pmap.c revision 111385
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 111385 2003-02-24 00:39:50Z jake $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154static struct pmaplist allpmaps;
155static struct mtx allpmaps_lock;
156
157vm_offset_t avail_start;	/* PA of first available physical page */
158vm_offset_t avail_end;		/* PA of last available physical page */
159vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
160vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
161static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
162static int pgeflag;		/* PG_G or-in */
163static int pseflag;		/* PG_PS or-in */
164
165static int nkpt;
166vm_offset_t kernel_vm_end;
167extern u_int32_t KERNend;
168
169/*
170 * Data for the pv entry allocation mechanism
171 */
172static uma_zone_t pvzone;
173static struct vm_object pvzone_obj;
174static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
175int pmap_pagedaemon_waken;
176
177/*
178 * All those kernel PT submaps that BSD is so fond of
179 */
180pt_entry_t *CMAP1 = 0;
181static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
182caddr_t CADDR1 = 0, ptvmmap = 0;
183static caddr_t CADDR2, CADDR3;
184static struct mtx CMAPCADDR12_lock;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
207				      vm_page_t m, vm_page_t mpte);
208static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
209static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
210static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
211					vm_offset_t va);
212static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
213		vm_page_t mpte, vm_page_t m);
214
215static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
216
217static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
218static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
219static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
220static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
221static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
222static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
223static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
224
225static pd_entry_t pdir4mb;
226
227CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
228CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
229
230/*
231 *	Routine:	pmap_pte
232 *	Function:
233 *		Extract the page table entry associated
234 *		with the given map/virtual_address pair.
235 */
236
237PMAP_INLINE pt_entry_t *
238pmap_pte(pmap, va)
239	register pmap_t pmap;
240	vm_offset_t va;
241{
242	pd_entry_t *pdeaddr;
243
244	if (pmap) {
245		pdeaddr = pmap_pde(pmap, va);
246		if (*pdeaddr & PG_PS)
247			return pdeaddr;
248		if (*pdeaddr) {
249			return get_ptbase(pmap) + i386_btop(va);
250		}
251	}
252	return (0);
253}
254
255/*
256 * Move the kernel virtual free pointer to the next
257 * 4MB.  This is used to help improve performance
258 * by using a large (4MB) page for much of the kernel
259 * (.text, .data, .bss)
260 */
261static vm_offset_t
262pmap_kmem_choose(vm_offset_t addr)
263{
264	vm_offset_t newaddr = addr;
265
266#ifdef I686_CPU_not	/* Problem seems to have gone away */
267	/* Deal with un-resolved Pentium4 issues */
268	if (cpu_class == CPUCLASS_686 &&
269	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
270	    (cpu_id & 0xf00) == 0xf00)
271		return newaddr;
272#endif
273#ifndef DISABLE_PSE
274	if (cpu_feature & CPUID_PSE)
275		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
276#endif
277	return newaddr;
278}
279
280/*
281 *	Bootstrap the system enough to run with virtual memory.
282 *
283 *	On the i386 this is called after mapping has already been enabled
284 *	and just syncs the pmap module with what has already been done.
285 *	[We can't call it easily with mapping off since the kernel is not
286 *	mapped with PA == VA, hence we would have to relocate every address
287 *	from the linked base (virtual) address "KERNBASE" to the actual
288 *	(physical) address starting relative to 0]
289 */
290void
291pmap_bootstrap(firstaddr, loadaddr)
292	vm_offset_t firstaddr;
293	vm_offset_t loadaddr;
294{
295	vm_offset_t va;
296	pt_entry_t *pte;
297	int i;
298
299	avail_start = firstaddr;
300
301	/*
302	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
303	 * large. It should instead be correctly calculated in locore.s and
304	 * not based on 'first' (which is a physical address, not a virtual
305	 * address, for the start of unused physical memory). The kernel
306	 * page tables are NOT double mapped and thus should not be included
307	 * in this calculation.
308	 */
309	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
310	virtual_avail = pmap_kmem_choose(virtual_avail);
311
312	virtual_end = VM_MAX_KERNEL_ADDRESS;
313
314	/*
315	 * Initialize protection array.
316	 */
317	i386_protection_init();
318
319	/*
320	 * Initialize the kernel pmap (which is statically allocated).
321	 */
322	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
323	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
324	TAILQ_INIT(&kernel_pmap->pm_pvlist);
325	LIST_INIT(&allpmaps);
326	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
327	mtx_lock_spin(&allpmaps_lock);
328	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
329	mtx_unlock_spin(&allpmaps_lock);
330	nkpt = NKPT;
331
332	/*
333	 * Reserve some special page table entries/VA space for temporary
334	 * mapping of pages.
335	 */
336#define	SYSMAP(c, p, v, n)	\
337	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
338
339	va = virtual_avail;
340	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
341
342	/*
343	 * CMAP1/CMAP2 are used for zeroing and copying pages.
344	 * CMAP3 is used for the idle process page zeroing.
345	 */
346	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
347	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
348	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
349
350	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
351
352	/*
353	 * Crashdump maps.
354	 */
355	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
356
357	/*
358	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
359	 * XXX ptmmap is not used.
360	 */
361	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
362
363	/*
364	 * msgbufp is used to map the system message buffer.
365	 * XXX msgbufmap is not used.
366	 */
367	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
368	       atop(round_page(MSGBUF_SIZE)))
369
370	/*
371	 * ptemap is used for pmap_pte_quick
372	 */
373	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
374
375	virtual_avail = va;
376
377	*CMAP1 = *CMAP2 = 0;
378	for (i = 0; i < NKPT; i++)
379		PTD[i] = 0;
380
381	pgeflag = 0;
382#ifndef DISABLE_PG_G
383	if (cpu_feature & CPUID_PGE)
384		pgeflag = PG_G;
385#endif
386#ifdef I686_CPU_not	/* Problem seems to have gone away */
387	/* Deal with un-resolved Pentium4 issues */
388	if (cpu_class == CPUCLASS_686 &&
389	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
390	    (cpu_id & 0xf00) == 0xf00) {
391		printf("Warning: Pentium 4 cpu: PG_G disabled (global flag)\n");
392		pgeflag = 0;
393	}
394#endif
395
396/*
397 * Initialize the 4MB page size flag
398 */
399	pseflag = 0;
400/*
401 * The 4MB page version of the initial
402 * kernel page mapping.
403 */
404	pdir4mb = 0;
405
406#ifndef DISABLE_PSE
407	if (cpu_feature & CPUID_PSE)
408		pseflag = PG_PS;
409#endif
410#ifdef I686_CPU_not	/* Problem seems to have gone away */
411	/* Deal with un-resolved Pentium4 issues */
412	if (cpu_class == CPUCLASS_686 &&
413	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
414	    (cpu_id & 0xf00) == 0xf00) {
415		printf("Warning: Pentium 4 cpu: PG_PS disabled (4MB pages)\n");
416		pseflag = 0;
417	}
418#endif
419#ifndef DISABLE_PSE
420	if (pseflag) {
421		pd_entry_t ptditmp;
422		/*
423		 * Note that we have enabled PSE mode
424		 */
425		ptditmp = *(PTmap + i386_btop(KERNBASE));
426		ptditmp &= ~(NBPDR - 1);
427		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
428		pdir4mb = ptditmp;
429	}
430#endif
431#ifndef SMP
432	/*
433	 * Turn on PGE/PSE.  SMP does this later on since the
434	 * 4K page tables are required for AP boot (for now).
435	 * XXX fixme.
436	 */
437	pmap_set_opt();
438#endif
439#ifdef SMP
440	if (cpu_apic_address == 0)
441		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
442
443	/* local apic is mapped on last page */
444	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
445	    (cpu_apic_address & PG_FRAME));
446#endif
447	invltlb();
448}
449
450/*
451 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
452 * BSP will run this after all the AP's have started up.
453 */
454void
455pmap_set_opt(void)
456{
457	pt_entry_t *pte;
458	vm_offset_t va, endva;
459
460	if (pgeflag && (cpu_feature & CPUID_PGE)) {
461		load_cr4(rcr4() | CR4_PGE);
462		invltlb();		/* Insurance */
463	}
464#ifndef DISABLE_PSE
465	if (pseflag && (cpu_feature & CPUID_PSE)) {
466		load_cr4(rcr4() | CR4_PSE);
467		invltlb();		/* Insurance */
468	}
469#endif
470	if (PCPU_GET(cpuid) == 0) {
471#ifndef DISABLE_PSE
472		if (pdir4mb) {
473			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
474			invltlb();	/* Insurance */
475		}
476#endif
477		if (pgeflag) {
478			/* Turn on PG_G for text, data, bss pages. */
479			va = (vm_offset_t)btext;
480#ifndef DISABLE_PSE
481			if (pseflag && (cpu_feature & CPUID_PSE)) {
482				if (va < KERNBASE + (1 << PDRSHIFT))
483					va = KERNBASE + (1 << PDRSHIFT);
484			}
485#endif
486			endva = KERNBASE + KERNend;
487			while (va < endva) {
488				pte = vtopte(va);
489				if (*pte)
490					*pte |= pgeflag;
491				va += PAGE_SIZE;
492			}
493			invltlb();	/* Insurance */
494		}
495		/*
496		 * We do not need to broadcast the invltlb here, because
497		 * each AP does it the moment it is released from the boot
498		 * lock.  See ap_init().
499		 */
500	}
501}
502
503static void *
504pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
505{
506	*flags = UMA_SLAB_PRIV;
507	return (void *)kmem_alloc(kernel_map, bytes);
508}
509
510/*
511 *	Initialize the pmap module.
512 *	Called by vm_init, to initialize any structures that the pmap
513 *	system needs to map virtual memory.
514 *	pmap_init has been enhanced to support in a fairly consistant
515 *	way, discontiguous physical memory.
516 */
517void
518pmap_init(phys_start, phys_end)
519	vm_offset_t phys_start, phys_end;
520{
521	int i;
522	int initial_pvs;
523
524	/*
525	 * Allocate memory for random pmap data structures.  Includes the
526	 * pv_head_table.
527	 */
528
529	for(i = 0; i < vm_page_array_size; i++) {
530		vm_page_t m;
531
532		m = &vm_page_array[i];
533		TAILQ_INIT(&m->md.pv_list);
534		m->md.pv_list_count = 0;
535	}
536
537	/*
538	 * init the pv free list
539	 */
540	initial_pvs = vm_page_array_size;
541	if (initial_pvs < MINPV)
542		initial_pvs = MINPV;
543	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
544	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
545	uma_zone_set_allocf(pvzone, pmap_allocf);
546	uma_prealloc(pvzone, initial_pvs);
547
548	/*
549	 * Now it is safe to enable pv_table recording.
550	 */
551	pmap_initialized = TRUE;
552}
553
554/*
555 * Initialize the address space (zone) for the pv_entries.  Set a
556 * high water mark so that the system can recover from excessive
557 * numbers of pv entries.
558 */
559void
560pmap_init2()
561{
562	int shpgperproc = PMAP_SHPGPERPROC;
563
564	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
565	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
566	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
567	pv_entry_high_water = 9 * (pv_entry_max / 10);
568	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
569}
570
571
572/***************************************************
573 * Low level helper routines.....
574 ***************************************************/
575
576#if defined(PMAP_DIAGNOSTIC)
577
578/*
579 * This code checks for non-writeable/modified pages.
580 * This should be an invalid condition.
581 */
582static int
583pmap_nw_modified(pt_entry_t ptea)
584{
585	int pte;
586
587	pte = (int) ptea;
588
589	if ((pte & (PG_M|PG_RW)) == PG_M)
590		return 1;
591	else
592		return 0;
593}
594#endif
595
596
597/*
598 * this routine defines the region(s) of memory that should
599 * not be tested for the modified bit.
