pmap.c revision 116328
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 116328 2003-06-14 06:20:25Z alc $");
46/*-
47 * Copyright (c) 2003 Networks Associates Technology, Inc.
48 * All rights reserved.
49 *
50 * This software was developed for the FreeBSD Project by Jake Burkholder,
51 * Safeport Network Services, and Network Associates Laboratories, the
52 * Security Research Division of Network Associates, Inc. under
53 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
54 * CHATS research program.
55 *
56 * Redistribution and use in source and binary forms, with or without
57 * modification, are permitted provided that the following conditions
58 * are met:
59 * 1. Redistributions of source code must retain the above copyright
60 *    notice, this list of conditions and the following disclaimer.
61 * 2. Redistributions in binary form must reproduce the above copyright
62 *    notice, this list of conditions and the following disclaimer in the
63 *    documentation and/or other materials provided with the distribution.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 */
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_pmap.h"
105#include "opt_msgbuf.h"
106#include "opt_kstack_pages.h"
107#include "opt_swtch.h"
108
109#include <sys/param.h>
110#include <sys/systm.h>
111#include <sys/kernel.h>
112#include <sys/lock.h>
113#include <sys/mman.h>
114#include <sys/msgbuf.h>
115#include <sys/mutex.h>
116#include <sys/proc.h>
117#include <sys/sx.h>
118#include <sys/user.h>
119#include <sys/vmmeter.h>
120#include <sys/sysctl.h>
121#ifdef SMP
122#include <sys/smp.h>
123#endif
124
125#include <vm/vm.h>
126#include <vm/vm_param.h>
127#include <vm/vm_kern.h>
128#include <vm/vm_page.h>
129#include <vm/vm_map.h>
130#include <vm/vm_object.h>
131#include <vm/vm_extern.h>
132#include <vm/vm_pageout.h>
133#include <vm/vm_pager.h>
134#include <vm/uma.h>
135
136#include <machine/cpu.h>
137#include <machine/cputypes.h>
138#include <machine/md_var.h>
139#include <machine/specialreg.h>
140#if defined(SMP) || defined(APIC_IO)
141#include <machine/smp.h>
142#include <machine/apic.h>
143#include <machine/segments.h>
144#include <machine/tss.h>
145#endif /* SMP || APIC_IO */
146
147#define PMAP_KEEP_PDIRS
148#ifndef PMAP_SHPGPERPROC
149#define PMAP_SHPGPERPROC 200
150#endif
151
152#if defined(DIAGNOSTIC)
153#define PMAP_DIAGNOSTIC
154#endif
155
156#define MINPV 2048
157
158#if !defined(PMAP_DIAGNOSTIC)
159#define PMAP_INLINE __inline
160#else
161#define PMAP_INLINE
162#endif
163
164/*
165 * Get PDEs and PTEs for user/kernel address space
166 */
167#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
168#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
169
170#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
171#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
172#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
173#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
174#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
175
176#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
177#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
178
179/*
180 * Given a map and a machine independent protection code,
181 * convert to a vax protection code.
182 */
183#define pte_prot(m, p)	(protection_codes[p])
184static int protection_codes[8];
185
186struct pmap kernel_pmap_store;
187LIST_HEAD(pmaplist, pmap);
188static struct pmaplist allpmaps;
189static struct mtx allpmaps_lock;
190#if defined(SMP) && defined(LAZY_SWITCH)
191static struct mtx lazypmap_lock;
192#endif
193
194vm_paddr_t avail_start;	/* PA of first available physical page */
195vm_paddr_t avail_end;	/* PA of last available physical page */
196vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
197vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
198static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
199static int pgeflag;		/* PG_G or-in */
200static int pseflag;		/* PG_PS or-in */
201
202static int nkpt;
203vm_offset_t kernel_vm_end;
204extern u_int32_t KERNend;
205
206#ifdef PAE
207static uma_zone_t pdptzone;
208#endif
209
210/*
211 * Data for the pv entry allocation mechanism
212 */
213static uma_zone_t pvzone;
214static struct vm_object pvzone_obj;
215static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
216int pmap_pagedaemon_waken;
217
218/*
219 * All those kernel PT submaps that BSD is so fond of
220 */
221pt_entry_t *CMAP1 = 0;
222static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
223caddr_t CADDR1 = 0, ptvmmap = 0;
224static caddr_t CADDR2, CADDR3;
225static struct mtx CMAPCADDR12_lock;
226static pt_entry_t *msgbufmap;
227struct msgbuf *msgbufp = 0;
228
229/*
230 * Crashdump maps.
231 */
232static pt_entry_t *pt_crashdumpmap;
233static caddr_t crashdumpmap;
234
235#ifdef SMP
236extern pt_entry_t *SMPpt;
237#endif
238static pt_entry_t *PMAP1 = 0;
239static pt_entry_t *PADDR1 = 0;
240
241static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
242static pv_entry_t get_pv_entry(void);
243static void	i386_protection_init(void);
244static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
245
246static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
247				      vm_page_t m, vm_page_t mpte);
248static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
249static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
250static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
251					vm_offset_t va);
252static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
253		vm_page_t mpte, vm_page_t m);
254
255static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
256
257static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
258static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
259static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
260static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
261static void *pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
262#ifdef PAE
263static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
264#endif
265
266static pd_entry_t pdir4mb;
267
268CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
269CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
270
271/*
272 * Move the kernel virtual free pointer to the next
273 * 4MB.  This is used to help improve performance
274 * by using a large (4MB) page for much of the kernel
275 * (.text, .data, .bss)
276 */
277static vm_offset_t
278pmap_kmem_choose(vm_offset_t addr)
279{
280	vm_offset_t newaddr = addr;
281
282#ifdef I686_CPU_not	/* Problem seems to have gone away */
283	/* Deal with un-resolved Pentium4 issues */
284	if (cpu_class == CPUCLASS_686 &&
285	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
286	    (cpu_id & 0xf00) == 0xf00)
287		return newaddr;
288#endif
289#ifndef DISABLE_PSE
290	if (cpu_feature & CPUID_PSE)
291		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
292#endif
293	return newaddr;
294}
295
296/*
297 *	Bootstrap the system enough to run with virtual memory.
298 *
299 *	On the i386 this is called after mapping has already been enabled
300 *	and just syncs the pmap module with what has already been done.
301 *	[We can't call it easily with mapping off since the kernel is not
302 *	mapped with PA == VA, hence we would have to relocate every address
303 *	from the linked base (virtual) address "KERNBASE" to the actual
304 *	(physical) address starting relative to 0]
305 */
306void
307pmap_bootstrap(firstaddr, loadaddr)
308	vm_paddr_t firstaddr;
309	vm_paddr_t loadaddr;
310{
311	vm_offset_t va;
312	pt_entry_t *pte;
313	int i;
314
315	avail_start = firstaddr;
316
317	/*
318	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
319	 * large. It should instead be correctly calculated in locore.s and
320	 * not based on 'first' (which is a physical address, not a virtual
321	 * address, for the start of unused physical memory). The kernel
322	 * page tables are NOT double mapped and thus should not be included
323	 * in this calculation.
324	 */
325	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
326	virtual_avail = pmap_kmem_choose(virtual_avail);
327
328	virtual_end = VM_MAX_KERNEL_ADDRESS;
329
330	/*
331	 * Initialize protection array.
332	 */
333	i386_protection_init();
334
335	/*
336	 * Initialize the kernel pmap (which is statically allocated).
337	 */
338	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
339#ifdef PAE
340	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
341#endif
342	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
343	TAILQ_INIT(&kernel_pmap->pm_pvlist);
344	LIST_INIT(&allpmaps);
345#if defined(SMP) && defined(LAZY_SWITCH)
346	mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
347#endif
348	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
349	mtx_lock_spin(&allpmaps_lock);
350	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
351	mtx_unlock_spin(&allpmaps_lock);
352	nkpt = NKPT;
353
354	/*
355	 * Reserve some special page table entries/VA space for temporary
356	 * mapping of pages.
357	 */
358#define	SYSMAP(c, p, v, n)	\
359	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
360
361	va = virtual_avail;
362	pte = vtopte(va);
363
364	/*
365	 * CMAP1/CMAP2 are used for zeroing and copying pages.
366	 * CMAP3 is used for the idle process page zeroing.
367	 */
368	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
369	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
370	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
371
372	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
373
374	/*
375	 * Crashdump maps.
376	 */
377	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
378
379	/*
380	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
381	 * XXX ptmmap is not used.
382	 */
383	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
384
385	/*
386	 * msgbufp is used to map the system message buffer.
387	 * XXX msgbufmap is not used.
388	 */
389	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
390	       atop(round_page(MSGBUF_SIZE)))
391
392	/*
393	 * ptemap is used for pmap_pte_quick
394	 */
395	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
396
397	virtual_avail = va;
398
399	*CMAP1 = *CMAP2 = 0;
400	for (i = 0; i < NKPT; i++)
401		PTD[i] = 0;
402
403	pgeflag = 0;
404#ifndef DISABLE_PG_G
405	if (cpu_feature & CPUID_PGE)
406		pgeflag = PG_G;
407#endif
408#ifdef I686_CPU_not	/* Problem seems to have gone away */
409	/* Deal with un-resolved Pentium4 issues */
410	if (cpu_class == CPUCLASS_686 &&
411	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
412	    (cpu_id & 0xf00) == 0xf00) {
413		printf("Warning: Pentium 4 cpu: PG_G disabled (global flag)\n");
414		pgeflag = 0;
415	}
416#endif
417
418/*
419 * Initialize the 4MB page size flag
420 */
421	pseflag = 0;
422/*
423 * The 4MB page version of the initial
424 * kernel page mapping.
425 */
426	pdir4mb = 0;
427
428#ifndef DISABLE_PSE
429	if (cpu_feature & CPUID_PSE)
430		pseflag = PG_PS;
431#endif
432#ifdef I686_CPU_not	/* Problem seems to have gone away */
433	/* Deal with un-resolved Pentium4 issues */
434	if (cpu_class == CPUCLASS_686 &&
435	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
436	    (cpu_id & 0xf00) == 0xf00) {
437		printf("Warning: Pentium 4 cpu: PG_PS disabled (4MB pages)\n");
438		pseflag = 0;
439	}
440#endif
441#ifndef DISABLE_PSE
442	if (pseflag) {
443		pd_entry_t ptditmp;
444		/*
445		 * Note that we have enabled PSE mode
446		 */
447		ptditmp = *(PTmap + i386_btop(KERNBASE));
448		ptditmp &= ~(NBPDR - 1);
449		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
450		pdir4mb = ptditmp;
451	}
452#endif
453#ifndef SMP
454	/*
455	 * Turn on PGE/PSE.  SMP does this later on since the
456	 * 4K page tables are required for AP boot (for now).
457	 * XXX fixme.
458	 */
459	pmap_set_opt();
460#endif
461#ifdef SMP
462	if (cpu_apic_address == 0)
463		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
464
465	/* local apic is mapped on last page */
466	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
467	    (cpu_apic_address & PG_FRAME));
468#endif
469	invltlb();
470}
471
472/*
473 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
474 * BSP will run this after all the AP's have started up.
475 */
476void
477pmap_set_opt(void)
478{
479	pt_entry_t *pte;
480	vm_offset_t va, endva;
481
482	if (pgeflag && (cpu_feature & CPUID_PGE)) {
483		load_cr4(rcr4() | CR4_PGE);
484		invltlb();		/* Insurance */
485	}
486#ifndef DISABLE_PSE
487	if (pseflag && (cpu_feature & CPUID_PSE)) {
488		load_cr4(rcr4() | CR4_PSE);
489		invltlb();		/* Insurance */
490	}
491#endif
492	if (PCPU_GET(cpuid) == 0) {
493#ifndef DISABLE_PSE
494		if (pdir4mb) {
495			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
496			invltlb();	/* Insurance */
497		}
498#endif
499		if (pgeflag) {
500			/* Turn on PG_G for text, data, bss pages. */
501			va = (vm_offset_t)btext;
502#ifndef DISABLE_PSE
503			if (pseflag && (cpu_feature & CPUID_PSE)) {
504				if (va < KERNBASE + (1 << PDRSHIFT))
505					va = KERNBASE + (1 << PDRSHIFT);
506			}
507#endif
508			endva = KERNBASE + KERNend;
509			while (va < endva) {
510				pte = vtopte(va);
511				if (*pte)
512					*pte |= pgeflag;
513				va += PAGE_SIZE;
514			}
515			invltlb();	/* Insurance */
516		}
517		/*
518		 * We do not need to broadcast the invltlb here, because
519		 * each AP does it the moment it is released from the boot
520		 * lock.  See ap_init().
