pv->pv_pmap->pm_stats.wired_count--;
1788		if (tpte & PG_A)
1789			vm_page_flag_set(m, PG_REFERENCED);
1790
1791		/*
1792		 * Update the vm_page_t clean and reference bits.
1793		 */
1794		if (tpte & PG_M) {
1795#if defined(PMAP_DIAGNOSTIC)
1796			if (pmap_nw_modified((pt_entry_t) tpte)) {
1797				printf(
1798	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1799				    pv->pv_va, tpte);
1800			}
1801#endif
1802			if (pmap_track_modified(pv->pv_va))
1803				vm_page_dirty(m);
1804		}
1805		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1806		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1807		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1808		m->md.pv_list_count--;
1809		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1810		free_pv_entry(pv);
1811	}
1812	vm_page_flag_clear(m, PG_WRITEABLE);
1813	splx(s);
1814}
1815
1816/*
1817 *	Set the physical protection on the
1818 *	specified range of this map as requested.
1819 */
1820void
1821pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1822{
1823	vm_offset_t pdnxt;
1824	pd_entry_t ptpaddr;
1825	int anychanged;
1826
1827	if (pmap == NULL)
1828		return;
1829
1830	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1831		pmap_remove(pmap, sva, eva);
1832		return;
1833	}
1834
1835	if (prot & VM_PROT_WRITE)
1836		return;
1837
1838	anychanged = 0;
1839
1840	for (; sva < eva; sva = pdnxt) {
1841		unsigned pdirindex;
1842
1843		pdnxt = (sva + NBPDR) & ~PDRMASK;
1844
1845		pdirindex = sva >> PDRSHIFT;
1846		ptpaddr = pmap->pm_pdir[pdirindex];
1847
1848		/*
1849		 * Weed out invalid mappings. Note: we assume that the page
1850		 * directory table is always allocated, and in kernel virtual.
1851		 */
1852		if (ptpaddr == 0)
1853			continue;
1854
1855		/*
1856		 * Check for large page.
1857		 */
1858		if ((ptpaddr & PG_PS) != 0) {
1859			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1860			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1861			anychanged = 1;
1862			continue;
1863		}
1864
1865		if (pdnxt > eva)
1866			pdnxt = eva;
1867
1868		for (; sva != pdnxt; sva += PAGE_SIZE) {
1869			pt_entry_t pbits;
1870			pt_entry_t *pte;
1871			vm_page_t m;
1872
1873			if ((pte = pmap_pte_quick(pmap, sva)) == NULL)
1874				continue;
1875			pbits = *pte;
1876			if (pbits & PG_MANAGED) {
1877				m = NULL;
1878				if (pbits & PG_A) {
1879					m = PHYS_TO_VM_PAGE(pbits);
1880					vm_page_flag_set(m, PG_REFERENCED);
1881					pbits &= ~PG_A;
1882				}
1883				if ((pbits & PG_M) != 0 &&
1884				    pmap_track_modified(sva)) {
1885					if (m == NULL)
1886						m = PHYS_TO_VM_PAGE(pbits);
1887					vm_page_dirty(m);
1888					pbits &= ~PG_M;
1889				}
1890			}
1891
1892			pbits &= ~PG_RW;
1893
1894			if (pbits != *pte) {
1895				pte_store(pte, pbits);
1896				anychanged = 1;
1897			}
1898		}
1899	}
1900	if (anychanged)
1901		pmap_invalidate_all(pmap);
1902}
1903
1904/*
1905 *	Insert the given physical page (p) at
1906 *	the specified virtual address (v) in the
1907 *	target physical map with the protection requested.
1908 *
1909 *	If specified, the page will be wired down, meaning
1910 *	that the related pte can not be reclaimed.
1911 *
1912 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1913 *	or lose information.  That is, this routine must actually
1914 *	insert this page into the given map NOW.
1915 */
1916void
1917pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1918	   boolean_t wired)
1919{
1920	vm_paddr_t pa;
1921	register pt_entry_t *pte;
1922	vm_paddr_t opa;
1923	pt_entry_t origpte, newpte;
1924	vm_page_t mpte;
1925
1926	if (pmap == NULL)
1927		return;
1928
1929	va &= PG_FRAME;
1930#ifdef PMAP_DIAGNOSTIC
1931	if (va > VM_MAX_KERNEL_ADDRESS)
1932		panic("pmap_enter: toobig");
1933	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1934		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1935#endif
1936
1937	mpte = NULL;
1938	/*
1939	 * In the case that a page table page is not
1940	 * resident, we are creating it here.
1941	 */
1942	if (va < VM_MAXUSER_ADDRESS) {
1943		mpte = pmap_allocpte(pmap, va);
1944	}
1945#if 0 && defined(PMAP_DIAGNOSTIC)
1946	else {
1947		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1948		origpte = *pdeaddr;
1949		if ((origpte & PG_V) == 0) {
1950			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1951				pmap->pm_pdir[PTDPTDI], origpte, va);
1952		}
1953	}
1954#endif
1955
1956	pte = pmap_pte_quick(pmap, va);
1957
1958	/*
1959	 * Page Directory table entry not valid, we need a new PT page
1960	 */
1961	if (pte == NULL) {
1962		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1963			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1964	}
1965
1966	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1967	origpte = *pte;
1968	opa = origpte & PG_FRAME;
1969
1970	if (origpte & PG_PS)
1971		panic("pmap_enter: attempted pmap_enter on 4MB page");
1972
1973	/*
1974	 * Mapping has not changed, must be protection or wiring change.