600 */
601static PMAP_INLINE int
602pmap_track_modified(vm_offset_t va)
603{
604	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
605		return 1;
606	else
607		return 0;
608}
609
610#ifdef I386_CPU
611/*
612 * i386 only has "invalidate everything" and no SMP to worry about.
613 */
614PMAP_INLINE void
615pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
616{
617
618	if (pmap == kernel_pmap || pmap->pm_active)
619		invltlb();
620}
621
622PMAP_INLINE void
623pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
624{
625
626	if (pmap == kernel_pmap || pmap->pm_active)
627		invltlb();
628}
629
630PMAP_INLINE void
631pmap_invalidate_all(pmap_t pmap)
632{
633
634	if (pmap == kernel_pmap || pmap->pm_active)
635		invltlb();
636}
637#else /* !I386_CPU */
638#ifdef SMP
639/*
640 * For SMP, these functions have to use the IPI mechanism for coherence.
641 */
642void
643pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
644{
645	u_int cpumask;
646	u_int other_cpus;
647
648	critical_enter();
649	/*
650	 * We need to disable interrupt preemption but MUST NOT have
651	 * interrupts disabled here.
652	 * XXX we may need to hold schedlock to get a coherent pm_active
653	 */
654	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
655		invlpg(va);
656		smp_invlpg(va);
657	} else {
658		cpumask = PCPU_GET(cpumask);
659		other_cpus = PCPU_GET(other_cpus);
660		if (pmap->pm_active & cpumask)
661			invlpg(va);
662		if (pmap->pm_active & other_cpus)
663			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
664	}
665	critical_exit();
666}
667
668void
669pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
670{
671	u_int cpumask;
672	u_int other_cpus;
673	vm_offset_t addr;
674
675	critical_enter();
676	/*
677	 * We need to disable interrupt preemption but MUST NOT have
678	 * interrupts disabled here.
679	 * XXX we may need to hold schedlock to get a coherent pm_active
680	 */
681	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
682		for (addr = sva; addr < eva; addr += PAGE_SIZE)
683			invlpg(addr);
684		smp_invlpg_range(sva, eva);
685	} else {
686		cpumask = PCPU_GET(cpumask);
687		other_cpus = PCPU_GET(other_cpus);
688		if (pmap->pm_active & cpumask)
689			for (addr = sva; addr < eva; addr += PAGE_SIZE)
690				invlpg(addr);
691		if (pmap->pm_active & other_cpus)
692			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
693			    sva, eva);
694	}
695	critical_exit();
696}
697
698void
699pmap_invalidate_all(pmap_t pmap)
700{
701	u_int cpumask;
702	u_int other_cpus;
703
704#ifdef SWTCH_OPTIM_STATS
705	tlb_flush_count++;
706#endif
707	critical_enter();
708	/*
709	 * We need to disable interrupt preemption but MUST NOT have
710	 * interrupts disabled here.
711	 * XXX we may need to hold schedlock to get a coherent pm_active
712	 */
713	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
714		invltlb();
715		smp_invltlb();
716	} else {
717		cpumask = PCPU_GET(cpumask);
718		other_cpus = PCPU_GET(other_cpus);
719		if (pmap->pm_active & cpumask)
720			invltlb();
721		if (pmap->pm_active & other_cpus)
722			smp_masked_invltlb(pmap->pm_active & other_cpus);
723	}
724	critical_exit();
725}
726#else /* !SMP */
727/*
728 * Normal, non-SMP, 486+ invalidation functions.
729 * We inline these within pmap.c for speed.
730 */
731PMAP_INLINE void
732pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
733{
734
735	if (pmap == kernel_pmap || pmap->pm_active)
736		invlpg(va);
737}
738
739PMAP_INLINE void
740pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
741{
742	vm_offset_t addr;
743
744	if (pmap == kernel_pmap || pmap->pm_active)
745		for (addr = sva; addr < eva; addr += PAGE_SIZE)
746			invlpg(addr);
747}
748
749PMAP_INLINE void
750pmap_invalidate_all(pmap_t pmap)
751{
752
753	if (pmap == kernel_pmap || pmap->pm_active)
754		invltlb();
755}
756#endif /* !SMP */
757#endif /* !I386_CPU */
758
759/*
760 * Return an address which is the base of the Virtual mapping of
761 * all the PTEs for the given pmap. Note this doesn't say that
762 * all the PTEs will be present or that the pages there are valid.
763 * The PTEs are made available by the recursive mapping trick.
764 * It will map in the alternate PTE space if needed.
765 */
766static pt_entry_t *
767get_ptbase(pmap)
768	pmap_t pmap;
769{
770	pd_entry_t frame;
771
772	/* are we current address space or kernel? */
773	if (pmap == kernel_pmap)
774		return PTmap;
775	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
776	if (frame == (PTDpde & PG_FRAME))
777		return PTmap;
778	/* otherwise, we are alternate address space */
779	if (frame != (APTDpde & PG_FRAME)) {
780		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
781		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
782	}
783	return APTmap;
784}
785
786/*
787 * Super fast pmap_pte routine best used when scanning
788 * the pv lists.  This eliminates many coarse-grained
789 * invltlb calls.  Note that many of the pv list
790 * scans are across different pmaps.  It is very wasteful
791 * to do an entire invltlb for checking a single mapping.
792 */
793
794static pt_entry_t *
795pmap_pte_quick(pmap, va)
796	register pmap_t pmap;
797	vm_offset_t va;
798{
799	pd_entry_t pde, newpf;
800	pde = pmap->pm_pdir[va >> PDRSHIFT];
801	if (pde != 0) {
802		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
803		unsigned index = i386_btop(va);
804		/* are we current address space or kernel? */
805		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
806			return PTmap + index;
807		newpf = pde & PG_FRAME;
808		if (((*PMAP1) & PG_FRAME) != newpf) {
809			*PMAP1 = newpf | PG_RW | PG_V;
810			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
811		}
812		return PADDR1 + (index & (NPTEPG - 1));
813	}
814	return (0);
815}
816
817/*
818 *	Routine:	pmap_extract
819 *	Function:
820 *		Extract the physical page address associated
821 *		with the given map/virtual_address pair.
822 */
823vm_offset_t
824pmap_extract(pmap, va)
825	register pmap_t pmap;
826	vm_offset_t va;
827{
828	vm_offset_t rtval;	/* XXX FIXME */
829	vm_offset_t pdirindex;
830
831	if (pmap == 0)
832		return 0;
833	pdirindex = va >> PDRSHIFT;
834	rtval = pmap->pm_pdir[pdirindex];
835	if (rtval != 0) {
836		pt_entry_t *pte;
837		if ((rtval & PG_PS) != 0) {
838			rtval &= ~(NBPDR - 1);
839			rtval |= va & (NBPDR - 1);
840			return rtval;
841		}
842		pte = get_ptbase(pmap) + i386_btop(va);
843		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
844		return rtval;
845	}
846	return 0;
847
848}
849
850/***************************************************
851 * Low level mapping routines.....
852 ***************************************************/
853
854/*
855 * Add a wired page to the kva.
856 * Note: not SMP coherent.
857 */
858PMAP_INLINE void
859pmap_kenter(vm_offset_t va, vm_offset_t pa)
860{
861	pt_entry_t *pte;
862
863	pte = vtopte(va);
864	*pte = pa | PG_RW | PG_V | pgeflag;
865}
866
867/*
868 * Remove a page from the kernel pagetables.
869 * Note: not SMP coherent.
870 */
871PMAP_INLINE void
872pmap_kremove(vm_offset_t va)
873{
874	pt_entry_t *pte;
875
876	pte = vtopte(va);
877	*pte = 0;
878}
879
880/*
881 *	Used to map a range of physical addresses into kernel
882 *	virtual address space.
883 *
884 *	The value passed in '*virt' is a suggested virtual address for
885 *	the mapping. Architectures which can support a direct-mapped
886 *	physical to virtual region can return the appropriate address
887 *	within that region, leaving '*virt' unchanged. Other
888 *	architectures should map the pages starting at '*virt' and
889 *	update '*virt' with the first usable address after the mapped
890 *	region.
891 */
892vm_offset_t
893pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
894{
895	vm_offset_t va, sva;
896
897	va = sva = *virt;
898	while (start < end) {
899		pmap_kenter(va, start);
900		va += PAGE_SIZE;
901		start += PAGE_SIZE;
902	}
903	pmap_invalidate_range(kernel_pmap, sva, va);
904	*virt = va;
905	return (sva);
906}
907
908
909/*
910 * Add a list of wired pages to the kva
911 * this routine is only used for temporary
912 * kernel mappings that do not need to have
913 * page modification or references recorded.
914 * Note that old mappings are simply written
915 * over.  The page *must* be wired.
916 * Note: SMP coherent.  Uses a ranged shootdown IPI.
917 */
918void
919pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
920{
921	vm_offset_t va;
922
923	va = sva;
924	while (count-- > 0) {
925		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
926		va += PAGE_SIZE;
927		m++;
928	}
929	pmap_invalidate_range(kernel_pmap, sva, va);
930}
931
932/*
933 * This routine tears out page mappings from the
934 * kernel -- it is meant only for temporary mappings.
935 * Note: SMP coherent.  Uses a ranged shootdown IPI.
936 */
937void
938pmap_qremove(vm_offset_t sva, int count)
939{
940	vm_offset_t va;
941
942	va = sva;
943	while (count-- > 0) {
944		pmap_kremove(va);
945		va += PAGE_SIZE;
946	}
947	pmap_invalidate_range(kernel_pmap, sva, va);
948}
949
950static vm_page_t
951pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
952{
953	vm_page_t m;
954
955retry:
956	m = vm_page_lookup(object, pindex);
957	if (m != NULL) {
958		vm_page_lock_queues();
959		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
960			goto retry;
961		vm_page_unlock_queues();
962	}
963	return m;
964}
965
966#ifndef KSTACK_MAX_PAGES
967#define KSTACK_MAX_PAGES 32
968#endif
969
970/*
971 * Create the kernel stack (including pcb for i386) for a new thread.
972 * This routine directly affects the fork perf for a process and
973 * create performance for a thread.
974 */
975void
976pmap_new_thread(struct thread *td, int pages)
977{
978	int i;
979	vm_page_t ma[KSTACK_MAX_PAGES];
980	vm_object_t ksobj;
981	vm_page_t m;
982	vm_offset_t ks;
983
984	/* Bounds check */
985	if (pages <= 1)
986		pages = KSTACK_PAGES;
987	else if (pages > KSTACK_MAX_PAGES)
988		pages = KSTACK_MAX_PAGES;
989
990	/*
991	 * allocate object for the kstack
992	 */
993	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
994	td->td_kstack_obj = ksobj;
995
996	/* get a kernel virtual address for the kstack for this thread */
997#ifdef KSTACK_GUARD
998	ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
999	if (ks == 0)
1000		panic("pmap_new_thread: kstack allocation failed");
1001	if (*vtopte(ks) != 0)
1002		pmap_qremove(ks, 1);
1003	ks += PAGE_SIZE;
1004	td->td_kstack = ks;
1005#else
1006	/* get a kernel virtual address for the kstack for this thread */
1007	ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
1008	if (ks == 0)
1009		panic("pmap_new_thread: kstack allocation failed");
1010	td->td_kstack = ks;
1011#endif
1012	/*
1013	 * Knowing the number of pages allocated is useful when you
1014	 * want to deallocate them.
1015	 */
1016	td->td_kstack_pages = pages;
1017
1018	/*
1019	 * For the length of the stack, link in a real page of ram for each
1020	 * page of stack.
