pmap.c revision 111299
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 111299 2003-02-23 09:45:50Z jake $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154static struct pmaplist allpmaps;
155static struct mtx allpmaps_lock;
156
157vm_offset_t avail_start;	/* PA of first available physical page */
158vm_offset_t avail_end;		/* PA of last available physical page */
159vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
160vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
161static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
162static int pgeflag;		/* PG_G or-in */
163static int pseflag;		/* PG_PS or-in */
164
165static int nkpt;
166vm_offset_t kernel_vm_end;
167extern u_int32_t KERNend;
168
169/*
170 * Data for the pv entry allocation mechanism
171 */
172static uma_zone_t pvzone;
173static struct vm_object pvzone_obj;
174static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
175int pmap_pagedaemon_waken;
176
177/*
178 * All those kernel PT submaps that BSD is so fond of
179 */
180pt_entry_t *CMAP1 = 0;
181static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
182caddr_t CADDR1 = 0, ptvmmap = 0;
183static caddr_t CADDR2, CADDR3;
184static struct mtx CMAPCADDR12_lock;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
207				      vm_page_t m, vm_page_t mpte);
208static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
209static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
210static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
211					vm_offset_t va);
212static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
213		vm_page_t mpte, vm_page_t m);
214
215static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
216
217static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
218static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
219static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
220static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
221static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
222static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
223static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
224
225static pd_entry_t pdir4mb;
226
227CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
228CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
229
230/*
231 *	Routine:	pmap_pte
232 *	Function:
233 *		Extract the page table entry associated
234 *		with the given map/virtual_address pair.
235 */
236
237PMAP_INLINE pt_entry_t *
238pmap_pte(pmap, va)
239	register pmap_t pmap;
240	vm_offset_t va;
241{
242	pd_entry_t *pdeaddr;
243
244	if (pmap) {
245		pdeaddr = pmap_pde(pmap, va);
246		if (*pdeaddr & PG_PS)
247			return pdeaddr;
248		if (*pdeaddr) {
249			return get_ptbase(pmap) + i386_btop(va);
250		}
251	}
252	return (0);
253}
254
255/*
256 * Move the kernel virtual free pointer to the next
257 * 4MB.  This is used to help improve performance
258 * by using a large (4MB) page for much of the kernel
259 * (.text, .data, .bss)
260 */
261static vm_offset_t
262pmap_kmem_choose(vm_offset_t addr)
263{
264	vm_offset_t newaddr = addr;
265
266#ifdef I686_CPU_not	/* Problem seems to have gone away */
267	/* Deal with un-resolved Pentium4 issues */
268	if (cpu_class == CPUCLASS_686 &&
269	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
270	    (cpu_id & 0xf00) == 0xf00)
271		return newaddr;
272#endif
273#ifndef DISABLE_PSE
274	if (cpu_feature & CPUID_PSE)
275		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
276#endif
277	return newaddr;
278}
279
280/*
281 *	Bootstrap the system enough to run with virtual memory.
282 *
283 *	On the i386 this is called after mapping has already been enabled
284 *	and just syncs the pmap module with what has already been done.
285 *	[We can't call it easily with mapping off since the kernel is not
286 *	mapped with PA == VA, hence we would have to relocate every address
287 *	from the linked base (virtual) address "KERNBASE" to the actual
288 *	(physical) address starting relative to 0]
289 */
290void
291pmap_bootstrap(firstaddr, loadaddr)
292	vm_offset_t firstaddr;
293	vm_offset_t loadaddr;
294{
295	vm_offset_t va;
296	pt_entry_t *pte;
297	int i;
298
299	avail_start = firstaddr;
300
301	/*
302	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
303	 * large. It should instead be correctly calculated in locore.s and
304	 * not based on 'first' (which is a physical address, not a virtual
305	 * address, for the start of unused physical memory). The kernel
306	 * page tables are NOT double mapped and thus should not be included
307	 * in this calculation.
308	 */
309	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
310	virtual_avail = pmap_kmem_choose(virtual_avail);
311
312	virtual_end = VM_MAX_KERNEL_ADDRESS;
313
314	/*
315	 * Initialize protection array.
316	 */
317	i386_protection_init();
318
319	/*
320	 * Initialize the kernel pmap (which is statically allocated).
321	 */
322	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
323	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
324	TAILQ_INIT(&kernel_pmap->pm_pvlist);
325	LIST_INIT(&allpmaps);
326	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
327	mtx_lock_spin(&allpmaps_lock);
328	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
329	mtx_unlock_spin(&allpmaps_lock);
330	nkpt = NKPT;
331
332	/*
333	 * Reserve some special page table entries/VA space for temporary
334	 * mapping of pages.
335	 */
336#define	SYSMAP(c, p, v, n)	\
337	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
338
339	va = virtual_avail;
340	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
341
342	/*
343	 * CMAP1/CMAP2 are used for zeroing and copying pages.
344	 * CMAP3 is used for the idle process page zeroing.
345	 */
346	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
347	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
348	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
349
350	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
351
352	/*
353	 * Crashdump maps.
354	 */
355	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
356
357	/*
358	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
359	 * XXX ptmmap is not used.
360	 */
361	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
362
363	/*
364	 * msgbufp is used to map the system message buffer.
365	 * XXX msgbufmap is not used.
366	 */
367	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
368	       atop(round_page(MSGBUF_SIZE)))
369
370	/*
371	 * ptemap is used for pmap_pte_quick
372	 */
373	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
374
375	virtual_avail = va;
376
377	*CMAP1 = *CMAP2 = 0;
378	for (i = 0; i < NKPT; i++)
379		PTD[i] = 0;
380
381	pgeflag = 0;
382#ifndef DISABLE_PG_G
383	if (cpu_feature & CPUID_PGE)
384		pgeflag = PG_G;
385#endif
386#ifdef I686_CPU_not	/* Problem seems to have gone away */
387	/* Deal with un-resolved Pentium4 issues */
388	if (cpu_class == CPUCLASS_686 &&
389	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
390	    (cpu_id & 0xf00) == 0xf00) {
391		printf("Warning: Pentium 4 cpu: PG_G disabled (global flag)\n");
392		pgeflag = 0;
393	}
394#endif
395
396/*
397 * Initialize the 4MB page size flag
398 */
399	pseflag = 0;
400/*
401 * The 4MB page version of the initial
402 * kernel page mapping.
403 */
404	pdir4mb = 0;
405
406#ifndef DISABLE_PSE
407	if (cpu_feature & CPUID_PSE)
408		pseflag = PG_PS;
409#endif
410#ifdef I686_CPU_not	/* Problem seems to have gone away */
411	/* Deal with un-resolved Pentium4 issues */
412	if (cpu_class == CPUCLASS_686 &&
413	    strcmp(cpu_vendor, "GenuineIntel") == 0 &&
414	    (cpu_id & 0xf00) == 0xf00) {
415		printf("Warning: Pentium 4 cpu: PG_PS disabled (4MB pages)\n");
416		pseflag = 0;
417	}
418#endif
419#ifndef DISABLE_PSE
420	if (pseflag) {
421		pd_entry_t ptditmp;
422		/*
423		 * Note that we have enabled PSE mode
424		 */
425		ptditmp = *(PTmap + i386_btop(KERNBASE));
426		ptditmp &= ~(NBPDR - 1);
427		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
428		pdir4mb = ptditmp;
429	}
430#endif
431#ifndef SMP
432	/*
433	 * Turn on PGE/PSE.  SMP does this later on since the
434	 * 4K page tables are required for AP boot (for now).
435	 * XXX fixme.
436	 */
437	pmap_set_opt();
438#endif
439#ifdef SMP
440	if (cpu_apic_address == 0)
441		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
442
443	/* local apic is mapped on last page */
444	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
445	    (cpu_apic_address & PG_FRAME));
446#endif
447	invltlb();
448}
449
450/*
451 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
452 * BSP will run this after all the AP's have started up.
453 */
454void
455pmap_set_opt(void)
456{
457	pt_entry_t *pte;
458	vm_offset_t va, endva;
459
460	if (pgeflag && (cpu_feature & CPUID_PGE)) {
461		load_cr4(rcr4() | CR4_PGE);
462		invltlb();		/* Insurance */
463	}
464#ifndef DISABLE_PSE
465	if (pseflag && (cpu_feature & CPUID_PSE)) {
466		load_cr4(rcr4() | CR4_PSE);
467		invltlb();		/* Insurance */
468	}
469#endif
470	if (PCPU_GET(cpuid) == 0) {
471#ifndef DISABLE_PSE
472		if (pdir4mb) {
473			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
474			invltlb();	/* Insurance */
475		}
476#endif
477		if (pgeflag) {
478			/* Turn on PG_G for text, data, bss pages. */
479			va = (vm_offset_t)btext;
480#ifndef DISABLE_PSE
481			if (pseflag && (cpu_feature & CPUID_PSE)) {
482				if (va < KERNBASE + (1 << PDRSHIFT))
483					va = KERNBASE + (1 << PDRSHIFT);
484			}
485#endif
486			endva = KERNBASE + KERNend;
487			while (va < endva) {
488				pte = vtopte(va);
489				if (*pte)
490					*pte |= pgeflag;
491				va += PAGE_SIZE;
492			}
493			invltlb();	/* Insurance */
494		}
495		/*
496		 * We do not need to broadcast the invltlb here, because
497		 * each AP does it the moment it is released from the boot
498		 * lock.  See ap_init().
499		 */
500	}
501}
502
503static void *
504pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
505{
506	*flags = UMA_SLAB_PRIV;
507	return (void *)kmem_alloc(kernel_map, bytes);
508}
509
510/*
511 *	Initialize the pmap module.
