pmap.c revision 111585
1241675Suqs/*
2241675Suqs * Copyright (c) 1991 Regents of the University of California.
3241675Suqs * All rights reserved.
4241675Suqs * Copyright (c) 1994 John S. Dyson
5241675Suqs * All rights reserved.
6241675Suqs * Copyright (c) 1994 David Greenman
7241675Suqs * All rights reserved.
8241675Suqs *
9241675Suqs * This code is derived from software contributed to Berkeley by
10241675Suqs * the Systems Programming Group of the University of Utah Computer
11241675Suqs * Science Department and William Jolitz of UUNET Technologies Inc.
12241675Suqs *
13241675Suqs * Redistribution and use in source and binary forms, with or without
14241675Suqs * modification, are permitted provided that the following conditions
15241675Suqs * are met:
16241675Suqs * 1. Redistributions of source code must retain the above copyright
17241675Suqs *    notice, this list of conditions and the following disclaimer.
18241675Suqs * 2. Redistributions in binary form must reproduce the above copyright
19241675Suqs *    notice, this list of conditions and the following disclaimer in the
20241675Suqs *    documentation and/or other materials provided with the distribution.
21241675Suqs * 3. All advertising materials mentioning features or use of this software
22241675Suqs *    must display the following acknowledgement:
23241675Suqs *	This product includes software developed by the University of
24241675Suqs *	California, Berkeley and its contributors.
25241675Suqs * 4. Neither the name of the University nor the names of its contributors
26241675Suqs *    may be used to endorse or promote products derived from this software
27241675Suqs *    without specific prior written permission.
28241675Suqs *
29241675Suqs * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30241675Suqs * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31241675Suqs * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32241675Suqs * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33241675Suqs * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34241675Suqs * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35241675Suqs * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36241675Suqs * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37241675Suqs * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38241675Suqs * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39241675Suqs * SUCH DAMAGE.
40241675Suqs *
41241675Suqs *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42241675Suqs * $FreeBSD: head/sys/i386/i386/pmap.c 111585 2003-02-27 02:05:19Z julian $
43241675Suqs */
44241675Suqs
45241675Suqs/*
46241675Suqs *	Manages physical address maps.
47241675Suqs *
48241675Suqs *	In addition to hardware address maps, this
49241675Suqs *	module is called upon to provide software-use-only
50241675Suqs *	maps which may or may not be stored in the same
51241675Suqs *	form as hardware maps.  These pseudo-maps are
52241675Suqs *	used to store intermediate results from copy
53241675Suqs *	operations to and from address spaces.
54241675Suqs *
55241675Suqs *	Since the information managed by this module is
56241675Suqs *	also stored by the logical address mapping module,
57241675Suqs *	this module may throw away valid virtual-to-physical
58241675Suqs *	mappings at almost any time.  However, invalidations
59241675Suqs *	of virtual-to-physical mappings must be done as
60241675Suqs *	requested.
61241675Suqs *
62241675Suqs *	In order to cope with hardware architectures which
63241675Suqs *	make virtual-to-physical map invalidates expensive,
64241675Suqs *	this module may delay invalidate or reduced protection
65241675Suqs *	operations until such time as they are actually
66241675Suqs *	necessary.  This module is given full information as
67241675Suqs *	to which processors are currently using which maps,
68241675Suqs *	and to when physical maps must be made correct.
69241675Suqs */
70241675Suqs
71241675Suqs#include "opt_pmap.h"
72241675Suqs#include "opt_msgbuf.h"
73241675Suqs#include "opt_kstack_pages.h"
74241675Suqs
75241675Suqs#include <sys/param.h>
76241675Suqs#include <sys/systm.h>
77241675Suqs#include <sys/kernel.h>
78241675Suqs#include <sys/lock.h>
79241675Suqs#include <sys/mman.h>
80241675Suqs#include <sys/msgbuf.h>
81241675Suqs#include <sys/mutex.h>
82241675Suqs#include <sys/proc.h>
83241675Suqs#include <sys/sx.h>
84241675Suqs#include <sys/user.h>
85241675Suqs#include <sys/vmmeter.h>
86241675Suqs#include <sys/sysctl.h>
87241675Suqs#ifdef SMP
88241675Suqs#include <sys/smp.h>
89241675Suqs#endif
90241675Suqs
91241675Suqs#include <vm/vm.h>
92241675Suqs#include <vm/vm_param.h>
93241675Suqs#include <vm/vm_kern.h>
94241675Suqs#include <vm/vm_page.h>
95241675Suqs#include <vm/vm_map.h>
96241675Suqs#include <vm/vm_object.h>
97241675Suqs#include <vm/vm_extern.h>
98241675Suqs#include <vm/vm_pageout.h>
99241675Suqs#include <vm/vm_pager.h>
100241675Suqs#include <vm/uma.h>
101241675Suqs
102241675Suqs#include <machine/cpu.h>
103241675Suqs#include <machine/cputypes.h>
104241675Suqs#include <machine/md_var.h>
105241675Suqs#include <machine/specialreg.h>
106241675Suqs#if defined(SMP) || defined(APIC_IO)
107241675Suqs#include <machine/smp.h>
108241675Suqs#include <machine/apic.h>
109241675Suqs#include <machine/segments.h>
110241675Suqs#include <machine/tss.h>
111241675Suqs#endif /* SMP || APIC_IO */
112241675Suqs
113241675Suqs#define PMAP_KEEP_PDIRS
114241675Suqs#ifndef PMAP_SHPGPERPROC
115241675Suqs#define PMAP_SHPGPERPROC 200
116241675Suqs#endif
117241675Suqs
118241675Suqs#if defined(DIAGNOSTIC)
119241675Suqs#define PMAP_DIAGNOSTIC
120241675Suqs#endif
121241675Suqs
122241675Suqs#define MINPV 2048
123241675Suqs
124241675Suqs#if !defined(PMAP_DIAGNOSTIC)
125241675Suqs#define PMAP_INLINE __inline
126241675Suqs#else
127241675Suqs#define PMAP_INLINE
128241675Suqs#endif
129241675Suqs
130241675Suqs/*
131241675Suqs * Get PDEs and PTEs for user/kernel address space
132241675Suqs */
133241675Suqs#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134241675Suqs#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135241675Suqs
136241675Suqs#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137241675Suqs#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138241675Suqs#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139241675Suqs#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140241675Suqs#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141241675Suqs
142241675Suqs#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143241675Suqs#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144241675Suqs
145241675Suqs/*
146241675Suqs * Given a map and a machine independent protection code,
147241675Suqs * convert to a vax protection code.
148241675Suqs */
149241675Suqs#define pte_prot(m, p)	(protection_codes[p])
150241675Suqsstatic int protection_codes[8];
151241675Suqs
152241675Suqsstruct pmap kernel_pmap_store;
153241675SuqsLIST_HEAD(pmaplist, pmap);
154241675Suqsstatic struct pmaplist allpmaps;
155241675Suqsstatic struct mtx allpmaps_lock;
156241675Suqs
157241675Suqsvm_offset_t avail_start;	/* PA of first available physical page */
158241675Suqsvm_offset_t avail_end;		/* PA of last available physical page */
159241675Suqsvm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
160241675Suqsvm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
161241675Suqsstatic boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
162241675Suqsstatic int pgeflag;		/* PG_G or-in */
163241675Suqsstatic int pseflag;		/* PG_PS or-in */
164241675Suqs
165241675Suqsstatic int nkpt;
166241675Suqsvm_offset_t kernel_vm_end;
167241675Suqsextern u_int32_t KERNend;
168
169/*
170 * Data for the pv entry allocation mechanism
171 */
172static uma_zone_t pvzone;
173static struct vm_object pvzone_obj;
174static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
175int pmap_pagedaemon_waken;
176
177/*
178 * All those kernel PT submaps that BSD is so fond of
179 */
180pt_entry_t *CMAP1 = 0;
181static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
182caddr_t CADDR1 = 0, ptvmmap = 0;
183static caddr_t CADDR2, CADDR3;
184static struct mtx CMAPCADDR12_lock;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
207				      vm_page_t m, vm_page_t mpte);
208static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
209static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
210static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
211					vm_offset_t va);
212static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
213		vm_page_t mpte, vm_page_t m);
214
215static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
216
217static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
218static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
219static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
220static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
221static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
222static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
223static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
224
225static pd_entry_t pdir4mb;
226
227CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
228CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
229
230/*
231 *	Routine:	pmap_pte
232 *	Function:
233 *		Extract the page table entry associated
234 *		with the given map/virtual_address pair.
235 */
236
237PMAP_INLINE pt_entry_t *
238pmap_pte(pmap, va)
239	register pmap_t pmap;
240	vm_offset_t va;
241{
242	pd_entry_t *pdeaddr;
243
244	if (pmap) {
245		pdeaddr = pmap_pde(pmap, va);
246		if (*pdeaddr & PG_PS)
247			return pdeaddr;
248		if (*pdeaddr) {
249			return get_ptbase(pmap) + i386_btop(va);
250		}
251	}
252	return (0);
253}
254
255/*
256 * Move the kernel virtual free pointer to the next
257 * 4MB.  This is used to help improve performance
258 * by using a large (4MB) page for much of the kernel
259 * (.text, .data, .bss)
260 */
261static vm_offset_t
262pmap_kmem_choose(vm_offset_t addr)
263{
264	vm_offset_t newaddr = addr;
265
266#ifdef I686_CPU_not	/* Problem seems to have gone away */
267	/* Deal with un-resolved Pentium4 issues */
268	if (cpu_class == CPUCLASS_686 &&
269	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
270	    (cpu_id & 0xf00) == 0xf00)
271		return newaddr;
272#endif
273#ifndef DISABLE_PSE
274	if (cpu_feature & CPUID_PSE)
275		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
276#endif
277	return newaddr;
278}
279
280/*
281 *	Bootstrap the system enough to run with virtual memory.
282 *
283 *	On the i386 this is called after mapping has already been enabled
284 *	and just syncs the pmap module with what has already been done.
285 *	[We can't call it easily with mapping off since the kernel is not
286 *	mapped with PA == VA, hence we would have to relocate every address
287 *	from the linked base (virtual) address "KERNBASE" to the actual
288 *	(physical) address starting relative to 0]
289 */
290void
291pmap_bootstrap(firstaddr, loadaddr)
292	vm_offset_t firstaddr;
293	vm_offset_t loadaddr;
294{
295	vm_offset_t va;
296	pt_entry_t *pte;
297	int i;
298
299	avail_start = firstaddr;
300
301	/*
302	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
303	 * large. It should instead be correctly calculated in locore.s and
304	 * not based on 'first' (which is a physical address, not a virtual
305	 * address, for the start of unused physical memory). The kernel
306	 * page tables are NOT double mapped and thus should not be included
307	 * in this calculation.
308	 */
309	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
310	virtual_avail = pmap_kmem_choose(virtual_avail);
311
312	virtual_end = VM_MAX_KERNEL_ADDRESS;
313
314	/*
315	 * Initialize protection array.
316	 */
317	i386_protection_init();
318
319	/*
320	 * Initialize the kernel pmap (which is statically allocated).
321	 */
322	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
323	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
324	TAILQ_INIT(&kernel_pmap->pm_pvlist);
325	LIST_INIT(&allpmaps);
326	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
327	mtx_lock_spin(&allpmaps_lock);
328	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
329	mtx_unlock_spin(&allpmaps_lock);
330	nkpt = NKPT;
331
332	/*
333	 * Reserve some special page table entries/VA space for temporary
334	 * mapping of pages.
335	 */
336#define	SYSMAP(c, p, v, n)	\
337	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
338
339	va = virtual_avail;
340	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
341
342	/*
343	 * CMAP1/CMAP2 are used for zeroing and copying pages.
344	 * CMAP3 is used for the idle process page zeroing.
345	 */
346	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
347	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
348	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
349
350	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
351
352	/*
353	 * Crashdump maps.
354	 */
355	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
356
357	/*
358	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
359	 * XXX ptmmap is not used.
360	 */
361	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
362
363	/*
364	 * msgbufp is used to map the system message buffer.
365	 * XXX msgbufmap is not used.