1021	 */
1022	for (i = 0; i < pages; i++) {
1023		/*
1024		 * Get a kernel stack page
1025		 */
1026		m = vm_page_grab(ksobj, i,
1027		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
1028		ma[i] = m;
1029
1030		vm_page_lock_queues();
1031		vm_page_wakeup(m);
1032		vm_page_flag_clear(m, PG_ZERO);
1033		m->valid = VM_PAGE_BITS_ALL;
1034		vm_page_unlock_queues();
1035	}
1036	pmap_qenter(ks, ma, pages);
1037}
1038
1039/*
1040 * Dispose the kernel stack for a thread that has exited.
1041 * This routine directly impacts the exit perf of a process and thread.
1042 */
1043void
1044pmap_dispose_thread(td)
1045	struct thread *td;
1046{
1047	int i;
1048	int pages;
1049	vm_object_t ksobj;
1050	vm_offset_t ks;
1051	vm_page_t m;
1052
1053	pages = td->td_kstack_pages;
1054	ksobj = td->td_kstack_obj;
1055	ks = td->td_kstack;
1056	pmap_qremove(ks, pages);
1057	for (i = 0; i < pages; i++) {
1058		m = vm_page_lookup(ksobj, i);
1059		if (m == NULL)
1060			panic("pmap_dispose_thread: kstack already missing?");
1061		vm_page_lock_queues();
1062		vm_page_busy(m);
1063		vm_page_unwire(m, 0);
1064		vm_page_free(m);
1065		vm_page_unlock_queues();
1066	}
1067	/*
1068	 * Free the space that this stack was mapped to in the kernel
1069	 * address map.
1070	 */
1071#ifdef KSTACK_GUARD
1072	kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
1073#else
1074	kmem_free(kernel_map, ks, pages * PAGE_SIZE);
1075#endif
1076	vm_object_deallocate(ksobj);
1077}
1078
1079/*
1080 * Set up a variable sized alternate kstack.  Though it may look MI, it may
1081 * need to be different on certain arches like ia64.
1082 */
1083void
1084pmap_new_altkstack(struct thread *td, int pages)
1085{
1086	/* shuffle the original stack */
1087	td->td_altkstack_obj = td->td_kstack_obj;
1088	td->td_altkstack = td->td_kstack;
1089	td->td_altkstack_pages = td->td_kstack_pages;
1090
1091	pmap_new_thread(td, pages);
1092}
1093
1094void
1095pmap_dispose_altkstack(td)
1096	struct thread *td;
1097{
1098	pmap_dispose_thread(td);
1099
1100	/* restore the original kstack */
1101	td->td_kstack = td->td_altkstack;
1102	td->td_kstack_obj = td->td_altkstack_obj;
1103	td->td_kstack_pages = td->td_altkstack_pages;
1104	td->td_altkstack = 0;
1105	td->td_altkstack_obj = NULL;
1106	td->td_altkstack_pages = 0;
1107}
1108
1109/*
1110 * Allow the Kernel stack for a thread to be prejudicially paged out.
1111 */
1112void
1113pmap_swapout_thread(td)
1114	struct thread *td;
1115{
1116	int i;
1117	int pages;
1118	vm_object_t ksobj;
1119	vm_offset_t ks;
1120	vm_page_t m;
1121
1122	pages = td->td_kstack_pages;
1123	ksobj = td->td_kstack_obj;
1124	ks = td->td_kstack;
1125	pmap_qremove(ks, pages);
1126	for (i = 0; i < pages; i++) {
1127		m = vm_page_lookup(ksobj, i);
1128		if (m == NULL)
1129			panic("pmap_swapout_thread: kstack already missing?");
1130		vm_page_lock_queues();
1131		vm_page_dirty(m);
1132		vm_page_unwire(m, 0);
1133		vm_page_unlock_queues();
1134	}
1135}
1136
1137/*
1138 * Bring the kernel stack for a specified thread back in.
1139 */
1140void
1141pmap_swapin_thread(td)
1142	struct thread *td;
1143{
1144	int i, rv;
1145	int pages;
1146	vm_page_t ma[KSTACK_MAX_PAGES];
1147	vm_object_t ksobj;
1148	vm_offset_t ks;
1149	vm_page_t m;
1150
1151	pages = td->td_kstack_pages;
1152	ksobj = td->td_kstack_obj;
1153	ks = td->td_kstack;
1154	for (i = 0; i < pages; i++) {
1155		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1156		if (m->valid != VM_PAGE_BITS_ALL) {
1157			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1158			if (rv != VM_PAGER_OK)
1159				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1160			m = vm_page_lookup(ksobj, i);
1161			m->valid = VM_PAGE_BITS_ALL;
1162		}
1163		ma[i] = m;
1164		vm_page_lock_queues();
1165		vm_page_wire(m);
1166		vm_page_wakeup(m);
1167		vm_page_unlock_queues();
1168	}
1169	pmap_qenter(ks, ma, pages);
1170}
1171
1172/***************************************************
1173 * Page table page management routines.....
1174 ***************************************************/
1175
1176/*
1177 * This routine unholds page table pages, and if the hold count
1178 * drops to zero, then it decrements the wire count.
1179 */
1180static int
1181_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1182{
1183
1184	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1185		vm_page_lock_queues();
1186
1187	if (m->hold_count == 0) {
1188		vm_offset_t pteva;
1189		/*
1190		 * unmap the page table page
1191		 */
1192		pmap->pm_pdir[m->pindex] = 0;
1193		--pmap->pm_stats.resident_count;
1194		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1195		    (PTDpde & PG_FRAME)) {
1196			/*
1197			 * Do an invltlb to make the invalidated mapping
1198			 * take effect immediately.
1199			 */
1200			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1201			pmap_invalidate_page(pmap, pteva);
1202		}
1203
1204		/*
1205		 * If the page is finally unwired, simply free it.
1206		 */
1207		--m->wire_count;
1208		if (m->wire_count == 0) {
1209			vm_page_busy(m);
1210			vm_page_free_zero(m);
1211			atomic_subtract_int(&cnt.v_wire_count, 1);
1212		}
1213		return 1;
1214	}
1215	return 0;
1216}
1217
1218static PMAP_INLINE int
1219pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1220{
1221	vm_page_unhold(m);
1222	if (m->hold_count == 0)
1223		return _pmap_unwire_pte_hold(pmap, m);
1224	else
1225		return 0;
1226}
1227
1228/*
1229 * After removing a page table entry, this routine is used to
1230 * conditionally free the page, and manage the hold/wire counts.
1231 */
1232static int
1233pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1234{
1235	unsigned ptepindex;
1236	if (va >= VM_MAXUSER_ADDRESS)
1237		return 0;
1238
1239	if (mpte == NULL) {
1240		ptepindex = (va >> PDRSHIFT);
1241		if (pmap->pm_pteobj->root &&
1242			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1243			mpte = pmap->pm_pteobj->root;
1244		} else {
1245			while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
1246			       vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
1247				vm_page_lock_queues();
1248		}
1249	}
1250
1251	return pmap_unwire_pte_hold(pmap, mpte);
1252}
1253
1254void
1255pmap_pinit0(pmap)
1256	struct pmap *pmap;
1257{
1258
1259	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1260	pmap->pm_active = 0;
1261	TAILQ_INIT(&pmap->pm_pvlist);
1262	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1263	mtx_lock_spin(&allpmaps_lock);
1264	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1265	mtx_unlock_spin(&allpmaps_lock);
1266}
1267
1268/*
1269 * Initialize a preallocated and zeroed pmap structure,
1270 * such as one in a vmspace structure.
1271 */
1272void
1273pmap_pinit(pmap)
1274	register struct pmap *pmap;
1275{
1276	vm_page_t ptdpg;
1277
1278	/*
1279	 * No need to allocate page table space yet but we do need a valid
1280	 * page directory table.
1281	 */
1282	if (pmap->pm_pdir == NULL)
1283		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_pageable(kernel_map,
1284		    NBPTD);
1285
1286	/*
1287	 * allocate object for the ptes
1288	 */
1289	if (pmap->pm_pteobj == NULL)
1290		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI +
1291		    NPGPTD);
1292
1293	/*
1294	 * allocate the page directory page
1295	 */
1296	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1297	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1298	vm_page_lock_queues();
1299	vm_page_flag_clear(ptdpg, PG_BUSY);
1300	ptdpg->valid = VM_PAGE_BITS_ALL;
1301	vm_page_unlock_queues();
1302
1303	pmap_qenter((vm_offset_t)pmap->pm_pdir, &ptdpg, NPGPTD);
1304	if ((ptdpg->flags & PG_ZERO) == 0)
1305		bzero(pmap->pm_pdir, PAGE_SIZE);
1306
1307	mtx_lock_spin(&allpmaps_lock);
1308	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1309	mtx_unlock_spin(&allpmaps_lock);
1310	/* Wire in kernel global address entries. */
1311	/* XXX copies current process, does not fill in MPPTDI */
1312	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1313#ifdef SMP
1314	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1315#endif
1316
1317	/* install self-referential address mapping entry */
1318	pmap->pm_pdir[PTDPTDI] =
1319		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1320
1321	pmap->pm_active = 0;
1322	TAILQ_INIT(&pmap->pm_pvlist);
1323	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1324}
1325
1326/*
1327 * Wire in kernel global address entries.  To avoid a race condition
1328 * between pmap initialization and pmap_growkernel, this procedure
1329 * should be called after the vmspace is attached to the process
1330 * but before this pmap is activated.
1331 */
1332void
1333pmap_pinit2(pmap)
1334	struct pmap *pmap;
1335{
1336	/* XXX: Remove this stub when no longer called */
1337}
1338
1339static int
1340pmap_release_free_page(pmap_t pmap, vm_page_t p)
1341{
1342	pd_entry_t *pde = pmap->pm_pdir;
1343
1344	/*
1345	 * This code optimizes the case of freeing non-busy
1346	 * page-table pages.  Those pages are zero now, and
1347	 * might as well be placed directly into the zero queue.
1348	 */
1349	vm_page_lock_queues();
1350	if (vm_page_sleep_if_busy(p, FALSE, "pmaprl"))
1351		return (0);
1352	vm_page_busy(p);
1353
1354	/*
1355	 * Remove the page table page from the processes address space.
1356	 */
1357	pde[p->pindex] = 0;
1358	pmap->pm_stats.resident_count--;
1359
1360	if (p->hold_count)  {
1361		panic("pmap_release: freeing held page table page");
1362	}
1363	/*
1364	 * Page directory pages need to have the kernel
1365	 * stuff cleared, so they can go into the zero queue also.
1366	 */
1367	if (p->pindex == PTDPTDI) {
1368		bzero(pde + KPTDI, nkpt * sizeof(pd_entry_t));
1369#ifdef SMP
1370		pde[MPPTDI] = 0;
1371#endif
1372		pde[APTDPTDI] = 0;
1373		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1374	}
1375
1376	p->wire_count--;
1377	atomic_subtract_int(&cnt.v_wire_count, 1);
1378	vm_page_free_zero(p);
1379	vm_page_unlock_queues();
1380	return 1;
1381}
1382
1383/*
1384 * this routine is called if the page table page is not
1385 * mapped correctly.
1386 */
1387static vm_page_t
1388_pmap_allocpte(pmap, ptepindex)
1389	pmap_t	pmap;
1390	unsigned ptepindex;
1391{
1392	vm_offset_t pteva, ptepa;	/* XXXPA */
1393	vm_page_t m;
1394
1395	/*
1396	 * Find or fabricate a new pagetable page
1397	 */
1398	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1399	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1400
1401	KASSERT(m->queue == PQ_NONE,
1402		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1403
1404	/*
1405	 * Increment the hold count for the page table page
1406	 * (denoting a new mapping.)
1407	 */
1408	m->hold_count++;
1409
1410	/*
1411	 * Map the pagetable page into the process address space, if
1412	 * it isn't already there.