521		 */
522	}
523}
524
525static void *
526pmap_pv_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
527{
528	*flags = UMA_SLAB_PRIV;
529	return (void *)kmem_alloc(kernel_map, bytes);
530}
531
532#ifdef PAE
533static void *
534pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
535{
536	*flags = UMA_SLAB_PRIV;
537	return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
538}
539#endif
540
541/*
542 *	Initialize the pmap module.
543 *	Called by vm_init, to initialize any structures that the pmap
544 *	system needs to map virtual memory.
545 *	pmap_init has been enhanced to support in a fairly consistant
546 *	way, discontiguous physical memory.
547 */
548void
549pmap_init(phys_start, phys_end)
550	vm_paddr_t phys_start, phys_end;
551{
552	int i;
553	int initial_pvs;
554
555	/*
556	 * Allocate memory for random pmap data structures.  Includes the
557	 * pv_head_table.
558	 */
559
560	for(i = 0; i < vm_page_array_size; i++) {
561		vm_page_t m;
562
563		m = &vm_page_array[i];
564		TAILQ_INIT(&m->md.pv_list);
565		m->md.pv_list_count = 0;
566	}
567
568	/*
569	 * init the pv free list
570	 */
571	initial_pvs = vm_page_array_size;
572	if (initial_pvs < MINPV)
573		initial_pvs = MINPV;
574	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
575	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
576	uma_zone_set_allocf(pvzone, pmap_pv_allocf);
577	uma_prealloc(pvzone, initial_pvs);
578
579#ifdef PAE
580	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
581	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1, 0);
582	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
583#endif
584
585	/*
586	 * Now it is safe to enable pv_table recording.
587	 */
588	pmap_initialized = TRUE;
589}
590
591/*
592 * Initialize the address space (zone) for the pv_entries.  Set a
593 * high water mark so that the system can recover from excessive
594 * numbers of pv entries.
595 */
596void
597pmap_init2()
598{
599	int shpgperproc = PMAP_SHPGPERPROC;
600
601	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
602	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
603	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
604	pv_entry_high_water = 9 * (pv_entry_max / 10);
605	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
606}
607
608
609/***************************************************
610 * Low level helper routines.....
611 ***************************************************/
612
613#if defined(PMAP_DIAGNOSTIC)
614
615/*
616 * This code checks for non-writeable/modified pages.
617 * This should be an invalid condition.
618 */
619static int
620pmap_nw_modified(pt_entry_t ptea)
621{
622	int pte;
623
624	pte = (int) ptea;
625
626	if ((pte & (PG_M|PG_RW)) == PG_M)
627		return 1;
628	else
629		return 0;
630}
631#endif
632
633
634/*
635 * this routine defines the region(s) of memory that should
636 * not be tested for the modified bit.
637 */
638static PMAP_INLINE int
639pmap_track_modified(vm_offset_t va)
640{
641	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
642		return 1;
643	else
644		return 0;
645}
646
647#ifdef I386_CPU
648/*
649 * i386 only has "invalidate everything" and no SMP to worry about.
650 */
651PMAP_INLINE void
652pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
653{
654
655	if (pmap == kernel_pmap || pmap->pm_active)
656		invltlb();
657}
658
659PMAP_INLINE void
660pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
661{
662
663	if (pmap == kernel_pmap || pmap->pm_active)
664		invltlb();
665}
666
667PMAP_INLINE void
668pmap_invalidate_all(pmap_t pmap)
669{
670
671	if (pmap == kernel_pmap || pmap->pm_active)
672		invltlb();
673}
674#else /* !I386_CPU */
675#ifdef SMP
676/*
677 * For SMP, these functions have to use the IPI mechanism for coherence.
678 */
679void
680pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
681{
682	u_int cpumask;
683	u_int other_cpus;
684
685	critical_enter();
686	/*
687	 * We need to disable interrupt preemption but MUST NOT have
688	 * interrupts disabled here.
689	 * XXX we may need to hold schedlock to get a coherent pm_active
690	 */
691	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
692		invlpg(va);
693		smp_invlpg(va);
694	} else {
695		cpumask = PCPU_GET(cpumask);
696		other_cpus = PCPU_GET(other_cpus);
697		if (pmap->pm_active & cpumask)
698			invlpg(va);
699		if (pmap->pm_active & other_cpus)
700			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
701	}
702	critical_exit();
703}
704
705void
706pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
707{
708	u_int cpumask;
709	u_int other_cpus;
710	vm_offset_t addr;
711
712	critical_enter();
713	/*
714	 * We need to disable interrupt preemption but MUST NOT have
715	 * interrupts disabled here.
716	 * XXX we may need to hold schedlock to get a coherent pm_active
717	 */
718	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
719		for (addr = sva; addr < eva; addr += PAGE_SIZE)
720			invlpg(addr);
721		smp_invlpg_range(sva, eva);
722	} else {
723		cpumask = PCPU_GET(cpumask);
724		other_cpus = PCPU_GET(other_cpus);
725		if (pmap->pm_active & cpumask)
726			for (addr = sva; addr < eva; addr += PAGE_SIZE)
727				invlpg(addr);
728		if (pmap->pm_active & other_cpus)
729			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
730			    sva, eva);
731	}
732	critical_exit();
733}
734
735void
736pmap_invalidate_all(pmap_t pmap)
737{
738	u_int cpumask;
739	u_int other_cpus;
740
741#ifdef SWTCH_OPTIM_STATS
742	tlb_flush_count++;
743#endif
744	critical_enter();
745	/*
746	 * We need to disable interrupt preemption but MUST NOT have
747	 * interrupts disabled here.
748	 * XXX we may need to hold schedlock to get a coherent pm_active
749	 */
750	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
751		invltlb();
752		smp_invltlb();
753	} else {
754		cpumask = PCPU_GET(cpumask);
755		other_cpus = PCPU_GET(other_cpus);
756		if (pmap->pm_active & cpumask)
757			invltlb();
758		if (pmap->pm_active & other_cpus)
759			smp_masked_invltlb(pmap->pm_active & other_cpus);
760	}
761	critical_exit();
762}
763#else /* !SMP */
764/*
765 * Normal, non-SMP, 486+ invalidation functions.
766 * We inline these within pmap.c for speed.
767 */
768PMAP_INLINE void
769pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
770{
771
772	if (pmap == kernel_pmap || pmap->pm_active)
773		invlpg(va);
774}
775
776PMAP_INLINE void
777pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
778{
779	vm_offset_t addr;
780
781	if (pmap == kernel_pmap || pmap->pm_active)
782		for (addr = sva; addr < eva; addr += PAGE_SIZE)
783			invlpg(addr);
784}
785
786PMAP_INLINE void
787pmap_invalidate_all(pmap_t pmap)
788{
789
790	if (pmap == kernel_pmap || pmap->pm_active)
791		invltlb();
792}
793#endif /* !SMP */
794#endif /* !I386_CPU */
795
796/*
797 * Are we current address space or kernel?
798 */
799static __inline int
800pmap_is_current(pmap_t pmap)
801{
802	return (pmap == kernel_pmap ||
803	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME));
804}
805
806/*
807 * Super fast pmap_pte routine best used when scanning
808 * the pv lists.  This eliminates many coarse-grained
809 * invltlb calls.  Note that many of the pv list
810 * scans are across different pmaps.  It is very wasteful
811 * to do an entire invltlb for checking a single mapping.
812 */
813pt_entry_t *
814pmap_pte_quick(pmap, va)
815	register pmap_t pmap;
816	vm_offset_t va;
817{
818	pd_entry_t newpf;
819	pd_entry_t *pde;
820
821	pde = pmap_pde(pmap, va);
822	if (*pde & PG_PS)
823		return (pde);
824	if (*pde != 0) {
825		/* are we current address space or kernel? */
826		if (pmap_is_current(pmap))
827			return vtopte(va);
828		newpf = *pde & PG_FRAME;
829		if (((*PMAP1) & PG_FRAME) != newpf) {
830			*PMAP1 = newpf | PG_RW | PG_V;
831			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
832		}
833		return PADDR1 + (i386_btop(va) & (NPTEPG - 1));
834	}
835	return (0);
836}
837
838/*
839 *	Routine:	pmap_extract
840 *	Function:
841 *		Extract the physical page address associated
842 *		with the given map/virtual_address pair.
843 */
844vm_paddr_t
845pmap_extract(pmap, va)
846	register pmap_t pmap;
847	vm_offset_t va;
848{
849	vm_paddr_t rtval;
850	pt_entry_t *pte;
851	pd_entry_t pde;
852
853	if (pmap == 0)
854		return 0;
855	pde = pmap->pm_pdir[va >> PDRSHIFT];
856	if (pde != 0) {
857		if ((pde & PG_PS) != 0) {
858			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
859			return rtval;
860		}
861		pte = pmap_pte_quick(pmap, va);
862		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
863		return rtval;
864	}
865	return 0;
866
867}
868
869/***************************************************
870 * Low level mapping routines.....
871 ***************************************************/
872
873/*
874 * Add a wired page to the kva.
875 * Note: not SMP coherent.
876 */
877PMAP_INLINE void
878pmap_kenter(vm_offset_t va, vm_paddr_t pa)
879{
880	pt_entry_t *pte;
881
882	pte = vtopte(va);
883	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
884}
885
886/*
887 * Remove a page from the kernel pagetables.
888 * Note: not SMP coherent.
889 */
890PMAP_INLINE void
891pmap_kremove(vm_offset_t va)
892{
893	pt_entry_t *pte;
894
895	pte = vtopte(va);
896	pte_clear(pte);
897}
898
899/*
900 *	Used to map a range of physical addresses into kernel
901 *	virtual address space.
902 *
903 *	The value passed in '*virt' is a suggested virtual address for
904 *	the mapping. Architectures which can support a direct-mapped
905 *	physical to virtual region can return the appropriate address
906 *	within that region, leaving '*virt' unchanged. Other
907 *	architectures should map the pages starting at '*virt' and
908 *	update '*virt' with the first usable address after the mapped
909 *	region.
910 */
911vm_offset_t
912pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
913{
914	vm_offset_t va, sva;
915
916	va = sva = *virt;
917	while (start < end) {
918		pmap_kenter(va, start);
919		va += PAGE_SIZE;
920		start += PAGE_SIZE;
921	}
922	pmap_invalidate_range(kernel_pmap, sva, va);
923	*virt = va;
924	return (sva);
925}
926
927
928/*
929 * Add a list of wired pages to the kva
930 * this routine is only used for temporary
931 * kernel mappings that do not need to have
932 * page modification or references recorded.
933 * Note that old mappings are simply written
934 * over.  The page *must* be wired.
935 * Note: SMP coherent.  Uses a ranged shootdown IPI.
936 */
937void
938pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
939{
940	vm_offset_t va;
941
942	va = sva;
943	while (count-- > 0) {
944		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
945		va += PAGE_SIZE;
946		m++;
947	}
948	pmap_invalidate_range(kernel_pmap, sva, va);
949}
950
951/*
952 * This routine tears out page mappings from the
953 * kernel -- it is meant only for temporary mappings.
954 * Note: SMP coherent.  Uses a ranged shootdown IPI.
955 */
956void
957pmap_qremove(vm_offset_t sva, int count)
958{
959	vm_offset_t va;
960
961	va = sva;
962	while (count-- > 0) {
963		pmap_kremove(va);
964		va += PAGE_SIZE;
965	}
966	pmap_invalidate_range(kernel_pmap, sva, va);
967}
968
969static vm_page_t
970pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
971{
972	vm_page_t m;
973
974retry:
975	m = vm_page_lookup(object, pindex);
976	if (m != NULL) {
977		vm_page_lock_queues();
978		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
979			goto retry;
980		vm_page_unlock_queues();
981	}
982	return m;
983}
984
985#ifndef KSTACK_MAX_PAGES
986#define KSTACK_MAX_PAGES 32
987#endif
988
989/*
990 * Create the kernel stack (including pcb for i386) for a new thread.
991 * This routine directly affects the fork perf for a process and
992 * create performance for a thread.