366	 */
367	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
368	       atop(round_page(MSGBUF_SIZE)))
369
370	/*
371	 * ptemap is used for pmap_pte_quick
372	 */
373	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
374
375	virtual_avail = va;
376
377	*CMAP1 = *CMAP2 = 0;
378	for (i = 0; i < NKPT; i++)
379		PTD[i] = 0;
380
381	pgeflag = 0;
382#ifndef DISABLE_PG_G
383	if (cpu_feature & CPUID_PGE)
384		pgeflag = PG_G;
385#endif
386#ifdef I686_CPU_not	/* Problem seems to have gone away */
387	/* Deal with un-resolved Pentium4 issues */
388	if (cpu_class == CPUCLASS_686 &&
389	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
390	    (cpu_id & 0xf00) == 0xf00) {
391		printf("Warning: Pentium 4 cpu: PG_G disabled (global flag)\n");
392		pgeflag = 0;
393	}
394#endif
395
396/*
397 * Initialize the 4MB page size flag
398 */
399	pseflag = 0;
400/*
401 * The 4MB page version of the initial
402 * kernel page mapping.
403 */
404	pdir4mb = 0;
405
406#ifndef DISABLE_PSE
407	if (cpu_feature & CPUID_PSE)
408		pseflag = PG_PS;
409#endif
410#ifdef I686_CPU_not	/* Problem seems to have gone away */
411	/* Deal with un-resolved Pentium4 issues */
412	if (cpu_class == CPUCLASS_686 &&
413	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
414	    (cpu_id & 0xf00) == 0xf00) {
415		printf("Warning: Pentium 4 cpu: PG_PS disabled (4MB pages)\n");
416		pseflag = 0;
417	}
418#endif
419#ifndef DISABLE_PSE
420	if (pseflag) {
421		pd_entry_t ptditmp;
422		/*
423		 * Note that we have enabled PSE mode
424		 */
425		ptditmp = *(PTmap + i386_btop(KERNBASE));
426		ptditmp &= ~(NBPDR - 1);
427		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
428		pdir4mb = ptditmp;
429	}
430#endif
431#ifndef SMP
432	/*
433	 * Turn on PGE/PSE.  SMP does this later on since the
434	 * 4K page tables are required for AP boot (for now).
435	 * XXX fixme.
436	 */
437	pmap_set_opt();
438#endif
439#ifdef SMP
440	if (cpu_apic_address == 0)
441		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
442
443	/* local apic is mapped on last page */
444	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
445	    (cpu_apic_address & PG_FRAME));
446#endif
447	invltlb();
448}
449
450/*
451 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
452 * BSP will run this after all the AP's have started up.
453 */
454void
455pmap_set_opt(void)
456{
457	pt_entry_t *pte;
458	vm_offset_t va, endva;
459
460	if (pgeflag && (cpu_feature & CPUID_PGE)) {
461		load_cr4(rcr4() | CR4_PGE);
462		invltlb();		/* Insurance */
463	}
464#ifndef DISABLE_PSE
465	if (pseflag && (cpu_feature & CPUID_PSE)) {
466		load_cr4(rcr4() | CR4_PSE);
467		invltlb();		/* Insurance */
468	}
469#endif
470	if (PCPU_GET(cpuid) == 0) {
471#ifndef DISABLE_PSE
472		if (pdir4mb) {
473			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
474			invltlb();	/* Insurance */
475		}
476#endif
477		if (pgeflag) {
478			/* Turn on PG_G for text, data, bss pages. */
479			va = (vm_offset_t)btext;
480#ifndef DISABLE_PSE
481			if (pseflag && (cpu_feature & CPUID_PSE)) {
482				if (va < KERNBASE + (1 << PDRSHIFT))
483					va = KERNBASE + (1 << PDRSHIFT);
484			}
485#endif
486			endva = KERNBASE + KERNend;
487			while (va < endva) {
488				pte = vtopte(va);
489				if (*pte)
490					*pte |= pgeflag;
491				va += PAGE_SIZE;
492			}
493			invltlb();	/* Insurance */
494		}
495		/*
496		 * We do not need to broadcast the invltlb here, because
497		 * each AP does it the moment it is released from the boot
498		 * lock.  See ap_init().
499		 */
500	}
501}
502
503static void *
504pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
505{
506	*flags = UMA_SLAB_PRIV;
507	return (void *)kmem_alloc(kernel_map, bytes);
508}
509
510/*
511 *	Initialize the pmap module.
512 *	Called by vm_init, to initialize any structures that the pmap
513 *	system needs to map virtual memory.
514 *	pmap_init has been enhanced to support in a fairly consistant
515 *	way, discontiguous physical memory.
516 */
517void
518pmap_init(phys_start, phys_end)
519	vm_offset_t phys_start, phys_end;
520{
521	int i;
522	int initial_pvs;
523
524	/*
525	 * Allocate memory for random pmap data structures.  Includes the
526	 * pv_head_table.
527	 */
528
529	for(i = 0; i < vm_page_array_size; i++) {
530		vm_page_t m;
531
532		m = &vm_page_array[i];
533		TAILQ_INIT(&m->md.pv_list);
534		m->md.pv_list_count = 0;
535	}
536
537	/*
538	 * init the pv free list
539	 */
540	initial_pvs = vm_page_array_size;
541	if (initial_pvs < MINPV)
542		initial_pvs = MINPV;
543	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
544	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
545	uma_zone_set_allocf(pvzone, pmap_allocf);
546	uma_prealloc(pvzone, initial_pvs);
547
548	/*
549	 * Now it is safe to enable pv_table recording.
550	 */
551	pmap_initialized = TRUE;
552}
553
554/*
555 * Initialize the address space (zone) for the pv_entries.  Set a
556 * high water mark so that the system can recover from excessive
557 * numbers of pv entries.
558 */
559void
560pmap_init2()
561{
562	int shpgperproc = PMAP_SHPGPERPROC;
563
564	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
565	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
566	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
567	pv_entry_high_water = 9 * (pv_entry_max / 10);
568	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
569}
570
571
572/***************************************************
573 * Low level helper routines.....
574 ***************************************************/
575
576#if defined(PMAP_DIAGNOSTIC)
577
578/*
579 * This code checks for non-writeable/modified pages.
580 * This should be an invalid condition.
581 */
582static int
583pmap_nw_modified(pt_entry_t ptea)
584{
585	int pte;
586
587	pte = (int) ptea;
588
589	if ((pte & (PG_M|PG_RW)) == PG_M)
590		return 1;
591	else
592		return 0;
593}
594#endif
595
596
597/*
598 * this routine defines the region(s) of memory that should
599 * not be tested for the modified bit.
600 */
601static PMAP_INLINE int
602pmap_track_modified(vm_offset_t va)
603{
604	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
605		return 1;
606	else
607		return 0;
608}
609
610#ifdef I386_CPU
611/*
612 * i386 only has "invalidate everything" and no SMP to worry about.
613 */
614PMAP_INLINE void
615pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
616{
617
618	if (pmap == kernel_pmap || pmap->pm_active)
619		invltlb();
620}
621
622PMAP_INLINE void
623pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
624{
625
626	if (pmap == kernel_pmap || pmap->pm_active)
627		invltlb();
628}
629
630PMAP_INLINE void
631pmap_invalidate_all(pmap_t pmap)
632{
633
634	if (pmap == kernel_pmap || pmap->pm_active)
635		invltlb();
636}
637#else /* !I386_CPU */
638#ifdef SMP
639/*
640 * For SMP, these functions have to use the IPI mechanism for coherence.
641 */
642void
643pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
644{
645	u_int cpumask;
646	u_int other_cpus;
647
648	critical_enter();
649	/*
650	 * We need to disable interrupt preemption but MUST NOT have
651	 * interrupts disabled here.
652	 * XXX we may need to hold schedlock to get a coherent pm_active
653	 */
654	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
655		invlpg(va);
656		smp_invlpg(va);
657	} else {
658		cpumask = PCPU_GET(cpumask);
659		other_cpus = PCPU_GET(other_cpus);
660		if (pmap->pm_active & cpumask)
661			invlpg(va);
662		if (pmap->pm_active & other_cpus)
663			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
664	}
665	critical_exit();
666}
667
668void
669pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
670{
671	u_int cpumask;
672	u_int other_cpus;
673	vm_offset_t addr;
674
675	critical_enter();
676	/*
677	 * We need to disable interrupt preemption but MUST NOT have
678	 * interrupts disabled here.
679	 * XXX we may need to hold schedlock to get a coherent pm_active
680	 */
681	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
682		for (addr = sva; addr < eva; addr += PAGE_SIZE)
683			invlpg(addr);
684		smp_invlpg_range(sva, eva);
685	} else {
686		cpumask = PCPU_GET(cpumask);
687		other_cpus = PCPU_GET(other_cpus);
688		if (pmap->pm_active & cpumask)
689			for (addr = sva; addr < eva; addr += PAGE_SIZE)
690				invlpg(addr);
691		if (pmap->pm_active & other_cpus)
692			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
693			    sva, eva);
694	}
695	critical_exit();
696}
697
698void
699pmap_invalidate_all(pmap_t pmap)
700{
701	u_int cpumask;
702	u_int other_cpus;
703
704#ifdef SWTCH_OPTIM_STATS
705	tlb_flush_count++;
706#endif
707	critical_enter();
708	/*
709	 * We need to disable interrupt preemption but MUST NOT have
710	 * interrupts disabled here.
711	 * XXX we may need to hold schedlock to get a coherent pm_active
712	 */
713	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
714		invltlb();
715		smp_invltlb();
716	} else {
717		cpumask = PCPU_GET(cpumask);
718		other_cpus = PCPU_GET(other_cpus);
719		if (pmap->pm_active & cpumask)
720			invltlb();
721		if (pmap->pm_active & other_cpus)
722			smp_masked_invltlb(pmap->pm_active & other_cpus);
723	}
724	critical_exit();
725}
726#else /* !SMP */
727/*
728 * Normal, non-SMP, 486+ invalidation functions.
729 * We inline these within pmap.c for speed.
730 */
731PMAP_INLINE void
732pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
733{
734
735	if (pmap == kernel_pmap || pmap->pm_active)
736		invlpg(va);
737}
738
739PMAP_INLINE void
740pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
741{
742	vm_offset_t addr;
743
744	if (pmap == kernel_pmap || pmap->pm_active)
745		for (addr = sva; addr < eva; addr += PAGE_SIZE)
746			invlpg(addr);
747}
748
749PMAP_INLINE void
750pmap_invalidate_all(pmap_t pmap)
751{
752
753	if (pmap == kernel_pmap || pmap->pm_active)
754		invltlb();
755}
756#endif /* !SMP */
757#endif /* !I386_CPU */
758
759/*
760 * Are we current address space or kernel?
761 */
762static __inline int
763pmap_is_current(pmap_t pmap)
764{
765	return (pmap == kernel_pmap ||
766	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME));
767}
768
769/*
770 * Are we alternate address space?
771 */
772static __inline int
773pmap_is_alternate(pmap_t pmap)
774{
775	return ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
776	    (APTDpde[0] & PG_FRAME));
777}
778
779/*
780 * Map in a pmap's pagetables as alternate address space.
781 */
782static __inline void
783pmap_set_alternate(pmap_t pmap)
784{
785
786	if (!pmap_is_alternate(pmap)) {
787		APTDpde[0] = pmap->pm_pdir[PTDPTDI];
788		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
789	}
790}
791
792/*
793 * Return an address which is the base of the Virtual mapping of
794 * all the PTEs for the given pmap. Note this doesn't say that
795 * all the PTEs will be present or that the pages there are valid.
796 * The PTEs are made available by the recursive mapping trick.
797 * It will map in the alternate PTE space if needed.
798 */
799static pt_entry_t *
800get_ptbase(pmap)
801	pmap_t pmap;
802{
803
804	if (pmap_is_current(pmap))
805		return PTmap;
806	pmap_set_alternate(pmap);
807	return APTmap;
808}
809
810/*
811 * Super fast pmap_pte routine best used when scanning
812 * the pv lists.  This eliminates many coarse-grained
813 * invltlb calls.  Note that many of the pv list
814 * scans are across different pmaps.  It is very wasteful
815 * to do an entire invltlb for checking a single mapping.
816 */
817
818static pt_entry_t *
819pmap_pte_quick(pmap, va)
820	register pmap_t pmap;
821	vm_offset_t va;
822{
823	pd_entry_t pde, newpf;
824	pde = pmap->pm_pdir[va >> PDRSHIFT];
825	if (pde != 0) {
826		unsigned index = i386_btop(va);
827		/* are we current address space or kernel? */
828		if (pmap_is_current(pmap))
829			return PTmap + index;
830		newpf = pde & PG_FRAME;
831		if (((*PMAP1) & PG_FRAME) != newpf) {
832			*PMAP1 = newpf | PG_RW | PG_V;
833			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
834		}
835		return PADDR1 + (index & (NPTEPG - 1));
836	}
837	return (0);
838}
839
840/*
841 *	Routine:	pmap_extract
842 *	Function:
843 *		Extract the physical page address associated
844 *		with the given map/virtual_address pair.