1413	 */
1414
1415	pmap->pm_stats.resident_count++;
1416
1417	ptepa = VM_PAGE_TO_PHYS(m);
1418	pmap->pm_pdir[ptepindex] =
1419		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1420
1421	/*
1422	 * Try to use the new mapping, but if we cannot, then
1423	 * do it with the routine that maps the page explicitly.
1424	 */
1425	if ((m->flags & PG_ZERO) == 0) {
1426		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1427		    (PTDpde & PG_FRAME)) {
1428			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1429			bzero((caddr_t) pteva, PAGE_SIZE);
1430		} else {
1431			pmap_zero_page(m);
1432		}
1433	}
1434	vm_page_lock_queues();
1435	m->valid = VM_PAGE_BITS_ALL;
1436	vm_page_flag_clear(m, PG_ZERO);
1437	vm_page_wakeup(m);
1438	vm_page_unlock_queues();
1439
1440	return m;
1441}
1442
1443static vm_page_t
1444pmap_allocpte(pmap_t pmap, vm_offset_t va)
1445{
1446	unsigned ptepindex;
1447	pd_entry_t ptepa;
1448	vm_page_t m;
1449
1450	/*
1451	 * Calculate pagetable page index
1452	 */
1453	ptepindex = va >> PDRSHIFT;
1454
1455	/*
1456	 * Get the page directory entry
1457	 */
1458	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1459
1460	/*
1461	 * This supports switching from a 4MB page to a
1462	 * normal 4K page.
1463	 */
1464	if (ptepa & PG_PS) {
1465		pmap->pm_pdir[ptepindex] = 0;
1466		ptepa = 0;
1467		pmap_invalidate_all(kernel_pmap);
1468	}
1469
1470	/*
1471	 * If the page table page is mapped, we just increment the
1472	 * hold count, and activate it.
1473	 */
1474	if (ptepa) {
1475		/*
1476		 * In order to get the page table page, try the
1477		 * hint first.
1478		 */
1479		if (pmap->pm_pteobj->root &&
1480			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1481			m = pmap->pm_pteobj->root;
1482		} else {
1483			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1484		}
1485		m->hold_count++;
1486		return m;
1487	}
1488	/*
1489	 * Here if the pte page isn't mapped, or if it has been deallocated.
1490	 */
1491	return _pmap_allocpte(pmap, ptepindex);
1492}
1493
1494
1495/***************************************************
1496* Pmap allocation/deallocation routines.
1497 ***************************************************/
1498
1499/*
1500 * Release any resources held by the given physical map.
1501 * Called when a pmap initialized by pmap_pinit is being released.
1502 * Should only be called if the map contains no valid mappings.
1503 */
1504void
1505pmap_release(pmap_t pmap)
1506{
1507	vm_page_t p,n,ptdpg;
1508	vm_object_t object = pmap->pm_pteobj;
1509	int curgeneration;
1510
1511#if defined(DIAGNOSTIC)
1512	if (object->ref_count != 1)
1513		panic("pmap_release: pteobj reference count != 1");
1514#endif
1515
1516	ptdpg = NULL;
1517	mtx_lock_spin(&allpmaps_lock);
1518	LIST_REMOVE(pmap, pm_list);
1519	mtx_unlock_spin(&allpmaps_lock);
1520retry:
1521	curgeneration = object->generation;
1522	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1523		n = TAILQ_NEXT(p, listq);
1524		if (p->pindex == PTDPTDI) {
1525			ptdpg = p;
1526			continue;
1527		}
1528		while (1) {
1529			if (!pmap_release_free_page(pmap, p) &&
1530				(object->generation != curgeneration))
1531				goto retry;
1532		}
1533	}
1534
1535	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1536		goto retry;
1537}
1538
1539static int
1540kvm_size(SYSCTL_HANDLER_ARGS)
1541{
1542	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1543
1544	return sysctl_handle_long(oidp, &ksize, 0, req);
1545}
1546SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1547    0, 0, kvm_size, "IU", "Size of KVM");
1548
1549static int
1550kvm_free(SYSCTL_HANDLER_ARGS)
1551{
1552	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1553
1554	return sysctl_handle_long(oidp, &kfree, 0, req);
1555}
1556SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1557    0, 0, kvm_free, "IU", "Amount of KVM free");
1558
1559/*
1560 * grow the number of kernel page table entries, if needed
1561 */
1562void
1563pmap_growkernel(vm_offset_t addr)
1564{
1565	struct pmap *pmap;
1566	int s;
1567	vm_offset_t ptppaddr;
1568	vm_page_t nkpg;
1569	pd_entry_t newpdir;
1570
1571	s = splhigh();
1572	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1573	if (kernel_vm_end == 0) {
1574		kernel_vm_end = KERNBASE;
1575		nkpt = 0;
1576		while (pdir_pde(PTD, kernel_vm_end)) {
1577			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1578			nkpt++;
1579		}
1580	}
1581	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1582	while (kernel_vm_end < addr) {
1583		if (pdir_pde(PTD, kernel_vm_end)) {
1584			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1585			continue;
1586		}
1587
1588		/*
1589		 * This index is bogus, but out of the way
1590		 */
1591		nkpg = vm_page_alloc(NULL, nkpt,
1592		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1593		if (!nkpg)
1594			panic("pmap_growkernel: no memory to grow kernel");
1595
1596		nkpt++;
1597
1598		pmap_zero_page(nkpg);
1599		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1600		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1601		pdir_pde(PTD, kernel_vm_end) = newpdir;
1602
1603		mtx_lock_spin(&allpmaps_lock);
1604		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1605			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1606		}
1607		mtx_unlock_spin(&allpmaps_lock);
1608		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1609	}
1610	splx(s);
1611}
1612
1613
1614/***************************************************
1615 * page management routines.
1616 ***************************************************/
1617
1618/*
1619 * free the pv_entry back to the free list
1620 */
1621static PMAP_INLINE void
1622free_pv_entry(pv_entry_t pv)
1623{
1624	pv_entry_count--;
1625	uma_zfree(pvzone, pv);
1626}
1627
1628/*
1629 * get a new pv_entry, allocating a block from the system
1630 * when needed.
1631 * the memory allocation is performed bypassing the malloc code
1632 * because of the possibility of allocations at interrupt time.
1633 */
1634static pv_entry_t
1635get_pv_entry(void)
1636{
1637	pv_entry_count++;
1638	if (pv_entry_high_water &&
1639		(pv_entry_count > pv_entry_high_water) &&
1640		(pmap_pagedaemon_waken == 0)) {
1641		pmap_pagedaemon_waken = 1;
1642		wakeup (&vm_pages_needed);
1643	}
1644	return uma_zalloc(pvzone, M_NOWAIT);
1645}
1646
1647/*
1648 * If it is the first entry on the list, it is actually
1649 * in the header and we must copy the following entry up
1650 * to the header.  Otherwise we must search the list for
1651 * the entry.  In either case we free the now unused entry.
1652 */
1653
1654static int
1655pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1656{
1657	pv_entry_t pv;
1658	int rtval;
1659	int s;
1660
1661	s = splvm();
1662	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1663	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1664		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1665			if (pmap == pv->pv_pmap && va == pv->pv_va)
1666				break;
1667		}
1668	} else {
1669		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1670			if (va == pv->pv_va)
1671				break;
1672		}
1673	}
1674
1675	rtval = 0;
1676	if (pv) {
1677		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1678		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1679		m->md.pv_list_count--;
1680		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1681			vm_page_flag_clear(m, PG_WRITEABLE);
1682
1683		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1684		free_pv_entry(pv);
1685	}
1686
1687	splx(s);
1688	return rtval;
1689}
1690
1691/*
1692 * Create a pv entry for page at pa for
1693 * (pmap, va).
1694 */
1695static void
1696pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1697{
1698
1699	int s;
1700	pv_entry_t pv;
1701
1702	s = splvm();
1703	pv = get_pv_entry();
1704	pv->pv_va = va;
1705	pv->pv_pmap = pmap;
1706	pv->pv_ptem = mpte;
1707
1708	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1709	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1710	m->md.pv_list_count++;
1711
1712	splx(s);
1713}
1714
1715/*
1716 * pmap_remove_pte: do the things to unmap a page in a process
1717 */
1718static int
1719pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1720{
1721	pt_entry_t oldpte;
1722	vm_page_t m;
1723
1724	oldpte = atomic_readandclear_int(ptq);
1725	if (oldpte & PG_W)
1726		pmap->pm_stats.wired_count -= 1;
1727	/*
1728	 * Machines that don't support invlpg, also don't support
1729	 * PG_G.
1730	 */
1731	if (oldpte & PG_G)
1732		pmap_invalidate_page(kernel_pmap, va);
1733	pmap->pm_stats.resident_count -= 1;
1734	if (oldpte & PG_MANAGED) {
1735		m = PHYS_TO_VM_PAGE(oldpte);
1736		if (oldpte & PG_M) {
1737#if defined(PMAP_DIAGNOSTIC)
1738			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1739				printf(
1740	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1741				    va, oldpte);
1742			}
1743#endif
1744			if (pmap_track_modified(va))
1745				vm_page_dirty(m);
1746		}
1747		if (oldpte & PG_A)
1748			vm_page_flag_set(m, PG_REFERENCED);
1749		return pmap_remove_entry(pmap, m, va);
1750	} else {
1751		return pmap_unuse_pt(pmap, va, NULL);
1752	}
1753
1754	return 0;
1755}
1756
1757/*
1758 * Remove a single page from a process address space
1759 */
1760static void
1761pmap_remove_page(pmap_t pmap, vm_offset_t va)
1762{
1763	register pt_entry_t *ptq;
1764
1765	/*
1766	 * if there is no pte for this address, just skip it!!!
1767	 */
1768	if (*pmap_pde(pmap, va) == 0) {
1769		return;
1770	}
1771
1772	/*
1773	 * get a local va for mappings for this pmap.
1774	 */
1775	ptq = get_ptbase(pmap) + i386_btop(va);
1776	if (*ptq) {
1777		(void) pmap_remove_pte(pmap, ptq, va);
1778		pmap_invalidate_page(pmap, va);
1779	}
1780	return;
1781}
1782
1783/*
1784 *	Remove the given range of addresses from the specified map.
1785 *
1786 *	It is assumed that the start and end are properly
1787 *	rounded to the page size.
1788 */
1789void
1790pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1791{
1792	register pt_entry_t *ptbase;
1793	vm_offset_t pdnxt;
1794	pd_entry_t ptpaddr;
1795	vm_offset_t sindex, eindex;
1796	int anyvalid;
1797
1798	if (pmap == NULL)
1799		return;
1800
1801	if (pmap->pm_stats.resident_count == 0)
1802		return;
1803
1804	/*
1805	 * special handling of removing one page.  a very
1806	 * common operation and easy to short circuit some
1807	 * code.
1808	 */
1809	if ((sva + PAGE_SIZE == eva) &&
1810	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1811		pmap_remove_page(pmap, sva);
1812		return;
1813	}
1814
1815	anyvalid = 0;
1816
1817	/*
1818	 * Get a local virtual address for the mappings that are being
1819	 * worked with.
1820	 */
1821	ptbase = get_ptbase(pmap);
1822
1823	sindex = i386_btop(sva);
1824	eindex = i386_btop(eva);
1825
1826	for (; sindex < eindex; sindex = pdnxt) {
1827		unsigned pdirindex;
1828
1829		/*
1830		 * Calculate index for next page table.
1831		 */
1832		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1833		if (pmap->pm_stats.resident_count == 0)
1834			break;
1835
1836		pdirindex = sindex / NPDEPG;
1837		ptpaddr = pmap->pm_pdir[pdirindex];
1838		if ((ptpaddr & PG_PS) != 0) {
1839			pmap->pm_pdir[pdirindex] = 0;
1840			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1841			anyvalid++;
1842			continue;
1843		}
1844
1845		/*
1846		 * Weed out invalid mappings. Note: we assume that the page
1847		 * directory table is always allocated, and in kernel virtual.