993 */
994void
995pmap_new_thread(struct thread *td, int pages)
996{
997	int i;
998	vm_page_t ma[KSTACK_MAX_PAGES];
999	vm_object_t ksobj;
1000	vm_page_t m;
1001	vm_offset_t ks;
1002
1003	/* Bounds check */
1004	if (pages <= 1)
1005		pages = KSTACK_PAGES;
1006	else if (pages > KSTACK_MAX_PAGES)
1007		pages = KSTACK_MAX_PAGES;
1008
1009	/*
1010	 * allocate object for the kstack
1011	 */
1012	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
1013	td->td_kstack_obj = ksobj;
1014
1015	/* get a kernel virtual address for the kstack for this thread */
1016#ifdef KSTACK_GUARD
1017	ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
1018	if (ks == 0)
1019		panic("pmap_new_thread: kstack allocation failed");
1020	if (*vtopte(ks) != 0)
1021		pmap_qremove(ks, 1);
1022	ks += PAGE_SIZE;
1023	td->td_kstack = ks;
1024#else
1025	/* get a kernel virtual address for the kstack for this thread */
1026	ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
1027	if (ks == 0)
1028		panic("pmap_new_thread: kstack allocation failed");
1029	td->td_kstack = ks;
1030#endif
1031	/*
1032	 * Knowing the number of pages allocated is useful when you
1033	 * want to deallocate them.
1034	 */
1035	td->td_kstack_pages = pages;
1036
1037	/*
1038	 * For the length of the stack, link in a real page of ram for each
1039	 * page of stack.
1040	 */
1041	VM_OBJECT_LOCK(ksobj);
1042	for (i = 0; i < pages; i++) {
1043		/*
1044		 * Get a kernel stack page
1045		 */
1046		m = vm_page_grab(ksobj, i,
1047		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
1048		ma[i] = m;
1049
1050		vm_page_lock_queues();
1051		vm_page_wakeup(m);
1052		vm_page_flag_clear(m, PG_ZERO);
1053		m->valid = VM_PAGE_BITS_ALL;
1054		vm_page_unlock_queues();
1055	}
1056	VM_OBJECT_UNLOCK(ksobj);
1057	pmap_qenter(ks, ma, pages);
1058}
1059
1060/*
1061 * Dispose the kernel stack for a thread that has exited.
1062 * This routine directly impacts the exit perf of a process and thread.
1063 */
1064void
1065pmap_dispose_thread(td)
1066	struct thread *td;
1067{
1068	int i;
1069	int pages;
1070	vm_object_t ksobj;
1071	vm_offset_t ks;
1072	vm_page_t m;
1073
1074	pages = td->td_kstack_pages;
1075	ksobj = td->td_kstack_obj;
1076	ks = td->td_kstack;
1077	pmap_qremove(ks, pages);
1078	VM_OBJECT_LOCK(ksobj);
1079	for (i = 0; i < pages; i++) {
1080		m = vm_page_lookup(ksobj, i);
1081		if (m == NULL)
1082			panic("pmap_dispose_thread: kstack already missing?");
1083		vm_page_lock_queues();
1084		vm_page_busy(m);
1085		vm_page_unwire(m, 0);
1086		vm_page_free(m);
1087		vm_page_unlock_queues();
1088	}
1089	VM_OBJECT_UNLOCK(ksobj);
1090	/*
1091	 * Free the space that this stack was mapped to in the kernel
1092	 * address map.
1093	 */
1094#ifdef KSTACK_GUARD
1095	kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
1096#else
1097	kmem_free(kernel_map, ks, pages * PAGE_SIZE);
1098#endif
1099	vm_object_deallocate(ksobj);
1100}
1101
1102/*
1103 * Allow the Kernel stack for a thread to be prejudicially paged out.
1104 */
1105void
1106pmap_swapout_thread(td)
1107	struct thread *td;
1108{
1109	int i;
1110	int pages;
1111	vm_object_t ksobj;
1112	vm_offset_t ks;
1113	vm_page_t m;
1114
1115	pages = td->td_kstack_pages;
1116	ksobj = td->td_kstack_obj;
1117	ks = td->td_kstack;
1118	pmap_qremove(ks, pages);
1119	VM_OBJECT_LOCK(ksobj);
1120	for (i = 0; i < pages; i++) {
1121		m = vm_page_lookup(ksobj, i);
1122		if (m == NULL)
1123			panic("pmap_swapout_thread: kstack already missing?");
1124		vm_page_lock_queues();
1125		vm_page_dirty(m);
1126		vm_page_unwire(m, 0);
1127		vm_page_unlock_queues();
1128	}
1129	VM_OBJECT_UNLOCK(ksobj);
1130}
1131
1132/*
1133 * Bring the kernel stack for a specified thread back in.
1134 */
1135void
1136pmap_swapin_thread(td)
1137	struct thread *td;
1138{
1139	int i, rv;
1140	int pages;
1141	vm_page_t ma[KSTACK_MAX_PAGES];
1142	vm_object_t ksobj;
1143	vm_offset_t ks;
1144	vm_page_t m;
1145
1146	pages = td->td_kstack_pages;
1147	ksobj = td->td_kstack_obj;
1148	ks = td->td_kstack;
1149	VM_OBJECT_LOCK(ksobj);
1150	for (i = 0; i < pages; i++) {
1151		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1152		if (m->valid != VM_PAGE_BITS_ALL) {
1153			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1154			if (rv != VM_PAGER_OK)
1155				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1156			m = vm_page_lookup(ksobj, i);
1157			m->valid = VM_PAGE_BITS_ALL;
1158		}
1159		ma[i] = m;
1160		vm_page_lock_queues();
1161		vm_page_wire(m);
1162		vm_page_wakeup(m);
1163		vm_page_unlock_queues();
1164	}
1165	VM_OBJECT_UNLOCK(ksobj);
1166	pmap_qenter(ks, ma, pages);
1167}
1168
1169/***************************************************
1170 * Page table page management routines.....
1171 ***************************************************/
1172
1173/*
1174 * This routine unholds page table pages, and if the hold count
1175 * drops to zero, then it decrements the wire count.
1176 */
1177static int
1178_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1179{
1180
1181	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1182		vm_page_lock_queues();
1183
1184	if (m->hold_count == 0) {
1185		vm_offset_t pteva;
1186		/*
1187		 * unmap the page table page
1188		 */
1189		pmap->pm_pdir[m->pindex] = 0;
1190		--pmap->pm_stats.resident_count;
1191		if (pmap_is_current(pmap)) {
1192			/*
1193			 * Do an invltlb to make the invalidated mapping
1194			 * take effect immediately.
1195			 */
1196			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1197			pmap_invalidate_page(pmap, pteva);
1198		}
1199
1200		/*
1201		 * If the page is finally unwired, simply free it.
1202		 */
1203		--m->wire_count;
1204		if (m->wire_count == 0) {
1205			vm_page_busy(m);
1206			vm_page_free_zero(m);
1207			atomic_subtract_int(&cnt.v_wire_count, 1);
1208		}
1209		return 1;
1210	}
1211	return 0;
1212}
1213
1214static PMAP_INLINE int
1215pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1216{
1217	vm_page_unhold(m);
1218	if (m->hold_count == 0)
1219		return _pmap_unwire_pte_hold(pmap, m);
1220	else
1221		return 0;
1222}
1223
1224/*
1225 * After removing a page table entry, this routine is used to
1226 * conditionally free the page, and manage the hold/wire counts.
1227 */
1228static int
1229pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1230{
1231	unsigned ptepindex;
1232	if (va >= VM_MAXUSER_ADDRESS)
1233		return 0;
1234
1235	if (mpte == NULL) {
1236		ptepindex = (va >> PDRSHIFT);
1237		if (pmap->pm_pteobj->root &&
1238			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1239			mpte = pmap->pm_pteobj->root;
1240		} else {
1241			while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
1242			       vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
1243				vm_page_lock_queues();
1244		}
1245	}
1246
1247	return pmap_unwire_pte_hold(pmap, mpte);
1248}
1249
1250void
1251pmap_pinit0(pmap)
1252	struct pmap *pmap;
1253{
1254
1255	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1256#ifdef PAE
1257	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1258#endif
1259	pmap->pm_active = 0;
1260	TAILQ_INIT(&pmap->pm_pvlist);
1261	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1262	mtx_lock_spin(&allpmaps_lock);
1263	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1264	mtx_unlock_spin(&allpmaps_lock);
1265}
1266
1267/*
1268 * Initialize a preallocated and zeroed pmap structure,
1269 * such as one in a vmspace structure.
1270 */
1271void
1272pmap_pinit(pmap)
1273	register struct pmap *pmap;
1274{
1275	vm_page_t ptdpg[NPGPTD];
1276	vm_paddr_t pa;
1277	int i;
1278
1279	/*
1280	 * No need to allocate page table space yet but we do need a valid
1281	 * page directory table.
1282	 */
1283	if (pmap->pm_pdir == NULL) {
1284		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_pageable(kernel_map,
1285		    NBPTD);
1286#ifdef PAE
1287		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1288		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1289		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1290		    ("pmap_pinit: pdpt misaligned"));
1291		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1292		    ("pmap_pinit: pdpt above 4g"));
1293#endif
1294	}
1295
1296	/*
1297	 * allocate object for the ptes
1298	 */
1299	if (pmap->pm_pteobj == NULL)
1300		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI +
1301		    NPGPTD);
1302
1303	/*
1304	 * allocate the page directory page(s)
1305	 */
1306	for (i = 0; i < NPGPTD; i++) {
1307		ptdpg[i] = vm_page_grab(pmap->pm_pteobj, PTDPTDI + i,
1308		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED |
1309		    VM_ALLOC_ZERO);
1310		vm_page_lock_queues();
1311		vm_page_flag_clear(ptdpg[i], PG_BUSY);
1312		ptdpg[i]->valid = VM_PAGE_BITS_ALL;
1313		vm_page_unlock_queues();
1314	}
1315
1316	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1317
1318	for (i = 0; i < NPGPTD; i++) {
1319		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1320			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1321	}
1322
1323	mtx_lock_spin(&allpmaps_lock);
1324	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1325	mtx_unlock_spin(&allpmaps_lock);
1326	/* Wire in kernel global address entries. */
1327	/* XXX copies current process, does not fill in MPPTDI */
1328	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1329#ifdef SMP
1330	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1331#endif
1332
1333	/* install self-referential address mapping entry(s) */
1334	for (i = 0; i < NPGPTD; i++) {
1335		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1336		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1337#ifdef PAE
1338		pmap->pm_pdpt[i] = pa | PG_V;
1339#endif
1340	}
1341
1342	pmap->pm_active = 0;
1343	TAILQ_INIT(&pmap->pm_pvlist);
1344	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1345}
1346
1347/*
1348 * Wire in kernel global address entries.  To avoid a race condition
1349 * between pmap initialization and pmap_growkernel, this procedure
1350 * should be called after the vmspace is attached to the process
1351 * but before this pmap is activated.
1352 */
1353void
1354pmap_pinit2(pmap)
1355	struct pmap *pmap;
1356{
1357	/* XXX: Remove this stub when no longer called */
1358}
1359
1360/*
1361 * this routine is called if the page table page is not
1362 * mapped correctly.
1363 */
1364static vm_page_t
1365_pmap_allocpte(pmap, ptepindex)
1366	pmap_t	pmap;
1367	unsigned ptepindex;
1368{
1369	vm_paddr_t ptepa;
1370	vm_offset_t pteva;
1371	vm_page_t m;
1372
1373	/*
1374	 * Find or fabricate a new pagetable page
1375	 */
1376	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1377	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1378
1379	KASSERT(m->queue == PQ_NONE,
1380		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1381
1382	/*
1383	 * Increment the hold count for the page table page
1384	 * (denoting a new mapping.)
1385	 */
1386	m->hold_count++;
1387
1388	/*
1389	 * Map the pagetable page into the process address space, if
1390	 * it isn't already there.
1391	 */
1392
1393	pmap->pm_stats.resident_count++;
1394
1395	ptepa = VM_PAGE_TO_PHYS(m);
1396	pmap->pm_pdir[ptepindex] =
1397		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1398
1399	/*
1400	 * Try to use the new mapping, but if we cannot, then
1401	 * do it with the routine that maps the page explicitly.