845 */
846vm_offset_t
847pmap_extract(pmap, va)
848	register pmap_t pmap;
849	vm_offset_t va;
850{
851	vm_offset_t rtval;	/* XXX FIXME */
852	vm_offset_t pdirindex;
853
854	if (pmap == 0)
855		return 0;
856	pdirindex = va >> PDRSHIFT;
857	rtval = pmap->pm_pdir[pdirindex];
858	if (rtval != 0) {
859		pt_entry_t *pte;
860		if ((rtval & PG_PS) != 0) {
861			rtval &= ~(NBPDR - 1);
862			rtval |= va & (NBPDR - 1);
863			return rtval;
864		}
865		pte = get_ptbase(pmap) + i386_btop(va);
866		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
867		return rtval;
868	}
869	return 0;
870
871}
872
873/***************************************************
874 * Low level mapping routines.....
875 ***************************************************/
876
877/*
878 * Add a wired page to the kva.
879 * Note: not SMP coherent.
880 */
881PMAP_INLINE void
882pmap_kenter(vm_offset_t va, vm_offset_t pa)
883{
884	pt_entry_t *pte;
885
886	pte = vtopte(va);
887	*pte = pa | PG_RW | PG_V | pgeflag;
888}
889
890/*
891 * Remove a page from the kernel pagetables.
892 * Note: not SMP coherent.
893 */
894PMAP_INLINE void
895pmap_kremove(vm_offset_t va)
896{
897	pt_entry_t *pte;
898
899	pte = vtopte(va);
900	*pte = 0;
901}
902
903/*
904 *	Used to map a range of physical addresses into kernel
905 *	virtual address space.
906 *
907 *	The value passed in '*virt' is a suggested virtual address for
908 *	the mapping. Architectures which can support a direct-mapped
909 *	physical to virtual region can return the appropriate address
910 *	within that region, leaving '*virt' unchanged. Other
911 *	architectures should map the pages starting at '*virt' and
912 *	update '*virt' with the first usable address after the mapped
913 *	region.
914 */
915vm_offset_t
916pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
917{
918	vm_offset_t va, sva;
919
920	va = sva = *virt;
921	while (start < end) {
922		pmap_kenter(va, start);
923		va += PAGE_SIZE;
924		start += PAGE_SIZE;
925	}
926	pmap_invalidate_range(kernel_pmap, sva, va);
927	*virt = va;
928	return (sva);
929}
930
931
932/*
933 * Add a list of wired pages to the kva
934 * this routine is only used for temporary
935 * kernel mappings that do not need to have
936 * page modification or references recorded.
937 * Note that old mappings are simply written
938 * over.  The page *must* be wired.
939 * Note: SMP coherent.  Uses a ranged shootdown IPI.
940 */
941void
942pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
943{
944	vm_offset_t va;
945
946	va = sva;
947	while (count-- > 0) {
948		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
949		va += PAGE_SIZE;
950		m++;
951	}
952	pmap_invalidate_range(kernel_pmap, sva, va);
953}
954
955/*
956 * This routine tears out page mappings from the
957 * kernel -- it is meant only for temporary mappings.
958 * Note: SMP coherent.  Uses a ranged shootdown IPI.
959 */
960void
961pmap_qremove(vm_offset_t sva, int count)
962{
963	vm_offset_t va;
964
965	va = sva;
966	while (count-- > 0) {
967		pmap_kremove(va);
968		va += PAGE_SIZE;
969	}
970	pmap_invalidate_range(kernel_pmap, sva, va);
971}
972
973static vm_page_t
974pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
975{
976	vm_page_t m;
977
978retry:
979	m = vm_page_lookup(object, pindex);
980	if (m != NULL) {
981		vm_page_lock_queues();
982		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
983			goto retry;
984		vm_page_unlock_queues();
985	}
986	return m;
987}
988
989#ifndef KSTACK_MAX_PAGES
990#define KSTACK_MAX_PAGES 32
991#endif
992
993/*
994 * Create the kernel stack (including pcb for i386) for a new thread.
995 * This routine directly affects the fork perf for a process and
996 * create performance for a thread.
997 */
998void
999pmap_new_thread(struct thread *td, int pages)
1000{
1001	int i;
1002	vm_page_t ma[KSTACK_MAX_PAGES];
1003	vm_object_t ksobj;
1004	vm_page_t m;
1005	vm_offset_t ks;
1006
1007	/* Bounds check */
1008	if (pages <= 1)
1009		pages = KSTACK_PAGES;
1010	else if (pages > KSTACK_MAX_PAGES)
1011		pages = KSTACK_MAX_PAGES;
1012
1013	/*
1014	 * allocate object for the kstack
1015	 */
1016	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
1017	td->td_kstack_obj = ksobj;
1018
1019	/* get a kernel virtual address for the kstack for this thread */
1020#ifdef KSTACK_GUARD
1021	ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
1022	if (ks == 0)
1023		panic("pmap_new_thread: kstack allocation failed");
1024	if (*vtopte(ks) != 0)
1025		pmap_qremove(ks, 1);
1026	ks += PAGE_SIZE;
1027	td->td_kstack = ks;
1028#else
1029	/* get a kernel virtual address for the kstack for this thread */
1030	ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
1031	if (ks == 0)
1032		panic("pmap_new_thread: kstack allocation failed");
1033	td->td_kstack = ks;
1034#endif
1035	/*
1036	 * Knowing the number of pages allocated is useful when you
1037	 * want to deallocate them.
1038	 */
1039	td->td_kstack_pages = pages;
1040
1041	/*
1042	 * For the length of the stack, link in a real page of ram for each
1043	 * page of stack.
1044	 */
1045	for (i = 0; i < pages; i++) {
1046		/*
1047		 * Get a kernel stack page
1048		 */
1049		m = vm_page_grab(ksobj, i,
1050		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
1051		ma[i] = m;
1052
1053		vm_page_lock_queues();
1054		vm_page_wakeup(m);
1055		vm_page_flag_clear(m, PG_ZERO);
1056		m->valid = VM_PAGE_BITS_ALL;
1057		vm_page_unlock_queues();
1058	}
1059	pmap_qenter(ks, ma, pages);
1060}
1061
1062/*
1063 * Dispose the kernel stack for a thread that has exited.
1064 * This routine directly impacts the exit perf of a process and thread.
1065 */
1066void
1067pmap_dispose_thread(td)
1068	struct thread *td;
1069{
1070	int i;
1071	int pages;
1072	vm_object_t ksobj;
1073	vm_offset_t ks;
1074	vm_page_t m;
1075
1076	pages = td->td_kstack_pages;
1077	ksobj = td->td_kstack_obj;
1078	ks = td->td_kstack;
1079	pmap_qremove(ks, pages);
1080	for (i = 0; i < pages; i++) {
1081		m = vm_page_lookup(ksobj, i);
1082		if (m == NULL)
1083			panic("pmap_dispose_thread: kstack already missing?");
1084		vm_page_lock_queues();
1085		vm_page_busy(m);
1086		vm_page_unwire(m, 0);
1087		vm_page_free(m);
1088		vm_page_unlock_queues();
1089	}
1090	/*
1091	 * Free the space that this stack was mapped to in the kernel
1092	 * address map.
1093	 */
1094#ifdef KSTACK_GUARD
1095	kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
1096#else
1097	kmem_free(kernel_map, ks, pages * PAGE_SIZE);
1098#endif
1099	vm_object_deallocate(ksobj);
1100}
1101
1102/*
1103 * Set up a variable sized alternate kstack.  Though it may look MI, it may
1104 * need to be different on certain arches like ia64.
1105 */
1106void
1107pmap_new_altkstack(struct thread *td, int pages)
1108{
1109	/* shuffle the original stack */
1110	td->td_altkstack_obj = td->td_kstack_obj;
1111	td->td_altkstack = td->td_kstack;
1112	td->td_altkstack_pages = td->td_kstack_pages;
1113
1114	pmap_new_thread(td, pages);
1115}
1116
1117void
1118pmap_dispose_altkstack(td)
1119	struct thread *td;
1120{
1121	pmap_dispose_thread(td);
1122
1123	/* restore the original kstack */
1124	td->td_kstack = td->td_altkstack;
1125	td->td_kstack_obj = td->td_altkstack_obj;
1126	td->td_kstack_pages = td->td_altkstack_pages;
1127	td->td_altkstack = 0;
1128	td->td_altkstack_obj = NULL;
1129	td->td_altkstack_pages = 0;
1130}
1131
1132/*
1133 * Allow the Kernel stack for a thread to be prejudicially paged out.
1134 */
1135void
1136pmap_swapout_thread(td)
1137	struct thread *td;
1138{
1139	int i;
1140	int pages;
1141	vm_object_t ksobj;
1142	vm_offset_t ks;
1143	vm_page_t m;
1144
1145	pages = td->td_kstack_pages;
1146	ksobj = td->td_kstack_obj;
1147	ks = td->td_kstack;
1148	pmap_qremove(ks, pages);
1149	for (i = 0; i < pages; i++) {
1150		m = vm_page_lookup(ksobj, i);
1151		if (m == NULL)
1152			panic("pmap_swapout_thread: kstack already missing?");
1153		vm_page_lock_queues();
1154		vm_page_dirty(m);
1155		vm_page_unwire(m, 0);
1156		vm_page_unlock_queues();
1157	}
1158}
1159
1160/*
1161 * Bring the kernel stack for a specified thread back in.
1162 */
1163void
1164pmap_swapin_thread(td)
1165	struct thread *td;
1166{
1167	int i, rv;
1168	int pages;
1169	vm_page_t ma[KSTACK_MAX_PAGES];
1170	vm_object_t ksobj;
1171	vm_offset_t ks;
1172	vm_page_t m;
1173
1174	pages = td->td_kstack_pages;
1175	ksobj = td->td_kstack_obj;
1176	ks = td->td_kstack;
1177	for (i = 0; i < pages; i++) {
1178		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1179		if (m->valid != VM_PAGE_BITS_ALL) {
1180			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1181			if (rv != VM_PAGER_OK)
1182				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1183			m = vm_page_lookup(ksobj, i);
1184			m->valid = VM_PAGE_BITS_ALL;
1185		}
1186		ma[i] = m;
1187		vm_page_lock_queues();
1188		vm_page_wire(m);
1189		vm_page_wakeup(m);
1190		vm_page_unlock_queues();
1191	}
1192	pmap_qenter(ks, ma, pages);
1193}
1194
1195/***************************************************
1196 * Page table page management routines.....
1197 ***************************************************/
1198
1199/*
1200 * This routine unholds page table pages, and if the hold count
1201 * drops to zero, then it decrements the wire count.
1202 */
1203static int
1204_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1205{
1206
1207	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1208		vm_page_lock_queues();
1209
1210	if (m->hold_count == 0) {
1211		vm_offset_t pteva;
1212		/*
1213		 * unmap the page table page
1214		 */
1215		pmap->pm_pdir[m->pindex] = 0;
1216		--pmap->pm_stats.resident_count;
1217		if (pmap_is_current(pmap)) {
1218			/*
1219			 * Do an invltlb to make the invalidated mapping
1220			 * take effect immediately.
1221			 */
1222			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1223			pmap_invalidate_page(pmap, pteva);
1224		}
1225
1226		/*
1227		 * If the page is finally unwired, simply free it.
1228		 */
1229		--m->wire_count;
1230		if (m->wire_count == 0) {
1231			vm_page_busy(m);
1232			vm_page_free_zero(m);
1233			atomic_subtract_int(&cnt.v_wire_count, 1);
1234		}
1235		return 1;
1236	}
1237	return 0;
1238}
1239
1240static PMAP_INLINE int
1241pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1242{
1243	vm_page_unhold(m);
1244	if (m->hold_count == 0)
1245		return _pmap_unwire_pte_hold(pmap, m);
1246	else
1247		return 0;
1248}
1249
1250/*
1251 * After removing a page table entry, this routine is used to
1252 * conditionally free the page, and manage the hold/wire counts.
1253 */
1254static int
1255pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1256{
1257	unsigned ptepindex;
1258	if (va >= VM_MAXUSER_ADDRESS)
1259		return 0;
1260
1261	if (mpte == NULL) {
1262		ptepindex = (va >> PDRSHIFT);
1263		if (pmap->pm_pteobj->root &&
1264			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1265			mpte = pmap->pm_pteobj->root;
1266		} else {
1267			while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
1268			       vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
1269				vm_page_lock_queues();
1270		}
1271	}
1272
1273	return pmap_unwire_pte_hold(pmap, mpte);
1274}
1275
1276void
1277pmap_pinit0(pmap)
1278	struct pmap *pmap;
1279{
1280
1281	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1282	pmap->pm_active = 0;
1283	TAILQ_INIT(&pmap->pm_pvlist);
1284	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1285	mtx_lock_spin(&allpmaps_lock);
1286	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1287	mtx_unlock_spin(&allpmaps_lock);
1288}
1289
1290/*
1291 * Initialize a preallocated and zeroed pmap structure,
1292 * such as one in a vmspace structure.