1975	 */
1976	if (origpte && (opa == pa)) {
1977		/*
1978		 * Wiring change, just update stats. We don't worry about
1979		 * wiring PT pages as they remain resident as long as there
1980		 * are valid mappings in them. Hence, if a user page is wired,
1981		 * the PT page will be also.
1982		 */
1983		if (wired && ((origpte & PG_W) == 0))
1984			pmap->pm_stats.wired_count++;
1985		else if (!wired && (origpte & PG_W))
1986			pmap->pm_stats.wired_count--;
1987
1988#if defined(PMAP_DIAGNOSTIC)
1989		if (pmap_nw_modified((pt_entry_t) origpte)) {
1990			printf(
1991	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1992			    va, origpte);
1993		}
1994#endif
1995
1996		/*
1997		 * Remove extra pte reference
1998		 */
1999		if (mpte)
2000			mpte->hold_count--;
2001
2002		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2003			if ((origpte & PG_RW) == 0) {
2004				pte_store(pte, origpte | PG_RW);
2005				pmap_invalidate_page(pmap, va);
2006			}
2007			return;
2008		}
2009
2010		/*
2011		 * We might be turning off write access to the page,
2012		 * so we go ahead and sense modify status.
2013		 */
2014		if (origpte & PG_MANAGED) {
2015			if ((origpte & PG_M) && pmap_track_modified(va)) {
2016				vm_page_t om;
2017				om = PHYS_TO_VM_PAGE(opa);
2018				vm_page_dirty(om);
2019			}
2020			pa |= PG_MANAGED;
2021		}
2022		goto validate;
2023	}
2024	/*
2025	 * Mapping has changed, invalidate old range and fall through to
2026	 * handle validating new mapping.
2027	 */
2028	if (opa) {
2029		int err;
2030		vm_page_lock_queues();
2031		err = pmap_remove_pte(pmap, pte, va);
2032		vm_page_unlock_queues();
2033		if (err)
2034			panic("pmap_enter: pte vanished, va: 0x%x", va);
2035	}
2036
2037	/*
2038	 * Enter on the PV list if part of our managed memory. Note that we
2039	 * raise IPL while manipulating pv_table since pmap_enter can be
2040	 * called at interrupt time.
2041	 */
2042	if (pmap_initialized &&
2043	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2044		pmap_insert_entry(pmap, va, mpte, m);
2045		pa |= PG_MANAGED;
2046	}
2047
2048	/*
2049	 * Increment counters
2050	 */
2051	pmap->pm_stats.resident_count++;
2052	if (wired)
2053		pmap->pm_stats.wired_count++;
2054
2055validate:
2056	/*
2057	 * Now validate mapping with desired protection/wiring.
2058	 */
2059	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V);
2060
2061	if (wired)
2062		newpte |= PG_W;
2063	if (va < VM_MAXUSER_ADDRESS)
2064		newpte |= PG_U;
2065	if (pmap == kernel_pmap)
2066		newpte |= pgeflag;
2067
2068	/*
2069	 * if the mapping or permission bits are different, we need
2070	 * to update the pte.
2071	 */
2072	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2073		pte_store(pte, newpte | PG_A);
2074		/*if (origpte)*/ {
2075			pmap_invalidate_page(pmap, va);
2076		}
2077	}
2078}
2079
2080/*
2081 * this code makes some *MAJOR* assumptions:
2082 * 1. Current pmap & pmap exists.
2083 * 2. Not wired.
2084 * 3. Read access.
2085 * 4. No page table pages.
2086 * 5. Tlbflush is deferred to calling procedure.
2087 * 6. Page IS managed.
2088 * but is *MUCH* faster than pmap_enter...
2089 */
2090
2091vm_page_t
2092pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2093{
2094	pt_entry_t *pte;
2095	vm_paddr_t pa;
2096
2097	/*
2098	 * In the case that a page table page is not
2099	 * resident, we are creating it here.
2100	 */
2101	if (va < VM_MAXUSER_ADDRESS) {
2102		unsigned ptepindex;
2103		pd_entry_t ptepa;
2104
2105		/*
2106		 * Calculate pagetable page index
2107		 */
2108		ptepindex = va >> PDRSHIFT;
2109		if (mpte && (mpte->pindex == ptepindex)) {
2110			mpte->hold_count++;
2111		} else {
2112retry:
2113			/*
2114			 * Get the page directory entry
2115			 */
2116			ptepa = pmap->pm_pdir[ptepindex];
2117
2118			/*
2119			 * If the page table page is mapped, we just increment
2120			 * the hold count, and activate it.
2121			 */
2122			if (ptepa) {
2123				if (ptepa & PG_PS)
2124					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2125				if (pmap->pm_pteobj->root &&
2126					(pmap->pm_pteobj->root->pindex == ptepindex)) {
2127					mpte = pmap->pm_pteobj->root;
2128				} else {
2129					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2130				}
2131				if (mpte == NULL)
2132					goto retry;
2133				mpte->hold_count++;
2134			} else {
2135				mpte = _pmap_allocpte(pmap, ptepindex);
2136			}
2137		}
2138	} else {
2139		mpte = NULL;
2140	}
2141
2142	/*
2143	 * This call to vtopte makes the assumption that we are
2144	 * entering the page into the current pmap.  In order to support
2145	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2146	 * But that isn't as quick as vtopte.