1402	 */
1403	if ((m->flags & PG_ZERO) == 0) {
1404		if (pmap_is_current(pmap)) {
1405			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1406			bzero((caddr_t) pteva, PAGE_SIZE);
1407		} else {
1408			pmap_zero_page(m);
1409		}
1410	}
1411	vm_page_lock_queues();
1412	m->valid = VM_PAGE_BITS_ALL;
1413	vm_page_flag_clear(m, PG_ZERO);
1414	vm_page_wakeup(m);
1415	vm_page_unlock_queues();
1416
1417	return m;
1418}
1419
1420static vm_page_t
1421pmap_allocpte(pmap_t pmap, vm_offset_t va)
1422{
1423	unsigned ptepindex;
1424	pd_entry_t ptepa;
1425	vm_page_t m;
1426
1427	/*
1428	 * Calculate pagetable page index
1429	 */
1430	ptepindex = va >> PDRSHIFT;
1431
1432	/*
1433	 * Get the page directory entry
1434	 */
1435	ptepa = pmap->pm_pdir[ptepindex];
1436
1437	/*
1438	 * This supports switching from a 4MB page to a
1439	 * normal 4K page.
1440	 */
1441	if (ptepa & PG_PS) {
1442		pmap->pm_pdir[ptepindex] = 0;
1443		ptepa = 0;
1444		pmap_invalidate_all(kernel_pmap);
1445	}
1446
1447	/*
1448	 * If the page table page is mapped, we just increment the
1449	 * hold count, and activate it.
1450	 */
1451	if (ptepa) {
1452		/*
1453		 * In order to get the page table page, try the
1454		 * hint first.
1455		 */
1456		if (pmap->pm_pteobj->root &&
1457			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1458			m = pmap->pm_pteobj->root;
1459		} else {
1460			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1461		}
1462		m->hold_count++;
1463		return m;
1464	}
1465	/*
1466	 * Here if the pte page isn't mapped, or if it has been deallocated.
1467	 */
1468	return _pmap_allocpte(pmap, ptepindex);
1469}
1470
1471
1472/***************************************************
1473* Pmap allocation/deallocation routines.
1474 ***************************************************/
1475
1476#ifdef LAZY_SWITCH
1477#ifdef SMP
1478/*
1479 * Deal with a SMP shootdown of other users of the pmap that we are
1480 * trying to dispose of.  This can be a bit hairy.
1481 */
1482static u_int *lazymask;
1483static u_int lazyptd;
1484static volatile u_int lazywait;
1485
1486void pmap_lazyfix_action(void);
1487
1488void
1489pmap_lazyfix_action(void)
1490{
1491	u_int mymask = PCPU_GET(cpumask);
1492
1493	if (rcr3() == lazyptd) {
1494		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1495#ifdef SWTCH_OPTIM_STATS
1496		atomic_add_int(&lazy_flush_smpfixup, 1);
1497	} else {
1498		if (*lazymask & mymask)
1499			lazy_flush_smpbadcr3++;
1500		else
1501			lazy_flush_smpmiss++;
1502#endif
1503	}
1504	atomic_clear_int(lazymask, mymask);
1505	atomic_store_rel_int(&lazywait, 1);
1506}
1507
1508static void
1509pmap_lazyfix_self(u_int mymask)
1510{
1511
1512	if (rcr3() == lazyptd) {
1513		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1514#ifdef SWTCH_OPTIM_STATS
1515		lazy_flush_fixup++;
1516	} else {
1517		if (*lazymask & mymask)
1518			lazy_flush_smpbadcr3++;
1519		else
1520			lazy_flush_smpmiss++;
1521#endif
1522	}
1523	atomic_clear_int(lazymask, mymask);
1524}
1525
1526
1527static void
1528pmap_lazyfix(pmap_t pmap)
1529{
1530	u_int mymask = PCPU_GET(cpumask);
1531	u_int mask;
1532	register u_int spins;
1533
1534	while ((mask = pmap->pm_active) != 0) {
1535		spins = 50000000;
1536		mask = mask & -mask;	/* Find least significant set bit */
1537		mtx_lock_spin(&lazypmap_lock);
1538#ifdef PAE
1539		lazyptd = vtophys(pmap->pm_pdpt);
1540#else
1541		lazyptd = vtophys(pmap->pm_pdir);
1542#endif
1543		if (mask == mymask) {
1544			lazymask = &pmap->pm_active;
1545			pmap_lazyfix_self(mymask);
1546		} else {
1547			atomic_store_rel_int((u_int *)&lazymask,
1548			    (u_int)&pmap->pm_active);
1549			atomic_store_rel_int(&lazywait, 0);
1550			ipi_selected(mask, IPI_LAZYPMAP);
1551			while (lazywait == 0) {
1552				ia32_pause();
1553				if (--spins == 0)
1554					break;
1555			}
1556#ifdef SWTCH_OPTIM_STATS
1557			lazy_flush_smpipi++;
1558#endif
1559		}
1560		mtx_unlock_spin(&lazypmap_lock);
1561		if (spins == 0)
1562			printf("pmap_lazyfix: spun for 50000000\n");
1563	}
1564}
1565
1566#else	/* SMP */
1567
1568/*
1569 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1570 * unlikely to have to even execute this code, including the fact
1571 * that the cleanup is deferred until the parent does a wait(2), which
1572 * means that another userland process has run.
1573 */
1574static void
1575pmap_lazyfix(pmap_t pmap)
1576{
1577	u_int cr3;
1578
1579	cr3 = vtophys(pmap->pm_pdir);
1580	if (cr3 == rcr3()) {
1581		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1582		pmap->pm_active &= ~(PCPU_GET(cpumask));
1583#ifdef SWTCH_OPTIM_STATS
1584		lazy_flush_fixup++;
1585#endif
1586	}
1587}
1588#endif	/* SMP */
1589#endif	/* LAZY_SWITCH */
1590
1591/*
1592 * Release any resources held by the given physical map.
1593 * Called when a pmap initialized by pmap_pinit is being released.
1594 * Should only be called if the map contains no valid mappings.
1595 */
1596void
1597pmap_release(pmap_t pmap)
1598{
1599	vm_object_t object;
1600	vm_page_t m;
1601	int i;
1602
1603	object = pmap->pm_pteobj;
1604
1605	KASSERT(object->ref_count == 1,
1606	    ("pmap_release: pteobj reference count %d != 1",
1607	    object->ref_count));
1608	KASSERT(pmap->pm_stats.resident_count == 0,
1609	    ("pmap_release: pmap resident count %ld != 0",
1610	    pmap->pm_stats.resident_count));
1611
1612#ifdef LAZY_SWITCH
1613	pmap_lazyfix(pmap);
1614#endif
1615	mtx_lock_spin(&allpmaps_lock);
1616	LIST_REMOVE(pmap, pm_list);
1617	mtx_unlock_spin(&allpmaps_lock);
1618
1619	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1620	    sizeof(*pmap->pm_pdir));
1621#ifdef SMP
1622	pmap->pm_pdir[MPPTDI] = 0;
1623#endif
1624
1625	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1626
1627	vm_page_lock_queues();
1628	for (i = 0; i < NPGPTD; i++) {
1629		m = TAILQ_FIRST(&object->memq);
1630#ifdef PAE
1631		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1632		    ("pmap_release: got wrong ptd page"));
1633#endif
1634		m->wire_count--;
1635		atomic_subtract_int(&cnt.v_wire_count, 1);
1636		vm_page_busy(m);
1637		vm_page_free_zero(m);
1638	}
1639	KASSERT(TAILQ_EMPTY(&object->memq),
1640	    ("pmap_release: leaking page table pages"));
1641	vm_page_unlock_queues();
1642}
1643
1644static int
1645kvm_size(SYSCTL_HANDLER_ARGS)
1646{
1647	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1648
1649	return sysctl_handle_long(oidp, &ksize, 0, req);
1650}
1651SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1652    0, 0, kvm_size, "IU", "Size of KVM");
1653
1654static int
1655kvm_free(SYSCTL_HANDLER_ARGS)
1656{
1657	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1658
1659	return sysctl_handle_long(oidp, &kfree, 0, req);
1660}
1661SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1662    0, 0, kvm_free, "IU", "Amount of KVM free");
1663
1664/*
1665 * grow the number of kernel page table entries, if needed
1666 */
1667void
1668pmap_growkernel(vm_offset_t addr)
1669{
1670	struct pmap *pmap;
1671	int s;
1672	vm_paddr_t ptppaddr;
1673	vm_page_t nkpg;
1674	pd_entry_t newpdir;
1675	pt_entry_t *pde;
1676
1677	s = splhigh();
1678	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1679	if (kernel_vm_end == 0) {
1680		kernel_vm_end = KERNBASE;
1681		nkpt = 0;
1682		while (pdir_pde(PTD, kernel_vm_end)) {
1683			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1684			nkpt++;
1685		}
1686	}
1687	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1688	while (kernel_vm_end < addr) {
1689		if (pdir_pde(PTD, kernel_vm_end)) {
1690			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1691			continue;
1692		}
1693
1694		/*
1695		 * This index is bogus, but out of the way
1696		 */
1697		nkpg = vm_page_alloc(NULL, nkpt,
1698		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1699		if (!nkpg)
1700			panic("pmap_growkernel: no memory to grow kernel");
1701
1702		nkpt++;
1703
1704		pmap_zero_page(nkpg);
1705		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1706		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1707		pdir_pde(PTD, kernel_vm_end) = newpdir;
1708
1709		mtx_lock_spin(&allpmaps_lock);
1710		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1711			pde = pmap_pde(pmap, kernel_vm_end);
1712			pde_store(pde, newpdir);
1713		}
1714		mtx_unlock_spin(&allpmaps_lock);
1715		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1716	}
1717	splx(s);
1718}
1719
1720
1721/***************************************************
1722 * page management routines.
1723 ***************************************************/
1724
1725/*
1726 * free the pv_entry back to the free list
1727 */
1728static PMAP_INLINE void
1729free_pv_entry(pv_entry_t pv)
1730{
1731	pv_entry_count--;
1732	uma_zfree(pvzone, pv);
1733}
1734
1735/*
1736 * get a new pv_entry, allocating a block from the system
1737 * when needed.
1738 * the memory allocation is performed bypassing the malloc code
1739 * because of the possibility of allocations at interrupt time.
1740 */
1741static pv_entry_t
1742get_pv_entry(void)
1743{
1744	pv_entry_count++;
1745	if (pv_entry_high_water &&
1746		(pv_entry_count > pv_entry_high_water) &&
1747		(pmap_pagedaemon_waken == 0)) {
1748		pmap_pagedaemon_waken = 1;
1749		wakeup (&vm_pages_needed);
1750	}
1751	return uma_zalloc(pvzone, M_NOWAIT);
1752}
1753
1754/*
1755 * If it is the first entry on the list, it is actually
1756 * in the header and we must copy the following entry up
1757 * to the header.  Otherwise we must search the list for
1758 * the entry.  In either case we free the now unused entry.
1759 */
1760
1761static int
1762pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1763{
1764	pv_entry_t pv;
1765	int rtval;
1766	int s;
1767
1768	s = splvm();
1769	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1770	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1771		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1772			if (pmap == pv->pv_pmap && va == pv->pv_va)
1773				break;
1774		}
1775	} else {
1776		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1777			if (va == pv->pv_va)
1778				break;
1779		}
1780	}
1781
1782	rtval = 0;
1783	if (pv) {
1784		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1785		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1786		m->md.pv_list_count--;
1787		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1788			vm_page_flag_clear(m, PG_WRITEABLE);
1789
1790		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1791		free_pv_entry(pv);
1792	}
1793
1794	splx(s);
1795	return rtval;
1796}
1797
1798/*
1799 * Create a pv entry for page at pa for
1800 * (pmap, va).
1801 */
1802static void
1803pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1804{
1805
1806	int s;
1807	pv_entry_t pv;
1808
1809	s = splvm();
1810	pv = get_pv_entry();
1811	pv->pv_va = va;
1812	pv->pv_pmap = pmap;
1813	pv->pv_ptem = mpte;
1814
1815	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1816	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1817	m->md.pv_list_count++;
1818
1819	splx(s);
1820}
1821
1822/*
1823 * pmap_remove_pte: do the things to unmap a page in a process
1824 */
1825static int
1826pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1827{
1828	pt_entry_t oldpte;
1829	vm_page_t m;
1830
1831	oldpte = pte_load_clear(ptq);
1832	if (oldpte & PG_W)
1833		pmap->pm_stats.wired_count -= 1;
1834	/*
1835	 * Machines that don't support invlpg, also don't support
1836	 * PG_G.