1293 */
1294void
1295pmap_pinit(pmap)
1296	register struct pmap *pmap;
1297{
1298	vm_page_t ptdpg;
1299
1300	/*
1301	 * No need to allocate page table space yet but we do need a valid
1302	 * page directory table.
1303	 */
1304	if (pmap->pm_pdir == NULL)
1305		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_pageable(kernel_map,
1306		    NBPTD);
1307
1308	/*
1309	 * allocate object for the ptes
1310	 */
1311	if (pmap->pm_pteobj == NULL)
1312		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI +
1313		    NPGPTD);
1314
1315	/*
1316	 * allocate the page directory page
1317	 */
1318	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1319	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1320	vm_page_lock_queues();
1321	vm_page_flag_clear(ptdpg, PG_BUSY);
1322	ptdpg->valid = VM_PAGE_BITS_ALL;
1323	vm_page_unlock_queues();
1324
1325	pmap_qenter((vm_offset_t)pmap->pm_pdir, &ptdpg, NPGPTD);
1326	if ((ptdpg->flags & PG_ZERO) == 0)
1327		bzero(pmap->pm_pdir, PAGE_SIZE);
1328
1329	mtx_lock_spin(&allpmaps_lock);
1330	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1331	mtx_unlock_spin(&allpmaps_lock);
1332	/* Wire in kernel global address entries. */
1333	/* XXX copies current process, does not fill in MPPTDI */
1334	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1335#ifdef SMP
1336	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1337#endif
1338
1339	/* install self-referential address mapping entry */
1340	pmap->pm_pdir[PTDPTDI] =
1341		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1342
1343	pmap->pm_active = 0;
1344	TAILQ_INIT(&pmap->pm_pvlist);
1345	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1346}
1347
1348/*
1349 * Wire in kernel global address entries.  To avoid a race condition
1350 * between pmap initialization and pmap_growkernel, this procedure
1351 * should be called after the vmspace is attached to the process
1352 * but before this pmap is activated.
1353 */
1354void
1355pmap_pinit2(pmap)
1356	struct pmap *pmap;
1357{
1358	/* XXX: Remove this stub when no longer called */
1359}
1360
1361static int
1362pmap_release_free_page(pmap_t pmap, vm_page_t p)
1363{
1364	pd_entry_t *pde = pmap->pm_pdir;
1365
1366	/*
1367	 * This code optimizes the case of freeing non-busy
1368	 * page-table pages.  Those pages are zero now, and
1369	 * might as well be placed directly into the zero queue.
1370	 */
1371	vm_page_lock_queues();
1372	if (vm_page_sleep_if_busy(p, FALSE, "pmaprl"))
1373		return (0);
1374	vm_page_busy(p);
1375
1376	/*
1377	 * Remove the page table page from the processes address space.
1378	 */
1379	pde[p->pindex] = 0;
1380	pmap->pm_stats.resident_count--;
1381
1382	if (p->hold_count)  {
1383		panic("pmap_release: freeing held page table page");
1384	}
1385	/*
1386	 * Page directory pages need to have the kernel
1387	 * stuff cleared, so they can go into the zero queue also.
1388	 */
1389	if (p->pindex == PTDPTDI) {
1390		bzero(pde + KPTDI, nkpt * sizeof(pd_entry_t));
1391#ifdef SMP
1392		pde[MPPTDI] = 0;
1393#endif
1394		pde[APTDPTDI] = 0;
1395		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1396	}
1397
1398	p->wire_count--;
1399	atomic_subtract_int(&cnt.v_wire_count, 1);
1400	vm_page_free_zero(p);
1401	vm_page_unlock_queues();
1402	return 1;
1403}
1404
1405/*
1406 * this routine is called if the page table page is not
1407 * mapped correctly.
1408 */
1409static vm_page_t
1410_pmap_allocpte(pmap, ptepindex)
1411	pmap_t	pmap;
1412	unsigned ptepindex;
1413{
1414	vm_offset_t pteva, ptepa;	/* XXXPA */
1415	vm_page_t m;
1416
1417	/*
1418	 * Find or fabricate a new pagetable page
1419	 */
1420	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1421	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1422
1423	KASSERT(m->queue == PQ_NONE,
1424		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1425
1426	/*
1427	 * Increment the hold count for the page table page
1428	 * (denoting a new mapping.)
1429	 */
1430	m->hold_count++;
1431
1432	/*
1433	 * Map the pagetable page into the process address space, if
1434	 * it isn't already there.
1435	 */
1436
1437	pmap->pm_stats.resident_count++;
1438
1439	ptepa = VM_PAGE_TO_PHYS(m);
1440	pmap->pm_pdir[ptepindex] =
1441		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1442
1443	/*
1444	 * Try to use the new mapping, but if we cannot, then
1445	 * do it with the routine that maps the page explicitly.
1446	 */
1447	if ((m->flags & PG_ZERO) == 0) {
1448		if (pmap_is_current(pmap)) {
1449			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1450			bzero((caddr_t) pteva, PAGE_SIZE);
1451		} else {
1452			pmap_zero_page(m);
1453		}
1454	}
1455	vm_page_lock_queues();
1456	m->valid = VM_PAGE_BITS_ALL;
1457	vm_page_flag_clear(m, PG_ZERO);
1458	vm_page_wakeup(m);
1459	vm_page_unlock_queues();
1460
1461	return m;
1462}
1463
1464static vm_page_t
1465pmap_allocpte(pmap_t pmap, vm_offset_t va)
1466{
1467	unsigned ptepindex;
1468	pd_entry_t ptepa;
1469	vm_page_t m;
1470
1471	/*
1472	 * Calculate pagetable page index
1473	 */
1474	ptepindex = va >> PDRSHIFT;
1475
1476	/*
1477	 * Get the page directory entry
1478	 */
1479	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1480
1481	/*
1482	 * This supports switching from a 4MB page to a
1483	 * normal 4K page.
1484	 */
1485	if (ptepa & PG_PS) {
1486		pmap->pm_pdir[ptepindex] = 0;
1487		ptepa = 0;
1488		pmap_invalidate_all(kernel_pmap);
1489	}
1490
1491	/*
1492	 * If the page table page is mapped, we just increment the
1493	 * hold count, and activate it.
1494	 */
1495	if (ptepa) {
1496		/*
1497		 * In order to get the page table page, try the
1498		 * hint first.
1499		 */
1500		if (pmap->pm_pteobj->root &&
1501			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1502			m = pmap->pm_pteobj->root;
1503		} else {
1504			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1505		}
1506		m->hold_count++;
1507		return m;
1508	}
1509	/*
1510	 * Here if the pte page isn't mapped, or if it has been deallocated.
1511	 */
1512	return _pmap_allocpte(pmap, ptepindex);
1513}
1514
1515
1516/***************************************************
1517* Pmap allocation/deallocation routines.
1518 ***************************************************/
1519
1520/*
1521 * Release any resources held by the given physical map.
1522 * Called when a pmap initialized by pmap_pinit is being released.
1523 * Should only be called if the map contains no valid mappings.
1524 */
1525void
1526pmap_release(pmap_t pmap)
1527{
1528	vm_page_t p,n,ptdpg;
1529	vm_object_t object = pmap->pm_pteobj;
1530	int curgeneration;
1531
1532#if defined(DIAGNOSTIC)
1533	if (object->ref_count != 1)
1534		panic("pmap_release: pteobj reference count != 1");
1535#endif
1536
1537	ptdpg = NULL;
1538	mtx_lock_spin(&allpmaps_lock);
1539	LIST_REMOVE(pmap, pm_list);
1540	mtx_unlock_spin(&allpmaps_lock);
1541retry:
1542	curgeneration = object->generation;
1543	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1544		n = TAILQ_NEXT(p, listq);
1545		if (p->pindex == PTDPTDI) {
1546			ptdpg = p;
1547			continue;
1548		}
1549		while (1) {
1550			if (!pmap_release_free_page(pmap, p) &&
1551				(object->generation != curgeneration))
1552				goto retry;
1553		}
1554	}
1555
1556	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1557		goto retry;
1558}
1559
1560static int
1561kvm_size(SYSCTL_HANDLER_ARGS)
1562{
1563	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1564
1565	return sysctl_handle_long(oidp, &ksize, 0, req);
1566}
1567SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1568    0, 0, kvm_size, "IU", "Size of KVM");
1569
1570static int
1571kvm_free(SYSCTL_HANDLER_ARGS)
1572{
1573	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1574
1575	return sysctl_handle_long(oidp, &kfree, 0, req);
1576}
1577SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1578    0, 0, kvm_free, "IU", "Amount of KVM free");
1579
1580/*
1581 * grow the number of kernel page table entries, if needed
1582 */
1583void
1584pmap_growkernel(vm_offset_t addr)
1585{
1586	struct pmap *pmap;
1587	int s;
1588	vm_offset_t ptppaddr;
1589	vm_page_t nkpg;
1590	pd_entry_t newpdir;
1591
1592	s = splhigh();
1593	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1594	if (kernel_vm_end == 0) {
1595		kernel_vm_end = KERNBASE;
1596		nkpt = 0;
1597		while (pdir_pde(PTD, kernel_vm_end)) {
1598			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1599			nkpt++;
1600		}
1601	}
1602	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1603	while (kernel_vm_end < addr) {
1604		if (pdir_pde(PTD, kernel_vm_end)) {
1605			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1606			continue;
1607		}
1608
1609		/*
1610		 * This index is bogus, but out of the way
1611		 */
1612		nkpg = vm_page_alloc(NULL, nkpt,
1613		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1614		if (!nkpg)
1615			panic("pmap_growkernel: no memory to grow kernel");
1616
1617		nkpt++;
1618
1619		pmap_zero_page(nkpg);
1620		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1621		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1622		pdir_pde(PTD, kernel_vm_end) = newpdir;
1623
1624		mtx_lock_spin(&allpmaps_lock);
1625		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1626			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1627		}
1628		mtx_unlock_spin(&allpmaps_lock);
1629		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1630	}
1631	splx(s);
1632}
1633
1634
1635/***************************************************
1636 * page management routines.
1637 ***************************************************/
1638
1639/*
1640 * free the pv_entry back to the free list
1641 */
1642static PMAP_INLINE void
1643free_pv_entry(pv_entry_t pv)
1644{
1645	pv_entry_count--;
1646	uma_zfree(pvzone, pv);
1647}
1648
1649/*
1650 * get a new pv_entry, allocating a block from the system
1651 * when needed.
1652 * the memory allocation is performed bypassing the malloc code
1653 * because of the possibility of allocations at interrupt time.
1654 */
1655static pv_entry_t
1656get_pv_entry(void)
1657{
1658	pv_entry_count++;
1659	if (pv_entry_high_water &&
1660		(pv_entry_count > pv_entry_high_water) &&
1661		(pmap_pagedaemon_waken == 0)) {
1662		pmap_pagedaemon_waken = 1;
1663		wakeup (&vm_pages_needed);
1664	}
1665	return uma_zalloc(pvzone, M_NOWAIT);
1666}
1667
1668/*
1669 * If it is the first entry on the list, it is actually
1670 * in the header and we must copy the following entry up
1671 * to the header.  Otherwise we must search the list for
1672 * the entry.  In either case we free the now unused entry.
1673 */
1674
1675static int
1676pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1677{
1678	pv_entry_t pv;
1679	int rtval;
1680	int s;
1681
1682	s = splvm();
1683	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1684	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1685		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1686			if (pmap == pv->pv_pmap && va == pv->pv_va)
1687				break;
1688		}
1689	} else {
1690		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1691			if (va == pv->pv_va)
1692				break;
1693		}
1694	}
1695
1696	rtval = 0;
1697	if (pv) {
1698		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1699		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1700		m->md.pv_list_count--;
1701		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1702			vm_page_flag_clear(m, PG_WRITEABLE);
1703
1704		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1705		free_pv_entry(pv);
1706	}
1707
1708	splx(s);
1709	return rtval;
1710}
1711
1712/*
1713 * Create a pv entry for page at pa for
1714 * (pmap, va).