512 *	Called by vm_init, to initialize any structures that the pmap
513 *	system needs to map virtual memory.
514 *	pmap_init has been enhanced to support in a fairly consistant
515 *	way, discontiguous physical memory.
516 */
517void
518pmap_init(phys_start, phys_end)
519	vm_offset_t phys_start, phys_end;
520{
521	int i;
522	int initial_pvs;
523
524	/*
525	 * Allocate memory for random pmap data structures.  Includes the
526	 * pv_head_table.
527	 */
528
529	for(i = 0; i < vm_page_array_size; i++) {
530		vm_page_t m;
531
532		m = &vm_page_array[i];
533		TAILQ_INIT(&m->md.pv_list);
534		m->md.pv_list_count = 0;
535	}
536
537	/*
538	 * init the pv free list
539	 */
540	initial_pvs = vm_page_array_size;
541	if (initial_pvs < MINPV)
542		initial_pvs = MINPV;
543	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
544	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
545	uma_zone_set_allocf(pvzone, pmap_allocf);
546	uma_prealloc(pvzone, initial_pvs);
547
548	/*
549	 * Now it is safe to enable pv_table recording.
550	 */
551	pmap_initialized = TRUE;
552}
553
554/*
555 * Initialize the address space (zone) for the pv_entries.  Set a
556 * high water mark so that the system can recover from excessive
557 * numbers of pv entries.
558 */
559void
560pmap_init2()
561{
562	int shpgperproc = PMAP_SHPGPERPROC;
563
564	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
565	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
566	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
567	pv_entry_high_water = 9 * (pv_entry_max / 10);
568	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
569}
570
571
572/***************************************************
573 * Low level helper routines.....
574 ***************************************************/
575
576#if defined(PMAP_DIAGNOSTIC)
577
578/*
579 * This code checks for non-writeable/modified pages.
580 * This should be an invalid condition.
581 */
582static int
583pmap_nw_modified(pt_entry_t ptea)
584{
585	int pte;
586
587	pte = (int) ptea;
588
589	if ((pte & (PG_M|PG_RW)) == PG_M)
590		return 1;
591	else
592		return 0;
593}
594#endif
595
596
597/*
598 * this routine defines the region(s) of memory that should
599 * not be tested for the modified bit.
600 */
601static PMAP_INLINE int
602pmap_track_modified(vm_offset_t va)
603{
604	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
605		return 1;
606	else
607		return 0;
608}
609
610#ifdef I386_CPU
611/*
612 * i386 only has "invalidate everything" and no SMP to worry about.
613 */
614PMAP_INLINE void
615pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
616{
617
618	if (pmap == kernel_pmap || pmap->pm_active)
619		invltlb();
620}
621
622PMAP_INLINE void
623pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
624{
625
626	if (pmap == kernel_pmap || pmap->pm_active)
627		invltlb();
628}
629
630PMAP_INLINE void
631pmap_invalidate_all(pmap_t pmap)
632{
633
634	if (pmap == kernel_pmap || pmap->pm_active)
635		invltlb();
636}
637#else /* !I386_CPU */
638#ifdef SMP
639/*
640 * For SMP, these functions have to use the IPI mechanism for coherence.
641 */
642void
643pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
644{
645	u_int cpumask;
646	u_int other_cpus;
647
648	critical_enter();
649	/*
650	 * We need to disable interrupt preemption but MUST NOT have
651	 * interrupts disabled here.
652	 * XXX we may need to hold schedlock to get a coherent pm_active
653	 */
654	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
655		invlpg(va);
656		smp_invlpg(va);
657	} else {
658		cpumask = PCPU_GET(cpumask);
659		other_cpus = PCPU_GET(other_cpus);
660		if (pmap->pm_active & cpumask)
661			invlpg(va);
662		if (pmap->pm_active & other_cpus)
663			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
664	}
665	critical_exit();
666}
667
668void
669pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
670{
671	u_int cpumask;
672	u_int other_cpus;
673	vm_offset_t addr;
674
675	critical_enter();
676	/*
677	 * We need to disable interrupt preemption but MUST NOT have
678	 * interrupts disabled here.
679	 * XXX we may need to hold schedlock to get a coherent pm_active
680	 */
681	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
682		for (addr = sva; addr < eva; addr += PAGE_SIZE)
683			invlpg(addr);
684		smp_invlpg_range(sva, eva);
685	} else {
686		cpumask = PCPU_GET(cpumask);
687		other_cpus = PCPU_GET(other_cpus);
688		if (pmap->pm_active & cpumask)
689			for (addr = sva; addr < eva; addr += PAGE_SIZE)
690				invlpg(addr);
691		if (pmap->pm_active & other_cpus)
692			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
693			    sva, eva);
694	}
695	critical_exit();
696}
697
698void
699pmap_invalidate_all(pmap_t pmap)
700{
701	u_int cpumask;
702	u_int other_cpus;
703
704#ifdef SWTCH_OPTIM_STATS
705	tlb_flush_count++;
706#endif
707	critical_enter();
708	/*
709	 * We need to disable interrupt preemption but MUST NOT have
710	 * interrupts disabled here.
711	 * XXX we may need to hold schedlock to get a coherent pm_active
712	 */
713	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
714		invltlb();
715		smp_invltlb();
716	} else {
717		cpumask = PCPU_GET(cpumask);
718		other_cpus = PCPU_GET(other_cpus);
719		if (pmap->pm_active & cpumask)
720			invltlb();
721		if (pmap->pm_active & other_cpus)
722			smp_masked_invltlb(pmap->pm_active & other_cpus);
723	}
724	critical_exit();
725}
726#else /* !SMP */
727/*
728 * Normal, non-SMP, 486+ invalidation functions.
729 * We inline these within pmap.c for speed.
730 */
731PMAP_INLINE void
732pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
733{
734
735	if (pmap == kernel_pmap || pmap->pm_active)
736		invlpg(va);
737}
738
739PMAP_INLINE void
740pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
741{
742	vm_offset_t addr;
743
744	if (pmap == kernel_pmap || pmap->pm_active)
745		for (addr = sva; addr < eva; addr += PAGE_SIZE)
746			invlpg(addr);
747}
748
749PMAP_INLINE void
750pmap_invalidate_all(pmap_t pmap)
751{
752
753	if (pmap == kernel_pmap || pmap->pm_active)
754		invltlb();
755}
756#endif /* !SMP */
757#endif /* !I386_CPU */
758
759/*
760 * Return an address which is the base of the Virtual mapping of
761 * all the PTEs for the given pmap. Note this doesn't say that
762 * all the PTEs will be present or that the pages there are valid.
763 * The PTEs are made available by the recursive mapping trick.
764 * It will map in the alternate PTE space if needed.
765 */
766static pt_entry_t *
767get_ptbase(pmap)
768	pmap_t pmap;
769{
770	pd_entry_t frame;
771
772	/* are we current address space or kernel? */
773	if (pmap == kernel_pmap)
774		return PTmap;
775	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
776	if (frame == (PTDpde & PG_FRAME))
777		return PTmap;
778	/* otherwise, we are alternate address space */
779	if (frame != (APTDpde & PG_FRAME)) {
780		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
781		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
782	}
783	return APTmap;
784}
785
786/*
787 * Super fast pmap_pte routine best used when scanning
788 * the pv lists.  This eliminates many coarse-grained
789 * invltlb calls.  Note that many of the pv list
790 * scans are across different pmaps.  It is very wasteful
791 * to do an entire invltlb for checking a single mapping.
792 */
793
794static pt_entry_t *
795pmap_pte_quick(pmap, va)
796	register pmap_t pmap;
797	vm_offset_t va;
798{
799	pd_entry_t pde, newpf;
800	pde = pmap->pm_pdir[va >> PDRSHIFT];
801	if (pde != 0) {
802		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
803		unsigned index = i386_btop(va);
804		/* are we current address space or kernel? */
805		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
806			return PTmap + index;
807		newpf = pde & PG_FRAME;
808		if (((*PMAP1) & PG_FRAME) != newpf) {
809			*PMAP1 = newpf | PG_RW | PG_V;
810			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
811		}
812		return PADDR1 + (index & (NPTEPG - 1));
813	}
814	return (0);
815}
816
817/*
818 *	Routine:	pmap_extract
819 *	Function:
820 *		Extract the physical page address associated
821 *		with the given map/virtual_address pair.
822 */
823vm_offset_t
824pmap_extract(pmap, va)
825	register pmap_t pmap;
826	vm_offset_t va;
827{
828	vm_offset_t rtval;	/* XXX FIXME */
829	vm_offset_t pdirindex;
830
831	if (pmap == 0)
832		return 0;
833	pdirindex = va >> PDRSHIFT;
834	rtval = pmap->pm_pdir[pdirindex];
835	if (rtval != 0) {
836		pt_entry_t *pte;
837		if ((rtval & PG_PS) != 0) {
838			rtval &= ~(NBPDR - 1);
839			rtval |= va & (NBPDR - 1);
840			return rtval;
841		}
842		pte = get_ptbase(pmap) + i386_btop(va);
843		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
844		return rtval;
845	}
846	return 0;
847
848}
849
850/***************************************************
851 * Low level mapping routines.....
852 ***************************************************/
853
854/*
855 * Add a wired page to the kva.
856 * Note: not SMP coherent.
857 */
858PMAP_INLINE void
859pmap_kenter(vm_offset_t va, vm_offset_t pa)
860{
861	pt_entry_t *pte;
862
863	pte = vtopte(va);
864	*pte = pa | PG_RW | PG_V | pgeflag;
865}
866
867/*
868 * Remove a page from the kernel pagetables.
869 * Note: not SMP coherent.