2147	 */
2148	pte = vtopte(va);
2149	if (*pte) {
2150		if (mpte != NULL) {
2151			vm_page_lock_queues();
2152			pmap_unwire_pte_hold(pmap, mpte);
2153			vm_page_unlock_queues();
2154		}
2155		return 0;
2156	}
2157
2158	/*
2159	 * Enter on the PV list if part of our managed memory. Note that we
2160	 * raise IPL while manipulating pv_table since pmap_enter can be
2161	 * called at interrupt time.
2162	 */
2163	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2164		pmap_insert_entry(pmap, va, mpte, m);
2165
2166	/*
2167	 * Increment counters
2168	 */
2169	pmap->pm_stats.resident_count++;
2170
2171	pa = VM_PAGE_TO_PHYS(m);
2172
2173	/*
2174	 * Now validate mapping with RO protection
2175	 */
2176	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2177		pte_store(pte, pa | PG_V | PG_U);
2178	else
2179		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2180
2181	return mpte;
2182}
2183
2184/*
2185 * Make a temporary mapping for a physical address.  This is only intended
2186 * to be used for panic dumps.
2187 */
2188void *
2189pmap_kenter_temporary(vm_offset_t pa, int i)
2190{
2191	vm_offset_t va;
2192
2193	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2194	pmap_kenter(va, pa);
2195#ifndef I386_CPU
2196	invlpg(va);
2197#else
2198	invltlb();
2199#endif
2200	return ((void *)crashdumpmap);
2201}
2202
2203/*
2204 * This code maps large physical mmap regions into the
2205 * processor address space.  Note that some shortcuts
2206 * are taken, but the code works.
2207 */
2208void
2209pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2210		    vm_object_t object, vm_pindex_t pindex,
2211		    vm_size_t size)
2212{
2213	vm_page_t p;
2214
2215	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2216	KASSERT(object->type == OBJT_DEVICE,
2217	    ("pmap_object_init_pt: non-device object"));
2218	if (pseflag &&
2219	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2220		int i;
2221		vm_page_t m[1];
2222		unsigned int ptepindex;
2223		int npdes;
2224		pd_entry_t ptepa;
2225
2226		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2227			return;
2228retry:
2229		p = vm_page_lookup(object, pindex);
2230		if (p != NULL) {
2231			vm_page_lock_queues();
2232			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2233				goto retry;
2234		} else {
2235			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2236			if (p == NULL)
2237				return;
2238			m[0] = p;
2239
2240			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2241				vm_page_lock_queues();
2242				vm_page_free(p);
2243				vm_page_unlock_queues();
2244				return;
2245			}
2246
2247			p = vm_page_lookup(object, pindex);
2248			vm_page_lock_queues();
2249			vm_page_wakeup(p);
2250		}
2251		vm_page_unlock_queues();
2252
2253		ptepa = VM_PAGE_TO_PHYS(p);
2254		if (ptepa & (NBPDR - 1))
2255			return;
2256
2257		p->valid = VM_PAGE_BITS_ALL;
2258
2259		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2260		npdes = size >> PDRSHIFT;
2261		for(i = 0; i < npdes; i++) {
2262			pde_store(&pmap->pm_pdir[ptepindex],
2263			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2264			ptepa += NBPDR;
2265			ptepindex += 1;
2266		}
2267		pmap_invalidate_all(kernel_pmap);
2268	}
2269}
2270
2271/*
2272 * pmap_prefault provides a quick way of clustering
2273 * pagefaults into a processes address space.  It is a "cousin"
2274 * of pmap_object_init_pt, except it runs at page fault time instead
2275 * of mmap time.
2276 */
2277#define PFBAK 4
2278#define PFFOR 4
2279#define PAGEORDER_SIZE (PFBAK+PFFOR)
2280
2281static int pmap_prefault_pageorder[] = {
2282	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2283	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2284	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2285	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2286};
2287
2288void
2289pmap_prefault(pmap, addra, entry)
2290	pmap_t pmap;
2291	vm_offset_t addra;
2292	vm_map_entry_t entry;
2293{
2294	int i;
2295	vm_offset_t starta;
2296	vm_offset_t addr;
2297	vm_pindex_t pindex;
2298	vm_page_t m, mpte;
2299	vm_object_t object;
2300
2301	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2302		return;
2303
2304	object = entry->object.vm_object;
2305
2306	starta = addra - PFBAK * PAGE_SIZE;
2307	if (starta < entry->start) {
2308		starta = entry->start;
2309	} else if (starta > addra) {
2310		starta = 0;
2311	}
2312
2313	mpte = NULL;
2314	for (i = 0; i < PAGEORDER_SIZE; i++) {
2315		vm_object_t backing_object, lobject;
2316		pt_entry_t *pte;
2317
2318		addr = addra + pmap_prefault_pageorder[i];
2319		if (addr > addra + (PFFOR * PAGE_SIZE))
2320			addr = 0;
2321
2322		if (addr < starta || addr >= entry->end)
2323			continue;
2324
2325		if ((*pmap_pde(pmap, addr)) == 0)
2326			continue;
2327
2328		pte = vtopte(addr);
2329		if (*pte)
2330			continue;
2331
2332		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2333		lobject = object;
2334		VM_OBJECT_LOCK(lobject);
2335		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
2336		    lobject->type == OBJT_DEFAULT &&
2337		    (backing_object = lobject->backing_object) != NULL) {
2338			if (lobject->backing_object_offset & PAGE_MASK)
2339				break;
2340			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2341			VM_OBJECT_LOCK(backing_object);
2342			VM_OBJECT_UNLOCK(lobject);
2343			lobject = backing_object;
2344		}
2345		VM_OBJECT_UNLOCK(lobject);
2346		/*
2347		 * give-up when a page is not in memory
2348		 */
2349		if (m == NULL)
2350			break;
2351		vm_page_lock_queues();
2352		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2353			(m->busy == 0) &&
2354		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2355
2356			if ((m->queue - m->pc) == PQ_CACHE) {
2357				vm_page_deactivate(m);
2358			}
2359			vm_page_busy(m);
2360			vm_page_unlock_queues();
2361			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2362			vm_page_lock_queues();
2363			vm_page_wakeup(m);
2364		}
2365		vm_page_unlock_queues();
2366	}
2367}
2368
2369/*
2370 *	Routine:	pmap_change_wiring
2371 *	Function:	Change the wiring attribute for a map/virtual-address
2372 *			pair.