1715 */
1716static void
1717pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1718{
1719
1720	int s;
1721	pv_entry_t pv;
1722
1723	s = splvm();
1724	pv = get_pv_entry();
1725	pv->pv_va = va;
1726	pv->pv_pmap = pmap;
1727	pv->pv_ptem = mpte;
1728
1729	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1730	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1731	m->md.pv_list_count++;
1732
1733	splx(s);
1734}
1735
1736/*
1737 * pmap_remove_pte: do the things to unmap a page in a process
1738 */
1739static int
1740pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1741{
1742	pt_entry_t oldpte;
1743	vm_page_t m;
1744
1745	oldpte = atomic_readandclear_int(ptq);
1746	if (oldpte & PG_W)
1747		pmap->pm_stats.wired_count -= 1;
1748	/*
1749	 * Machines that don't support invlpg, also don't support
1750	 * PG_G.
1751	 */
1752	if (oldpte & PG_G)
1753		pmap_invalidate_page(kernel_pmap, va);
1754	pmap->pm_stats.resident_count -= 1;
1755	if (oldpte & PG_MANAGED) {
1756		m = PHYS_TO_VM_PAGE(oldpte);
1757		if (oldpte & PG_M) {
1758#if defined(PMAP_DIAGNOSTIC)
1759			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1760				printf(
1761	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1762				    va, oldpte);
1763			}
1764#endif
1765			if (pmap_track_modified(va))
1766				vm_page_dirty(m);
1767		}
1768		if (oldpte & PG_A)
1769			vm_page_flag_set(m, PG_REFERENCED);
1770		return pmap_remove_entry(pmap, m, va);
1771	} else {
1772		return pmap_unuse_pt(pmap, va, NULL);
1773	}
1774
1775	return 0;
1776}
1777
1778/*
1779 * Remove a single page from a process address space
1780 */
1781static void
1782pmap_remove_page(pmap_t pmap, vm_offset_t va)
1783{
1784	register pt_entry_t *ptq;
1785
1786	/*
1787	 * if there is no pte for this address, just skip it!!!
1788	 */
1789	if (*pmap_pde(pmap, va) == 0) {
1790		return;
1791	}
1792
1793	/*
1794	 * get a local va for mappings for this pmap.
1795	 */
1796	ptq = get_ptbase(pmap) + i386_btop(va);
1797	if (*ptq) {
1798		(void) pmap_remove_pte(pmap, ptq, va);
1799		pmap_invalidate_page(pmap, va);
1800	}
1801	return;
1802}
1803
1804/*
1805 *	Remove the given range of addresses from the specified map.
1806 *
1807 *	It is assumed that the start and end are properly
1808 *	rounded to the page size.
1809 */
1810void
1811pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1812{
1813	register pt_entry_t *ptbase;
1814	vm_offset_t pdnxt;
1815	pd_entry_t ptpaddr;
1816	vm_offset_t sindex, eindex;
1817	int anyvalid;
1818
1819	if (pmap == NULL)
1820		return;
1821
1822	if (pmap->pm_stats.resident_count == 0)
1823		return;
1824
1825	/*
1826	 * special handling of removing one page.  a very
1827	 * common operation and easy to short circuit some
1828	 * code.
1829	 */
1830	if ((sva + PAGE_SIZE == eva) &&
1831	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1832		pmap_remove_page(pmap, sva);
1833		return;
1834	}
1835
1836	anyvalid = 0;
1837
1838	/*
1839	 * Get a local virtual address for the mappings that are being
1840	 * worked with.
1841	 */
1842	ptbase = get_ptbase(pmap);
1843
1844	sindex = i386_btop(sva);
1845	eindex = i386_btop(eva);
1846
1847	for (; sindex < eindex; sindex = pdnxt) {
1848		unsigned pdirindex;
1849
1850		/*
1851		 * Calculate index for next page table.
1852		 */
1853		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1854		if (pmap->pm_stats.resident_count == 0)
1855			break;
1856
1857		pdirindex = sindex / NPDEPG;
1858		ptpaddr = pmap->pm_pdir[pdirindex];
1859		if ((ptpaddr & PG_PS) != 0) {
1860			pmap->pm_pdir[pdirindex] = 0;
1861			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1862			anyvalid++;
1863			continue;
1864		}
1865
1866		/*
1867		 * Weed out invalid mappings. Note: we assume that the page
1868		 * directory table is always allocated, and in kernel virtual.
1869		 */
1870		if (ptpaddr == 0)
1871			continue;
1872
1873		/*
1874		 * Limit our scan to either the end of the va represented
1875		 * by the current page table page, or to the end of the
1876		 * range being removed.
1877		 */
1878		if (pdnxt > eindex) {
1879			pdnxt = eindex;
1880		}
1881
1882		for (; sindex != pdnxt; sindex++) {
1883			vm_offset_t va;
1884			if (ptbase[sindex] == 0) {
1885				continue;
1886			}
1887			va = i386_ptob(sindex);
1888
1889			anyvalid++;
1890			if (pmap_remove_pte(pmap, ptbase + sindex, va))
1891				break;
1892		}
1893	}
1894
1895	if (anyvalid)
1896		pmap_invalidate_all(pmap);
1897}
1898
1899/*
1900 *	Routine:	pmap_remove_all
1901 *	Function:
1902 *		Removes this physical page from
1903 *		all physical maps in which it resides.
1904 *		Reflects back modify bits to the pager.
1905 *
1906 *	Notes:
1907 *		Original versions of this routine were very
1908 *		inefficient because they iteratively called
1909 *		pmap_remove (slow...)
1910 */
1911
1912void
1913pmap_remove_all(vm_page_t m)
1914{
1915	register pv_entry_t pv;
1916	pt_entry_t *pte, tpte;
1917	int s;
1918
1919#if defined(PMAP_DIAGNOSTIC)
1920	/*
1921	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1922	 */
1923	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1924		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1925		    VM_PAGE_TO_PHYS(m));
1926	}
1927#endif
1928	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1929	s = splvm();
1930	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1931		pv->pv_pmap->pm_stats.resident_count--;
1932		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1933		tpte = atomic_readandclear_int(pte);
1934		if (tpte & PG_W)
1935			pv->pv_pmap->pm_stats.wired_count--;
1936		if (tpte & PG_A)
1937			vm_page_flag_set(m, PG_REFERENCED);
1938
1939		/*
1940		 * Update the vm_page_t clean and reference bits.
1941		 */
1942		if (tpte & PG_M) {
1943#if defined(PMAP_DIAGNOSTIC)
1944			if (pmap_nw_modified((pt_entry_t) tpte)) {
1945				printf(
1946	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1947				    pv->pv_va, tpte);
1948			}
1949#endif
1950			if (pmap_track_modified(pv->pv_va))
1951				vm_page_dirty(m);
1952		}
1953		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1954		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1955		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1956		m->md.pv_list_count--;
1957		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1958		free_pv_entry(pv);
1959	}
1960	vm_page_flag_clear(m, PG_WRITEABLE);
1961	splx(s);
1962}
1963
1964/*
1965 *	Set the physical protection on the
1966 *	specified range of this map as requested.
1967 */
1968void
1969pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1970{
1971	register pt_entry_t *ptbase;
1972	vm_offset_t pdnxt;
1973	pd_entry_t ptpaddr;
1974	vm_offset_t sindex, eindex;
1975	int anychanged;
1976
1977	if (pmap == NULL)
1978		return;
1979
1980	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1981		pmap_remove(pmap, sva, eva);
1982		return;
1983	}
1984
1985	if (prot & VM_PROT_WRITE)
1986		return;
1987
1988	anychanged = 0;
1989
1990	ptbase = get_ptbase(pmap);
1991
1992	sindex = i386_btop(sva);
1993	eindex = i386_btop(eva);
1994
1995	for (; sindex < eindex; sindex = pdnxt) {
1996
1997		unsigned pdirindex;
1998
1999		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
2000
2001		pdirindex = sindex / NPDEPG;
2002		ptpaddr = pmap->pm_pdir[pdirindex];
2003		if ((ptpaddr & PG_PS) != 0) {
2004			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2005			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2006			anychanged++;
2007			continue;
2008		}
2009
2010		/*
2011		 * Weed out invalid mappings. Note: we assume that the page
2012		 * directory table is always allocated, and in kernel virtual.
2013		 */
2014		if (ptpaddr == 0)
2015			continue;
2016
2017		if (pdnxt > eindex) {
2018			pdnxt = eindex;
2019		}
2020
2021		for (; sindex != pdnxt; sindex++) {
2022
2023			pt_entry_t pbits;
2024			vm_page_t m;
2025
2026			pbits = ptbase[sindex];
2027
2028			if (pbits & PG_MANAGED) {
2029				m = NULL;
2030				if (pbits & PG_A) {
2031					m = PHYS_TO_VM_PAGE(pbits);
2032					vm_page_flag_set(m, PG_REFERENCED);
2033					pbits &= ~PG_A;
2034				}
2035				if (pbits & PG_M) {
2036					if (pmap_track_modified(i386_ptob(sindex))) {
2037						if (m == NULL)
2038							m = PHYS_TO_VM_PAGE(pbits);
2039						vm_page_dirty(m);
2040						pbits &= ~PG_M;
2041					}
2042				}
2043			}
2044
2045			pbits &= ~PG_RW;
2046
2047			if (pbits != ptbase[sindex]) {
2048				ptbase[sindex] = pbits;
2049				anychanged = 1;
2050			}
2051		}
2052	}
2053	if (anychanged)
2054		pmap_invalidate_all(pmap);
2055}
2056
2057/*
2058 *	Insert the given physical page (p) at
2059 *	the specified virtual address (v) in the
2060 *	target physical map with the protection requested.
2061 *
2062 *	If specified, the page will be wired down, meaning
2063 *	that the related pte can not be reclaimed.
2064 *
2065 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2066 *	or lose information.  That is, this routine must actually
2067 *	insert this page into the given map NOW.
2068 */
2069void
2070pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2071	   boolean_t wired)
2072{
2073	vm_offset_t pa;
2074	register pt_entry_t *pte;
2075	vm_offset_t opa;
2076	pt_entry_t origpte, newpte;
2077	vm_page_t mpte;
2078
2079	if (pmap == NULL)
2080		return;
2081
2082	va &= PG_FRAME;
2083#ifdef PMAP_DIAGNOSTIC
2084	if (va > VM_MAX_KERNEL_ADDRESS)
2085		panic("pmap_enter: toobig");
2086	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2087		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2088#endif
2089
2090	mpte = NULL;
2091	/*
2092	 * In the case that a page table page is not
2093	 * resident, we are creating it here.
2094	 */
2095	if (va < VM_MAXUSER_ADDRESS) {
2096		mpte = pmap_allocpte(pmap, va);
2097	}
2098#if 0 && defined(PMAP_DIAGNOSTIC)
2099	else {
2100		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2101		origpte = *pdeaddr;
2102		if ((origpte & PG_V) == 0) {
2103			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2104				pmap->pm_pdir[PTDPTDI], origpte, va);
2105		}
2106	}
2107#endif
2108
2109	pte = pmap_pte(pmap, va);
2110
2111	/*
2112	 * Page Directory table entry not valid, we need a new PT page
2113	 */
2114	if (pte == NULL) {
2115		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2116			(void *)pmap->pm_pdir[PTDPTDI], va);
2117	}
2118
2119	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2120	origpte = *(vm_offset_t *)pte;
2121	opa = origpte & PG_FRAME;
2122
2123	if (origpte & PG_PS)
2124		panic("pmap_enter: attempted pmap_enter on 4MB page");
2125
2126	/*
2127	 * Mapping has not changed, must be protection or wiring change.
2128	 */
2129	if (origpte && (opa == pa)) {
2130		/*
2131		 * Wiring change, just update stats. We don't worry about
2132		 * wiring PT pages as they remain resident as long as there
2133		 * are valid mappings in them. Hence, if a user page is wired,
2134		 * the PT page will be also.
2135		 */
2136		if (wired && ((origpte & PG_W) == 0))
2137			pmap->pm_stats.wired_count++;
2138		else if (!wired && (origpte & PG_W))
2139			pmap->pm_stats.wired_count--;
2140
2141#if defined(PMAP_DIAGNOSTIC)
2142		if (pmap_nw_modified((pt_entry_t) origpte)) {
2143			printf(
2144	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2145			    va, origpte);
2146		}
2147#endif
2148
2149		/*
2150		 * Remove extra pte reference
2151		 */
2152		if (mpte)
2153			mpte->hold_count--;
2154
2155		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2156			if ((origpte & PG_RW) == 0) {
2157				*pte |= PG_RW;
2158				pmap_invalidate_page(pmap, va);
2159			}
2160			return;
2161		}
2162
2163		/*
2164		 * We might be turning off write access to the page,
2165		 * so we go ahead and sense modify status.