870 */
871PMAP_INLINE void
872pmap_kremove(vm_offset_t va)
873{
874	pt_entry_t *pte;
875
876	pte = vtopte(va);
877	*pte = 0;
878}
879
880/*
881 *	Used to map a range of physical addresses into kernel
882 *	virtual address space.
883 *
884 *	The value passed in '*virt' is a suggested virtual address for
885 *	the mapping. Architectures which can support a direct-mapped
886 *	physical to virtual region can return the appropriate address
887 *	within that region, leaving '*virt' unchanged. Other
888 *	architectures should map the pages starting at '*virt' and
889 *	update '*virt' with the first usable address after the mapped
890 *	region.
891 */
892vm_offset_t
893pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
894{
895	vm_offset_t va, sva;
896
897	va = sva = *virt;
898	while (start < end) {
899		pmap_kenter(va, start);
900		va += PAGE_SIZE;
901		start += PAGE_SIZE;
902	}
903	pmap_invalidate_range(kernel_pmap, sva, va);
904	*virt = va;
905	return (sva);
906}
907
908
909/*
910 * Add a list of wired pages to the kva
911 * this routine is only used for temporary
912 * kernel mappings that do not need to have
913 * page modification or references recorded.
914 * Note that old mappings are simply written
915 * over.  The page *must* be wired.
916 * Note: SMP coherent.  Uses a ranged shootdown IPI.
917 */
918void
919pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
920{
921	vm_offset_t va;
922
923	va = sva;
924	while (count-- > 0) {
925		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
926		va += PAGE_SIZE;
927		m++;
928	}
929	pmap_invalidate_range(kernel_pmap, sva, va);
930}
931
932/*
933 * This routine tears out page mappings from the
934 * kernel -- it is meant only for temporary mappings.
935 * Note: SMP coherent.  Uses a ranged shootdown IPI.
936 */
937void
938pmap_qremove(vm_offset_t sva, int count)
939{
940	vm_offset_t va;
941
942	va = sva;
943	while (count-- > 0) {
944		pmap_kremove(va);
945		va += PAGE_SIZE;
946	}
947	pmap_invalidate_range(kernel_pmap, sva, va);
948}
949
950static vm_page_t
951pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
952{
953	vm_page_t m;
954
955retry:
956	m = vm_page_lookup(object, pindex);
957	if (m != NULL) {
958		vm_page_lock_queues();
959		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
960			goto retry;
961		vm_page_unlock_queues();
962	}
963	return m;
964}
965
966#ifndef KSTACK_MAX_PAGES
967#define KSTACK_MAX_PAGES 32
968#endif
969
970/*
971 * Create the kernel stack (including pcb for i386) for a new thread.
972 * This routine directly affects the fork perf for a process and
973 * create performance for a thread.
974 */
975void
976pmap_new_thread(struct thread *td, int pages)
977{
978	int i;
979	vm_page_t ma[KSTACK_MAX_PAGES];
980	vm_object_t ksobj;
981	vm_page_t m;
982	vm_offset_t ks;
983
984	/* Bounds check */
985	if (pages <= 1)
986		pages = KSTACK_PAGES;
987	else if (pages > KSTACK_MAX_PAGES)
988		pages = KSTACK_MAX_PAGES;
989
990	/*
991	 * allocate object for the kstack
992	 */
993	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
994	td->td_kstack_obj = ksobj;
995
996	/* get a kernel virtual address for the kstack for this thread */
997#ifdef KSTACK_GUARD
998	ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
999	if (ks == 0)
1000		panic("pmap_new_thread: kstack allocation failed");
1001	if (*vtopte(ks) != 0)
1002		pmap_qremove(ks, 1);
1003	ks += PAGE_SIZE;
1004	td->td_kstack = ks;
1005#else
1006	/* get a kernel virtual address for the kstack for this thread */
1007	ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
1008	if (ks == 0)
1009		panic("pmap_new_thread: kstack allocation failed");
1010	td->td_kstack = ks;
1011#endif
1012	/*
1013	 * Knowing the number of pages allocated is useful when you
1014	 * want to deallocate them.
1015	 */
1016	td->td_kstack_pages = pages;
1017
1018	/*
1019	 * For the length of the stack, link in a real page of ram for each
1020	 * page of stack.
1021	 */
1022	for (i = 0; i < pages; i++) {
1023		/*
1024		 * Get a kernel stack page
1025		 */
1026		m = vm_page_grab(ksobj, i,
1027		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
1028		ma[i] = m;
1029
1030		vm_page_lock_queues();
1031		vm_page_wakeup(m);
1032		vm_page_flag_clear(m, PG_ZERO);
1033		m->valid = VM_PAGE_BITS_ALL;
1034		vm_page_unlock_queues();
1035	}
1036	pmap_qenter(ks, ma, pages);
1037}
1038
1039/*
1040 * Dispose the kernel stack for a thread that has exited.
1041 * This routine directly impacts the exit perf of a process and thread.
1042 */
1043void
1044pmap_dispose_thread(td)
1045	struct thread *td;
1046{
1047	int i;
1048	int pages;
1049	vm_object_t ksobj;
1050	vm_offset_t ks;
1051	vm_page_t m;
1052
1053	pages = td->td_kstack_pages;
1054	ksobj = td->td_kstack_obj;
1055	ks = td->td_kstack;
1056	pmap_qremove(ks, pages);
1057	for (i = 0; i < pages; i++) {
1058		m = vm_page_lookup(ksobj, i);
1059		if (m == NULL)
1060			panic("pmap_dispose_thread: kstack already missing?");
1061		vm_page_lock_queues();
1062		vm_page_busy(m);
1063		vm_page_unwire(m, 0);
1064		vm_page_free(m);
1065		vm_page_unlock_queues();
1066	}
1067	/*
1068	 * Free the space that this stack was mapped to in the kernel
1069	 * address map.
1070	 */
1071#ifdef KSTACK_GUARD
1072	kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
1073#else
1074	kmem_free(kernel_map, ks, pages * PAGE_SIZE);
1075#endif
1076	vm_object_deallocate(ksobj);
1077}
1078
1079/*
1080 * Set up a variable sized alternate kstack.  Though it may look MI, it may
1081 * need to be different on certain arches like ia64.
1082 */
1083void
1084pmap_new_altkstack(struct thread *td, int pages)
1085{
1086	/* shuffle the original stack */
1087	td->td_altkstack_obj = td->td_kstack_obj;
1088	td->td_altkstack = td->td_kstack;
1089	td->td_altkstack_pages = td->td_kstack_pages;
1090
1091	pmap_new_thread(td, pages);
1092}
1093
1094void
1095pmap_dispose_altkstack(td)
1096	struct thread *td;
1097{
1098	pmap_dispose_thread(td);
1099
1100	/* restore the original kstack */
1101	td->td_kstack = td->td_altkstack;
1102	td->td_kstack_obj = td->td_altkstack_obj;
1103	td->td_kstack_pages = td->td_altkstack_pages;
1104	td->td_altkstack = 0;
1105	td->td_altkstack_obj = NULL;
1106	td->td_altkstack_pages = 0;
1107}
1108
1109/*
1110 * Allow the Kernel stack for a thread to be prejudicially paged out.
1111 */
1112void
1113pmap_swapout_thread(td)
1114	struct thread *td;
1115{
1116	int i;
1117	int pages;
1118	vm_object_t ksobj;
1119	vm_offset_t ks;
1120	vm_page_t m;
1121
1122	pages = td->td_kstack_pages;
1123	ksobj = td->td_kstack_obj;
1124	ks = td->td_kstack;
1125	pmap_qremove(ks, pages);
1126	for (i = 0; i < pages; i++) {
1127		m = vm_page_lookup(ksobj, i);
1128		if (m == NULL)
1129			panic("pmap_swapout_thread: kstack already missing?");
1130		vm_page_lock_queues();
1131		vm_page_dirty(m);
1132		vm_page_unwire(m, 0);
1133		vm_page_unlock_queues();
1134	}
1135}
1136
1137/*
1138 * Bring the kernel stack for a specified thread back in.
1139 */
1140void
1141pmap_swapin_thread(td)
1142	struct thread *td;
1143{
1144	int i, rv;
1145	int pages;
1146	vm_page_t ma[KSTACK_MAX_PAGES];
1147	vm_object_t ksobj;
1148	vm_offset_t ks;
1149	vm_page_t m;
1150
1151	pages = td->td_kstack_pages;
1152	ksobj = td->td_kstack_obj;
1153	ks = td->td_kstack;
1154	for (i = 0; i < pages; i++) {
1155		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1156		if (m->valid != VM_PAGE_BITS_ALL) {
1157			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1158			if (rv != VM_PAGER_OK)
1159				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1160			m = vm_page_lookup(ksobj, i);
1161			m->valid = VM_PAGE_BITS_ALL;
1162		}
1163		ma[i] = m;
1164		vm_page_lock_queues();
1165		vm_page_wire(m);
1166		vm_page_wakeup(m);
1167		vm_page_unlock_queues();
1168	}
1169	pmap_qenter(ks, ma, pages);
1170}
1171
1172/***************************************************
1173 * Page table page management routines.....
1174 ***************************************************/
1175
1176/*
1177 * This routine unholds page table pages, and if the hold count
1178 * drops to zero, then it decrements the wire count.
1179 */
1180static int
1181_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1182{
1183
1184	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1185		vm_page_lock_queues();
1186
1187	if (m->hold_count == 0) {
1188		vm_offset_t pteva;
1189		/*
1190		 * unmap the page table page
1191		 */
1192		pmap->pm_pdir[m->pindex] = 0;
1193		--pmap->pm_stats.resident_count;
1194		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1195		    (PTDpde & PG_FRAME)) {
1196			/*
1197			 * Do an invltlb to make the invalidated mapping
1198			 * take effect immediately.