1837	 */
1838	if (oldpte & PG_G)
1839		pmap_invalidate_page(kernel_pmap, va);
1840	pmap->pm_stats.resident_count -= 1;
1841	if (oldpte & PG_MANAGED) {
1842		m = PHYS_TO_VM_PAGE(oldpte);
1843		if (oldpte & PG_M) {
1844#if defined(PMAP_DIAGNOSTIC)
1845			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1846				printf(
1847	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1848				    va, oldpte);
1849			}
1850#endif
1851			if (pmap_track_modified(va))
1852				vm_page_dirty(m);
1853		}
1854		if (oldpte & PG_A)
1855			vm_page_flag_set(m, PG_REFERENCED);
1856		return pmap_remove_entry(pmap, m, va);
1857	} else {
1858		return pmap_unuse_pt(pmap, va, NULL);
1859	}
1860
1861	return 0;
1862}
1863
1864/*
1865 * Remove a single page from a process address space
1866 */
1867static void
1868pmap_remove_page(pmap_t pmap, vm_offset_t va)
1869{
1870	pt_entry_t *pte;
1871
1872	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1873		return;
1874	pmap_remove_pte(pmap, pte, va);
1875	pmap_invalidate_page(pmap, va);
1876}
1877
1878/*
1879 *	Remove the given range of addresses from the specified map.
1880 *
1881 *	It is assumed that the start and end are properly
1882 *	rounded to the page size.
1883 */
1884void
1885pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1886{
1887	vm_offset_t pdnxt;
1888	pd_entry_t ptpaddr;
1889	pt_entry_t *pte;
1890	int anyvalid;
1891
1892	if (pmap == NULL)
1893		return;
1894
1895	if (pmap->pm_stats.resident_count == 0)
1896		return;
1897
1898	/*
1899	 * special handling of removing one page.  a very
1900	 * common operation and easy to short circuit some
1901	 * code.
1902	 */
1903	if ((sva + PAGE_SIZE == eva) &&
1904	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1905		pmap_remove_page(pmap, sva);
1906		return;
1907	}
1908
1909	anyvalid = 0;
1910
1911	for (; sva < eva; sva = pdnxt) {
1912		unsigned pdirindex;
1913
1914		/*
1915		 * Calculate index for next page table.
1916		 */
1917		pdnxt = (sva + NBPDR) & ~PDRMASK;
1918		if (pmap->pm_stats.resident_count == 0)
1919			break;
1920
1921		pdirindex = sva >> PDRSHIFT;
1922		ptpaddr = pmap->pm_pdir[pdirindex];
1923
1924		/*
1925		 * Weed out invalid mappings. Note: we assume that the page
1926		 * directory table is always allocated, and in kernel virtual.
1927		 */
1928		if (ptpaddr == 0)
1929			continue;
1930
1931		/*
1932		 * Check for large page.
1933		 */
1934		if ((ptpaddr & PG_PS) != 0) {
1935			pmap->pm_pdir[pdirindex] = 0;
1936			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1937			anyvalid = 1;
1938			continue;
1939		}
1940
1941		/*
1942		 * Limit our scan to either the end of the va represented
1943		 * by the current page table page, or to the end of the
1944		 * range being removed.
1945		 */
1946		if (pdnxt > eva)
1947			pdnxt = eva;
1948
1949		for (; sva != pdnxt; sva += PAGE_SIZE) {
1950			if ((pte = pmap_pte_quick(pmap, sva)) == NULL ||
1951			    *pte == 0)
1952				continue;
1953			anyvalid = 1;
1954			if (pmap_remove_pte(pmap, pte, sva))
1955				break;
1956		}
1957	}
1958
1959	if (anyvalid)
1960		pmap_invalidate_all(pmap);
1961}
1962
1963/*
1964 *	Routine:	pmap_remove_all
1965 *	Function:
1966 *		Removes this physical page from
1967 *		all physical maps in which it resides.
1968 *		Reflects back modify bits to the pager.
1969 *
1970 *	Notes:
1971 *		Original versions of this routine were very
1972 *		inefficient because they iteratively called
1973 *		pmap_remove (slow...)
1974 */
1975
1976void
1977pmap_remove_all(vm_page_t m)
1978{
1979	register pv_entry_t pv;
1980	pt_entry_t *pte, tpte;
1981	int s;
1982
1983#if defined(PMAP_DIAGNOSTIC)
1984	/*
1985	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1986	 */
1987	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1988		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1989		    VM_PAGE_TO_PHYS(m));
1990	}
1991#endif
1992	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1993	s = splvm();
1994	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1995		pv->pv_pmap->pm_stats.resident_count--;
1996		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1997		tpte = pte_load_clear(pte);
1998		if (tpte & PG_W)
1999			pv->pv_pmap->pm_stats.wired_count--;
2000		if (tpte & PG_A)
2001			vm_page_flag_set(m, PG_REFERENCED);
2002
2003		/*
2004		 * Update the vm_page_t clean and reference bits.
2005		 */
2006		if (tpte & PG_M) {
2007#if defined(PMAP_DIAGNOSTIC)
2008			if (pmap_nw_modified((pt_entry_t) tpte)) {
2009				printf(
2010	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
2011				    pv->pv_va, tpte);
2012			}
2013#endif
2014			if (pmap_track_modified(pv->pv_va))
2015				vm_page_dirty(m);
2016		}
2017		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2018		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2019		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2020		m->md.pv_list_count--;
2021		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2022		free_pv_entry(pv);
2023	}
2024	vm_page_flag_clear(m, PG_WRITEABLE);
2025	splx(s);
2026}
2027
2028/*
2029 *	Set the physical protection on the
2030 *	specified range of this map as requested.
2031 */
2032void
2033pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2034{
2035	vm_offset_t pdnxt;
2036	pd_entry_t ptpaddr;
2037	int anychanged;
2038
2039	if (pmap == NULL)
2040		return;
2041
2042	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2043		pmap_remove(pmap, sva, eva);
2044		return;
2045	}
2046
2047	if (prot & VM_PROT_WRITE)
2048		return;
2049
2050	anychanged = 0;
2051
2052	for (; sva < eva; sva = pdnxt) {
2053		unsigned pdirindex;
2054
2055		pdnxt = (sva + NBPDR) & ~PDRMASK;
2056
2057		pdirindex = sva >> PDRSHIFT;
2058		ptpaddr = pmap->pm_pdir[pdirindex];
2059
2060		/*
2061		 * Weed out invalid mappings. Note: we assume that the page
2062		 * directory table is always allocated, and in kernel virtual.
2063		 */
2064		if (ptpaddr == 0)
2065			continue;
2066
2067		/*
2068		 * Check for large page.
2069		 */
2070		if ((ptpaddr & PG_PS) != 0) {
2071			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2072			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2073			anychanged = 1;
2074			continue;
2075		}
2076
2077		if (pdnxt > eva)
2078			pdnxt = eva;
2079
2080		for (; sva != pdnxt; sva += PAGE_SIZE) {
2081			pt_entry_t pbits;
2082			pt_entry_t *pte;
2083			vm_page_t m;
2084
2085			if ((pte = pmap_pte_quick(pmap, sva)) == NULL)
2086				continue;
2087			pbits = *pte;
2088			if (pbits & PG_MANAGED) {
2089				m = NULL;
2090				if (pbits & PG_A) {
2091					m = PHYS_TO_VM_PAGE(pbits);
2092					vm_page_flag_set(m, PG_REFERENCED);
2093					pbits &= ~PG_A;
2094				}
2095				if ((pbits & PG_M) != 0 &&
2096				    pmap_track_modified(sva)) {
2097					if (m == NULL)
2098						m = PHYS_TO_VM_PAGE(pbits);
2099					vm_page_dirty(m);
2100					pbits &= ~PG_M;
2101				}
2102			}
2103
2104			pbits &= ~PG_RW;
2105
2106			if (pbits != *pte) {
2107				pte_store(pte, pbits);
2108				anychanged = 1;
2109			}
2110		}
2111	}
2112	if (anychanged)
2113		pmap_invalidate_all(pmap);
2114}
2115
2116/*
2117 *	Insert the given physical page (p) at
2118 *	the specified virtual address (v) in the
2119 *	target physical map with the protection requested.
2120 *
2121 *	If specified, the page will be wired down, meaning
2122 *	that the related pte can not be reclaimed.
2123 *
2124 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2125 *	or lose information.  That is, this routine must actually
2126 *	insert this page into the given map NOW.
2127 */
2128void
2129pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2130	   boolean_t wired)
2131{
2132	vm_paddr_t pa;
2133	register pt_entry_t *pte;
2134	vm_paddr_t opa;
2135	pt_entry_t origpte, newpte;
2136	vm_page_t mpte;
2137
2138	if (pmap == NULL)
2139		return;
2140
2141	va &= PG_FRAME;
2142#ifdef PMAP_DIAGNOSTIC
2143	if (va > VM_MAX_KERNEL_ADDRESS)
2144		panic("pmap_enter: toobig");
2145	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2146		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2147#endif
2148
2149	mpte = NULL;
2150	/*
2151	 * In the case that a page table page is not
2152	 * resident, we are creating it here.
2153	 */
2154	if (va < VM_MAXUSER_ADDRESS) {
2155		mpte = pmap_allocpte(pmap, va);
2156	}
2157#if 0 && defined(PMAP_DIAGNOSTIC)
2158	else {
2159		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2160		origpte = *pdeaddr;
2161		if ((origpte & PG_V) == 0) {
2162			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2163				pmap->pm_pdir[PTDPTDI], origpte, va);
2164		}
2165	}
2166#endif
2167
2168	pte = pmap_pte_quick(pmap, va);
2169
2170	/*
2171	 * Page Directory table entry not valid, we need a new PT page
2172	 */
2173	if (pte == NULL) {
2174		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2175			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
2176	}
2177
2178	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2179	origpte = *pte;
2180	opa = origpte & PG_FRAME;
2181
2182	if (origpte & PG_PS)
2183		panic("pmap_enter: attempted pmap_enter on 4MB page");
2184
2185	/*
2186	 * Mapping has not changed, must be protection or wiring change.
2187	 */
2188	if (origpte && (opa == pa)) {
2189		/*
2190		 * Wiring change, just update stats. We don't worry about
2191		 * wiring PT pages as they remain resident as long as there
2192		 * are valid mappings in them. Hence, if a user page is wired,
2193		 * the PT page will be also.
2194		 */
2195		if (wired && ((origpte & PG_W) == 0))
2196			pmap->pm_stats.wired_count++;
2197		else if (!wired && (origpte & PG_W))
2198			pmap->pm_stats.wired_count--;
2199
2200#if defined(PMAP_DIAGNOSTIC)
2201		if (pmap_nw_modified((pt_entry_t) origpte)) {
2202			printf(
2203	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2204			    va, origpte);
2205		}
2206#endif
2207
2208		/*
2209		 * Remove extra pte reference
2210		 */
2211		if (mpte)
2212			mpte->hold_count--;
2213
2214		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2215			if ((origpte & PG_RW) == 0) {
2216				pte_store(pte, origpte | PG_RW);
2217				pmap_invalidate_page(pmap, va);
2218			}
2219			return;
2220		}
2221
2222		/*
2223		 * We might be turning off write access to the page,
2224		 * so we go ahead and sense modify status.
2225		 */
2226		if (origpte & PG_MANAGED) {
2227			if ((origpte & PG_M) && pmap_track_modified(va)) {
2228				vm_page_t om;
2229				om = PHYS_TO_VM_PAGE(opa);
2230				vm_page_dirty(om);
2231			}
2232			pa |= PG_MANAGED;
2233		}
2234		goto validate;
2235	}
2236	/*
2237	 * Mapping has changed, invalidate old range and fall through to
2238	 * handle validating new mapping.
2239	 */
2240	if (opa) {
2241		int err;
2242		vm_page_lock_queues();
2243		err = pmap_remove_pte(pmap, pte, va);
2244		vm_page_unlock_queues();
2245		if (err)
2246			panic("pmap_enter: pte vanished, va: 0x%x", va);
2247	}
2248
2249	/*
2250	 * Enter on the PV list if part of our managed memory. Note that we
2251	 * raise IPL while manipulating pv_table since pmap_enter can be
2252	 * called at interrupt time.
2253	 */
2254	if (pmap_initialized &&
2255	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2256		pmap_insert_entry(pmap, va, mpte, m);
2257		pa |= PG_MANAGED;
2258	}
2259
2260	/*
2261	 * Increment counters
2262	 */
2263	pmap->pm_stats.resident_count++;
2264	if (wired)
2265		pmap->pm_stats.wired_count++;
2266
2267validate:
2268	/*
2269	 * Now validate mapping with desired protection/wiring.