2166		 */
2167		if (origpte & PG_MANAGED) {
2168			if ((origpte & PG_M) && pmap_track_modified(va)) {
2169				vm_page_t om;
2170				om = PHYS_TO_VM_PAGE(opa);
2171				vm_page_dirty(om);
2172			}
2173			pa |= PG_MANAGED;
2174		}
2175		goto validate;
2176	}
2177	/*
2178	 * Mapping has changed, invalidate old range and fall through to
2179	 * handle validating new mapping.
2180	 */
2181	if (opa) {
2182		int err;
2183		vm_page_lock_queues();
2184		err = pmap_remove_pte(pmap, pte, va);
2185		vm_page_unlock_queues();
2186		if (err)
2187			panic("pmap_enter: pte vanished, va: 0x%x", va);
2188	}
2189
2190	/*
2191	 * Enter on the PV list if part of our managed memory. Note that we
2192	 * raise IPL while manipulating pv_table since pmap_enter can be
2193	 * called at interrupt time.
2194	 */
2195	if (pmap_initialized &&
2196	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2197		pmap_insert_entry(pmap, va, mpte, m);
2198		pa |= PG_MANAGED;
2199	}
2200
2201	/*
2202	 * Increment counters
2203	 */
2204	pmap->pm_stats.resident_count++;
2205	if (wired)
2206		pmap->pm_stats.wired_count++;
2207
2208validate:
2209	/*
2210	 * Now validate mapping with desired protection/wiring.
2211	 */
2212	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2213
2214	if (wired)
2215		newpte |= PG_W;
2216	if (va < VM_MAXUSER_ADDRESS)
2217		newpte |= PG_U;
2218	if (pmap == kernel_pmap)
2219		newpte |= pgeflag;
2220
2221	/*
2222	 * if the mapping or permission bits are different, we need
2223	 * to update the pte.
2224	 */
2225	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2226		*pte = newpte | PG_A;
2227		/*if (origpte)*/ {
2228			pmap_invalidate_page(pmap, va);
2229		}
2230	}
2231}
2232
2233/*
2234 * this code makes some *MAJOR* assumptions:
2235 * 1. Current pmap & pmap exists.
2236 * 2. Not wired.
2237 * 3. Read access.
2238 * 4. No page table pages.
2239 * 5. Tlbflush is deferred to calling procedure.
2240 * 6. Page IS managed.
2241 * but is *MUCH* faster than pmap_enter...
2242 */
2243
2244static vm_page_t
2245pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2246{
2247	pt_entry_t *pte;
2248	vm_offset_t pa;
2249
2250	/*
2251	 * In the case that a page table page is not
2252	 * resident, we are creating it here.
2253	 */
2254	if (va < VM_MAXUSER_ADDRESS) {
2255		unsigned ptepindex;
2256		pd_entry_t ptepa;
2257
2258		/*
2259		 * Calculate pagetable page index
2260		 */
2261		ptepindex = va >> PDRSHIFT;
2262		if (mpte && (mpte->pindex == ptepindex)) {
2263			mpte->hold_count++;
2264		} else {
2265retry:
2266			/*
2267			 * Get the page directory entry
2268			 */
2269			ptepa = pmap->pm_pdir[ptepindex];
2270
2271			/*
2272			 * If the page table page is mapped, we just increment
2273			 * the hold count, and activate it.
2274			 */
2275			if (ptepa) {
2276				if (ptepa & PG_PS)
2277					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2278				if (pmap->pm_pteobj->root &&
2279					(pmap->pm_pteobj->root->pindex == ptepindex)) {
2280					mpte = pmap->pm_pteobj->root;
2281				} else {
2282					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2283				}
2284				if (mpte == NULL)
2285					goto retry;
2286				mpte->hold_count++;
2287			} else {
2288				mpte = _pmap_allocpte(pmap, ptepindex);
2289			}
2290		}
2291	} else {
2292		mpte = NULL;
2293	}
2294
2295	/*
2296	 * This call to vtopte makes the assumption that we are
2297	 * entering the page into the current pmap.  In order to support
2298	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2299	 * But that isn't as quick as vtopte.
2300	 */
2301	pte = vtopte(va);
2302	if (*pte) {
2303		if (mpte != NULL) {
2304			vm_page_lock_queues();
2305			pmap_unwire_pte_hold(pmap, mpte);
2306			vm_page_unlock_queues();
2307		}
2308		return 0;
2309	}
2310
2311	/*
2312	 * Enter on the PV list if part of our managed memory. Note that we
2313	 * raise IPL while manipulating pv_table since pmap_enter can be
2314	 * called at interrupt time.
2315	 */
2316	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2317		pmap_insert_entry(pmap, va, mpte, m);
2318
2319	/*
2320	 * Increment counters
2321	 */
2322	pmap->pm_stats.resident_count++;
2323
2324	pa = VM_PAGE_TO_PHYS(m);
2325
2326	/*
2327	 * Now validate mapping with RO protection
2328	 */
2329	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2330		*pte = pa | PG_V | PG_U;
2331	else
2332		*pte = pa | PG_V | PG_U | PG_MANAGED;
2333
2334	return mpte;
2335}
2336
2337/*
2338 * Make a temporary mapping for a physical address.  This is only intended
2339 * to be used for panic dumps.
2340 */
2341void *
2342pmap_kenter_temporary(vm_offset_t pa, int i)
2343{
2344	vm_offset_t va;
2345
2346	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2347	pmap_kenter(va, pa);
2348#ifndef I386_CPU
2349	invlpg(va);
2350#else
2351	invltlb();
2352#endif
2353	return ((void *)crashdumpmap);
2354}
2355
2356#define MAX_INIT_PT (96)
2357/*
2358 * pmap_object_init_pt preloads the ptes for a given object
2359 * into the specified pmap.  This eliminates the blast of soft
2360 * faults on process startup and immediately after an mmap.
2361 */
2362void
2363pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2364		    vm_object_t object, vm_pindex_t pindex,
2365		    vm_size_t size, int limit)
2366{
2367	vm_offset_t tmpidx;
2368	int psize;
2369	vm_page_t p, mpte;
2370
2371	if (pmap == NULL || object == NULL)
2372		return;
2373
2374	/*
2375	 * This code maps large physical mmap regions into the
2376	 * processor address space.  Note that some shortcuts
2377	 * are taken, but the code works.
2378	 */
2379	if (pseflag && (object->type == OBJT_DEVICE) &&
2380	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2381		int i;
2382		vm_page_t m[1];
2383		unsigned int ptepindex;
2384		int npdes;
2385		pd_entry_t ptepa;
2386
2387		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2388			return;
2389
2390retry:
2391		p = vm_page_lookup(object, pindex);
2392		if (p != NULL) {
2393			vm_page_lock_queues();
2394			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2395				goto retry;
2396		} else {
2397			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2398			if (p == NULL)
2399				return;
2400			m[0] = p;
2401
2402			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2403				vm_page_lock_queues();
2404				vm_page_free(p);
2405				vm_page_unlock_queues();
2406				return;
2407			}
2408
2409			p = vm_page_lookup(object, pindex);
2410			vm_page_lock_queues();
2411			vm_page_wakeup(p);
2412		}
2413		vm_page_unlock_queues();
2414
2415		ptepa = VM_PAGE_TO_PHYS(p);
2416		if (ptepa & (NBPDR - 1)) {
2417			return;
2418		}
2419
2420		p->valid = VM_PAGE_BITS_ALL;
2421
2422		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2423		npdes = size >> PDRSHIFT;
2424		for(i = 0; i < npdes; i++) {
2425			pmap->pm_pdir[ptepindex] =
2426			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2427			ptepa += NBPDR;
2428			ptepindex += 1;
2429		}
2430		pmap_invalidate_all(kernel_pmap);
2431		return;
2432	}
2433
2434	psize = i386_btop(size);
2435
2436	if ((object->type != OBJT_VNODE) ||
2437	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2438	     (object->resident_page_count > MAX_INIT_PT))) {
2439		return;
2440	}
2441
2442	if (psize + pindex > object->size) {
2443		if (object->size < pindex)
2444			return;
2445		psize = object->size - pindex;
2446	}
2447
2448	mpte = NULL;
2449
2450	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
2451		if (p->pindex < pindex) {
2452			p = vm_page_splay(pindex, object->root);
2453			if ((object->root = p)->pindex < pindex)
2454				p = TAILQ_NEXT(p, listq);
2455		}
2456	}
2457	/*
2458	 * Assert: the variable p is either (1) the page with the
2459	 * least pindex greater than or equal to the parameter pindex
2460	 * or (2) NULL.
2461	 */
2462	for (;
2463	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2464	     p = TAILQ_NEXT(p, listq)) {
2465		/*
2466		 * don't allow an madvise to blow away our really
2467		 * free pages allocating pv entries.
2468		 */
2469		if ((limit & MAP_PREFAULT_MADVISE) &&
2470		    cnt.v_free_count < cnt.v_free_reserved) {
2471			break;
2472		}
2473		vm_page_lock_queues();
2474		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2475		    (p->busy == 0) &&
2476		    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2477			if ((p->queue - p->pc) == PQ_CACHE)
2478				vm_page_deactivate(p);
2479			vm_page_busy(p);
2480			vm_page_unlock_queues();
2481			mpte = pmap_enter_quick(pmap,
2482				addr + i386_ptob(tmpidx), p, mpte);
2483			vm_page_lock_queues();
2484			vm_page_wakeup(p);
2485		}
2486		vm_page_unlock_queues();
2487	}
2488	return;
2489}
2490
2491/*
2492 * pmap_prefault provides a quick way of clustering
2493 * pagefaults into a processes address space.  It is a "cousin"
2494 * of pmap_object_init_pt, except it runs at page fault time instead
2495 * of mmap time.
2496 */
2497#define PFBAK 4
2498#define PFFOR 4
2499#define PAGEORDER_SIZE (PFBAK+PFFOR)
2500
2501static int pmap_prefault_pageorder[] = {
2502	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2503	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2504	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2505	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2506};
2507
2508void
2509pmap_prefault(pmap, addra, entry)
2510	pmap_t pmap;
2511	vm_offset_t addra;
2512	vm_map_entry_t entry;
2513{
2514	int i;
2515	vm_offset_t starta;
2516	vm_offset_t addr;
2517	vm_pindex_t pindex;
2518	vm_page_t m, mpte;
2519	vm_object_t object;
2520
2521	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2522		return;
2523
2524	object = entry->object.vm_object;
2525
2526	starta = addra - PFBAK * PAGE_SIZE;
2527	if (starta < entry->start) {
2528		starta = entry->start;
2529	} else if (starta > addra) {
2530		starta = 0;
2531	}
2532
2533	mpte = NULL;
2534	for (i = 0; i < PAGEORDER_SIZE; i++) {
2535		vm_object_t lobject;
2536		pt_entry_t *pte;
2537
2538		addr = addra + pmap_prefault_pageorder[i];
2539		if (addr > addra + (PFFOR * PAGE_SIZE))
2540			addr = 0;
2541
2542		if (addr < starta || addr >= entry->end)
2543			continue;
2544
2545		if ((*pmap_pde(pmap, addr)) == 0)
2546			continue;
2547
2548		pte = vtopte(addr);
2549		if (*pte)
2550			continue;
2551
2552		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2553		lobject = object;
2554		for (m = vm_page_lookup(lobject, pindex);
2555		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2556		    lobject = lobject->backing_object) {
2557			if (lobject->backing_object_offset & PAGE_MASK)
2558				break;
2559			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2560			m = vm_page_lookup(lobject->backing_object, pindex);
2561		}
2562
2563		/*
2564		 * give-up when a page is not in memory
2565		 */
2566		if (m == NULL)
2567			break;
2568		vm_page_lock_queues();
2569		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2570			(m->busy == 0) &&
2571		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2572
2573			if ((m->queue - m->pc) == PQ_CACHE) {
2574				vm_page_deactivate(m);
2575			}
2576			vm_page_busy(m);
2577			vm_page_unlock_queues();
2578			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2579			vm_page_lock_queues();
2580			vm_page_wakeup(m);
2581		}
2582		vm_page_unlock_queues();
2583	}
2584}
2585
2586/*
2587 *	Routine:	pmap_change_wiring
2588 *	Function:	Change the wiring attribute for a map/virtual-address
2589 *			pair.
2590 *	In/out conditions:
2591 *			The mapping must already exist in the pmap.
2592 */
2593void
2594pmap_change_wiring(pmap, va, wired)
2595	register pmap_t pmap;
2596	vm_offset_t va;
2597	boolean_t wired;
2598{
2599	register pt_entry_t *pte;
2600
2601	if (pmap == NULL)
2602		return;
2603
2604	pte = pmap_pte(pmap, va);
2605
2606	if (wired && !pmap_pte_w(pte))
2607		pmap->pm_stats.wired_count++;
2608	else if (!wired && pmap_pte_w(pte))
2609		pmap->pm_stats.wired_count--;
2610
2611	/*
2612	 * Wiring is not a hardware characteristic so there is no need to
2613	 * invalidate TLB.