1199			 */
1200			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1201			pmap_invalidate_page(pmap, pteva);
1202		}
1203
1204		/*
1205		 * If the page is finally unwired, simply free it.
1206		 */
1207		--m->wire_count;
1208		if (m->wire_count == 0) {
1209			vm_page_busy(m);
1210			vm_page_free_zero(m);
1211			atomic_subtract_int(&cnt.v_wire_count, 1);
1212		}
1213		return 1;
1214	}
1215	return 0;
1216}
1217
1218static PMAP_INLINE int
1219pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1220{
1221	vm_page_unhold(m);
1222	if (m->hold_count == 0)
1223		return _pmap_unwire_pte_hold(pmap, m);
1224	else
1225		return 0;
1226}
1227
1228/*
1229 * After removing a page table entry, this routine is used to
1230 * conditionally free the page, and manage the hold/wire counts.
1231 */
1232static int
1233pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1234{
1235	unsigned ptepindex;
1236	if (va >= VM_MAXUSER_ADDRESS)
1237		return 0;
1238
1239	if (mpte == NULL) {
1240		ptepindex = (va >> PDRSHIFT);
1241		if (pmap->pm_pteobj->root &&
1242			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1243			mpte = pmap->pm_pteobj->root;
1244		} else {
1245			while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
1246			       vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
1247				vm_page_lock_queues();
1248		}
1249	}
1250
1251	return pmap_unwire_pte_hold(pmap, mpte);
1252}
1253
1254void
1255pmap_pinit0(pmap)
1256	struct pmap *pmap;
1257{
1258	pmap->pm_pdir =
1259		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1260	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1261#ifndef I386_CPU
1262	invlpg((vm_offset_t)pmap->pm_pdir);
1263#else
1264	invltlb();
1265#endif
1266	pmap->pm_active = 0;
1267	TAILQ_INIT(&pmap->pm_pvlist);
1268	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1269	mtx_lock_spin(&allpmaps_lock);
1270	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1271	mtx_unlock_spin(&allpmaps_lock);
1272}
1273
1274/*
1275 * Initialize a preallocated and zeroed pmap structure,
1276 * such as one in a vmspace structure.
1277 */
1278void
1279pmap_pinit(pmap)
1280	register struct pmap *pmap;
1281{
1282	vm_page_t ptdpg;
1283
1284	/*
1285	 * No need to allocate page table space yet but we do need a valid
1286	 * page directory table.
1287	 */
1288	if (pmap->pm_pdir == NULL)
1289		pmap->pm_pdir =
1290			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1291
1292	/*
1293	 * allocate object for the ptes
1294	 */
1295	if (pmap->pm_pteobj == NULL)
1296		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1297
1298	/*
1299	 * allocate the page directory page
1300	 */
1301	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1302	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1303	vm_page_lock_queues();
1304	vm_page_flag_clear(ptdpg, PG_BUSY);
1305	ptdpg->valid = VM_PAGE_BITS_ALL;
1306	vm_page_unlock_queues();
1307
1308	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1309	if ((ptdpg->flags & PG_ZERO) == 0)
1310		bzero(pmap->pm_pdir, PAGE_SIZE);
1311
1312	mtx_lock_spin(&allpmaps_lock);
1313	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1314	mtx_unlock_spin(&allpmaps_lock);
1315	/* Wire in kernel global address entries. */
1316	/* XXX copies current process, does not fill in MPPTDI */
1317	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1318#ifdef SMP
1319	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1320#endif
1321
1322	/* install self-referential address mapping entry */
1323	pmap->pm_pdir[PTDPTDI] =
1324		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1325
1326	pmap->pm_active = 0;
1327	TAILQ_INIT(&pmap->pm_pvlist);
1328	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1329}
1330
1331/*
1332 * Wire in kernel global address entries.  To avoid a race condition
1333 * between pmap initialization and pmap_growkernel, this procedure
1334 * should be called after the vmspace is attached to the process
1335 * but before this pmap is activated.
1336 */
1337void
1338pmap_pinit2(pmap)
1339	struct pmap *pmap;
1340{
1341	/* XXX: Remove this stub when no longer called */
1342}
1343
1344static int
1345pmap_release_free_page(pmap_t pmap, vm_page_t p)
1346{
1347	pd_entry_t *pde = pmap->pm_pdir;
1348
1349	/*
1350	 * This code optimizes the case of freeing non-busy
1351	 * page-table pages.  Those pages are zero now, and
1352	 * might as well be placed directly into the zero queue.
1353	 */
1354	vm_page_lock_queues();
1355	if (vm_page_sleep_if_busy(p, FALSE, "pmaprl"))
1356		return (0);
1357	vm_page_busy(p);
1358
1359	/*
1360	 * Remove the page table page from the processes address space.
1361	 */
1362	pde[p->pindex] = 0;
1363	pmap->pm_stats.resident_count--;
1364
1365	if (p->hold_count)  {
1366		panic("pmap_release: freeing held page table page");
1367	}
1368	/*
1369	 * Page directory pages need to have the kernel
1370	 * stuff cleared, so they can go into the zero queue also.
1371	 */
1372	if (p->pindex == PTDPTDI) {
1373		bzero(pde + KPTDI, nkpt * sizeof(pd_entry_t));
1374#ifdef SMP
1375		pde[MPPTDI] = 0;
1376#endif
1377		pde[APTDPTDI] = 0;
1378		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1379	}
1380
1381	p->wire_count--;
1382	atomic_subtract_int(&cnt.v_wire_count, 1);
1383	vm_page_free_zero(p);
1384	vm_page_unlock_queues();
1385	return 1;
1386}
1387
1388/*
1389 * this routine is called if the page table page is not
1390 * mapped correctly.
1391 */
1392static vm_page_t
1393_pmap_allocpte(pmap, ptepindex)
1394	pmap_t	pmap;
1395	unsigned ptepindex;
1396{
1397	vm_offset_t pteva, ptepa;	/* XXXPA */
1398	vm_page_t m;
1399
1400	/*
1401	 * Find or fabricate a new pagetable page
1402	 */
1403	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1404	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1405
1406	KASSERT(m->queue == PQ_NONE,
1407		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1408
1409	/*
1410	 * Increment the hold count for the page table page
1411	 * (denoting a new mapping.)
1412	 */
1413	m->hold_count++;
1414
1415	/*
1416	 * Map the pagetable page into the process address space, if
1417	 * it isn't already there.
1418	 */
1419
1420	pmap->pm_stats.resident_count++;
1421
1422	ptepa = VM_PAGE_TO_PHYS(m);
1423	pmap->pm_pdir[ptepindex] =
1424		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1425
1426	/*
1427	 * Try to use the new mapping, but if we cannot, then
1428	 * do it with the routine that maps the page explicitly.
1429	 */
1430	if ((m->flags & PG_ZERO) == 0) {
1431		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1432		    (PTDpde & PG_FRAME)) {
1433			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1434			bzero((caddr_t) pteva, PAGE_SIZE);
1435		} else {
1436			pmap_zero_page(m);
1437		}
1438	}
1439	vm_page_lock_queues();
1440	m->valid = VM_PAGE_BITS_ALL;
1441	vm_page_flag_clear(m, PG_ZERO);
1442	vm_page_wakeup(m);
1443	vm_page_unlock_queues();
1444
1445	return m;
1446}
1447
1448static vm_page_t
1449pmap_allocpte(pmap_t pmap, vm_offset_t va)
1450{
1451	unsigned ptepindex;
1452	pd_entry_t ptepa;
1453	vm_page_t m;
1454
1455	/*
1456	 * Calculate pagetable page index
1457	 */
1458	ptepindex = va >> PDRSHIFT;
1459
1460	/*
1461	 * Get the page directory entry
1462	 */
1463	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1464
1465	/*
1466	 * This supports switching from a 4MB page to a
1467	 * normal 4K page.
1468	 */
1469	if (ptepa & PG_PS) {
1470		pmap->pm_pdir[ptepindex] = 0;
1471		ptepa = 0;
1472		pmap_invalidate_all(kernel_pmap);
1473	}
1474
1475	/*
1476	 * If the page table page is mapped, we just increment the
1477	 * hold count, and activate it.
1478	 */
1479	if (ptepa) {
1480		/*
1481		 * In order to get the page table page, try the
1482		 * hint first.
1483		 */
1484		if (pmap->pm_pteobj->root &&
1485			(pmap->pm_pteobj->root->pindex == ptepindex)) {
1486			m = pmap->pm_pteobj->root;
1487		} else {
1488			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1489		}
1490		m->hold_count++;
1491		return m;
1492	}
1493	/*
1494	 * Here if the pte page isn't mapped, or if it has been deallocated.
1495	 */
1496	return _pmap_allocpte(pmap, ptepindex);
1497}
1498
1499
1500/***************************************************
1501* Pmap allocation/deallocation routines.
1502 ***************************************************/
1503
1504/*
1505 * Release any resources held by the given physical map.
1506 * Called when a pmap initialized by pmap_pinit is being released.
1507 * Should only be called if the map contains no valid mappings.