1848		 */
1849		if (ptpaddr == 0)
1850			continue;
1851
1852		/*
1853		 * Limit our scan to either the end of the va represented
1854		 * by the current page table page, or to the end of the
1855		 * range being removed.
1856		 */
1857		if (pdnxt > eindex) {
1858			pdnxt = eindex;
1859		}
1860
1861		for (; sindex != pdnxt; sindex++) {
1862			vm_offset_t va;
1863			if (ptbase[sindex] == 0) {
1864				continue;
1865			}
1866			va = i386_ptob(sindex);
1867
1868			anyvalid++;
1869			if (pmap_remove_pte(pmap, ptbase + sindex, va))
1870				break;
1871		}
1872	}
1873
1874	if (anyvalid)
1875		pmap_invalidate_all(pmap);
1876}
1877
1878/*
1879 *	Routine:	pmap_remove_all
1880 *	Function:
1881 *		Removes this physical page from
1882 *		all physical maps in which it resides.
1883 *		Reflects back modify bits to the pager.
1884 *
1885 *	Notes:
1886 *		Original versions of this routine were very
1887 *		inefficient because they iteratively called
1888 *		pmap_remove (slow...)
1889 */
1890
1891void
1892pmap_remove_all(vm_page_t m)
1893{
1894	register pv_entry_t pv;
1895	pt_entry_t *pte, tpte;
1896	int s;
1897
1898#if defined(PMAP_DIAGNOSTIC)
1899	/*
1900	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1901	 */
1902	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1903		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1904		    VM_PAGE_TO_PHYS(m));
1905	}
1906#endif
1907	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1908	s = splvm();
1909	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1910		pv->pv_pmap->pm_stats.resident_count--;
1911		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1912		tpte = atomic_readandclear_int(pte);
1913		if (tpte & PG_W)
1914			pv->pv_pmap->pm_stats.wired_count--;
1915		if (tpte & PG_A)
1916			vm_page_flag_set(m, PG_REFERENCED);
1917
1918		/*
1919		 * Update the vm_page_t clean and reference bits.
1920		 */
1921		if (tpte & PG_M) {
1922#if defined(PMAP_DIAGNOSTIC)
1923			if (pmap_nw_modified((pt_entry_t) tpte)) {
1924				printf(
1925	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1926				    pv->pv_va, tpte);
1927			}
1928#endif
1929			if (pmap_track_modified(pv->pv_va))
1930				vm_page_dirty(m);
1931		}
1932		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1933		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1934		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1935		m->md.pv_list_count--;
1936		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1937		free_pv_entry(pv);
1938	}
1939	vm_page_flag_clear(m, PG_WRITEABLE);
1940	splx(s);
1941}
1942
1943/*
1944 *	Set the physical protection on the
1945 *	specified range of this map as requested.
1946 */
1947void
1948pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1949{
1950	register pt_entry_t *ptbase;
1951	vm_offset_t pdnxt;
1952	pd_entry_t ptpaddr;
1953	vm_offset_t sindex, eindex;
1954	int anychanged;
1955
1956	if (pmap == NULL)
1957		return;
1958
1959	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1960		pmap_remove(pmap, sva, eva);
1961		return;
1962	}
1963
1964	if (prot & VM_PROT_WRITE)
1965		return;
1966
1967	anychanged = 0;
1968
1969	ptbase = get_ptbase(pmap);
1970
1971	sindex = i386_btop(sva);
1972	eindex = i386_btop(eva);
1973
1974	for (; sindex < eindex; sindex = pdnxt) {
1975
1976		unsigned pdirindex;
1977
1978		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1979
1980		pdirindex = sindex / NPDEPG;
1981		ptpaddr = pmap->pm_pdir[pdirindex];
1982		if ((ptpaddr & PG_PS) != 0) {
1983			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1984			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1985			anychanged++;
1986			continue;
1987		}
1988
1989		/*
1990		 * Weed out invalid mappings. Note: we assume that the page
1991		 * directory table is always allocated, and in kernel virtual.
1992		 */
1993		if (ptpaddr == 0)
1994			continue;
1995
1996		if (pdnxt > eindex) {
1997			pdnxt = eindex;
1998		}
1999
2000		for (; sindex != pdnxt; sindex++) {
2001
2002			pt_entry_t pbits;
2003			vm_page_t m;
2004
2005			pbits = ptbase[sindex];
2006
2007			if (pbits & PG_MANAGED) {
2008				m = NULL;
2009				if (pbits & PG_A) {
2010					m = PHYS_TO_VM_PAGE(pbits);
2011					vm_page_flag_set(m, PG_REFERENCED);
2012					pbits &= ~PG_A;
2013				}
2014				if (pbits & PG_M) {
2015					if (pmap_track_modified(i386_ptob(sindex))) {
2016						if (m == NULL)
2017							m = PHYS_TO_VM_PAGE(pbits);
2018						vm_page_dirty(m);
2019						pbits &= ~PG_M;
2020					}
2021				}
2022			}
2023
2024			pbits &= ~PG_RW;
2025
2026			if (pbits != ptbase[sindex]) {
2027				ptbase[sindex] = pbits;
2028				anychanged = 1;
2029			}
2030		}
2031	}
2032	if (anychanged)
2033		pmap_invalidate_all(pmap);
2034}
2035
2036/*
2037 *	Insert the given physical page (p) at
2038 *	the specified virtual address (v) in the
2039 *	target physical map with the protection requested.
2040 *
2041 *	If specified, the page will be wired down, meaning
2042 *	that the related pte can not be reclaimed.
2043 *
2044 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2045 *	or lose information.  That is, this routine must actually
2046 *	insert this page into the given map NOW.
2047 */
2048void
2049pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2050	   boolean_t wired)
2051{
2052	vm_offset_t pa;
2053	register pt_entry_t *pte;
2054	vm_offset_t opa;
2055	pt_entry_t origpte, newpte;
2056	vm_page_t mpte;
2057
2058	if (pmap == NULL)
2059		return;
2060
2061	va &= PG_FRAME;
2062#ifdef PMAP_DIAGNOSTIC
2063	if (va > VM_MAX_KERNEL_ADDRESS)
2064		panic("pmap_enter: toobig");
2065	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2066		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2067#endif
2068
2069	mpte = NULL;
2070	/*
2071	 * In the case that a page table page is not
2072	 * resident, we are creating it here.
2073	 */
2074	if (va < VM_MAXUSER_ADDRESS) {
2075		mpte = pmap_allocpte(pmap, va);
2076	}
2077#if 0 && defined(PMAP_DIAGNOSTIC)
2078	else {
2079		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2080		origpte = *pdeaddr;
2081		if ((origpte & PG_V) == 0) {
2082			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2083				pmap->pm_pdir[PTDPTDI], origpte, va);
2084		}
2085	}
2086#endif
2087
2088	pte = pmap_pte(pmap, va);
2089
2090	/*
2091	 * Page Directory table entry not valid, we need a new PT page
2092	 */
2093	if (pte == NULL) {
2094		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2095			(void *)pmap->pm_pdir[PTDPTDI], va);
2096	}
2097
2098	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2099	origpte = *(vm_offset_t *)pte;
2100	opa = origpte & PG_FRAME;
2101
2102	if (origpte & PG_PS)
2103		panic("pmap_enter: attempted pmap_enter on 4MB page");
2104
2105	/*
2106	 * Mapping has not changed, must be protection or wiring change.
2107	 */
2108	if (origpte && (opa == pa)) {
2109		/*
2110		 * Wiring change, just update stats. We don't worry about
2111		 * wiring PT pages as they remain resident as long as there
2112		 * are valid mappings in them. Hence, if a user page is wired,
2113		 * the PT page will be also.
2114		 */
2115		if (wired && ((origpte & PG_W) == 0))
2116			pmap->pm_stats.wired_count++;
2117		else if (!wired && (origpte & PG_W))
2118			pmap->pm_stats.wired_count--;
2119
2120#if defined(PMAP_DIAGNOSTIC)
2121		if (pmap_nw_modified((pt_entry_t) origpte)) {
2122			printf(
2123	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2124			    va, origpte);
2125		}
2126#endif
2127
2128		/*
2129		 * Remove extra pte reference
2130		 */
2131		if (mpte)
2132			mpte->hold_count--;
2133
2134		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2135			if ((origpte & PG_RW) == 0) {
2136				*pte |= PG_RW;
2137				pmap_invalidate_page(pmap, va);
2138			}
2139			return;
2140		}
2141
2142		/*
2143		 * We might be turning off write access to the page,
2144		 * so we go ahead and sense modify status.
2145		 */
2146		if (origpte & PG_MANAGED) {
2147			if ((origpte & PG_M) && pmap_track_modified(va)) {
2148				vm_page_t om;
2149				om = PHYS_TO_VM_PAGE(opa);
2150				vm_page_dirty(om);
2151			}
2152			pa |= PG_MANAGED;
2153		}
2154		goto validate;
2155	}
2156	/*
2157	 * Mapping has changed, invalidate old range and fall through to
2158	 * handle validating new mapping.
2159	 */
2160	if (opa) {
2161		int err;
2162		vm_page_lock_queues();
2163		err = pmap_remove_pte(pmap, pte, va);
2164		vm_page_unlock_queues();
2165		if (err)
2166			panic("pmap_enter: pte vanished, va: 0x%x", va);
2167	}
2168
2169	/*
2170	 * Enter on the PV list if part of our managed memory. Note that we
2171	 * raise IPL while manipulating pv_table since pmap_enter can be
2172	 * called at interrupt time.
2173	 */
2174	if (pmap_initialized &&
2175	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2176		pmap_insert_entry(pmap, va, mpte, m);
2177		pa |= PG_MANAGED;
2178	}
2179
2180	/*
2181	 * Increment counters
2182	 */
2183	pmap->pm_stats.resident_count++;
2184	if (wired)
2185		pmap->pm_stats.wired_count++;
2186
2187validate:
2188	/*
2189	 * Now validate mapping with desired protection/wiring.
2190	 */
2191	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2192
2193	if (wired)
2194		newpte |= PG_W;
2195	if (va < VM_MAXUSER_ADDRESS)
2196		newpte |= PG_U;
2197	if (pmap == kernel_pmap)
2198		newpte |= pgeflag;
2199
2200	/*
2201	 * if the mapping or permission bits are different, we need
2202	 * to update the pte.
2203	 */
2204	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2205		*pte = newpte | PG_A;
2206		/*if (origpte)*/ {
2207			pmap_invalidate_page(pmap, va);
2208		}
2209	}
2210}
2211
2212/*
2213 * this code makes some *MAJOR* assumptions:
2214 * 1. Current pmap & pmap exists.
2215 * 2. Not wired.
2216 * 3. Read access.
2217 * 4. No page table pages.
2218 * 5. Tlbflush is deferred to calling procedure.
2219 * 6. Page IS managed.
2220 * but is *MUCH* faster than pmap_enter...
2221 */
2222
2223static vm_page_t
2224pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2225{
2226	pt_entry_t *pte;
2227	vm_offset_t pa;
2228
2229	/*
2230	 * In the case that a page table page is not
2231	 * resident, we are creating it here.
2232	 */
2233	if (va < VM_MAXUSER_ADDRESS) {
2234		unsigned ptepindex;
2235		pd_entry_t ptepa;
2236
2237		/*
2238		 * Calculate pagetable page index
2239		 */
2240		ptepindex = va >> PDRSHIFT;
2241		if (mpte && (mpte->pindex == ptepindex)) {
2242			mpte->hold_count++;
2243		} else {
2244retry:
2245			/*
2246			 * Get the page directory entry
2247			 */
2248			ptepa = pmap->pm_pdir[ptepindex];
2249
2250			/*
2251			 * If the page table page is mapped, we just increment
2252			 * the hold count, and activate it.