2614	 */
2615	pmap_pte_set_w(pte, wired);
2616}
2617
2618
2619
2620/*
2621 *	Copy the range specified by src_addr/len
2622 *	from the source map to the range dst_addr/len
2623 *	in the destination map.
2624 *
2625 *	This routine is only advisory and need not do anything.
2626 */
2627
2628void
2629pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2630	  vm_offset_t src_addr)
2631{
2632	vm_offset_t addr;
2633	vm_offset_t end_addr = src_addr + len;
2634	vm_offset_t pdnxt;
2635	vm_page_t m;
2636
2637	if (dst_addr != src_addr)
2638		return;
2639
2640	if (!pmap_is_current(src_pmap))
2641		return;
2642
2643	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2644		pt_entry_t *src_pte, *dst_pte;
2645		vm_page_t dstmpte, srcmpte;
2646		pd_entry_t srcptepaddr;
2647		unsigned ptepindex;
2648
2649		if (addr >= UPT_MIN_ADDRESS)
2650			panic("pmap_copy: invalid to pmap_copy page tables\n");
2651
2652		/*
2653		 * Don't let optional prefaulting of pages make us go
2654		 * way below the low water mark of free pages or way
2655		 * above high water mark of used pv entries.
2656		 */
2657		if (cnt.v_free_count < cnt.v_free_reserved ||
2658		    pv_entry_count > pv_entry_high_water)
2659			break;
2660
2661		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2662		ptepindex = addr >> PDRSHIFT;
2663
2664		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2665		if (srcptepaddr == 0)
2666			continue;
2667
2668		if (srcptepaddr & PG_PS) {
2669			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2670				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2671				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2672			}
2673			continue;
2674		}
2675
2676		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2677		if ((srcmpte == NULL) ||
2678		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2679			continue;
2680
2681		if (pdnxt > end_addr)
2682			pdnxt = end_addr;
2683
2684		/*
2685		 * Have to recheck this before every avtopte() call below
2686		 * in case we have blocked and something else used APTDpde.
2687		 */
2688		pmap_set_alternate(dst_pmap);
2689		src_pte = vtopte(addr);
2690		dst_pte = avtopte(addr);
2691		while (addr < pdnxt) {
2692			pt_entry_t ptetemp;
2693			ptetemp = *src_pte;
2694			/*
2695			 * we only virtual copy managed pages
2696			 */
2697			if ((ptetemp & PG_MANAGED) != 0) {
2698				/*
2699				 * We have to check after allocpte for the
2700				 * pte still being around...  allocpte can
2701				 * block.
2702				 */
2703				dstmpte = pmap_allocpte(dst_pmap, addr);
2704				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2705					/*
2706					 * Clear the modified and
2707					 * accessed (referenced) bits
2708					 * during the copy.
2709					 */
2710					m = PHYS_TO_VM_PAGE(ptetemp);
2711					*dst_pte = ptetemp & ~(PG_M | PG_A);
2712					dst_pmap->pm_stats.resident_count++;
2713					pmap_insert_entry(dst_pmap, addr,
2714						dstmpte, m);
2715	 			} else {
2716					vm_page_lock_queues();
2717					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2718					vm_page_unlock_queues();
2719				}
2720				if (dstmpte->hold_count >= srcmpte->hold_count)
2721					break;
2722			}
2723			addr += PAGE_SIZE;
2724			src_pte++;
2725			dst_pte++;
2726		}
2727	}
2728}
2729
2730#ifdef SMP
2731
2732/*
2733 *	pmap_zpi_switchin*()
2734 *
2735 *	These functions allow us to avoid doing IPIs alltogether in certain
2736 *	temporary page-mapping situations (page zeroing).  Instead to deal
2737 *	with being preempted and moved onto a different cpu we invalidate
2738 *	the page when the scheduler switches us in.  This does not occur
2739 *	very often so we remain relatively optimal with very little effort.
2740 */
2741static void
2742pmap_zpi_switchin12(void)
2743{
2744	invlpg((u_int)CADDR1);
2745	invlpg((u_int)CADDR2);
2746}
2747
2748static void
2749pmap_zpi_switchin2(void)
2750{
2751	invlpg((u_int)CADDR2);
2752}
2753
2754static void
2755pmap_zpi_switchin3(void)
2756{
2757	invlpg((u_int)CADDR3);
2758}
2759
2760#endif
2761
2762/*
2763 *	pmap_zero_page zeros the specified hardware page by mapping
2764 *	the page into KVM and using bzero to clear its contents.
2765 */
2766void
2767pmap_zero_page(vm_page_t m)
2768{
2769
2770	mtx_lock(&CMAPCADDR12_lock);
2771	if (*CMAP2)
2772		panic("pmap_zero_page: CMAP2 busy");
2773	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2774#ifdef I386_CPU
2775	invltlb();
2776#else
2777#ifdef SMP
2778	curthread->td_switchin = pmap_zpi_switchin2;
2779#endif
2780	invlpg((u_int)CADDR2);
2781#endif
2782#if defined(I686_CPU)
2783	if (cpu_class == CPUCLASS_686)
2784		i686_pagezero(CADDR2);
2785	else
2786#endif
2787		bzero(CADDR2, PAGE_SIZE);
2788#ifdef SMP
2789	curthread->td_switchin = NULL;
2790#endif
2791	*CMAP2 = 0;
2792	mtx_unlock(&CMAPCADDR12_lock);
2793}
2794
2795/*
2796 *	pmap_zero_page_area zeros the specified hardware page by mapping
2797 *	the page into KVM and using bzero to clear its contents.
2798 *
2799 *	off and size may not cover an area beyond a single hardware page.
2800 */
2801void
2802pmap_zero_page_area(vm_page_t m, int off, int size)
2803{
2804
2805	mtx_lock(&CMAPCADDR12_lock);
2806	if (*CMAP2)
2807		panic("pmap_zero_page: CMAP2 busy");
2808	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2809#ifdef I386_CPU
2810	invltlb();
2811#else
2812#ifdef SMP
2813	curthread->td_switchin = pmap_zpi_switchin2;
2814#endif
2815	invlpg((u_int)CADDR2);
2816#endif
2817#if defined(I686_CPU)
2818	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2819		i686_pagezero(CADDR2);
2820	else
2821#endif
2822		bzero((char *)CADDR2 + off, size);
2823#ifdef SMP
2824	curthread->td_switchin = NULL;
2825#endif
2826	*CMAP2 = 0;
2827	mtx_unlock(&CMAPCADDR12_lock);
2828}
2829
2830/*
2831 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2832 *	the page into KVM and using bzero to clear its contents.  This
2833 *	is intended to be called from the vm_pagezero process only and
2834 *	outside of Giant.
2835 */
2836void
2837pmap_zero_page_idle(vm_page_t m)
2838{
2839
2840	if (*CMAP3)
2841		panic("pmap_zero_page: CMAP3 busy");
2842	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2843#ifdef I386_CPU
2844	invltlb();
2845#else
2846#ifdef SMP
2847	curthread->td_switchin = pmap_zpi_switchin3;
2848#endif
2849	invlpg((u_int)CADDR3);
2850#endif
2851#if defined(I686_CPU)
2852	if (cpu_class == CPUCLASS_686)
2853		i686_pagezero(CADDR3);
2854	else
2855#endif
2856		bzero(CADDR3, PAGE_SIZE);
2857#ifdef SMP
2858	curthread->td_switchin = NULL;
2859#endif
2860	*CMAP3 = 0;
2861}
2862
2863/*
2864 *	pmap_copy_page copies the specified (machine independent)
2865 *	page by mapping the page into virtual memory and using
2866 *	bcopy to copy the page, one machine dependent page at a
2867 *	time.
2868 */
2869void
2870pmap_copy_page(vm_page_t src, vm_page_t dst)
2871{
2872
2873	mtx_lock(&CMAPCADDR12_lock);
2874	if (*CMAP1)
2875		panic("pmap_copy_page: CMAP1 busy");
2876	if (*CMAP2)
2877		panic("pmap_copy_page: CMAP2 busy");
2878	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2879	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2880#ifdef I386_CPU
2881	invltlb();
2882#else
2883#ifdef SMP
2884	curthread->td_switchin = pmap_zpi_switchin12;
2885#endif
2886	invlpg((u_int)CADDR1);
2887	invlpg((u_int)CADDR2);
2888#endif
2889	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2890#ifdef SMP
2891	curthread->td_switchin = NULL;
2892#endif
2893	*CMAP1 = 0;
2894	*CMAP2 = 0;
2895	mtx_unlock(&CMAPCADDR12_lock);
2896}
2897
2898/*
2899 * Returns true if the pmap's pv is one of the first
2900 * 16 pvs linked to from this page.  This count may
2901 * be changed upwards or downwards in the future; it
2902 * is only necessary that true be returned for a small
2903 * subset of pmaps for proper page aging.
2904 */
2905boolean_t
2906pmap_page_exists_quick(pmap, m)
2907	pmap_t pmap;
2908	vm_page_t m;
2909{
2910	pv_entry_t pv;
2911	int loops = 0;
2912	int s;
2913
2914	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2915		return FALSE;
2916
2917	s = splvm();
2918	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2919	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2920		if (pv->pv_pmap == pmap) {
2921			splx(s);
2922			return TRUE;
2923		}
2924		loops++;
2925		if (loops >= 16)
2926			break;
2927	}
2928	splx(s);
2929	return (FALSE);
2930}
2931
2932#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2933/*
2934 * Remove all pages from specified address space
2935 * this aids process exit speeds.  Also, this code
2936 * is special cased for current process only, but
2937 * can have the more generic (and slightly slower)
2938 * mode enabled.  This is much faster than pmap_remove
2939 * in the case of running down an entire address space.
2940 */
2941void
2942pmap_remove_pages(pmap, sva, eva)
2943	pmap_t pmap;
2944	vm_offset_t sva, eva;
2945{
2946	pt_entry_t *pte, tpte;
2947	vm_page_t m;
2948	pv_entry_t pv, npv;
2949	int s;
2950
2951#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2952	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2953		printf("warning: pmap_remove_pages called with non-current pmap\n");
2954		return;
2955	}
2956#endif
2957	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2958	s = splvm();
2959	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2960
2961		if (pv->pv_va >= eva || pv->pv_va < sva) {
2962			npv = TAILQ_NEXT(pv, pv_plist);
2963			continue;
2964		}
2965
2966#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2967		pte = vtopte(pv->pv_va);
2968#else
2969		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2970#endif
2971		tpte = *pte;
2972
2973		if (tpte == 0) {
2974			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2975							pte, pv->pv_va);
2976			panic("bad pte");
2977		}
2978
2979/*
2980 * We cannot remove wired pages from a process' mapping at this time
2981 */
2982		if (tpte & PG_W) {
2983			npv = TAILQ_NEXT(pv, pv_plist);
2984			continue;
2985		}
2986
2987		m = PHYS_TO_VM_PAGE(tpte);
2988		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2989		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2990		    m, m->phys_addr, tpte));
2991
2992		KASSERT(m < &vm_page_array[vm_page_array_size],
2993			("pmap_remove_pages: bad tpte %x", tpte));
2994
2995		pv->pv_pmap->pm_stats.resident_count--;
2996
2997		*pte = 0;
2998
2999		/*
3000		 * Update the vm_page_t clean and reference bits.
3001		 */
3002		if (tpte & PG_M) {
3003			vm_page_dirty(m);
3004		}
3005
3006		npv = TAILQ_NEXT(pv, pv_plist);
3007		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3008
3009		m->md.pv_list_count--;
3010		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3011		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3012			vm_page_flag_clear(m, PG_WRITEABLE);
3013		}
3014
3015		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3016		free_pv_entry(pv);
3017	}
3018	splx(s);
3019	pmap_invalidate_all(pmap);
3020}
3021
3022/*
3023 *	pmap_is_modified:
3024 *
3025 *	Return whether or not the specified physical page was modified
3026 *	in any physical maps.
3027 */
3028boolean_t
3029pmap_is_modified(vm_page_t m)
3030{
3031	pv_entry_t pv;
3032	pt_entry_t *pte;
3033	int s;
3034
3035	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3036		return FALSE;
3037
3038	s = splvm();
3039	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3040	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3041		/*
3042		 * if the bit being tested is the modified bit, then
3043		 * mark clean_map and ptes as never
3044		 * modified.