1508 */
1509void
1510pmap_release(pmap_t pmap)
1511{
1512	vm_page_t p,n,ptdpg;
1513	vm_object_t object = pmap->pm_pteobj;
1514	int curgeneration;
1515
1516#if defined(DIAGNOSTIC)
1517	if (object->ref_count != 1)
1518		panic("pmap_release: pteobj reference count != 1");
1519#endif
1520
1521	ptdpg = NULL;
1522	mtx_lock_spin(&allpmaps_lock);
1523	LIST_REMOVE(pmap, pm_list);
1524	mtx_unlock_spin(&allpmaps_lock);
1525retry:
1526	curgeneration = object->generation;
1527	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1528		n = TAILQ_NEXT(p, listq);
1529		if (p->pindex == PTDPTDI) {
1530			ptdpg = p;
1531			continue;
1532		}
1533		while (1) {
1534			if (!pmap_release_free_page(pmap, p) &&
1535				(object->generation != curgeneration))
1536				goto retry;
1537		}
1538	}
1539
1540	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1541		goto retry;
1542}
1543
1544static int
1545kvm_size(SYSCTL_HANDLER_ARGS)
1546{
1547	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1548
1549	return sysctl_handle_long(oidp, &ksize, 0, req);
1550}
1551SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1552    0, 0, kvm_size, "IU", "Size of KVM");
1553
1554static int
1555kvm_free(SYSCTL_HANDLER_ARGS)
1556{
1557	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1558
1559	return sysctl_handle_long(oidp, &kfree, 0, req);
1560}
1561SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1562    0, 0, kvm_free, "IU", "Amount of KVM free");
1563
1564/*
1565 * grow the number of kernel page table entries, if needed
1566 */
1567void
1568pmap_growkernel(vm_offset_t addr)
1569{
1570	struct pmap *pmap;
1571	int s;
1572	vm_offset_t ptppaddr;
1573	vm_page_t nkpg;
1574	pd_entry_t newpdir;
1575
1576	s = splhigh();
1577	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1578	if (kernel_vm_end == 0) {
1579		kernel_vm_end = KERNBASE;
1580		nkpt = 0;
1581		while (pdir_pde(PTD, kernel_vm_end)) {
1582			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1583			nkpt++;
1584		}
1585	}
1586	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1587	while (kernel_vm_end < addr) {
1588		if (pdir_pde(PTD, kernel_vm_end)) {
1589			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1590			continue;
1591		}
1592
1593		/*
1594		 * This index is bogus, but out of the way
1595		 */
1596		nkpg = vm_page_alloc(NULL, nkpt,
1597		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1598		if (!nkpg)
1599			panic("pmap_growkernel: no memory to grow kernel");
1600
1601		nkpt++;
1602
1603		pmap_zero_page(nkpg);
1604		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1605		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1606		pdir_pde(PTD, kernel_vm_end) = newpdir;
1607
1608		mtx_lock_spin(&allpmaps_lock);
1609		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1610			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1611		}
1612		mtx_unlock_spin(&allpmaps_lock);
1613		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1614	}
1615	splx(s);
1616}
1617
1618
1619/***************************************************
1620 * page management routines.
1621 ***************************************************/
1622
1623/*
1624 * free the pv_entry back to the free list
1625 */
1626static PMAP_INLINE void
1627free_pv_entry(pv_entry_t pv)
1628{
1629	pv_entry_count--;
1630	uma_zfree(pvzone, pv);
1631}
1632
1633/*
1634 * get a new pv_entry, allocating a block from the system
1635 * when needed.
1636 * the memory allocation is performed bypassing the malloc code
1637 * because of the possibility of allocations at interrupt time.
1638 */
1639static pv_entry_t
1640get_pv_entry(void)
1641{
1642	pv_entry_count++;
1643	if (pv_entry_high_water &&
1644		(pv_entry_count > pv_entry_high_water) &&
1645		(pmap_pagedaemon_waken == 0)) {
1646		pmap_pagedaemon_waken = 1;
1647		wakeup (&vm_pages_needed);
1648	}
1649	return uma_zalloc(pvzone, M_NOWAIT);
1650}
1651
1652/*
1653 * If it is the first entry on the list, it is actually
1654 * in the header and we must copy the following entry up
1655 * to the header.  Otherwise we must search the list for
1656 * the entry.  In either case we free the now unused entry.
1657 */
1658
1659static int
1660pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1661{
1662	pv_entry_t pv;
1663	int rtval;
1664	int s;
1665
1666	s = splvm();
1667	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1668	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1669		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1670			if (pmap == pv->pv_pmap && va == pv->pv_va)
1671				break;
1672		}
1673	} else {
1674		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1675			if (va == pv->pv_va)
1676				break;
1677		}
1678	}
1679
1680	rtval = 0;
1681	if (pv) {
1682		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1683		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1684		m->md.pv_list_count--;
1685		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1686			vm_page_flag_clear(m, PG_WRITEABLE);
1687
1688		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1689		free_pv_entry(pv);
1690	}
1691
1692	splx(s);
1693	return rtval;
1694}
1695
1696/*
1697 * Create a pv entry for page at pa for
1698 * (pmap, va).
1699 */
1700static void
1701pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1702{
1703
1704	int s;
1705	pv_entry_t pv;
1706
1707	s = splvm();
1708	pv = get_pv_entry();
1709	pv->pv_va = va;
1710	pv->pv_pmap = pmap;
1711	pv->pv_ptem = mpte;
1712
1713	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1714	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1715	m->md.pv_list_count++;
1716
1717	splx(s);
1718}
1719
1720/*
1721 * pmap_remove_pte: do the things to unmap a page in a process
1722 */
1723static int
1724pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1725{
1726	pt_entry_t oldpte;
1727	vm_page_t m;
1728
1729	oldpte = atomic_readandclear_int(ptq);
1730	if (oldpte & PG_W)
1731		pmap->pm_stats.wired_count -= 1;
1732	/*
1733	 * Machines that don't support invlpg, also don't support
1734	 * PG_G.
1735	 */
1736	if (oldpte & PG_G)
1737		pmap_invalidate_page(kernel_pmap, va);
1738	pmap->pm_stats.resident_count -= 1;
1739	if (oldpte & PG_MANAGED) {
1740		m = PHYS_TO_VM_PAGE(oldpte);
1741		if (oldpte & PG_M) {
1742#if defined(PMAP_DIAGNOSTIC)
1743			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1744				printf(
1745	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1746				    va, oldpte);
1747			}
1748#endif
1749			if (pmap_track_modified(va))
1750				vm_page_dirty(m);
1751		}
1752		if (oldpte & PG_A)
1753			vm_page_flag_set(m, PG_REFERENCED);
1754		return pmap_remove_entry(pmap, m, va);
1755	} else {
1756		return pmap_unuse_pt(pmap, va, NULL);
1757	}
1758
1759	return 0;
1760}
1761
1762/*
1763 * Remove a single page from a process address space
1764 */
1765static void
1766pmap_remove_page(pmap_t pmap, vm_offset_t va)
1767{
1768	register pt_entry_t *ptq;
1769
1770	/*
1771	 * if there is no pte for this address, just skip it!!!
1772	 */
1773	if (*pmap_pde(pmap, va) == 0) {
1774		return;
1775	}
1776
1777	/*
1778	 * get a local va for mappings for this pmap.
1779	 */
1780	ptq = get_ptbase(pmap) + i386_btop(va);
1781	if (*ptq) {
1782		(void) pmap_remove_pte(pmap, ptq, va);
1783		pmap_invalidate_page(pmap, va);
1784	}
1785	return;
1786}
1787
1788/*
1789 *	Remove the given range of addresses from the specified map.
1790 *
1791 *	It is assumed that the start and end are properly
1792 *	rounded to the page size.
1793 */
1794void
1795pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1796{
1797	register pt_entry_t *ptbase;
1798	vm_offset_t pdnxt;
1799	pd_entry_t ptpaddr;
1800	vm_offset_t sindex, eindex;
1801	int anyvalid;
1802
1803	if (pmap == NULL)
1804		return;
1805
1806	if (pmap->pm_stats.resident_count == 0)
1807		return;
1808
1809	/*
1810	 * special handling of removing one page.  a very
1811	 * common operation and easy to short circuit some
1812	 * code.
1813	 */
1814	if ((sva + PAGE_SIZE == eva) &&
1815	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1816		pmap_remove_page(pmap, sva);
1817		return;
1818	}
1819
1820	anyvalid = 0;
1821
1822	/*
1823	 * Get a local virtual address for the mappings that are being
1824	 * worked with.
1825	 */
1826	ptbase = get_ptbase(pmap);
1827
1828	sindex = i386_btop(sva);
1829	eindex = i386_btop(eva);
1830
1831	for (; sindex < eindex; sindex = pdnxt) {
1832		unsigned pdirindex;
1833
1834		/*
1835		 * Calculate index for next page table.
1836		 */
1837		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1838		if (pmap->pm_stats.resident_count == 0)
1839			break;
1840
1841		pdirindex = sindex / NPDEPG;
1842		ptpaddr = pmap->pm_pdir[pdirindex];
1843		if ((ptpaddr & PG_PS) != 0) {
1844			pmap->pm_pdir[pdirindex] = 0;
1845			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1846			anyvalid++;
1847			continue;
1848		}
1849
1850		/*
1851		 * Weed out invalid mappings. Note: we assume that the page
1852		 * directory table is always allocated, and in kernel virtual.
1853		 */
1854		if (ptpaddr == 0)
1855			continue;
1856
1857		/*
1858		 * Limit our scan to either the end of the va represented
1859		 * by the current page table page, or to the end of the
1860		 * range being removed.
1861		 */
1862		if (pdnxt > eindex) {
1863			pdnxt = eindex;
1864		}
1865
1866		for (; sindex != pdnxt; sindex++) {
1867			vm_offset_t va;
1868			if (ptbase[sindex] == 0) {
1869				continue;
1870			}
1871			va = i386_ptob(sindex);
1872
1873			anyvalid++;
1874			if (pmap_remove_pte(pmap, ptbase + sindex, va))
1875				break;
1876		}
1877	}
1878
1879	if (anyvalid)
1880		pmap_invalidate_all(pmap);
1881}
1882
1883/*
1884 *	Routine:	pmap_remove_all
1885 *	Function:
1886 *		Removes this physical page from
1887 *		all physical maps in which it resides.