2270	 */
2271	newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V);
2272
2273	if (wired)
2274		newpte |= PG_W;
2275	if (va < VM_MAXUSER_ADDRESS)
2276		newpte |= PG_U;
2277	if (pmap == kernel_pmap)
2278		newpte |= pgeflag;
2279
2280	/*
2281	 * if the mapping or permission bits are different, we need
2282	 * to update the pte.
2283	 */
2284	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2285		pte_store(pte, newpte | PG_A);
2286		/*if (origpte)*/ {
2287			pmap_invalidate_page(pmap, va);
2288		}
2289	}
2290}
2291
2292/*
2293 * this code makes some *MAJOR* assumptions:
2294 * 1. Current pmap & pmap exists.
2295 * 2. Not wired.
2296 * 3. Read access.
2297 * 4. No page table pages.
2298 * 5. Tlbflush is deferred to calling procedure.
2299 * 6. Page IS managed.
2300 * but is *MUCH* faster than pmap_enter...
2301 */
2302
2303static vm_page_t
2304pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2305{
2306	pt_entry_t *pte;
2307	vm_paddr_t pa;
2308
2309	/*
2310	 * In the case that a page table page is not
2311	 * resident, we are creating it here.
2312	 */
2313	if (va < VM_MAXUSER_ADDRESS) {
2314		unsigned ptepindex;
2315		pd_entry_t ptepa;
2316
2317		/*
2318		 * Calculate pagetable page index
2319		 */
2320		ptepindex = va >> PDRSHIFT;
2321		if (mpte && (mpte->pindex == ptepindex)) {
2322			mpte->hold_count++;
2323		} else {
2324retry:
2325			/*
2326			 * Get the page directory entry
2327			 */
2328			ptepa = pmap->pm_pdir[ptepindex];
2329
2330			/*
2331			 * If the page table page is mapped, we just increment
2332			 * the hold count, and activate it.
2333			 */
2334			if (ptepa) {
2335				if (ptepa & PG_PS)
2336					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2337				if (pmap->pm_pteobj->root &&
2338					(pmap->pm_pteobj->root->pindex == ptepindex)) {
2339					mpte = pmap->pm_pteobj->root;
2340				} else {
2341					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2342				}
2343				if (mpte == NULL)
2344					goto retry;
2345				mpte->hold_count++;
2346			} else {
2347				mpte = _pmap_allocpte(pmap, ptepindex);
2348			}
2349		}
2350	} else {
2351		mpte = NULL;
2352	}
2353
2354	/*
2355	 * This call to vtopte makes the assumption that we are
2356	 * entering the page into the current pmap.  In order to support
2357	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2358	 * But that isn't as quick as vtopte.
2359	 */
2360	pte = vtopte(va);
2361	if (*pte) {
2362		if (mpte != NULL) {
2363			vm_page_lock_queues();
2364			pmap_unwire_pte_hold(pmap, mpte);
2365			vm_page_unlock_queues();
2366		}
2367		return 0;
2368	}
2369
2370	/*
2371	 * Enter on the PV list if part of our managed memory. Note that we
2372	 * raise IPL while manipulating pv_table since pmap_enter can be
2373	 * called at interrupt time.
2374	 */
2375	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2376		pmap_insert_entry(pmap, va, mpte, m);
2377
2378	/*
2379	 * Increment counters
2380	 */
2381	pmap->pm_stats.resident_count++;
2382
2383	pa = VM_PAGE_TO_PHYS(m);
2384
2385	/*
2386	 * Now validate mapping with RO protection
2387	 */
2388	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2389		pte_store(pte, pa | PG_V | PG_U);
2390	else
2391		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2392
2393	return mpte;
2394}
2395
2396/*
2397 * Make a temporary mapping for a physical address.  This is only intended
2398 * to be used for panic dumps.
2399 */
2400void *
2401pmap_kenter_temporary(vm_offset_t pa, int i)
2402{
2403	vm_offset_t va;
2404
2405	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2406	pmap_kenter(va, pa);
2407#ifndef I386_CPU
2408	invlpg(va);
2409#else
2410	invltlb();
2411#endif
2412	return ((void *)crashdumpmap);
2413}
2414
2415#define MAX_INIT_PT (96)
2416/*
2417 * pmap_object_init_pt preloads the ptes for a given object
2418 * into the specified pmap.  This eliminates the blast of soft
2419 * faults on process startup and immediately after an mmap.
2420 */
2421void
2422pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2423		    vm_object_t object, vm_pindex_t pindex,
2424		    vm_size_t size, int limit)
2425{
2426	vm_offset_t tmpidx;
2427	int psize;
2428	vm_page_t p, mpte;
2429
2430	if (pmap == NULL || object == NULL)
2431		return;
2432	VM_OBJECT_LOCK(object);
2433	/*
2434	 * This code maps large physical mmap regions into the
2435	 * processor address space.  Note that some shortcuts
2436	 * are taken, but the code works.
2437	 */
2438	if (pseflag && (object->type == OBJT_DEVICE) &&
2439	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2440		int i;
2441		vm_page_t m[1];
2442		unsigned int ptepindex;
2443		int npdes;
2444		pd_entry_t ptepa;
2445
2446		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2447			goto unlock_return;
2448retry:
2449		p = vm_page_lookup(object, pindex);
2450		if (p != NULL) {
2451			vm_page_lock_queues();
2452			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2453				goto retry;
2454		} else {
2455			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2456			if (p == NULL)
2457				goto unlock_return;
2458			m[0] = p;
2459
2460			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2461				vm_page_lock_queues();
2462				vm_page_free(p);
2463				vm_page_unlock_queues();
2464				goto unlock_return;
2465			}
2466
2467			p = vm_page_lookup(object, pindex);
2468			vm_page_lock_queues();
2469			vm_page_wakeup(p);
2470		}
2471		vm_page_unlock_queues();
2472
2473		ptepa = VM_PAGE_TO_PHYS(p);
2474		if (ptepa & (NBPDR - 1)) {
2475			goto unlock_return;
2476		}
2477
2478		p->valid = VM_PAGE_BITS_ALL;
2479
2480		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2481		npdes = size >> PDRSHIFT;
2482		for(i = 0; i < npdes; i++) {
2483			pde_store(&pmap->pm_pdir[ptepindex],
2484			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2485			ptepa += NBPDR;
2486			ptepindex += 1;
2487		}
2488		pmap_invalidate_all(kernel_pmap);
2489		goto unlock_return;
2490	}
2491
2492	psize = i386_btop(size);
2493
2494	if ((object->type != OBJT_VNODE) ||
2495	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2496	     (object->resident_page_count > MAX_INIT_PT))) {
2497		goto unlock_return;
2498	}
2499
2500	if (psize + pindex > object->size) {
2501		if (object->size < pindex)
2502			goto unlock_return;
2503		psize = object->size - pindex;
2504	}
2505
2506	mpte = NULL;
2507
2508	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
2509		if (p->pindex < pindex) {
2510			p = vm_page_splay(pindex, object->root);
2511			if ((object->root = p)->pindex < pindex)
2512				p = TAILQ_NEXT(p, listq);
2513		}
2514	}
2515	/*
2516	 * Assert: the variable p is either (1) the page with the
2517	 * least pindex greater than or equal to the parameter pindex
2518	 * or (2) NULL.
2519	 */
2520	for (;
2521	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2522	     p = TAILQ_NEXT(p, listq)) {
2523		/*
2524		 * don't allow an madvise to blow away our really
2525		 * free pages allocating pv entries.
2526		 */
2527		if ((limit & MAP_PREFAULT_MADVISE) &&
2528		    cnt.v_free_count < cnt.v_free_reserved) {
2529			break;
2530		}
2531		vm_page_lock_queues();
2532		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2533		    (p->busy == 0) &&
2534		    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2535			if ((p->queue - p->pc) == PQ_CACHE)
2536				vm_page_deactivate(p);
2537			vm_page_busy(p);
2538			vm_page_unlock_queues();
2539			VM_OBJECT_UNLOCK(object);
2540			mpte = pmap_enter_quick(pmap,
2541				addr + i386_ptob(tmpidx), p, mpte);
2542			VM_OBJECT_LOCK(object);
2543			vm_page_lock_queues();
2544			vm_page_wakeup(p);
2545		}
2546		vm_page_unlock_queues();
2547	}
2548unlock_return:
2549	VM_OBJECT_UNLOCK(object);
2550}
2551
2552/*
2553 * pmap_prefault provides a quick way of clustering
2554 * pagefaults into a processes address space.  It is a "cousin"
2555 * of pmap_object_init_pt, except it runs at page fault time instead
2556 * of mmap time.
2557 */
2558#define PFBAK 4
2559#define PFFOR 4
2560#define PAGEORDER_SIZE (PFBAK+PFFOR)
2561
2562static int pmap_prefault_pageorder[] = {
2563	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2564	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2565	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2566	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2567};
2568
2569void
2570pmap_prefault(pmap, addra, entry)
2571	pmap_t pmap;
2572	vm_offset_t addra;
2573	vm_map_entry_t entry;
2574{
2575	int i;
2576	vm_offset_t starta;
2577	vm_offset_t addr;
2578	vm_pindex_t pindex;
2579	vm_page_t m, mpte;
2580	vm_object_t object;
2581
2582	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2583		return;
2584
2585	object = entry->object.vm_object;
2586
2587	starta = addra - PFBAK * PAGE_SIZE;
2588	if (starta < entry->start) {
2589		starta = entry->start;
2590	} else if (starta > addra) {
2591		starta = 0;
2592	}
2593
2594	mpte = NULL;
2595	for (i = 0; i < PAGEORDER_SIZE; i++) {
2596		vm_object_t lobject;
2597		pt_entry_t *pte;
2598
2599		addr = addra + pmap_prefault_pageorder[i];
2600		if (addr > addra + (PFFOR * PAGE_SIZE))
2601			addr = 0;
2602
2603		if (addr < starta || addr >= entry->end)
2604			continue;
2605
2606		if ((*pmap_pde(pmap, addr)) == 0)
2607			continue;
2608
2609		pte = vtopte(addr);
2610		if (*pte)
2611			continue;
2612
2613		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2614		lobject = object;
2615		for (m = vm_page_lookup(lobject, pindex);
2616		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2617		    lobject = lobject->backing_object) {
2618			if (lobject->backing_object_offset & PAGE_MASK)
2619				break;
2620			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2621			m = vm_page_lookup(lobject->backing_object, pindex);
2622		}
2623
2624		/*
2625		 * give-up when a page is not in memory
2626		 */
2627		if (m == NULL)
2628			break;
2629		vm_page_lock_queues();
2630		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2631			(m->busy == 0) &&
2632		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2633
2634			if ((m->queue - m->pc) == PQ_CACHE) {
2635				vm_page_deactivate(m);
2636			}
2637			vm_page_busy(m);
2638			vm_page_unlock_queues();
2639			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2640			vm_page_lock_queues();
2641			vm_page_wakeup(m);
2642		}
2643		vm_page_unlock_queues();
2644	}
2645}
2646
2647/*
2648 *	Routine:	pmap_change_wiring
2649 *	Function:	Change the wiring attribute for a map/virtual-address
2650 *			pair.
2651 *	In/out conditions:
2652 *			The mapping must already exist in the pmap.
2653 */
2654void
2655pmap_change_wiring(pmap, va, wired)
2656	register pmap_t pmap;
2657	vm_offset_t va;
2658	boolean_t wired;
2659{
2660	register pt_entry_t *pte;
2661
2662	if (pmap == NULL)
2663		return;
2664
2665	pte = pmap_pte_quick(pmap, va);
2666
2667	if (wired && !pmap_pte_w(pte))
2668		pmap->pm_stats.wired_count++;
2669	else if (!wired && pmap_pte_w(pte))
2670		pmap->pm_stats.wired_count--;
2671
2672	/*
2673	 * Wiring is not a hardware characteristic so there is no need to
2674	 * invalidate TLB.
2675	 */
2676	pmap_pte_set_w(pte, wired);
2677}
2678
2679
2680
2681/*
2682 *	Copy the range specified by src_addr/len
2683 *	from the source map to the range dst_addr/len
2684 *	in the destination map.
2685 *
2686 *	This routine is only advisory and need not do anything.