3045		 */
3046		if (!pmap_track_modified(pv->pv_va))
3047			continue;
3048#if defined(PMAP_DIAGNOSTIC)
3049		if (!pv->pv_pmap) {
3050			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3051			continue;
3052		}
3053#endif
3054		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3055		if (*pte & PG_M) {
3056			splx(s);
3057			return TRUE;
3058		}
3059	}
3060	splx(s);
3061	return (FALSE);
3062}
3063
3064/*
3065 * this routine is used to modify bits in ptes
3066 */
3067static __inline void
3068pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3069{
3070	register pv_entry_t pv;
3071	register pt_entry_t *pte;
3072	int s;
3073
3074	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
3075	    (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
3076		return;
3077
3078	s = splvm();
3079	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3080	/*
3081	 * Loop over all current mappings setting/clearing as appropos If
3082	 * setting RO do we need to clear the VAC?
3083	 */
3084	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3085		/*
3086		 * don't write protect pager mappings
3087		 */
3088		if (!setem && (bit == PG_RW)) {
3089			if (!pmap_track_modified(pv->pv_va))
3090				continue;
3091		}
3092
3093#if defined(PMAP_DIAGNOSTIC)
3094		if (!pv->pv_pmap) {
3095			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3096			continue;
3097		}
3098#endif
3099
3100		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3101
3102		if (setem) {
3103			*pte |= bit;
3104			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3105		} else {
3106			pt_entry_t pbits = *pte;
3107			if (pbits & bit) {
3108				if (bit == PG_RW) {
3109					if (pbits & PG_M) {
3110						vm_page_dirty(m);
3111					}
3112					*pte = pbits & ~(PG_M|PG_RW);
3113				} else {
3114					*pte = pbits & ~bit;
3115				}
3116				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3117			}
3118		}
3119	}
3120	if (!setem && bit == PG_RW)
3121		vm_page_flag_clear(m, PG_WRITEABLE);
3122	splx(s);
3123}
3124
3125/*
3126 *      pmap_page_protect:
3127 *
3128 *      Lower the permission for all mappings to a given page.
3129 */
3130void
3131pmap_page_protect(vm_page_t m, vm_prot_t prot)
3132{
3133	if ((prot & VM_PROT_WRITE) == 0) {
3134		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3135			pmap_changebit(m, PG_RW, FALSE);
3136		} else {
3137			pmap_remove_all(m);
3138		}
3139	}
3140}
3141
3142/*
3143 *	pmap_ts_referenced:
3144 *
3145 *	Return a count of reference bits for a page, clearing those bits.
3146 *	It is not necessary for every reference bit to be cleared, but it
3147 *	is necessary that 0 only be returned when there are truly no
3148 *	reference bits set.
3149 *
3150 *	XXX: The exact number of bits to check and clear is a matter that
3151 *	should be tested and standardized at some point in the future for
3152 *	optimal aging of shared pages.
3153 */
3154int
3155pmap_ts_referenced(vm_page_t m)
3156{
3157	register pv_entry_t pv, pvf, pvn;
3158	pt_entry_t *pte;
3159	int s;
3160	int rtval = 0;
3161
3162	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3163		return (rtval);
3164
3165	s = splvm();
3166	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3167	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3168
3169		pvf = pv;
3170
3171		do {
3172			pvn = TAILQ_NEXT(pv, pv_list);
3173
3174			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3175
3176			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3177
3178			if (!pmap_track_modified(pv->pv_va))
3179				continue;
3180
3181			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3182
3183			if (pte && (*pte & PG_A)) {
3184				*pte &= ~PG_A;
3185
3186				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3187
3188				rtval++;
3189				if (rtval > 4) {
3190					break;
3191				}
3192			}
3193		} while ((pv = pvn) != NULL && pv != pvf);
3194	}
3195	splx(s);
3196
3197	return (rtval);
3198}
3199
3200/*
3201 *	Clear the modify bits on the specified physical page.
3202 */
3203void
3204pmap_clear_modify(vm_page_t m)
3205{
3206	pmap_changebit(m, PG_M, FALSE);
3207}
3208
3209/*
3210 *	pmap_clear_reference:
3211 *
3212 *	Clear the reference bit on the specified physical page.
3213 */
3214void
3215pmap_clear_reference(vm_page_t m)
3216{
3217	pmap_changebit(m, PG_A, FALSE);
3218}
3219
3220/*
3221 * Miscellaneous support routines follow
3222 */
3223
3224static void
3225i386_protection_init()
3226{
3227	register int *kp, prot;
3228
3229	kp = protection_codes;
3230	for (prot = 0; prot < 8; prot++) {
3231		switch (prot) {
3232		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3233			/*
3234			 * Read access is also 0. There isn't any execute bit,
3235			 * so just make it readable.
3236			 */
3237		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3238		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3239		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3240			*kp++ = 0;
3241			break;
3242		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3243		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3244		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3245		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3246			*kp++ = PG_RW;
3247			break;
3248		}
3249	}
3250}
3251
3252/*
3253 * Map a set of physical memory pages into the kernel virtual
3254 * address space. Return a pointer to where it is mapped. This
3255 * routine is intended to be used for mapping device memory,
3256 * NOT real memory.
3257 */
3258void *
3259pmap_mapdev(pa, size)
3260	vm_offset_t pa;
3261	vm_size_t size;
3262{
3263	vm_offset_t va, tmpva, offset;
3264
3265	offset = pa & PAGE_MASK;
3266	size = roundup(offset + size, PAGE_SIZE);
3267
3268	GIANT_REQUIRED;
3269
3270	va = kmem_alloc_pageable(kernel_map, size);
3271	if (!va)
3272		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3273
3274	pa = pa & PG_FRAME;
3275	for (tmpva = va; size > 0; ) {
3276		pmap_kenter(tmpva, pa);
3277		size -= PAGE_SIZE;
3278		tmpva += PAGE_SIZE;
3279		pa += PAGE_SIZE;
3280	}
3281	pmap_invalidate_range(kernel_pmap, va, tmpva);
3282	return ((void *)(va + offset));
3283}
3284
3285void
3286pmap_unmapdev(va, size)
3287	vm_offset_t va;
3288	vm_size_t size;
3289{
3290	vm_offset_t base, offset, tmpva;
3291	pt_entry_t *pte;
3292
3293	base = va & PG_FRAME;
3294	offset = va & PAGE_MASK;
3295	size = roundup(offset + size, PAGE_SIZE);
3296	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3297		pte = vtopte(tmpva);
3298		*pte = 0;
3299	}
3300	pmap_invalidate_range(kernel_pmap, va, tmpva);
3301	kmem_free(kernel_map, base, size);
3302}
3303
3304/*
3305 * perform the pmap work for mincore
3306 */
3307int
3308pmap_mincore(pmap, addr)
3309	pmap_t pmap;
3310	vm_offset_t addr;
3311{
3312	pt_entry_t *ptep, pte;
3313	vm_page_t m;
3314	int val = 0;
3315
3316	ptep = pmap_pte(pmap, addr);
3317	if (ptep == 0) {
3318		return 0;
3319	}
3320
3321	if ((pte = *ptep) != 0) {
3322		vm_offset_t pa;
3323
3324		val = MINCORE_INCORE;
3325		if ((pte & PG_MANAGED) == 0)
3326			return val;
3327
3328		pa = pte & PG_FRAME;
3329
3330		m = PHYS_TO_VM_PAGE(pa);
3331
3332		/*
3333		 * Modified by us
3334		 */
3335		if (pte & PG_M)
3336			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3337		else {
3338			/*
3339			 * Modified by someone else
3340			 */
3341			vm_page_lock_queues();
3342			if (m->dirty || pmap_is_modified(m))
3343				val |= MINCORE_MODIFIED_OTHER;
3344			vm_page_unlock_queues();
3345		}
3346		/*
3347		 * Referenced by us
3348		 */
3349		if (pte & PG_A)
3350			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3351		else {
3352			/*
3353			 * Referenced by someone else
3354			 */
3355			vm_page_lock_queues();
3356			if ((m->flags & PG_REFERENCED) ||
3357			    pmap_ts_referenced(m)) {
3358				val |= MINCORE_REFERENCED_OTHER;
3359				vm_page_flag_set(m, PG_REFERENCED);
3360			}
3361			vm_page_unlock_queues();
3362		}
3363	}
3364	return val;
3365}
3366
3367void
3368pmap_activate(struct thread *td)
3369{
3370	struct proc *p = td->td_proc;
3371	pmap_t	pmap;
3372	u_int32_t  cr3;
3373
3374	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3375#if defined(SMP)
3376	pmap->pm_active |= PCPU_GET(cpumask);
3377#else
3378	pmap->pm_active |= 1;
3379#endif
3380	cr3 = vtophys(pmap->pm_pdir);
3381	/* XXXKSE this is wrong.
3382	 * pmap_activate is for the current thread on the current cpu
3383	 */
3384	if (p->p_flag & P_THREADED) {
3385		/* Make sure all other cr3 entries are updated. */
3386		/* what if they are running?  XXXKSE (maybe abort them) */
3387		FOREACH_THREAD_IN_PROC(p, td) {
3388			td->td_pcb->pcb_cr3 = cr3;
3389		}
3390	} else {
3391		td->td_pcb->pcb_cr3 = cr3;
3392	}
3393	load_cr3(cr3);
3394#ifdef SWTCH_OPTIM_STATS
3395	tlb_flush_count++;
3396#endif
3397}
3398
3399vm_offset_t
3400pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3401{
3402
3403	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3404		return addr;
3405	}
3406
3407	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3408	return addr;
3409}
3410
3411
3412#if defined(PMAP_DEBUG)
3413pmap_pid_dump(int pid)
3414{
3415	pmap_t pmap;
3416	struct proc *p;
3417	int npte = 0;
3418	int index;
3419
3420	sx_slock(&allproc_lock);
3421	LIST_FOREACH(p, &allproc, p_list) {
3422		if (p->p_pid != pid)
3423			continue;
3424
3425		if (p->p_vmspace) {
3426			int i,j;
3427			index = 0;
3428			pmap = vmspace_pmap(p->p_vmspace);
3429			for (i = 0; i < NPDEPTD; i++) {
3430				pd_entry_t *pde;
3431				pt_entry_t *pte;
3432				vm_offset_t base = i << PDRSHIFT;
3433
3434				pde = &pmap->pm_pdir[i];
3435				if (pde && pmap_pde_v(pde)) {
3436					for (j = 0; j < NPTEPG; j++) {
3437						vm_offset_t va = base + (j << PAGE_SHIFT);
3438						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3439							if (index) {
3440								index = 0;
3441								printf("\n");
3442							}
3443							sx_sunlock(&allproc_lock);
3444							return npte;
3445						}
3446						pte = pmap_pte_quick(pmap, va);
3447						if (pte && pmap_pte_v(pte)) {
3448							pt_entry_t pa;
3449							vm_page_t m;
3450							pa = *pte;
3451							m = PHYS_TO_VM_PAGE(pa);
3452							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3453								va, pa, m->hold_count, m->wire_count, m->flags);
3454							npte++;
3455							index++;
3456							if (index >= 2) {
3457								index = 0;
3458								printf("\n");
3459							} else {
3460								printf(" ");
3461							}
3462						}
3463					}
3464				}
3465			}
3466		}
3467	}
3468	sx_sunlock(&allproc_lock);
3469	return npte;
3470}
3471#endif
3472
3473#if defined(DEBUG)
3474
3475static void	pads(pmap_t pm);
3476void		pmap_pvdump(vm_offset_t pa);
3477
3478/* print address space of pmap*/
3479static void
3480pads(pm)
3481	pmap_t pm;
3482{
3483	int i, j;
3484	vm_offset_t va;
3485	pt_entry_t *ptep;
3486
3487	if (pm == kernel_pmap)
3488		return;
3489	for (i = 0; i < NPDEPTD; i++)
3490		if (pm->pm_pdir[i])
3491			for (j = 0; j < NPTEPG; j++) {
3492				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3493				if (pm == kernel_pmap && va < KERNBASE)
3494					continue;
3495				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3496					continue;
3497				ptep = pmap_pte_quick(pm, va);
3498				if (pmap_pte_v(ptep))
3499					printf("%x:%x ", va, *ptep);
3500			};
3501
3502}
3503
3504void
3505pmap_pvdump(pa)
3506	vm_offset_t pa;
3507{
3508	pv_entry_t pv;
3509	vm_page_t m;
3510
3511	printf("pa %x", pa);
3512	m = PHYS_TO_VM_PAGE(pa);
3513	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3514		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3515		pads(pv->pv_pmap);
3516	}
3517	printf(" ");
3518}
3519#endif
3520