1888 *		Reflects back modify bits to the pager.
1889 *
1890 *	Notes:
1891 *		Original versions of this routine were very
1892 *		inefficient because they iteratively called
1893 *		pmap_remove (slow...)
1894 */
1895
1896void
1897pmap_remove_all(vm_page_t m)
1898{
1899	register pv_entry_t pv;
1900	pt_entry_t *pte, tpte;
1901	int s;
1902
1903#if defined(PMAP_DIAGNOSTIC)
1904	/*
1905	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1906	 */
1907	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1908		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1909		    VM_PAGE_TO_PHYS(m));
1910	}
1911#endif
1912	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1913	s = splvm();
1914	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1915		pv->pv_pmap->pm_stats.resident_count--;
1916		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1917		tpte = atomic_readandclear_int(pte);
1918		if (tpte & PG_W)
1919			pv->pv_pmap->pm_stats.wired_count--;
1920		if (tpte & PG_A)
1921			vm_page_flag_set(m, PG_REFERENCED);
1922
1923		/*
1924		 * Update the vm_page_t clean and reference bits.
1925		 */
1926		if (tpte & PG_M) {
1927#if defined(PMAP_DIAGNOSTIC)
1928			if (pmap_nw_modified((pt_entry_t) tpte)) {
1929				printf(
1930	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1931				    pv->pv_va, tpte);
1932			}
1933#endif
1934			if (pmap_track_modified(pv->pv_va))
1935				vm_page_dirty(m);
1936		}
1937		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1938		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1939		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1940		m->md.pv_list_count--;
1941		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1942		free_pv_entry(pv);
1943	}
1944	vm_page_flag_clear(m, PG_WRITEABLE);
1945	splx(s);
1946}
1947
1948/*
1949 *	Set the physical protection on the
1950 *	specified range of this map as requested.
1951 */
1952void
1953pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1954{
1955	register pt_entry_t *ptbase;
1956	vm_offset_t pdnxt;
1957	pd_entry_t ptpaddr;
1958	vm_offset_t sindex, eindex;
1959	int anychanged;
1960
1961	if (pmap == NULL)
1962		return;
1963
1964	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1965		pmap_remove(pmap, sva, eva);
1966		return;
1967	}
1968
1969	if (prot & VM_PROT_WRITE)
1970		return;
1971
1972	anychanged = 0;
1973
1974	ptbase = get_ptbase(pmap);
1975
1976	sindex = i386_btop(sva);
1977	eindex = i386_btop(eva);
1978
1979	for (; sindex < eindex; sindex = pdnxt) {
1980
1981		unsigned pdirindex;
1982
1983		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1984
1985		pdirindex = sindex / NPDEPG;
1986		ptpaddr = pmap->pm_pdir[pdirindex];
1987		if ((ptpaddr & PG_PS) != 0) {
1988			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1989			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1990			anychanged++;
1991			continue;
1992		}
1993
1994		/*
1995		 * Weed out invalid mappings. Note: we assume that the page
1996		 * directory table is always allocated, and in kernel virtual.
1997		 */
1998		if (ptpaddr == 0)
1999			continue;
2000
2001		if (pdnxt > eindex) {
2002			pdnxt = eindex;
2003		}
2004
2005		for (; sindex != pdnxt; sindex++) {
2006
2007			pt_entry_t pbits;
2008			vm_page_t m;
2009
2010			pbits = ptbase[sindex];
2011
2012			if (pbits & PG_MANAGED) {
2013				m = NULL;
2014				if (pbits & PG_A) {
2015					m = PHYS_TO_VM_PAGE(pbits);
2016					vm_page_flag_set(m, PG_REFERENCED);
2017					pbits &= ~PG_A;
2018				}
2019				if (pbits & PG_M) {
2020					if (pmap_track_modified(i386_ptob(sindex))) {
2021						if (m == NULL)
2022							m = PHYS_TO_VM_PAGE(pbits);
2023						vm_page_dirty(m);
2024						pbits &= ~PG_M;
2025					}
2026				}
2027			}
2028
2029			pbits &= ~PG_RW;
2030
2031			if (pbits != ptbase[sindex]) {
2032				ptbase[sindex] = pbits;
2033				anychanged = 1;
2034			}
2035		}
2036	}
2037	if (anychanged)
2038		pmap_invalidate_all(pmap);
2039}
2040
2041/*
2042 *	Insert the given physical page (p) at
2043 *	the specified virtual address (v) in the
2044 *	target physical map with the protection requested.
2045 *
2046 *	If specified, the page will be wired down, meaning
2047 *	that the related pte can not be reclaimed.
2048 *
2049 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2050 *	or lose information.  That is, this routine must actually
2051 *	insert this page into the given map NOW.
2052 */
2053void
2054pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2055	   boolean_t wired)
2056{
2057	vm_offset_t pa;
2058	register pt_entry_t *pte;
2059	vm_offset_t opa;
2060	pt_entry_t origpte, newpte;
2061	vm_page_t mpte;
2062
2063	if (pmap == NULL)
2064		return;
2065
2066	va &= PG_FRAME;
2067#ifdef PMAP_DIAGNOSTIC
2068	if (va > VM_MAX_KERNEL_ADDRESS)
2069		panic("pmap_enter: toobig");
2070	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2071		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2072#endif
2073
2074	mpte = NULL;
2075	/*
2076	 * In the case that a page table page is not
2077	 * resident, we are creating it here.
2078	 */
2079	if (va < VM_MAXUSER_ADDRESS) {
2080		mpte = pmap_allocpte(pmap, va);
2081	}
2082#if 0 && defined(PMAP_DIAGNOSTIC)
2083	else {
2084		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2085		origpte = *pdeaddr;
2086		if ((origpte & PG_V) == 0) {
2087			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2088				pmap->pm_pdir[PTDPTDI], origpte, va);
2089		}
2090	}
2091#endif
2092
2093	pte = pmap_pte(pmap, va);
2094
2095	/*
2096	 * Page Directory table entry not valid, we need a new PT page
2097	 */
2098	if (pte == NULL) {
2099		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2100			(void *)pmap->pm_pdir[PTDPTDI], va);
2101	}
2102
2103	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2104	origpte = *(vm_offset_t *)pte;
2105	opa = origpte & PG_FRAME;
2106
2107	if (origpte & PG_PS)
2108		panic("pmap_enter: attempted pmap_enter on 4MB page");
2109
2110	/*
2111	 * Mapping has not changed, must be protection or wiring change.
2112	 */
2113	if (origpte && (opa == pa)) {
2114		/*
2115		 * Wiring change, just update stats. We don't worry about
2116		 * wiring PT pages as they remain resident as long as there
2117		 * are valid mappings in them. Hence, if a user page is wired,
2118		 * the PT page will be also.
2119		 */
2120		if (wired && ((origpte & PG_W) == 0))
2121			pmap->pm_stats.wired_count++;
2122		else if (!wired && (origpte & PG_W))
2123			pmap->pm_stats.wired_count--;
2124
2125#if defined(PMAP_DIAGNOSTIC)
2126		if (pmap_nw_modified((pt_entry_t) origpte)) {
2127			printf(
2128	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2129			    va, origpte);
2130		}
2131#endif
2132
2133		/*
2134		 * Remove extra pte reference
2135		 */
2136		if (mpte)
2137			mpte->hold_count--;
2138
2139		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2140			if ((origpte & PG_RW) == 0) {
2141				*pte |= PG_RW;
2142				pmap_invalidate_page(pmap, va);
2143			}
2144			return;
2145		}
2146
2147		/*
2148		 * We might be turning off write access to the page,
2149		 * so we go ahead and sense modify status.
2150		 */
2151		if (origpte & PG_MANAGED) {
2152			if ((origpte & PG_M) && pmap_track_modified(va)) {
2153				vm_page_t om;
2154				om = PHYS_TO_VM_PAGE(opa);
2155				vm_page_dirty(om);
2156			}
2157			pa |= PG_MANAGED;
2158		}
2159		goto validate;
2160	}
2161	/*
2162	 * Mapping has changed, invalidate old range and fall through to
2163	 * handle validating new mapping.
2164	 */
2165	if (opa) {
2166		int err;
2167		vm_page_lock_queues();
2168		err = pmap_remove_pte(pmap, pte, va);
2169		vm_page_unlock_queues();
2170		if (err)
2171			panic("pmap_enter: pte vanished, va: 0x%x", va);
2172	}
2173
2174	/*
2175	 * Enter on the PV list if part of our managed memory. Note that we
2176	 * raise IPL while manipulating pv_table since pmap_enter can be
2177	 * called at interrupt time.
2178	 */
2179	if (pmap_initialized &&
2180	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2181		pmap_insert_entry(pmap, va, mpte, m);
2182		pa |= PG_MANAGED;
2183	}
2184
2185	/*
2186	 * Increment counters
2187	 */
2188	pmap->pm_stats.resident_count++;
2189	if (wired)
2190		pmap->pm_stats.wired_count++;
2191
2192validate:
2193	/*
2194	 * Now validate mapping with desired protection/wiring.
2195	 */
2196	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2197
2198	if (wired)
2199		newpte |= PG_W;
2200	if (va < VM_MAXUSER_ADDRESS)
2201		newpte |= PG_U;
2202	if (pmap == kernel_pmap)
2203		newpte |= pgeflag;
2204
2205	/*
2206	 * if the mapping or permission bits are different, we need
2207	 * to update the pte.