2687 */
2688
2689void
2690pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2691	  vm_offset_t src_addr)
2692{
2693	vm_offset_t addr;
2694	vm_offset_t end_addr = src_addr + len;
2695	vm_offset_t pdnxt;
2696	vm_page_t m;
2697
2698	if (dst_addr != src_addr)
2699		return;
2700
2701	if (!pmap_is_current(src_pmap))
2702		return;
2703
2704	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2705		pt_entry_t *src_pte, *dst_pte;
2706		vm_page_t dstmpte, srcmpte;
2707		pd_entry_t srcptepaddr;
2708		unsigned ptepindex;
2709
2710		if (addr >= UPT_MIN_ADDRESS)
2711			panic("pmap_copy: invalid to pmap_copy page tables\n");
2712
2713		/*
2714		 * Don't let optional prefaulting of pages make us go
2715		 * way below the low water mark of free pages or way
2716		 * above high water mark of used pv entries.
2717		 */
2718		if (cnt.v_free_count < cnt.v_free_reserved ||
2719		    pv_entry_count > pv_entry_high_water)
2720			break;
2721
2722		pdnxt = (addr + NBPDR) & ~PDRMASK;
2723		ptepindex = addr >> PDRSHIFT;
2724
2725		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2726		if (srcptepaddr == 0)
2727			continue;
2728
2729		if (srcptepaddr & PG_PS) {
2730			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2731				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2732				dst_pmap->pm_stats.resident_count +=
2733				    NBPDR / PAGE_SIZE;
2734			}
2735			continue;
2736		}
2737
2738		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2739		if ((srcmpte == NULL) ||
2740		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2741			continue;
2742
2743		if (pdnxt > end_addr)
2744			pdnxt = end_addr;
2745
2746		src_pte = vtopte(addr);
2747		while (addr < pdnxt) {
2748			pt_entry_t ptetemp;
2749			ptetemp = *src_pte;
2750			/*
2751			 * we only virtual copy managed pages
2752			 */
2753			if ((ptetemp & PG_MANAGED) != 0) {
2754				/*
2755				 * We have to check after allocpte for the
2756				 * pte still being around...  allocpte can
2757				 * block.
2758				 */
2759				dstmpte = pmap_allocpte(dst_pmap, addr);
2760				dst_pte = pmap_pte_quick(dst_pmap, addr);
2761				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2762					/*
2763					 * Clear the modified and
2764					 * accessed (referenced) bits
2765					 * during the copy.
2766					 */
2767					m = PHYS_TO_VM_PAGE(ptetemp);
2768					*dst_pte = ptetemp & ~(PG_M | PG_A);
2769					dst_pmap->pm_stats.resident_count++;
2770					pmap_insert_entry(dst_pmap, addr,
2771						dstmpte, m);
2772	 			} else {
2773					vm_page_lock_queues();
2774					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2775					vm_page_unlock_queues();
2776				}
2777				if (dstmpte->hold_count >= srcmpte->hold_count)
2778					break;
2779			}
2780			addr += PAGE_SIZE;
2781			src_pte++;
2782		}
2783	}
2784}
2785
2786#ifdef SMP
2787
2788/*
2789 *	pmap_zpi_switchin*()
2790 *
2791 *	These functions allow us to avoid doing IPIs alltogether in certain
2792 *	temporary page-mapping situations (page zeroing).  Instead to deal
2793 *	with being preempted and moved onto a different cpu we invalidate
2794 *	the page when the scheduler switches us in.  This does not occur
2795 *	very often so we remain relatively optimal with very little effort.
2796 */
2797static void
2798pmap_zpi_switchin12(void)
2799{
2800	invlpg((u_int)CADDR1);
2801	invlpg((u_int)CADDR2);
2802}
2803
2804static void
2805pmap_zpi_switchin2(void)
2806{
2807	invlpg((u_int)CADDR2);
2808}
2809
2810static void
2811pmap_zpi_switchin3(void)
2812{
2813	invlpg((u_int)CADDR3);
2814}
2815
2816#endif
2817
2818/*
2819 *	pmap_zero_page zeros the specified hardware page by mapping
2820 *	the page into KVM and using bzero to clear its contents.
2821 */
2822void
2823pmap_zero_page(vm_page_t m)
2824{
2825
2826	mtx_lock(&CMAPCADDR12_lock);
2827	if (*CMAP2)
2828		panic("pmap_zero_page: CMAP2 busy");
2829	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2830#ifdef I386_CPU
2831	invltlb();
2832#else
2833#ifdef SMP
2834	curthread->td_switchin = pmap_zpi_switchin2;
2835#endif
2836	invlpg((u_int)CADDR2);
2837#endif
2838#if defined(I686_CPU)
2839	if (cpu_class == CPUCLASS_686)
2840		i686_pagezero(CADDR2);
2841	else
2842#endif
2843		bzero(CADDR2, PAGE_SIZE);
2844#ifdef SMP
2845	curthread->td_switchin = NULL;
2846#endif
2847	*CMAP2 = 0;
2848	mtx_unlock(&CMAPCADDR12_lock);
2849}
2850
2851/*
2852 *	pmap_zero_page_area zeros the specified hardware page by mapping
2853 *	the page into KVM and using bzero to clear its contents.
2854 *
2855 *	off and size may not cover an area beyond a single hardware page.
2856 */
2857void
2858pmap_zero_page_area(vm_page_t m, int off, int size)
2859{
2860
2861	mtx_lock(&CMAPCADDR12_lock);
2862	if (*CMAP2)
2863		panic("pmap_zero_page: CMAP2 busy");
2864	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2865#ifdef I386_CPU
2866	invltlb();
2867#else
2868#ifdef SMP
2869	curthread->td_switchin = pmap_zpi_switchin2;
2870#endif
2871	invlpg((u_int)CADDR2);
2872#endif
2873#if defined(I686_CPU)
2874	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2875		i686_pagezero(CADDR2);
2876	else
2877#endif
2878		bzero((char *)CADDR2 + off, size);
2879#ifdef SMP
2880	curthread->td_switchin = NULL;
2881#endif
2882	*CMAP2 = 0;
2883	mtx_unlock(&CMAPCADDR12_lock);
2884}
2885
2886/*
2887 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2888 *	the page into KVM and using bzero to clear its contents.  This
2889 *	is intended to be called from the vm_pagezero process only and
2890 *	outside of Giant.
2891 */
2892void
2893pmap_zero_page_idle(vm_page_t m)
2894{
2895
2896	if (*CMAP3)
2897		panic("pmap_zero_page: CMAP3 busy");
2898	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2899#ifdef I386_CPU
2900	invltlb();
2901#else
2902#ifdef SMP
2903	curthread->td_switchin = pmap_zpi_switchin3;
2904#endif
2905	invlpg((u_int)CADDR3);
2906#endif
2907#if defined(I686_CPU)
2908	if (cpu_class == CPUCLASS_686)
2909		i686_pagezero(CADDR3);
2910	else
2911#endif
2912		bzero(CADDR3, PAGE_SIZE);
2913#ifdef SMP
2914	curthread->td_switchin = NULL;
2915#endif
2916	*CMAP3 = 0;
2917}
2918
2919/*
2920 *	pmap_copy_page copies the specified (machine independent)
2921 *	page by mapping the page into virtual memory and using
2922 *	bcopy to copy the page, one machine dependent page at a
2923 *	time.
2924 */
2925void
2926pmap_copy_page(vm_page_t src, vm_page_t dst)
2927{
2928
2929	mtx_lock(&CMAPCADDR12_lock);
2930	if (*CMAP1)
2931		panic("pmap_copy_page: CMAP1 busy");
2932	if (*CMAP2)
2933		panic("pmap_copy_page: CMAP2 busy");
2934	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2935	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2936#ifdef I386_CPU
2937	invltlb();
2938#else
2939#ifdef SMP
2940	curthread->td_switchin = pmap_zpi_switchin12;
2941#endif
2942	invlpg((u_int)CADDR1);
2943	invlpg((u_int)CADDR2);
2944#endif
2945	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2946#ifdef SMP
2947	curthread->td_switchin = NULL;
2948#endif
2949	*CMAP1 = 0;
2950	*CMAP2 = 0;
2951	mtx_unlock(&CMAPCADDR12_lock);
2952}
2953
2954/*
2955 * Returns true if the pmap's pv is one of the first
2956 * 16 pvs linked to from this page.  This count may
2957 * be changed upwards or downwards in the future; it
2958 * is only necessary that true be returned for a small
2959 * subset of pmaps for proper page aging.
2960 */
2961boolean_t
2962pmap_page_exists_quick(pmap, m)
2963	pmap_t pmap;
2964	vm_page_t m;
2965{
2966	pv_entry_t pv;
2967	int loops = 0;
2968	int s;
2969
2970	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2971		return FALSE;
2972
2973	s = splvm();
2974	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2975	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2976		if (pv->pv_pmap == pmap) {
2977			splx(s);
2978			return TRUE;
2979		}
2980		loops++;
2981		if (loops >= 16)
2982			break;
2983	}
2984	splx(s);
2985	return (FALSE);
2986}
2987
2988#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2989/*
2990 * Remove all pages from specified address space
2991 * this aids process exit speeds.  Also, this code
2992 * is special cased for current process only, but
2993 * can have the more generic (and slightly slower)
2994 * mode enabled.  This is much faster than pmap_remove
2995 * in the case of running down an entire address space.
2996 */
2997void
2998pmap_remove_pages(pmap, sva, eva)
2999	pmap_t pmap;
3000	vm_offset_t sva, eva;
3001{
3002	pt_entry_t *pte, tpte;
3003	vm_page_t m;
3004	pv_entry_t pv, npv;
3005	int s;
3006
3007#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
3008	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
3009		printf("warning: pmap_remove_pages called with non-current pmap\n");
3010		return;
3011	}
3012#endif
3013	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3014	s = splvm();
3015	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
3016
3017		if (pv->pv_va >= eva || pv->pv_va < sva) {
3018			npv = TAILQ_NEXT(pv, pv_plist);
3019			continue;
3020		}
3021
3022#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
3023		pte = vtopte(pv->pv_va);
3024#else
3025		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3026#endif
3027		tpte = *pte;
3028
3029		if (tpte == 0) {
3030			printf("TPTE at %p  IS ZERO @ VA %08x\n",
3031							pte, pv->pv_va);
3032			panic("bad pte");
3033		}
3034
3035/*
3036 * We cannot remove wired pages from a process' mapping at this time
3037 */
3038		if (tpte & PG_W) {
3039			npv = TAILQ_NEXT(pv, pv_plist);
3040			continue;
3041		}
3042
3043		m = PHYS_TO_VM_PAGE(tpte);
3044		KASSERT(m->phys_addr == (tpte & PG_FRAME),
3045		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3046		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
3047
3048		KASSERT(m < &vm_page_array[vm_page_array_size],
3049			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
3050
3051		pv->pv_pmap->pm_stats.resident_count--;
3052
3053		pte_clear(pte);
3054
3055		/*
3056		 * Update the vm_page_t clean and reference bits.
3057		 */
3058		if (tpte & PG_M) {
3059			vm_page_dirty(m);
3060		}
3061
3062		npv = TAILQ_NEXT(pv, pv_plist);
3063		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3064
3065		m->md.pv_list_count--;
3066		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3067		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3068			vm_page_flag_clear(m, PG_WRITEABLE);
3069		}
3070
3071		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3072		free_pv_entry(pv);
3073	}
3074	splx(s);
3075	pmap_invalidate_all(pmap);
3076}
3077
3078/*
3079 *	pmap_is_modified:
3080 *
3081 *	Return whether or not the specified physical page was modified
3082 *	in any physical maps.
3083 */
3084boolean_t
3085pmap_is_modified(vm_page_t m)
3086{
3087	pv_entry_t pv;
3088	pt_entry_t *pte;
3089	int s;
3090
3091	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3092		return FALSE;
3093
3094	s = splvm();
3095	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3096	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3097		/*
3098		 * if the bit being tested is the modified bit, then
3099		 * mark clean_map and ptes as never
3100		 * modified.