2253			 */
2254			if (ptepa) {
2255				if (ptepa & PG_PS)
2256					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2257				if (pmap->pm_pteobj->root &&
2258					(pmap->pm_pteobj->root->pindex == ptepindex)) {
2259					mpte = pmap->pm_pteobj->root;
2260				} else {
2261					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2262				}
2263				if (mpte == NULL)
2264					goto retry;
2265				mpte->hold_count++;
2266			} else {
2267				mpte = _pmap_allocpte(pmap, ptepindex);
2268			}
2269		}
2270	} else {
2271		mpte = NULL;
2272	}
2273
2274	/*
2275	 * This call to vtopte makes the assumption that we are
2276	 * entering the page into the current pmap.  In order to support
2277	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2278	 * But that isn't as quick as vtopte.
2279	 */
2280	pte = vtopte(va);
2281	if (*pte) {
2282		if (mpte != NULL) {
2283			vm_page_lock_queues();
2284			pmap_unwire_pte_hold(pmap, mpte);
2285			vm_page_unlock_queues();
2286		}
2287		return 0;
2288	}
2289
2290	/*
2291	 * Enter on the PV list if part of our managed memory. Note that we
2292	 * raise IPL while manipulating pv_table since pmap_enter can be
2293	 * called at interrupt time.
2294	 */
2295	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2296		pmap_insert_entry(pmap, va, mpte, m);
2297
2298	/*
2299	 * Increment counters
2300	 */
2301	pmap->pm_stats.resident_count++;
2302
2303	pa = VM_PAGE_TO_PHYS(m);
2304
2305	/*
2306	 * Now validate mapping with RO protection
2307	 */
2308	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2309		*pte = pa | PG_V | PG_U;
2310	else
2311		*pte = pa | PG_V | PG_U | PG_MANAGED;
2312
2313	return mpte;
2314}
2315
2316/*
2317 * Make a temporary mapping for a physical address.  This is only intended
2318 * to be used for panic dumps.
2319 */
2320void *
2321pmap_kenter_temporary(vm_offset_t pa, int i)
2322{
2323	vm_offset_t va;
2324
2325	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2326	pmap_kenter(va, pa);
2327#ifndef I386_CPU
2328	invlpg(va);
2329#else
2330	invltlb();
2331#endif
2332	return ((void *)crashdumpmap);
2333}
2334
2335#define MAX_INIT_PT (96)
2336/*
2337 * pmap_object_init_pt preloads the ptes for a given object
2338 * into the specified pmap.  This eliminates the blast of soft
2339 * faults on process startup and immediately after an mmap.
2340 */
2341void
2342pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2343		    vm_object_t object, vm_pindex_t pindex,
2344		    vm_size_t size, int limit)
2345{
2346	vm_offset_t tmpidx;
2347	int psize;
2348	vm_page_t p, mpte;
2349
2350	if (pmap == NULL || object == NULL)
2351		return;
2352
2353	/*
2354	 * This code maps large physical mmap regions into the
2355	 * processor address space.  Note that some shortcuts
2356	 * are taken, but the code works.
2357	 */
2358	if (pseflag && (object->type == OBJT_DEVICE) &&
2359	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2360		int i;
2361		vm_page_t m[1];
2362		unsigned int ptepindex;
2363		int npdes;
2364		pd_entry_t ptepa;
2365
2366		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2367			return;
2368
2369retry:
2370		p = vm_page_lookup(object, pindex);
2371		if (p != NULL) {
2372			vm_page_lock_queues();
2373			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2374				goto retry;
2375		} else {
2376			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2377			if (p == NULL)
2378				return;
2379			m[0] = p;
2380
2381			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2382				vm_page_lock_queues();
2383				vm_page_free(p);
2384				vm_page_unlock_queues();
2385				return;
2386			}
2387
2388			p = vm_page_lookup(object, pindex);
2389			vm_page_lock_queues();
2390			vm_page_wakeup(p);
2391		}
2392		vm_page_unlock_queues();
2393
2394		ptepa = VM_PAGE_TO_PHYS(p);
2395		if (ptepa & (NBPDR - 1)) {
2396			return;
2397		}
2398
2399		p->valid = VM_PAGE_BITS_ALL;
2400
2401		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2402		npdes = size >> PDRSHIFT;
2403		for(i = 0; i < npdes; i++) {
2404			pmap->pm_pdir[ptepindex] =
2405			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2406			ptepa += NBPDR;
2407			ptepindex += 1;
2408		}
2409		pmap_invalidate_all(kernel_pmap);
2410		return;
2411	}
2412
2413	psize = i386_btop(size);
2414
2415	if ((object->type != OBJT_VNODE) ||
2416	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2417	     (object->resident_page_count > MAX_INIT_PT))) {
2418		return;
2419	}
2420
2421	if (psize + pindex > object->size) {
2422		if (object->size < pindex)
2423			return;
2424		psize = object->size - pindex;
2425	}
2426
2427	mpte = NULL;
2428
2429	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
2430		if (p->pindex < pindex) {
2431			p = vm_page_splay(pindex, object->root);
2432			if ((object->root = p)->pindex < pindex)
2433				p = TAILQ_NEXT(p, listq);
2434		}
2435	}
2436	/*
2437	 * Assert: the variable p is either (1) the page with the
2438	 * least pindex greater than or equal to the parameter pindex
2439	 * or (2) NULL.
2440	 */
2441	for (;
2442	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2443	     p = TAILQ_NEXT(p, listq)) {
2444		/*
2445		 * don't allow an madvise to blow away our really
2446		 * free pages allocating pv entries.
2447		 */
2448		if ((limit & MAP_PREFAULT_MADVISE) &&
2449		    cnt.v_free_count < cnt.v_free_reserved) {
2450			break;
2451		}
2452		vm_page_lock_queues();
2453		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2454		    (p->busy == 0) &&
2455		    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2456			if ((p->queue - p->pc) == PQ_CACHE)
2457				vm_page_deactivate(p);
2458			vm_page_busy(p);
2459			vm_page_unlock_queues();
2460			mpte = pmap_enter_quick(pmap,
2461				addr + i386_ptob(tmpidx), p, mpte);
2462			vm_page_lock_queues();
2463			vm_page_wakeup(p);
2464		}
2465		vm_page_unlock_queues();
2466	}
2467	return;
2468}
2469
2470/*
2471 * pmap_prefault provides a quick way of clustering
2472 * pagefaults into a processes address space.  It is a "cousin"
2473 * of pmap_object_init_pt, except it runs at page fault time instead
2474 * of mmap time.
2475 */
2476#define PFBAK 4
2477#define PFFOR 4
2478#define PAGEORDER_SIZE (PFBAK+PFFOR)
2479
2480static int pmap_prefault_pageorder[] = {
2481	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2482	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2483	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2484	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2485};
2486
2487void
2488pmap_prefault(pmap, addra, entry)
2489	pmap_t pmap;
2490	vm_offset_t addra;
2491	vm_map_entry_t entry;
2492{
2493	int i;
2494	vm_offset_t starta;
2495	vm_offset_t addr;
2496	vm_pindex_t pindex;
2497	vm_page_t m, mpte;
2498	vm_object_t object;
2499
2500	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2501		return;
2502
2503	object = entry->object.vm_object;
2504
2505	starta = addra - PFBAK * PAGE_SIZE;
2506	if (starta < entry->start) {
2507		starta = entry->start;
2508	} else if (starta > addra) {
2509		starta = 0;
2510	}
2511
2512	mpte = NULL;
2513	for (i = 0; i < PAGEORDER_SIZE; i++) {
2514		vm_object_t lobject;
2515		pt_entry_t *pte;
2516
2517		addr = addra + pmap_prefault_pageorder[i];
2518		if (addr > addra + (PFFOR * PAGE_SIZE))
2519			addr = 0;
2520
2521		if (addr < starta || addr >= entry->end)
2522			continue;
2523
2524		if ((*pmap_pde(pmap, addr)) == 0)
2525			continue;
2526
2527		pte = vtopte(addr);
2528		if (*pte)
2529			continue;
2530
2531		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2532		lobject = object;
2533		for (m = vm_page_lookup(lobject, pindex);
2534		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2535		    lobject = lobject->backing_object) {
2536			if (lobject->backing_object_offset & PAGE_MASK)
2537				break;
2538			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2539			m = vm_page_lookup(lobject->backing_object, pindex);
2540		}
2541
2542		/*
2543		 * give-up when a page is not in memory
2544		 */
2545		if (m == NULL)
2546			break;
2547		vm_page_lock_queues();
2548		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2549			(m->busy == 0) &&
2550		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2551
2552			if ((m->queue - m->pc) == PQ_CACHE) {
2553				vm_page_deactivate(m);
2554			}
2555			vm_page_busy(m);
2556			vm_page_unlock_queues();
2557			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2558			vm_page_lock_queues();
2559			vm_page_wakeup(m);
2560		}
2561		vm_page_unlock_queues();
2562	}
2563}
2564
2565/*
2566 *	Routine:	pmap_change_wiring
2567 *	Function:	Change the wiring attribute for a map/virtual-address
2568 *			pair.
2569 *	In/out conditions:
2570 *			The mapping must already exist in the pmap.
2571 */
2572void
2573pmap_change_wiring(pmap, va, wired)
2574	register pmap_t pmap;
2575	vm_offset_t va;
2576	boolean_t wired;
2577{
2578	register pt_entry_t *pte;
2579
2580	if (pmap == NULL)
2581		return;
2582
2583	pte = pmap_pte(pmap, va);
2584
2585	if (wired && !pmap_pte_w(pte))
2586		pmap->pm_stats.wired_count++;
2587	else if (!wired && pmap_pte_w(pte))
2588		pmap->pm_stats.wired_count--;
2589
2590	/*
2591	 * Wiring is not a hardware characteristic so there is no need to
2592	 * invalidate TLB.
2593	 */
2594	pmap_pte_set_w(pte, wired);
2595}
2596
2597
2598
2599/*
2600 *	Copy the range specified by src_addr/len
2601 *	from the source map to the range dst_addr/len
2602 *	in the destination map.
2603 *
2604 *	This routine is only advisory and need not do anything.
2605 */
2606
2607void
2608pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2609	  vm_offset_t src_addr)
2610{
2611	vm_offset_t addr;
2612	vm_offset_t end_addr = src_addr + len;
2613	vm_offset_t pdnxt;
2614	pd_entry_t src_frame, dst_frame;
2615	vm_page_t m;
2616
2617	if (dst_addr != src_addr)
2618		return;
2619
2620	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2621	if (src_frame != (PTDpde & PG_FRAME))
2622		return;
2623
2624	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2625	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2626		pt_entry_t *src_pte, *dst_pte;
2627		vm_page_t dstmpte, srcmpte;
2628		pd_entry_t srcptepaddr;
2629		unsigned ptepindex;
2630
2631		if (addr >= UPT_MIN_ADDRESS)
2632			panic("pmap_copy: invalid to pmap_copy page tables\n");
2633
2634		/*
2635		 * Don't let optional prefaulting of pages make us go
2636		 * way below the low water mark of free pages or way
2637		 * above high water mark of used pv entries.
2638		 */
2639		if (cnt.v_free_count < cnt.v_free_reserved ||
2640		    pv_entry_count > pv_entry_high_water)
2641			break;
2642
2643		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2644		ptepindex = addr >> PDRSHIFT;
2645
2646		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2647		if (srcptepaddr == 0)
2648			continue;
2649
2650		if (srcptepaddr & PG_PS) {
2651			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2652				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2653				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2654			}
2655			continue;
2656		}
2657
2658		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2659		if ((srcmpte == NULL) ||
2660		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2661			continue;
2662
2663		if (pdnxt > end_addr)
2664			pdnxt = end_addr;
2665
2666		/*
2667		 * Have to recheck this before every avtopte() call below
2668		 * in case we have blocked and something else used APTDpde.