2208	 */
2209	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2210		*pte = newpte | PG_A;
2211		/*if (origpte)*/ {
2212			pmap_invalidate_page(pmap, va);
2213		}
2214	}
2215}
2216
2217/*
2218 * this code makes some *MAJOR* assumptions:
2219 * 1. Current pmap & pmap exists.
2220 * 2. Not wired.
2221 * 3. Read access.
2222 * 4. No page table pages.
2223 * 5. Tlbflush is deferred to calling procedure.
2224 * 6. Page IS managed.
2225 * but is *MUCH* faster than pmap_enter...
2226 */
2227
2228static vm_page_t
2229pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2230{
2231	pt_entry_t *pte;
2232	vm_offset_t pa;
2233
2234	/*
2235	 * In the case that a page table page is not
2236	 * resident, we are creating it here.
2237	 */
2238	if (va < VM_MAXUSER_ADDRESS) {
2239		unsigned ptepindex;
2240		pd_entry_t ptepa;
2241
2242		/*
2243		 * Calculate pagetable page index
2244		 */
2245		ptepindex = va >> PDRSHIFT;
2246		if (mpte && (mpte->pindex == ptepindex)) {
2247			mpte->hold_count++;
2248		} else {
2249retry:
2250			/*
2251			 * Get the page directory entry
2252			 */
2253			ptepa = pmap->pm_pdir[ptepindex];
2254
2255			/*
2256			 * If the page table page is mapped, we just increment
2257			 * the hold count, and activate it.
2258			 */
2259			if (ptepa) {
2260				if (ptepa & PG_PS)
2261					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2262				if (pmap->pm_pteobj->root &&
2263					(pmap->pm_pteobj->root->pindex == ptepindex)) {
2264					mpte = pmap->pm_pteobj->root;
2265				} else {
2266					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2267				}
2268				if (mpte == NULL)
2269					goto retry;
2270				mpte->hold_count++;
2271			} else {
2272				mpte = _pmap_allocpte(pmap, ptepindex);
2273			}
2274		}
2275	} else {
2276		mpte = NULL;
2277	}
2278
2279	/*
2280	 * This call to vtopte makes the assumption that we are
2281	 * entering the page into the current pmap.  In order to support
2282	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2283	 * But that isn't as quick as vtopte.
2284	 */
2285	pte = vtopte(va);
2286	if (*pte) {
2287		if (mpte != NULL) {
2288			vm_page_lock_queues();
2289			pmap_unwire_pte_hold(pmap, mpte);
2290			vm_page_unlock_queues();
2291		}
2292		return 0;
2293	}
2294
2295	/*
2296	 * Enter on the PV list if part of our managed memory. Note that we
2297	 * raise IPL while manipulating pv_table since pmap_enter can be
2298	 * called at interrupt time.
2299	 */
2300	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2301		pmap_insert_entry(pmap, va, mpte, m);
2302
2303	/*
2304	 * Increment counters
2305	 */
2306	pmap->pm_stats.resident_count++;
2307
2308	pa = VM_PAGE_TO_PHYS(m);
2309
2310	/*
2311	 * Now validate mapping with RO protection
2312	 */
2313	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2314		*pte = pa | PG_V | PG_U;
2315	else
2316		*pte = pa | PG_V | PG_U | PG_MANAGED;
2317
2318	return mpte;
2319}
2320
2321/*
2322 * Make a temporary mapping for a physical address.  This is only intended
2323 * to be used for panic dumps.
2324 */
2325void *
2326pmap_kenter_temporary(vm_offset_t pa, int i)
2327{
2328	vm_offset_t va;
2329
2330	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2331	pmap_kenter(va, pa);
2332#ifndef I386_CPU
2333	invlpg(va);
2334#else
2335	invltlb();
2336#endif
2337	return ((void *)crashdumpmap);
2338}
2339
2340#define MAX_INIT_PT (96)
2341/*
2342 * pmap_object_init_pt preloads the ptes for a given object
2343 * into the specified pmap.  This eliminates the blast of soft
2344 * faults on process startup and immediately after an mmap.
2345 */
2346void
2347pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2348		    vm_object_t object, vm_pindex_t pindex,
2349		    vm_size_t size, int limit)
2350{
2351	vm_offset_t tmpidx;
2352	int psize;
2353	vm_page_t p, mpte;
2354
2355	if (pmap == NULL || object == NULL)
2356		return;
2357
2358	/*
2359	 * This code maps large physical mmap regions into the
2360	 * processor address space.  Note that some shortcuts
2361	 * are taken, but the code works.
2362	 */
2363	if (pseflag && (object->type == OBJT_DEVICE) &&
2364	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2365		int i;
2366		vm_page_t m[1];
2367		unsigned int ptepindex;
2368		int npdes;
2369		pd_entry_t ptepa;
2370
2371		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2372			return;
2373
2374retry:
2375		p = vm_page_lookup(object, pindex);
2376		if (p != NULL) {
2377			vm_page_lock_queues();
2378			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2379				goto retry;
2380		} else {
2381			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2382			if (p == NULL)
2383				return;
2384			m[0] = p;
2385
2386			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2387				vm_page_lock_queues();
2388				vm_page_free(p);
2389				vm_page_unlock_queues();
2390				return;
2391			}
2392
2393			p = vm_page_lookup(object, pindex);
2394			vm_page_lock_queues();
2395			vm_page_wakeup(p);
2396		}
2397		vm_page_unlock_queues();
2398
2399		ptepa = VM_PAGE_TO_PHYS(p);
2400		if (ptepa & (NBPDR - 1)) {
2401			return;
2402		}
2403
2404		p->valid = VM_PAGE_BITS_ALL;
2405
2406		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2407		npdes = size >> PDRSHIFT;
2408		for(i = 0; i < npdes; i++) {
2409			pmap->pm_pdir[ptepindex] =
2410			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2411			ptepa += NBPDR;
2412			ptepindex += 1;
2413		}
2414		pmap_invalidate_all(kernel_pmap);
2415		return;
2416	}
2417
2418	psize = i386_btop(size);
2419
2420	if ((object->type != OBJT_VNODE) ||
2421	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2422	     (object->resident_page_count > MAX_INIT_PT))) {
2423		return;
2424	}
2425
2426	if (psize + pindex > object->size) {
2427		if (object->size < pindex)
2428			return;
2429		psize = object->size - pindex;
2430	}
2431
2432	mpte = NULL;
2433
2434	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
2435		if (p->pindex < pindex) {
2436			p = vm_page_splay(pindex, object->root);
2437			if ((object->root = p)->pindex < pindex)
2438				p = TAILQ_NEXT(p, listq);
2439		}
2440	}
2441	/*
2442	 * Assert: the variable p is either (1) the page with the
2443	 * least pindex greater than or equal to the parameter pindex
2444	 * or (2) NULL.
2445	 */
2446	for (;
2447	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2448	     p = TAILQ_NEXT(p, listq)) {
2449		/*
2450		 * don't allow an madvise to blow away our really
2451		 * free pages allocating pv entries.
2452		 */
2453		if ((limit & MAP_PREFAULT_MADVISE) &&
2454		    cnt.v_free_count < cnt.v_free_reserved) {
2455			break;
2456		}
2457		vm_page_lock_queues();
2458		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2459		    (p->busy == 0) &&
2460		    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2461			if ((p->queue - p->pc) == PQ_CACHE)
2462				vm_page_deactivate(p);
2463			vm_page_busy(p);
2464			vm_page_unlock_queues();
2465			mpte = pmap_enter_quick(pmap,
2466				addr + i386_ptob(tmpidx), p, mpte);
2467			vm_page_lock_queues();
2468			vm_page_wakeup(p);
2469		}
2470		vm_page_unlock_queues();
2471	}
2472	return;
2473}
2474
2475/*
2476 * pmap_prefault provides a quick way of clustering
2477 * pagefaults into a processes address space.  It is a "cousin"
2478 * of pmap_object_init_pt, except it runs at page fault time instead
2479 * of mmap time.
2480 */
2481#define PFBAK 4
2482#define PFFOR 4
2483#define PAGEORDER_SIZE (PFBAK+PFFOR)
2484
2485static int pmap_prefault_pageorder[] = {
2486	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2487	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2488	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2489	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2490};
2491
2492void
2493pmap_prefault(pmap, addra, entry)
2494	pmap_t pmap;
2495	vm_offset_t addra;
2496	vm_map_entry_t entry;
2497{
2498	int i;
2499	vm_offset_t starta;
2500	vm_offset_t addr;
2501	vm_pindex_t pindex;
2502	vm_page_t m, mpte;
2503	vm_object_t object;
2504
2505	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2506		return;
2507
2508	object = entry->object.vm_object;
2509
2510	starta = addra - PFBAK * PAGE_SIZE;
2511	if (starta < entry->start) {
2512		starta = entry->start;
2513	} else if (starta > addra) {
2514		starta = 0;
2515	}
2516
2517	mpte = NULL;
2518	for (i = 0; i < PAGEORDER_SIZE; i++) {
2519		vm_object_t lobject;
2520		pt_entry_t *pte;
2521
2522		addr = addra + pmap_prefault_pageorder[i];
2523		if (addr > addra + (PFFOR * PAGE_SIZE))
2524			addr = 0;
2525
2526		if (addr < starta || addr >= entry->end)
2527			continue;
2528
2529		if ((*pmap_pde(pmap, addr)) == 0)
2530			continue;
2531
2532		pte = vtopte(addr);
2533		if (*pte)
2534			continue;
2535
2536		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2537		lobject = object;
2538		for (m = vm_page_lookup(lobject, pindex);
2539		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2540		    lobject = lobject->backing_object) {
2541			if (lobject->backing_object_offset & PAGE_MASK)
2542				break;
2543			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2544			m = vm_page_lookup(lobject->backing_object, pindex);
2545		}
2546
2547		/*
2548		 * give-up when a page is not in memory
2549		 */
2550		if (m == NULL)
2551			break;
2552		vm_page_lock_queues();
2553		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2554			(m->busy == 0) &&
2555		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2556
2557			if ((m->queue - m->pc) == PQ_CACHE) {
2558				vm_page_deactivate(m);
2559			}
2560			vm_page_busy(m);
2561			vm_page_unlock_queues();
2562			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2563			vm_page_lock_queues();
2564			vm_page_wakeup(m);
2565		}
2566		vm_page_unlock_queues();
2567	}
2568}
2569
2570/*
2571 *	Routine:	pmap_change_wiring
2572 *	Function:	Change the wiring attribute for a map/virtual-address
2573 *			pair.