2373 *	In/out conditions:
2374 *			The mapping must already exist in the pmap.
2375 */
2376void
2377pmap_change_wiring(pmap, va, wired)
2378	register pmap_t pmap;
2379	vm_offset_t va;
2380	boolean_t wired;
2381{
2382	register pt_entry_t *pte;
2383
2384	if (pmap == NULL)
2385		return;
2386
2387	pte = pmap_pte_quick(pmap, va);
2388
2389	if (wired && !pmap_pte_w(pte))
2390		pmap->pm_stats.wired_count++;
2391	else if (!wired && pmap_pte_w(pte))
2392		pmap->pm_stats.wired_count--;
2393
2394	/*
2395	 * Wiring is not a hardware characteristic so there is no need to
2396	 * invalidate TLB.
2397	 */
2398	pmap_pte_set_w(pte, wired);
2399}
2400
2401
2402
2403/*
2404 *	Copy the range specified by src_addr/len
2405 *	from the source map to the range dst_addr/len
2406 *	in the destination map.
2407 *
2408 *	This routine is only advisory and need not do anything.
2409 */
2410
2411void
2412pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2413	  vm_offset_t src_addr)
2414{
2415	vm_offset_t addr;
2416	vm_offset_t end_addr = src_addr + len;
2417	vm_offset_t pdnxt;
2418	vm_page_t m;
2419
2420	if (dst_addr != src_addr)
2421		return;
2422
2423	if (!pmap_is_current(src_pmap))
2424		return;
2425
2426	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2427		pt_entry_t *src_pte, *dst_pte;
2428		vm_page_t dstmpte, srcmpte;
2429		pd_entry_t srcptepaddr;
2430		unsigned ptepindex;
2431
2432		if (addr >= UPT_MIN_ADDRESS)
2433			panic("pmap_copy: invalid to pmap_copy page tables\n");
2434
2435		/*
2436		 * Don't let optional prefaulting of pages make us go
2437		 * way below the low water mark of free pages or way
2438		 * above high water mark of used pv entries.
2439		 */
2440		if (cnt.v_free_count < cnt.v_free_reserved ||
2441		    pv_entry_count > pv_entry_high_water)
2442			break;
2443
2444		pdnxt = (addr + NBPDR) & ~PDRMASK;
2445		ptepindex = addr >> PDRSHIFT;
2446
2447		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2448		if (srcptepaddr == 0)
2449			continue;
2450
2451		if (srcptepaddr & PG_PS) {
2452			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2453				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2454				dst_pmap->pm_stats.resident_count +=
2455				    NBPDR / PAGE_SIZE;
2456			}
2457			continue;
2458		}
2459
2460		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2461		if ((srcmpte == NULL) ||
2462		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2463			continue;
2464
2465		if (pdnxt > end_addr)
2466			pdnxt = end_addr;
2467
2468		src_pte = vtopte(addr);
2469		while (addr < pdnxt) {
2470			pt_entry_t ptetemp;
2471			ptetemp = *src_pte;
2472			/*
2473			 * we only virtual copy managed pages
2474			 */
2475			if ((ptetemp & PG_MANAGED) != 0) {
2476				/*
2477				 * We have to check after allocpte for the
2478				 * pte still being around...  allocpte can
2479				 * block.
2480				 */
2481				dstmpte = pmap_allocpte(dst_pmap, addr);
2482				dst_pte = pmap_pte_quick(dst_pmap, addr);
2483				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2484					/*
2485					 * Clear the modified and
2486					 * accessed (referenced) bits
2487					 * during the copy.
2488					 */
2489					m = PHYS_TO_VM_PAGE(ptetemp);
2490					*dst_pte = ptetemp & ~(PG_M | PG_A);
2491					dst_pmap->pm_stats.resident_count++;
2492					pmap_insert_entry(dst_pmap, addr,
2493						dstmpte, m);
2494	 			} else {
2495					vm_page_lock_queues();
2496					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2497					vm_page_unlock_queues();
2498				}
2499				if (dstmpte->hold_count >= srcmpte->hold_count)
2500					break;
2501			}
2502			addr += PAGE_SIZE;
2503			src_pte++;
2504		}
2505	}
2506}
2507
2508#ifdef SMP
2509
2510/*
2511 *	pmap_zpi_switchin*()
2512 *
2513 *	These functions allow us to avoid doing IPIs alltogether in certain
2514 *	temporary page-mapping situations (page zeroing).  Instead to deal
2515 *	with being preempted and moved onto a different cpu we invalidate
2516 *	the page when the scheduler switches us in.  This does not occur
2517 *	very often so we remain relatively optimal with very little effort.