3101		 */
3102		if (!pmap_track_modified(pv->pv_va))
3103			continue;
3104#if defined(PMAP_DIAGNOSTIC)
3105		if (!pv->pv_pmap) {
3106			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3107			continue;
3108		}
3109#endif
3110		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3111		if (*pte & PG_M) {
3112			splx(s);
3113			return TRUE;
3114		}
3115	}
3116	splx(s);
3117	return (FALSE);
3118}
3119
3120/*
3121 * this routine is used to modify bits in ptes
3122 */
3123static __inline void
3124pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3125{
3126	register pv_entry_t pv;
3127	register pt_entry_t *pte;
3128	int s;
3129
3130	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
3131	    (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
3132		return;
3133
3134	s = splvm();
3135	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3136	/*
3137	 * Loop over all current mappings setting/clearing as appropos If
3138	 * setting RO do we need to clear the VAC?
3139	 */
3140	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3141		/*
3142		 * don't write protect pager mappings
3143		 */
3144		if (!setem && (bit == PG_RW)) {
3145			if (!pmap_track_modified(pv->pv_va))
3146				continue;
3147		}
3148
3149#if defined(PMAP_DIAGNOSTIC)
3150		if (!pv->pv_pmap) {
3151			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3152			continue;
3153		}
3154#endif
3155
3156		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3157
3158		if (setem) {
3159			*pte |= bit;
3160			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3161		} else {
3162			pt_entry_t pbits = *pte;
3163			if (pbits & bit) {
3164				if (bit == PG_RW) {
3165					if (pbits & PG_M) {
3166						vm_page_dirty(m);
3167					}
3168					pte_store(pte, pbits & ~(PG_M|PG_RW));
3169				} else {
3170					pte_store(pte, pbits & ~bit);
3171				}
3172				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3173			}
3174		}
3175	}
3176	if (!setem && bit == PG_RW)
3177		vm_page_flag_clear(m, PG_WRITEABLE);
3178	splx(s);
3179}
3180
3181/*
3182 *      pmap_page_protect:
3183 *
3184 *      Lower the permission for all mappings to a given page.
3185 */
3186void
3187pmap_page_protect(vm_page_t m, vm_prot_t prot)
3188{
3189	if ((prot & VM_PROT_WRITE) == 0) {
3190		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3191			pmap_changebit(m, PG_RW, FALSE);
3192		} else {
3193			pmap_remove_all(m);
3194		}
3195	}
3196}
3197
3198/*
3199 *	pmap_ts_referenced:
3200 *
3201 *	Return a count of reference bits for a page, clearing those bits.
3202 *	It is not necessary for every reference bit to be cleared, but it
3203 *	is necessary that 0 only be returned when there are truly no
3204 *	reference bits set.
3205 *
3206 *	XXX: The exact number of bits to check and clear is a matter that
3207 *	should be tested and standardized at some point in the future for
3208 *	optimal aging of shared pages.
3209 */
3210int
3211pmap_ts_referenced(vm_page_t m)
3212{
3213	register pv_entry_t pv, pvf, pvn;
3214	pt_entry_t *pte;
3215	pt_entry_t v;
3216	int s;
3217	int rtval = 0;
3218
3219	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3220		return (rtval);
3221
3222	s = splvm();
3223	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3224	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3225
3226		pvf = pv;
3227
3228		do {
3229			pvn = TAILQ_NEXT(pv, pv_list);
3230
3231			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3232
3233			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3234
3235			if (!pmap_track_modified(pv->pv_va))
3236				continue;
3237
3238			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3239
3240			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
3241				pte_store(pte, v & ~PG_A);
3242				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3243
3244				rtval++;
3245				if (rtval > 4) {
3246					break;
3247				}
3248			}
3249		} while ((pv = pvn) != NULL && pv != pvf);
3250	}
3251	splx(s);
3252
3253	return (rtval);
3254}
3255
3256/*
3257 *	Clear the modify bits on the specified physical page.
3258 */
3259void
3260pmap_clear_modify(vm_page_t m)
3261{
3262	pmap_changebit(m, PG_M, FALSE);
3263}
3264
3265/*
3266 *	pmap_clear_reference:
3267 *
3268 *	Clear the reference bit on the specified physical page.
3269 */
3270void
3271pmap_clear_reference(vm_page_t m)
3272{
3273	pmap_changebit(m, PG_A, FALSE);
3274}
3275
3276/*
3277 * Miscellaneous support routines follow
3278 */
3279
3280static void
3281i386_protection_init()
3282{
3283	register int *kp, prot;
3284
3285	kp = protection_codes;
3286	for (prot = 0; prot < 8; prot++) {
3287		switch (prot) {
3288		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3289			/*
3290			 * Read access is also 0. There isn't any execute bit,
3291			 * so just make it readable.
3292			 */
3293		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3294		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3295		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3296			*kp++ = 0;
3297			break;
3298		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3299		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3300		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3301		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3302			*kp++ = PG_RW;
3303			break;
3304		}
3305	}
3306}
3307
3308/*
3309 * Map a set of physical memory pages into the kernel virtual
3310 * address space. Return a pointer to where it is mapped. This
3311 * routine is intended to be used for mapping device memory,
3312 * NOT real memory.
3313 */
3314void *
3315pmap_mapdev(pa, size)
3316	vm_paddr_t pa;
3317	vm_size_t size;
3318{
3319	vm_offset_t va, tmpva, offset;
3320
3321	offset = pa & PAGE_MASK;
3322	size = roundup(offset + size, PAGE_SIZE);
3323
3324	GIANT_REQUIRED;
3325
3326	va = kmem_alloc_pageable(kernel_map, size);
3327	if (!va)
3328		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3329
3330	pa = pa & PG_FRAME;
3331	for (tmpva = va; size > 0; ) {
3332		pmap_kenter(tmpva, pa);
3333		size -= PAGE_SIZE;
3334		tmpva += PAGE_SIZE;
3335		pa += PAGE_SIZE;
3336	}
3337	pmap_invalidate_range(kernel_pmap, va, tmpva);
3338	return ((void *)(va + offset));
3339}
3340
3341void
3342pmap_unmapdev(va, size)
3343	vm_offset_t va;
3344	vm_size_t size;
3345{
3346	vm_offset_t base, offset, tmpva;
3347	pt_entry_t *pte;
3348
3349	base = va & PG_FRAME;
3350	offset = va & PAGE_MASK;
3351	size = roundup(offset + size, PAGE_SIZE);
3352	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3353		pte = vtopte(tmpva);
3354		pte_clear(pte);
3355	}
3356	pmap_invalidate_range(kernel_pmap, va, tmpva);
3357	kmem_free(kernel_map, base, size);
3358}
3359
3360/*
3361 * perform the pmap work for mincore
3362 */
3363int
3364pmap_mincore(pmap, addr)
3365	pmap_t pmap;
3366	vm_offset_t addr;
3367{
3368	pt_entry_t *ptep, pte;
3369	vm_page_t m;
3370	int val = 0;
3371
3372	ptep = pmap_pte_quick(pmap, addr);
3373	if (ptep == 0) {
3374		return 0;
3375	}
3376
3377	if ((pte = *ptep) != 0) {
3378		vm_paddr_t pa;
3379
3380		val = MINCORE_INCORE;
3381		if ((pte & PG_MANAGED) == 0)
3382			return val;
3383
3384		pa = pte & PG_FRAME;
3385
3386		m = PHYS_TO_VM_PAGE(pa);
3387
3388		/*
3389		 * Modified by us
3390		 */
3391		if (pte & PG_M)
3392			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3393		else {
3394			/*
3395			 * Modified by someone else
3396			 */
3397			vm_page_lock_queues();
3398			if (m->dirty || pmap_is_modified(m))
3399				val |= MINCORE_MODIFIED_OTHER;
3400			vm_page_unlock_queues();
3401		}
3402		/*
3403		 * Referenced by us
3404		 */
3405		if (pte & PG_A)
3406			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3407		else {
3408			/*
3409			 * Referenced by someone else
3410			 */
3411			vm_page_lock_queues();
3412			if ((m->flags & PG_REFERENCED) ||
3413			    pmap_ts_referenced(m)) {
3414				val |= MINCORE_REFERENCED_OTHER;
3415				vm_page_flag_set(m, PG_REFERENCED);
3416			}
3417			vm_page_unlock_queues();
3418		}
3419	}
3420	return val;
3421}
3422
3423void
3424pmap_activate(struct thread *td)
3425{
3426	struct proc *p = td->td_proc;
3427	pmap_t	pmap;
3428	u_int32_t  cr3;
3429
3430	critical_enter();
3431	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3432#if defined(SMP)
3433	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3434#else
3435	pmap->pm_active |= 1;
3436#endif
3437#ifdef PAE
3438	cr3 = vtophys(pmap->pm_pdpt);
3439#else
3440	cr3 = vtophys(pmap->pm_pdir);
3441#endif
3442	/* XXXKSE this is wrong.
3443	 * pmap_activate is for the current thread on the current cpu
3444	 */
3445	if (p->p_flag & P_THREADED) {
3446		/* Make sure all other cr3 entries are updated. */
3447		/* what if they are running?  XXXKSE (maybe abort them) */
3448		FOREACH_THREAD_IN_PROC(p, td) {
3449			td->td_pcb->pcb_cr3 = cr3;
3450		}
3451	} else {
3452		td->td_pcb->pcb_cr3 = cr3;
3453	}
3454	load_cr3(cr3);
3455#ifdef SWTCH_OPTIM_STATS
3456	tlb_flush_count++;
3457#endif
3458	critical_exit();
3459}
3460
3461vm_offset_t
3462pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3463{
3464
3465	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3466		return addr;
3467	}
3468
3469	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3470	return addr;
3471}
3472
3473
3474#if defined(PMAP_DEBUG)
3475pmap_pid_dump(int pid)
3476{
3477	pmap_t pmap;
3478	struct proc *p;
3479	int npte = 0;
3480	int index;
3481
3482	sx_slock(&allproc_lock);
3483	LIST_FOREACH(p, &allproc, p_list) {
3484		if (p->p_pid != pid)
3485			continue;
3486
3487		if (p->p_vmspace) {
3488			int i,j;
3489			index = 0;
3490			pmap = vmspace_pmap(p->p_vmspace);
3491			for (i = 0; i < NPDEPTD; i++) {
3492				pd_entry_t *pde;
3493				pt_entry_t *pte;
3494				vm_offset_t base = i << PDRSHIFT;
3495
3496				pde = &pmap->pm_pdir[i];
3497				if (pde && pmap_pde_v(pde)) {
3498					for (j = 0; j < NPTEPG; j++) {
3499						vm_offset_t va = base + (j << PAGE_SHIFT);
3500						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3501							if (index) {
3502								index = 0;
3503								printf("\n");
3504							}
3505							sx_sunlock(&allproc_lock);
3506							return npte;
3507						}
3508						pte = pmap_pte_quick(pmap, va);
3509						if (pte && pmap_pte_v(pte)) {
3510							pt_entry_t pa;
3511							vm_page_t m;
3512							pa = *pte;
3513							m = PHYS_TO_VM_PAGE(pa);
3514							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3515								va, pa, m->hold_count, m->wire_count, m->flags);
3516							npte++;
3517							index++;
3518							if (index >= 2) {
3519								index = 0;
3520								printf("\n");
3521							} else {
3522								printf(" ");
3523							}
3524						}
3525					}
3526				}
3527			}
3528		}
3529	}
3530	sx_sunlock(&allproc_lock);
3531	return npte;
3532}
3533#endif
3534
3535#if defined(DEBUG)
3536
3537static void	pads(pmap_t pm);
3538void		pmap_pvdump(vm_offset_t pa);
3539
3540/* print address space of pmap*/
3541static void
3542pads(pm)
3543	pmap_t pm;
3544{
3545	int i, j;
3546	vm_paddr_t va;
3547	pt_entry_t *ptep;
3548
3549	if (pm == kernel_pmap)
3550		return;
3551	for (i = 0; i < NPDEPTD; i++)
3552		if (pm->pm_pdir[i])
3553			for (j = 0; j < NPTEPG; j++) {
3554				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3555				if (pm == kernel_pmap && va < KERNBASE)
3556					continue;
3557				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3558					continue;
3559				ptep = pmap_pte_quick(pm, va);
3560				if (pmap_pte_v(ptep))
3561					printf("%x:%x ", va, *ptep);
3562			};
3563
3564}
3565
3566void
3567pmap_pvdump(pa)
3568	vm_paddr_t pa;
3569{
3570	pv_entry_t pv;
3571	vm_page_t m;
3572
3573	printf("pa %x", pa);
3574	m = PHYS_TO_VM_PAGE(pa);
3575	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3576		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3577		pads(pv->pv_pmap);
3578	}
3579	printf(" ");
3580}
3581#endif
3582