2669		 */
2670		if (dst_frame != (APTDpde & PG_FRAME)) {
2671			APTDpde = dst_frame | PG_RW | PG_V;
2672			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2673		}
2674		src_pte = vtopte(addr);
2675		dst_pte = avtopte(addr);
2676		while (addr < pdnxt) {
2677			pt_entry_t ptetemp;
2678			ptetemp = *src_pte;
2679			/*
2680			 * we only virtual copy managed pages
2681			 */
2682			if ((ptetemp & PG_MANAGED) != 0) {
2683				/*
2684				 * We have to check after allocpte for the
2685				 * pte still being around...  allocpte can
2686				 * block.
2687				 */
2688				dstmpte = pmap_allocpte(dst_pmap, addr);
2689				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2690					/*
2691					 * Clear the modified and
2692					 * accessed (referenced) bits
2693					 * during the copy.
2694					 */
2695					m = PHYS_TO_VM_PAGE(ptetemp);
2696					*dst_pte = ptetemp & ~(PG_M | PG_A);
2697					dst_pmap->pm_stats.resident_count++;
2698					pmap_insert_entry(dst_pmap, addr,
2699						dstmpte, m);
2700	 			} else {
2701					vm_page_lock_queues();
2702					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2703					vm_page_unlock_queues();
2704				}
2705				if (dstmpte->hold_count >= srcmpte->hold_count)
2706					break;
2707			}
2708			addr += PAGE_SIZE;
2709			src_pte++;
2710			dst_pte++;
2711		}
2712	}
2713}
2714
2715#ifdef SMP
2716
2717/*
2718 *	pmap_zpi_switchin*()
2719 *
2720 *	These functions allow us to avoid doing IPIs alltogether in certain
2721 *	temporary page-mapping situations (page zeroing).  Instead to deal
2722 *	with being preempted and moved onto a different cpu we invalidate
2723 *	the page when the scheduler switches us in.  This does not occur
2724 *	very often so we remain relatively optimal with very little effort.
2725 */
2726static void
2727pmap_zpi_switchin12(void)
2728{
2729	invlpg((u_int)CADDR1);
2730	invlpg((u_int)CADDR2);
2731}
2732
2733static void
2734pmap_zpi_switchin2(void)
2735{
2736	invlpg((u_int)CADDR2);
2737}
2738
2739static void
2740pmap_zpi_switchin3(void)
2741{
2742	invlpg((u_int)CADDR3);
2743}
2744
2745#endif
2746
2747/*
2748 *	pmap_zero_page zeros the specified hardware page by mapping
2749 *	the page into KVM and using bzero to clear its contents.
2750 */
2751void
2752pmap_zero_page(vm_page_t m)
2753{
2754
2755	mtx_lock(&CMAPCADDR12_lock);
2756	if (*CMAP2)
2757		panic("pmap_zero_page: CMAP2 busy");
2758	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2759#ifdef I386_CPU
2760	invltlb();
2761#else
2762#ifdef SMP
2763	curthread->td_switchin = pmap_zpi_switchin2;
2764#endif
2765	invlpg((u_int)CADDR2);
2766#endif
2767#if defined(I686_CPU)
2768	if (cpu_class == CPUCLASS_686)
2769		i686_pagezero(CADDR2);
2770	else
2771#endif
2772		bzero(CADDR2, PAGE_SIZE);
2773#ifdef SMP
2774	curthread->td_switchin = NULL;
2775#endif
2776	*CMAP2 = 0;
2777	mtx_unlock(&CMAPCADDR12_lock);
2778}
2779
2780/*
2781 *	pmap_zero_page_area zeros the specified hardware page by mapping
2782 *	the page into KVM and using bzero to clear its contents.
2783 *
2784 *	off and size may not cover an area beyond a single hardware page.
2785 */
2786void
2787pmap_zero_page_area(vm_page_t m, int off, int size)
2788{
2789
2790	mtx_lock(&CMAPCADDR12_lock);
2791	if (*CMAP2)
2792		panic("pmap_zero_page: CMAP2 busy");
2793	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2794#ifdef I386_CPU
2795	invltlb();
2796#else
2797#ifdef SMP
2798	curthread->td_switchin = pmap_zpi_switchin2;
2799#endif
2800	invlpg((u_int)CADDR2);
2801#endif
2802#if defined(I686_CPU)
2803	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2804		i686_pagezero(CADDR2);
2805	else
2806#endif
2807		bzero((char *)CADDR2 + off, size);
2808#ifdef SMP
2809	curthread->td_switchin = NULL;
2810#endif
2811	*CMAP2 = 0;
2812	mtx_unlock(&CMAPCADDR12_lock);
2813}
2814
2815/*
2816 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2817 *	the page into KVM and using bzero to clear its contents.  This
2818 *	is intended to be called from the vm_pagezero process only and
2819 *	outside of Giant.
2820 */
2821void
2822pmap_zero_page_idle(vm_page_t m)
2823{
2824
2825	if (*CMAP3)
2826		panic("pmap_zero_page: CMAP3 busy");
2827	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2828#ifdef I386_CPU
2829	invltlb();
2830#else
2831#ifdef SMP
2832	curthread->td_switchin = pmap_zpi_switchin3;
2833#endif
2834	invlpg((u_int)CADDR3);
2835#endif
2836#if defined(I686_CPU)
2837	if (cpu_class == CPUCLASS_686)
2838		i686_pagezero(CADDR3);
2839	else
2840#endif
2841		bzero(CADDR3, PAGE_SIZE);
2842#ifdef SMP
2843	curthread->td_switchin = NULL;
2844#endif
2845	*CMAP3 = 0;
2846}
2847
2848/*
2849 *	pmap_copy_page copies the specified (machine independent)
2850 *	page by mapping the page into virtual memory and using
2851 *	bcopy to copy the page, one machine dependent page at a
2852 *	time.
2853 */
2854void
2855pmap_copy_page(vm_page_t src, vm_page_t dst)
2856{
2857
2858	mtx_lock(&CMAPCADDR12_lock);
2859	if (*CMAP1)
2860		panic("pmap_copy_page: CMAP1 busy");
2861	if (*CMAP2)
2862		panic("pmap_copy_page: CMAP2 busy");
2863	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2864	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2865#ifdef I386_CPU
2866	invltlb();
2867#else
2868#ifdef SMP
2869	curthread->td_switchin = pmap_zpi_switchin12;
2870#endif
2871	invlpg((u_int)CADDR1);
2872	invlpg((u_int)CADDR2);
2873#endif
2874	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2875#ifdef SMP
2876	curthread->td_switchin = NULL;
2877#endif
2878	*CMAP1 = 0;
2879	*CMAP2 = 0;
2880	mtx_unlock(&CMAPCADDR12_lock);
2881}
2882
2883/*
2884 * Returns true if the pmap's pv is one of the first
2885 * 16 pvs linked to from this page.  This count may
2886 * be changed upwards or downwards in the future; it
2887 * is only necessary that true be returned for a small
2888 * subset of pmaps for proper page aging.
2889 */
2890boolean_t
2891pmap_page_exists_quick(pmap, m)
2892	pmap_t pmap;
2893	vm_page_t m;
2894{
2895	pv_entry_t pv;
2896	int loops = 0;
2897	int s;
2898
2899	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2900		return FALSE;
2901
2902	s = splvm();
2903	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2904	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2905		if (pv->pv_pmap == pmap) {
2906			splx(s);
2907			return TRUE;
2908		}
2909		loops++;
2910		if (loops >= 16)
2911			break;
2912	}
2913	splx(s);
2914	return (FALSE);
2915}
2916
2917#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2918/*
2919 * Remove all pages from specified address space
2920 * this aids process exit speeds.  Also, this code
2921 * is special cased for current process only, but
2922 * can have the more generic (and slightly slower)
2923 * mode enabled.  This is much faster than pmap_remove
2924 * in the case of running down an entire address space.
2925 */
2926void
2927pmap_remove_pages(pmap, sva, eva)
2928	pmap_t pmap;
2929	vm_offset_t sva, eva;
2930{
2931	pt_entry_t *pte, tpte;
2932	vm_page_t m;
2933	pv_entry_t pv, npv;
2934	int s;
2935
2936#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2937	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2938		printf("warning: pmap_remove_pages called with non-current pmap\n");
2939		return;
2940	}
2941#endif
2942	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2943	s = splvm();
2944	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2945
2946		if (pv->pv_va >= eva || pv->pv_va < sva) {
2947			npv = TAILQ_NEXT(pv, pv_plist);
2948			continue;
2949		}
2950
2951#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2952		pte = vtopte(pv->pv_va);
2953#else
2954		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2955#endif
2956		tpte = *pte;
2957
2958		if (tpte == 0) {
2959			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2960							pte, pv->pv_va);
2961			panic("bad pte");
2962		}
2963
2964/*
2965 * We cannot remove wired pages from a process' mapping at this time
2966 */
2967		if (tpte & PG_W) {
2968			npv = TAILQ_NEXT(pv, pv_plist);
2969			continue;
2970		}
2971
2972		m = PHYS_TO_VM_PAGE(tpte);
2973		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2974		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2975		    m, m->phys_addr, tpte));
2976
2977		KASSERT(m < &vm_page_array[vm_page_array_size],
2978			("pmap_remove_pages: bad tpte %x", tpte));
2979
2980		pv->pv_pmap->pm_stats.resident_count--;
2981
2982		*pte = 0;
2983
2984		/*
2985		 * Update the vm_page_t clean and reference bits.
2986		 */
2987		if (tpte & PG_M) {
2988			vm_page_dirty(m);
2989		}
2990
2991		npv = TAILQ_NEXT(pv, pv_plist);
2992		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2993
2994		m->md.pv_list_count--;
2995		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2996		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2997			vm_page_flag_clear(m, PG_WRITEABLE);
2998		}
2999
3000		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3001		free_pv_entry(pv);
3002	}
3003	splx(s);
3004	pmap_invalidate_all(pmap);
3005}
3006
3007/*
3008 *	pmap_is_modified:
3009 *
3010 *	Return whether or not the specified physical page was modified
3011 *	in any physical maps.
3012 */
3013boolean_t
3014pmap_is_modified(vm_page_t m)
3015{
3016	pv_entry_t pv;
3017	pt_entry_t *pte;
3018	int s;
3019
3020	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3021		return FALSE;
3022
3023	s = splvm();
3024	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3025	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3026		/*
3027		 * if the bit being tested is the modified bit, then
3028		 * mark clean_map and ptes as never
3029		 * modified.
3030		 */
3031		if (!pmap_track_modified(pv->pv_va))
3032			continue;
3033#if defined(PMAP_DIAGNOSTIC)
3034		if (!pv->pv_pmap) {
3035			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3036			continue;
3037		}
3038#endif
3039		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3040		if (*pte & PG_M) {
3041			splx(s);
3042			return TRUE;
3043		}
3044	}
3045	splx(s);
3046	return (FALSE);
3047}
3048
3049/*
3050 * this routine is used to modify bits in ptes
3051 */
3052static __inline void
3053pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3054{
3055	register pv_entry_t pv;
3056	register pt_entry_t *pte;
3057	int s;
3058
3059	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
3060	    (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
3061		return;
3062
3063	s = splvm();
3064	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3065	/*
3066	 * Loop over all current mappings setting/clearing as appropos If
3067	 * setting RO do we need to clear the VAC?