2518 */
2519static void
2520pmap_zpi_switchin12(void)
2521{
2522	invlpg((u_int)CADDR1);
2523	invlpg((u_int)CADDR2);
2524}
2525
2526static void
2527pmap_zpi_switchin2(void)
2528{
2529	invlpg((u_int)CADDR2);
2530}
2531
2532static void
2533pmap_zpi_switchin3(void)
2534{
2535	invlpg((u_int)CADDR3);
2536}
2537
2538#endif
2539
2540/*
2541 *	pmap_zero_page zeros the specified hardware page by mapping
2542 *	the page into KVM and using bzero to clear its contents.
2543 */
2544void
2545pmap_zero_page(vm_page_t m)
2546{
2547
2548	mtx_lock(&CMAPCADDR12_lock);
2549	if (*CMAP2)
2550		panic("pmap_zero_page: CMAP2 busy");
2551	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2552#ifdef I386_CPU
2553	invltlb();
2554#else
2555#ifdef SMP
2556	curthread->td_switchin = pmap_zpi_switchin2;
2557#endif
2558	invlpg((u_int)CADDR2);
2559#endif
2560#if defined(I686_CPU)
2561	if (cpu_class == CPUCLASS_686)
2562		i686_pagezero(CADDR2);
2563	else
2564#endif
2565		bzero(CADDR2, PAGE_SIZE);
2566#ifdef SMP
2567	curthread->td_switchin = NULL;
2568#endif
2569	*CMAP2 = 0;
2570	mtx_unlock(&CMAPCADDR12_lock);
2571}
2572
2573/*
2574 *	pmap_zero_page_area zeros the specified hardware page by mapping
2575 *	the page into KVM and using bzero to clear its contents.
2576 *
2577 *	off and size may not cover an area beyond a single hardware page.
2578 */
2579void
2580pmap_zero_page_area(vm_page_t m, int off, int size)
2581{
2582
2583	mtx_lock(&CMAPCADDR12_lock);
2584	if (*CMAP2)
2585		panic("pmap_zero_page: CMAP2 busy");
2586	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2587#ifdef I386_CPU
2588	invltlb();
2589#else
2590#ifdef SMP
2591	curthread->td_switchin = pmap_zpi_switchin2;
2592#endif
2593	invlpg((u_int)CADDR2);
2594#endif
2595#if defined(I686_CPU)
2596	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2597		i686_pagezero(CADDR2);
2598	else
2599#endif
2600		bzero((char *)CADDR2 + off, size);
2601#ifdef SMP
2602	curthread->td_switchin = NULL;
2603#endif
2604	*CMAP2 = 0;
2605	mtx_unlock(&CMAPCADDR12_lock);
2606}
2607
2608/*
2609 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2610 *	the page into KVM and using bzero to clear its contents.  This
2611 *	is intended to be called from the vm_pagezero process only and
2612 *	outside of Giant.
2613 */
2614void
2615pmap_zero_page_idle(vm_page_t m)
2616{
2617
2618	if (*CMAP3)
2619		panic("pmap_zero_page: CMAP3 busy");
2620	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2621#ifdef I386_CPU
2622	invltlb();
2623#else
2624#ifdef SMP
2625	curthread->td_switchin = pmap_zpi_switchin3;
2626#endif
2627	invlpg((u_int)CADDR3);
2628#endif
2629#if defined(I686_CPU)
2630	if (cpu_class == CPUCLASS_686)
2631		i686_pagezero(CADDR3);
2632	else
2633#endif
2634		bzero(CADDR3, PAGE_SIZE);
2635#ifdef SMP
2636	curthread->td_switchin = NULL;
2637#endif
2638	*CMAP3 = 0;
2639}
2640
2641/*
2642 *	pmap_copy_page copies the specified (machine independent)
2643 *	page by mapping the page into virtual memory and using
2644 *	bcopy to copy the page, one machine dependent page at a
2645 *	time.
2646 */
2647void
2648pmap_copy_page(vm_page_t src, vm_page_t dst)
2649{
2650
2651	mtx_lock(&CMAPCADDR12_lock);
2652	if (*CMAP1)
2653		panic("pmap_copy_page: CMAP1 busy");
2654	if (*CMAP2)
2655		panic("pmap_copy_page: CMAP2 busy");
2656	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2657	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2658#ifdef I386_CPU
2659	invltlb();
2660#else
2661#ifdef SMP
2662	curthread->td_switchin = pmap_zpi_switchin12;
2663#endif
2664	invlpg((u_int)CADDR1);
2665	invlpg((u_int)CADDR2);
2666#endif
2667	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2668#ifdef SMP
2669	curthread->td_switchin = NULL;
2670#endif
2671	*CMAP1 = 0;
2672	*CMAP2 = 0;
2673	mtx_unlock(&CMAPCADDR12_lock);
2674}
2675
2676/*
2677 * Returns true if the pmap's pv is one of the first
2678 * 16 pvs linked to from this page.  This count may
2679 * be changed upwards or downwards in the future; it
2680 * is only necessary that true be returned for a small
2681 * subset of pmaps for proper page aging.
2682 */
2683boolean_t
2684pmap_page_exists_quick(pmap, m)
2685	pmap_t pmap;
2686	vm_page_t m;
2687{
2688	pv_entry_t pv;
2689	int loops = 0;
2690	int s;
2691
2692	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2693		return FALSE;
2694
2695	s = splvm();
2696	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2697	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2698		if (pv->pv_pmap == pmap) {
2699			splx(s);
2700			return TRUE;
2701		}
2702		loops++;
2703		if (loops >= 16)
2704			break;
2705	}
2706	splx(s);
2707	return (FALSE);
2708}
2709
2710#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2711/*
2712 * Remove all pages from specified address space
2713 * this aids process exit speeds.  Also, this code
2714 * is special cased for current process only, but
2715 * can have the more generic (and slightly slower)
2716 * mode enabled.  This is much faster than pmap_remove
2717 * in the case of running down an entire address space.
2718 */
2719void
2720pmap_remove_pages(pmap, sva, eva)
2721	pmap_t pmap;
2722	vm_offset_t sva, eva;
2723{
2724	pt_entry_t *pte, tpte;
2725	vm_page_t m;
2726	pv_entry_t pv, npv;
2727	int s;
2728
2729#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2730	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2731		printf("warning: pmap_remove_pages called with non-current pmap\n");
2732		return;
2733	}
2734#endif
2735	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2736	s = splvm();
2737	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2738
2739		if (pv->pv_va >= eva || pv->pv_va < sva) {
2740			npv = TAILQ_NEXT(pv, pv_plist);
2741			continue;
2742		}
2743
2744#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2745		pte = vtopte(pv->pv_va);
2746#else
2747		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2748#endif
2749		tpte = *pte;
2750
2751		if (tpte == 0) {
2752			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2753							pte, pv->pv_va);
2754			panic("bad pte");
2755		}
2756
2757/*
2758 * We cannot remove wired pages from a process' mapping at this time
2759 */
2760		if (tpte & PG_W) {
2761			npv = TAILQ_NEXT(pv, pv_plist);
2762			continue;
2763		}
2764
2765		m = PHYS_TO_VM_PAGE(tpte);
2766		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2767		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2768		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2769
2770		KASSERT(m < &vm_page_array[vm_page_array_size],
2771			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2772
2773		pv->pv_pmap->pm_stats.resident_count--;
2774
2775		pte_clear(pte);
2776
2777		/*
2778		 * Update the vm_page_t clean and reference bits.
2779		 */
2780		if (tpte & PG_M) {
2781			vm_page_dirty(m);
2782		}
2783
2784		npv = TAILQ_NEXT(pv, pv_plist);
2785		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2786
2787		m->md.pv_list_count--;
2788		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2789		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2790			vm_page_flag_clear(m, PG_WRITEABLE);
2791		}
2792
2793		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2794		free_pv_entry(pv);
2795	}
2796	splx(s);
2797	pmap_invalidate_all(pmap);
2798}
2799
2800/*
2801 *	pmap_is_modified:
2802 *
2803 *	Return whether or not the specified physical page was modified
2804 *	in any physical maps.
2805 */
2806boolean_t
2807pmap_is_modified(vm_page_t m)
2808{
2809	pv_entry_t pv;
2810	pt_entry_t *pte;
2811	int s;
2812
2813	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2814		return FALSE;
2815
2816	s = splvm();
2817	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2818	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2819		/*
2820		 * if the bit being tested is the modified bit, then
2821		 * mark clean_map and ptes as never
2822		 * modified.
2823		 */
2824		if (!pmap_track_modified(pv->pv_va))
2825			continue;
2826#if defined(PMAP_DIAGNOSTIC)
2827		if (!pv->pv_pmap) {
2828			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2829			continue;
2830		}
2831#endif
2832		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2833		if (*pte & PG_M) {
2834			splx(s);
2835			return TRUE;
2836		}
2837	}
2838	splx(s);
2839	return (FALSE);
2840}
2841
2842/*
2843 * this routine is used to modify bits in ptes
2844 */
2845static __inline void
2846pmap_changebit(vm_page_t m, int bit, boolean_t setem)
2847{
2848	register pv_entry_t pv;
2849	register pt_entry_t *pte;
2850	int s;
2851
2852	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2853	    (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2854		return;
2855
2856	s = splvm();
2857	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2858	/*
2859	 * Loop over all current mappings setting/clearing as appropos If
2860	 * setting RO do we need to clear the VAC?
2861	 */
2862	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2863		/*
2864		 * don't write protect pager mappings
2865		 */
2866		if (!setem && (bit == PG_RW)) {
2867			if (!pmap_track_modified(pv->pv_va))
2868				continue;
2869		}
2870
2871#if defined(PMAP_DIAGNOSTIC)
2872		if (!pv->pv_pmap) {
2873			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2874			continue;
2875		}
2876#endif
2877
2878		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2879
2880		if (setem) {
2881			*pte |= bit;
2882			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2883		} else {
2884			pt_entry_t pbits = *pte;
2885			if (pbits & bit) {
2886				if (bit == PG_RW) {
2887					if (pbits & PG_M) {
2888						vm_page_dirty(m);
2889					}
2890					pte_store(pte, pbits & ~(PG_M|PG_RW));
2891				} else {
2892					pte_store(pte, pbits & ~bit);
2893				}
2894				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2895			}
2896		}
2897	}
2898	if (!setem && bit == PG_RW)
2899		vm_page_flag_clear(m, PG_WRITEABLE);
2900	splx(s);
2901}
2902
2903/*
2904 *      pmap_page_protect:
2905 *
2906 *      Lower the permission for all mappings to a given page.