3068	 */
3069	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3070		/*
3071		 * don't write protect pager mappings
3072		 */
3073		if (!setem && (bit == PG_RW)) {
3074			if (!pmap_track_modified(pv->pv_va))
3075				continue;
3076		}
3077
3078#if defined(PMAP_DIAGNOSTIC)
3079		if (!pv->pv_pmap) {
3080			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3081			continue;
3082		}
3083#endif
3084
3085		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3086
3087		if (setem) {
3088			*pte |= bit;
3089			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3090		} else {
3091			pt_entry_t pbits = *pte;
3092			if (pbits & bit) {
3093				if (bit == PG_RW) {
3094					if (pbits & PG_M) {
3095						vm_page_dirty(m);
3096					}
3097					*pte = pbits & ~(PG_M|PG_RW);
3098				} else {
3099					*pte = pbits & ~bit;
3100				}
3101				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3102			}
3103		}
3104	}
3105	if (!setem && bit == PG_RW)
3106		vm_page_flag_clear(m, PG_WRITEABLE);
3107	splx(s);
3108}
3109
3110/*
3111 *      pmap_page_protect:
3112 *
3113 *      Lower the permission for all mappings to a given page.
3114 */
3115void
3116pmap_page_protect(vm_page_t m, vm_prot_t prot)
3117{
3118	if ((prot & VM_PROT_WRITE) == 0) {
3119		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3120			pmap_changebit(m, PG_RW, FALSE);
3121		} else {
3122			pmap_remove_all(m);
3123		}
3124	}
3125}
3126
3127vm_offset_t
3128pmap_phys_address(ppn)
3129	int ppn;
3130{
3131	return (i386_ptob(ppn));
3132}
3133
3134/*
3135 *	pmap_ts_referenced:
3136 *
3137 *	Return a count of reference bits for a page, clearing those bits.
3138 *	It is not necessary for every reference bit to be cleared, but it
3139 *	is necessary that 0 only be returned when there are truly no
3140 *	reference bits set.
3141 *
3142 *	XXX: The exact number of bits to check and clear is a matter that
3143 *	should be tested and standardized at some point in the future for
3144 *	optimal aging of shared pages.
3145 */
3146int
3147pmap_ts_referenced(vm_page_t m)
3148{
3149	register pv_entry_t pv, pvf, pvn;
3150	pt_entry_t *pte;
3151	int s;
3152	int rtval = 0;
3153
3154	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3155		return (rtval);
3156
3157	s = splvm();
3158	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3159	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3160
3161		pvf = pv;
3162
3163		do {
3164			pvn = TAILQ_NEXT(pv, pv_list);
3165
3166			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3167
3168			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3169
3170			if (!pmap_track_modified(pv->pv_va))
3171				continue;
3172
3173			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3174
3175			if (pte && (*pte & PG_A)) {
3176				*pte &= ~PG_A;
3177
3178				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3179
3180				rtval++;
3181				if (rtval > 4) {
3182					break;
3183				}
3184			}
3185		} while ((pv = pvn) != NULL && pv != pvf);
3186	}
3187	splx(s);
3188
3189	return (rtval);
3190}
3191
3192/*
3193 *	Clear the modify bits on the specified physical page.
3194 */
3195void
3196pmap_clear_modify(vm_page_t m)
3197{
3198	pmap_changebit(m, PG_M, FALSE);
3199}
3200
3201/*
3202 *	pmap_clear_reference:
3203 *
3204 *	Clear the reference bit on the specified physical page.
3205 */
3206void
3207pmap_clear_reference(vm_page_t m)
3208{
3209	pmap_changebit(m, PG_A, FALSE);
3210}
3211
3212/*
3213 * Miscellaneous support routines follow
3214 */
3215
3216static void
3217i386_protection_init()
3218{
3219	register int *kp, prot;
3220
3221	kp = protection_codes;
3222	for (prot = 0; prot < 8; prot++) {
3223		switch (prot) {
3224		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3225			/*
3226			 * Read access is also 0. There isn't any execute bit,
3227			 * so just make it readable.
3228			 */
3229		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3230		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3231		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3232			*kp++ = 0;
3233			break;
3234		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3235		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3236		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3237		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3238			*kp++ = PG_RW;
3239			break;
3240		}
3241	}
3242}
3243
3244/*
3245 * Map a set of physical memory pages into the kernel virtual
3246 * address space. Return a pointer to where it is mapped. This
3247 * routine is intended to be used for mapping device memory,
3248 * NOT real memory.
3249 */
3250void *
3251pmap_mapdev(pa, size)
3252	vm_offset_t pa;
3253	vm_size_t size;
3254{
3255	vm_offset_t va, tmpva, offset;
3256
3257	offset = pa & PAGE_MASK;
3258	size = roundup(offset + size, PAGE_SIZE);
3259
3260	GIANT_REQUIRED;
3261
3262	va = kmem_alloc_pageable(kernel_map, size);
3263	if (!va)
3264		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3265
3266	pa = pa & PG_FRAME;
3267	for (tmpva = va; size > 0; ) {
3268		pmap_kenter(tmpva, pa);
3269		size -= PAGE_SIZE;
3270		tmpva += PAGE_SIZE;
3271		pa += PAGE_SIZE;
3272	}
3273	pmap_invalidate_range(kernel_pmap, va, tmpva);
3274	return ((void *)(va + offset));
3275}
3276
3277void
3278pmap_unmapdev(va, size)
3279	vm_offset_t va;
3280	vm_size_t size;
3281{
3282	vm_offset_t base, offset, tmpva;
3283	pt_entry_t *pte;
3284
3285	base = va & PG_FRAME;
3286	offset = va & PAGE_MASK;
3287	size = roundup(offset + size, PAGE_SIZE);
3288	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3289		pte = vtopte(tmpva);
3290		*pte = 0;
3291	}
3292	pmap_invalidate_range(kernel_pmap, va, tmpva);
3293	kmem_free(kernel_map, base, size);
3294}
3295
3296/*
3297 * perform the pmap work for mincore
3298 */
3299int
3300pmap_mincore(pmap, addr)
3301	pmap_t pmap;
3302	vm_offset_t addr;
3303{
3304	pt_entry_t *ptep, pte;
3305	vm_page_t m;
3306	int val = 0;
3307
3308	ptep = pmap_pte(pmap, addr);
3309	if (ptep == 0) {
3310		return 0;
3311	}
3312
3313	if ((pte = *ptep) != 0) {
3314		vm_offset_t pa;
3315
3316		val = MINCORE_INCORE;
3317		if ((pte & PG_MANAGED) == 0)
3318			return val;
3319
3320		pa = pte & PG_FRAME;
3321
3322		m = PHYS_TO_VM_PAGE(pa);
3323
3324		/*
3325		 * Modified by us
3326		 */
3327		if (pte & PG_M)
3328			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3329		else {
3330			/*
3331			 * Modified by someone else
3332			 */
3333			vm_page_lock_queues();
3334			if (m->dirty || pmap_is_modified(m))
3335				val |= MINCORE_MODIFIED_OTHER;
3336			vm_page_unlock_queues();
3337		}
3338		/*
3339		 * Referenced by us
3340		 */
3341		if (pte & PG_A)
3342			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3343		else {
3344			/*
3345			 * Referenced by someone else
3346			 */
3347			vm_page_lock_queues();
3348			if ((m->flags & PG_REFERENCED) ||
3349			    pmap_ts_referenced(m)) {
3350				val |= MINCORE_REFERENCED_OTHER;
3351				vm_page_flag_set(m, PG_REFERENCED);
3352			}
3353			vm_page_unlock_queues();
3354		}
3355	}
3356	return val;
3357}
3358
3359void
3360pmap_activate(struct thread *td)
3361{
3362	struct proc *p = td->td_proc;
3363	pmap_t	pmap;
3364	u_int32_t  cr3;
3365
3366	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3367#if defined(SMP)
3368	pmap->pm_active |= PCPU_GET(cpumask);
3369#else
3370	pmap->pm_active |= 1;
3371#endif
3372	cr3 = vtophys(pmap->pm_pdir);
3373	/* XXXKSE this is wrong.
3374	 * pmap_activate is for the current thread on the current cpu
3375	 */
3376	if (p->p_flag & P_KSES) {
3377		/* Make sure all other cr3 entries are updated. */
3378		/* what if they are running?  XXXKSE (maybe abort them) */
3379		FOREACH_THREAD_IN_PROC(p, td) {
3380			td->td_pcb->pcb_cr3 = cr3;
3381		}
3382	} else {
3383		td->td_pcb->pcb_cr3 = cr3;
3384	}
3385	load_cr3(cr3);
3386#ifdef SWTCH_OPTIM_STATS
3387	tlb_flush_count++;
3388#endif
3389}
3390
3391vm_offset_t
3392pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3393{
3394
3395	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3396		return addr;
3397	}
3398
3399	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3400	return addr;
3401}
3402
3403
3404#if defined(PMAP_DEBUG)
3405pmap_pid_dump(int pid)
3406{
3407	pmap_t pmap;
3408	struct proc *p;
3409	int npte = 0;
3410	int index;
3411
3412	sx_slock(&allproc_lock);
3413	LIST_FOREACH(p, &allproc, p_list) {
3414		if (p->p_pid != pid)
3415			continue;
3416
3417		if (p->p_vmspace) {
3418			int i,j;
3419			index = 0;
3420			pmap = vmspace_pmap(p->p_vmspace);
3421			for (i = 0; i < NPDEPTD; i++) {
3422				pd_entry_t *pde;
3423				pt_entry_t *pte;
3424				vm_offset_t base = i << PDRSHIFT;
3425
3426				pde = &pmap->pm_pdir[i];
3427				if (pde && pmap_pde_v(pde)) {
3428					for (j = 0; j < NPTEPG; j++) {
3429						vm_offset_t va = base + (j << PAGE_SHIFT);
3430						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3431							if (index) {
3432								index = 0;
3433								printf("\n");
3434							}
3435							sx_sunlock(&allproc_lock);
3436							return npte;
3437						}
3438						pte = pmap_pte_quick(pmap, va);
3439						if (pte && pmap_pte_v(pte)) {
3440							pt_entry_t pa;
3441							vm_page_t m;
3442							pa = *pte;
3443							m = PHYS_TO_VM_PAGE(pa);
3444							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3445								va, pa, m->hold_count, m->wire_count, m->flags);
3446							npte++;
3447							index++;
3448							if (index >= 2) {
3449								index = 0;
3450								printf("\n");
3451							} else {
3452								printf(" ");
3453							}
3454						}
3455					}
3456				}
3457			}
3458		}
3459	}
3460	sx_sunlock(&allproc_lock);
3461	return npte;
3462}
3463#endif
3464
3465#if defined(DEBUG)
3466
3467static void	pads(pmap_t pm);
3468void		pmap_pvdump(vm_offset_t pa);
3469
3470/* print address space of pmap*/
3471static void
3472pads(pm)
3473	pmap_t pm;
3474{
3475	int i, j;
3476	vm_offset_t va;
3477	pt_entry_t *ptep;
3478
3479	if (pm == kernel_pmap)
3480		return;
3481	for (i = 0; i < NPDEPTD; i++)
3482		if (pm->pm_pdir[i])
3483			for (j = 0; j < NPTEPG; j++) {
3484				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3485				if (pm == kernel_pmap && va < KERNBASE)
3486					continue;
3487				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3488					continue;
3489				ptep = pmap_pte_quick(pm, va);
3490				if (pmap_pte_v(ptep))
3491					printf("%x:%x ", va, *ptep);
3492			};
3493
3494}
3495
3496void
3497pmap_pvdump(pa)
3498	vm_offset_t pa;
3499{
3500	pv_entry_t pv;
3501	vm_page_t m;
3502
3503	printf("pa %x", pa);
3504	m = PHYS_TO_VM_PAGE(pa);
3505	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3506		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3507		pads(pv->pv_pmap);
3508	}
3509	printf(" ");
3510}
3511#endif
3512