2907 */
2908void
2909pmap_page_protect(vm_page_t m, vm_prot_t prot)
2910{
2911	if ((prot & VM_PROT_WRITE) == 0) {
2912		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2913			pmap_changebit(m, PG_RW, FALSE);
2914		} else {
2915			pmap_remove_all(m);
2916		}
2917	}
2918}
2919
2920/*
2921 *	pmap_ts_referenced:
2922 *
2923 *	Return a count of reference bits for a page, clearing those bits.
2924 *	It is not necessary for every reference bit to be cleared, but it
2925 *	is necessary that 0 only be returned when there are truly no
2926 *	reference bits set.
2927 *
2928 *	XXX: The exact number of bits to check and clear is a matter that
2929 *	should be tested and standardized at some point in the future for
2930 *	optimal aging of shared pages.
2931 */
2932int
2933pmap_ts_referenced(vm_page_t m)
2934{
2935	register pv_entry_t pv, pvf, pvn;
2936	pt_entry_t *pte;
2937	pt_entry_t v;
2938	int s;
2939	int rtval = 0;
2940
2941	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2942		return (rtval);
2943
2944	s = splvm();
2945	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2946	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2947
2948		pvf = pv;
2949
2950		do {
2951			pvn = TAILQ_NEXT(pv, pv_list);
2952
2953			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2954
2955			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2956
2957			if (!pmap_track_modified(pv->pv_va))
2958				continue;
2959
2960			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2961
2962			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2963				pte_store(pte, v & ~PG_A);
2964				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2965
2966				rtval++;
2967				if (rtval > 4) {
2968					break;
2969				}
2970			}
2971		} while ((pv = pvn) != NULL && pv != pvf);
2972	}
2973	splx(s);
2974
2975	return (rtval);
2976}
2977
2978/*
2979 *	Clear the modify bits on the specified physical page.
2980 */
2981void
2982pmap_clear_modify(vm_page_t m)
2983{
2984	pmap_changebit(m, PG_M, FALSE);
2985}
2986
2987/*
2988 *	pmap_clear_reference:
2989 *
2990 *	Clear the reference bit on the specified physical page.
2991 */
2992void
2993pmap_clear_reference(vm_page_t m)
2994{
2995	pmap_changebit(m, PG_A, FALSE);
2996}
2997
2998/*
2999 * Miscellaneous support routines follow
3000 */
3001
3002static void
3003i386_protection_init()
3004{
3005	register int *kp, prot;
3006
3007	kp = protection_codes;
3008	for (prot = 0; prot < 8; prot++) {
3009		switch (prot) {
3010		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3011			/*
3012			 * Read access is also 0. There isn't any execute bit,
3013			 * so just make it readable.
3014			 */
3015		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3016		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3017		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3018			*kp++ = 0;
3019			break;
3020		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3021		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3022		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3023		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3024			*kp++ = PG_RW;
3025			break;
3026		}
3027	}
3028}
3029
3030/*
3031 * Map a set of physical memory pages into the kernel virtual
3032 * address space. Return a pointer to where it is mapped. This
3033 * routine is intended to be used for mapping device memory,
3034 * NOT real memory.
3035 */
3036void *
3037pmap_mapdev(pa, size)
3038	vm_paddr_t pa;
3039	vm_size_t size;
3040{
3041	vm_offset_t va, tmpva, offset;
3042
3043	offset = pa & PAGE_MASK;
3044	size = roundup(offset + size, PAGE_SIZE);
3045
3046	GIANT_REQUIRED;
3047
3048	va = kmem_alloc_pageable(kernel_map, size);
3049	if (!va)
3050		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3051
3052	pa = pa & PG_FRAME;
3053	for (tmpva = va; size > 0; ) {
3054		pmap_kenter(tmpva, pa);
3055		size -= PAGE_SIZE;
3056		tmpva += PAGE_SIZE;
3057		pa += PAGE_SIZE;
3058	}
3059	pmap_invalidate_range(kernel_pmap, va, tmpva);
3060	return ((void *)(va + offset));
3061}
3062
3063void
3064pmap_unmapdev(va, size)
3065	vm_offset_t va;
3066	vm_size_t size;
3067{
3068	vm_offset_t base, offset, tmpva;
3069	pt_entry_t *pte;
3070
3071	base = va & PG_FRAME;
3072	offset = va & PAGE_MASK;
3073	size = roundup(offset + size, PAGE_SIZE);
3074	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3075		pte = vtopte(tmpva);
3076		pte_clear(pte);
3077	}
3078	pmap_invalidate_range(kernel_pmap, va, tmpva);
3079	kmem_free(kernel_map, base, size);
3080}
3081
3082/*
3083 * perform the pmap work for mincore
3084 */
3085int
3086pmap_mincore(pmap, addr)
3087	pmap_t pmap;
3088	vm_offset_t addr;
3089{
3090	pt_entry_t *ptep, pte;
3091	vm_page_t m;
3092	int val = 0;
3093
3094	ptep = pmap_pte_quick(pmap, addr);
3095	if (ptep == 0) {
3096		return 0;
3097	}
3098
3099	if ((pte = *ptep) != 0) {
3100		vm_paddr_t pa;
3101
3102		val = MINCORE_INCORE;
3103		if ((pte & PG_MANAGED) == 0)
3104			return val;
3105
3106		pa = pte & PG_FRAME;
3107
3108		m = PHYS_TO_VM_PAGE(pa);
3109
3110		/*
3111		 * Modified by us
3112		 */
3113		if (pte & PG_M)
3114			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3115		else {
3116			/*
3117			 * Modified by someone else
3118			 */
3119			vm_page_lock_queues();
3120			if (m->dirty || pmap_is_modified(m))
3121				val |= MINCORE_MODIFIED_OTHER;
3122			vm_page_unlock_queues();
3123		}
3124		/*
3125		 * Referenced by us
3126		 */
3127		if (pte & PG_A)
3128			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3129		else {
3130			/*
3131			 * Referenced by someone else
3132			 */
3133			vm_page_lock_queues();
3134			if ((m->flags & PG_REFERENCED) ||
3135			    pmap_ts_referenced(m)) {
3136				val |= MINCORE_REFERENCED_OTHER;
3137				vm_page_flag_set(m, PG_REFERENCED);
3138			}
3139			vm_page_unlock_queues();
3140		}
3141	}
3142	return val;
3143}
3144
3145void
3146pmap_activate(struct thread *td)
3147{
3148	struct proc *p = td->td_proc;
3149	pmap_t	pmap, oldpmap;
3150	u_int32_t  cr3;
3151
3152	critical_enter();
3153	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3154	oldpmap = PCPU_GET(curpmap);
3155#if defined(SMP)
3156	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3157	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3158#else
3159	oldpmap->pm_active &= ~1;
3160	pmap->pm_active |= 1;
3161#endif
3162#ifdef PAE
3163	cr3 = vtophys(pmap->pm_pdpt);
3164#else
3165	cr3 = vtophys(pmap->pm_pdir);
3166#endif
3167	/* XXXKSE this is wrong.
3168	 * pmap_activate is for the current thread on the current cpu
3169	 */
3170	if (p->p_flag & P_SA) {
3171		/* Make sure all other cr3 entries are updated. */
3172		/* what if they are running?  XXXKSE (maybe abort them) */
3173		FOREACH_THREAD_IN_PROC(p, td) {
3174			td->td_pcb->pcb_cr3 = cr3;
3175		}
3176	} else {
3177		td->td_pcb->pcb_cr3 = cr3;
3178	}
3179	load_cr3(cr3);
3180	PCPU_SET(curpmap, pmap);
3181	critical_exit();
3182}
3183
3184vm_offset_t
3185pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3186{
3187
3188	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3189		return addr;
3190	}
3191
3192	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3193	return addr;
3194}
3195
3196
3197#if defined(PMAP_DEBUG)
3198pmap_pid_dump(int pid)
3199{
3200	pmap_t pmap;
3201	struct proc *p;
3202	int npte = 0;
3203	int index;
3204
3205	sx_slock(&allproc_lock);
3206	LIST_FOREACH(p, &allproc, p_list) {
3207		if (p->p_pid != pid)
3208			continue;
3209
3210		if (p->p_vmspace) {
3211			int i,j;
3212			index = 0;
3213			pmap = vmspace_pmap(p->p_vmspace);
3214			for (i = 0; i < NPDEPTD; i++) {
3215				pd_entry_t *pde;
3216				pt_entry_t *pte;
3217				vm_offset_t base = i << PDRSHIFT;
3218
3219				pde = &pmap->pm_pdir[i];
3220				if (pde && pmap_pde_v(pde)) {
3221					for (j = 0; j < NPTEPG; j++) {
3222						vm_offset_t va = base + (j << PAGE_SHIFT);
3223						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3224							if (index) {
3225								index = 0;
3226								printf("\n");
3227							}
3228							sx_sunlock(&allproc_lock);
3229							return npte;
3230						}
3231						pte = pmap_pte_quick(pmap, va);
3232						if (pte && pmap_pte_v(pte)) {
3233							pt_entry_t pa;
3234							vm_page_t m;
3235							pa = *pte;
3236							m = PHYS_TO_VM_PAGE(pa);
3237							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3238								va, pa, m->hold_count, m->wire_count, m->flags);
3239							npte++;
3240							index++;
3241							if (index >= 2) {
3242								index = 0;
3243								printf("\n");
3244							} else {
3245								printf(" ");
3246							}
3247						}
3248					}
3249				}
3250			}
3251		}
3252	}
3253	sx_sunlock(&allproc_lock);
3254	return npte;
3255}
3256#endif
3257
3258#if defined(DEBUG)
3259
3260static void	pads(pmap_t pm);
3261void		pmap_pvdump(vm_offset_t pa);
3262
3263/* print address space of pmap*/
3264static void
3265pads(pm)
3266	pmap_t pm;
3267{
3268	int i, j;
3269	vm_paddr_t va;
3270	pt_entry_t *ptep;
3271
3272	if (pm == kernel_pmap)
3273		return;
3274	for (i = 0; i < NPDEPTD; i++)
3275		if (pm->pm_pdir[i])
3276			for (j = 0; j < NPTEPG; j++) {
3277				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3278				if (pm == kernel_pmap && va < KERNBASE)
3279					continue;
3280				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3281					continue;
3282				ptep = pmap_pte_quick(pm, va);
3283				if (pmap_pte_v(ptep))
3284					printf("%x:%x ", va, *ptep);
3285			};
3286
3287}
3288
3289void
3290pmap_pvdump(pa)
3291	vm_paddr_t pa;
3292{
3293	pv_entry_t pv;
3294	vm_page_t m;
3295
3296	printf("pa %x", pa);
3297	m = PHYS_TO_VM_PAGE(pa);
3298	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3299		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3300		pads(pv->pv_pmap);
3301	}
3302	printf(" ");
3303}
3304#endif
3305