2574 *	In/out conditions:
2575 *			The mapping must already exist in the pmap.
2576 */
2577void
2578pmap_change_wiring(pmap, va, wired)
2579	register pmap_t pmap;
2580	vm_offset_t va;
2581	boolean_t wired;
2582{
2583	register pt_entry_t *pte;
2584
2585	if (pmap == NULL)
2586		return;
2587
2588	pte = pmap_pte(pmap, va);
2589
2590	if (wired && !pmap_pte_w(pte))
2591		pmap->pm_stats.wired_count++;
2592	else if (!wired && pmap_pte_w(pte))
2593		pmap->pm_stats.wired_count--;
2594
2595	/*
2596	 * Wiring is not a hardware characteristic so there is no need to
2597	 * invalidate TLB.
2598	 */
2599	pmap_pte_set_w(pte, wired);
2600}
2601
2602
2603
2604/*
2605 *	Copy the range specified by src_addr/len
2606 *	from the source map to the range dst_addr/len
2607 *	in the destination map.
2608 *
2609 *	This routine is only advisory and need not do anything.
2610 */
2611
2612void
2613pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2614	  vm_offset_t src_addr)
2615{
2616	vm_offset_t addr;
2617	vm_offset_t end_addr = src_addr + len;
2618	vm_offset_t pdnxt;
2619	pd_entry_t src_frame, dst_frame;
2620	vm_page_t m;
2621
2622	if (dst_addr != src_addr)
2623		return;
2624
2625	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2626	if (src_frame != (PTDpde & PG_FRAME))
2627		return;
2628
2629	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2630	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2631		pt_entry_t *src_pte, *dst_pte;
2632		vm_page_t dstmpte, srcmpte;
2633		pd_entry_t srcptepaddr;
2634		unsigned ptepindex;
2635
2636		if (addr >= UPT_MIN_ADDRESS)
2637			panic("pmap_copy: invalid to pmap_copy page tables\n");
2638
2639		/*
2640		 * Don't let optional prefaulting of pages make us go
2641		 * way below the low water mark of free pages or way
2642		 * above high water mark of used pv entries.
2643		 */
2644		if (cnt.v_free_count < cnt.v_free_reserved ||
2645		    pv_entry_count > pv_entry_high_water)
2646			break;
2647
2648		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2649		ptepindex = addr >> PDRSHIFT;
2650
2651		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2652		if (srcptepaddr == 0)
2653			continue;
2654
2655		if (srcptepaddr & PG_PS) {
2656			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2657				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2658				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2659			}
2660			continue;
2661		}
2662
2663		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2664		if ((srcmpte == NULL) ||
2665		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2666			continue;
2667
2668		if (pdnxt > end_addr)
2669			pdnxt = end_addr;
2670
2671		/*
2672		 * Have to recheck this before every avtopte() call below
2673		 * in case we have blocked and something else used APTDpde.
2674		 */
2675		if (dst_frame != (APTDpde & PG_FRAME)) {
2676			APTDpde = dst_frame | PG_RW | PG_V;
2677			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2678		}
2679		src_pte = vtopte(addr);
2680		dst_pte = avtopte(addr);
2681		while (addr < pdnxt) {
2682			pt_entry_t ptetemp;
2683			ptetemp = *src_pte;
2684			/*
2685			 * we only virtual copy managed pages
2686			 */
2687			if ((ptetemp & PG_MANAGED) != 0) {
2688				/*
2689				 * We have to check after allocpte for the
2690				 * pte still being around...  allocpte can
2691				 * block.
2692				 */
2693				dstmpte = pmap_allocpte(dst_pmap, addr);
2694				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2695					/*
2696					 * Clear the modified and
2697					 * accessed (referenced) bits
2698					 * during the copy.
2699					 */
2700					m = PHYS_TO_VM_PAGE(ptetemp);
2701					*dst_pte = ptetemp & ~(PG_M | PG_A);
2702					dst_pmap->pm_stats.resident_count++;
2703					pmap_insert_entry(dst_pmap, addr,
2704						dstmpte, m);
2705	 			} else {
2706					vm_page_lock_queues();
2707					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2708					vm_page_unlock_queues();
2709				}
2710				if (dstmpte->hold_count >= srcmpte->hold_count)
2711					break;
2712			}
2713			addr += PAGE_SIZE;
2714			src_pte++;
2715			dst_pte++;
2716		}
2717	}
2718}
2719
2720#ifdef SMP
2721
2722/*
2723 *	pmap_zpi_switchin*()
2724 *
2725 *	These functions allow us to avoid doing IPIs alltogether in certain
2726 *	temporary page-mapping situations (page zeroing).  Instead to deal
2727 *	with being preempted and moved onto a different cpu we invalidate
2728 *	the page when the scheduler switches us in.  This does not occur
2729 *	very often so we remain relatively optimal with very little effort.
2730 */
2731static void
2732pmap_zpi_switchin12(void)
2733{
2734	invlpg((u_int)CADDR1);
2735	invlpg((u_int)CADDR2);
2736}
2737
2738static void
2739pmap_zpi_switchin2(void)
2740{
2741	invlpg((u_int)CADDR2);
2742}
2743
2744static void
2745pmap_zpi_switchin3(void)
2746{
2747	invlpg((u_int)CADDR3);
2748}
2749
2750#endif
2751
2752/*
2753 *	pmap_zero_page zeros the specified hardware page by mapping
2754 *	the page into KVM and using bzero to clear its contents.
2755 */
2756void
2757pmap_zero_page(vm_page_t m)
2758{
2759
2760	mtx_lock(&CMAPCADDR12_lock);
2761	if (*CMAP2)
2762		panic("pmap_zero_page: CMAP2 busy");
2763	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2764#ifdef I386_CPU
2765	invltlb();
2766#else
2767#ifdef SMP
2768	curthread->td_switchin = pmap_zpi_switchin2;
2769#endif
2770	invlpg((u_int)CADDR2);
2771#endif
2772#if defined(I686_CPU)
2773	if (cpu_class == CPUCLASS_686)
2774		i686_pagezero(CADDR2);
2775	else
2776#endif
2777		bzero(CADDR2, PAGE_SIZE);
2778#ifdef SMP
2779	curthread->td_switchin = NULL;
2780#endif
2781	*CMAP2 = 0;
2782	mtx_unlock(&CMAPCADDR12_lock);
2783}
2784
2785/*
2786 *	pmap_zero_page_area zeros the specified hardware page by mapping
2787 *	the page into KVM and using bzero to clear its contents.
2788 *
2789 *	off and size may not cover an area beyond a single hardware page.
2790 */
2791void
2792pmap_zero_page_area(vm_page_t m, int off, int size)
2793{
2794
2795	mtx_lock(&CMAPCADDR12_lock);
2796	if (*CMAP2)
2797		panic("pmap_zero_page: CMAP2 busy");
2798	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2799#ifdef I386_CPU
2800	invltlb();
2801#else
2802#ifdef SMP
2803	curthread->td_switchin = pmap_zpi_switchin2;
2804#endif
2805	invlpg((u_int)CADDR2);
2806#endif
2807#if defined(I686_CPU)
2808	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2809		i686_pagezero(CADDR2);
2810	else
2811#endif
2812		bzero((char *)CADDR2 + off, size);
2813#ifdef SMP
2814	curthread->td_switchin = NULL;
2815#endif
2816	*CMAP2 = 0;
2817	mtx_unlock(&CMAPCADDR12_lock);
2818}
2819
2820/*
2821 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2822 *	the page into KVM and using bzero to clear its contents.  This
2823 *	is intended to be called from the vm_pagezero process only and
2824 *	outside of Giant.
2825 */
2826void
2827pmap_zero_page_idle(vm_page_t m)
2828{
2829
2830	if (*CMAP3)
2831		panic("pmap_zero_page: CMAP3 busy");
2832	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2833#ifdef I386_CPU
2834	invltlb();
2835#else
2836#ifdef SMP
2837	curthread->td_switchin = pmap_zpi_switchin3;
2838#endif
2839	invlpg((u_int)CADDR3);
2840#endif
2841#if defined(I686_CPU)
2842	if (cpu_class == CPUCLASS_686)
2843		i686_pagezero(CADDR3);
2844	else
2845#endif
2846		bzero(CADDR3, PAGE_SIZE);
2847#ifdef SMP
2848	curthread->td_switchin = NULL;
2849#endif
2850	*CMAP3 = 0;
2851}
2852
2853/*
2854 *	pmap_copy_page copies the specified (machine independent)
2855 *	page by mapping the page into virtual memory and using
2856 *	bcopy to copy the page, one machine dependent page at a
2857 *	time.
2858 */
2859void
2860pmap_copy_page(vm_page_t src, vm_page_t dst)
2861{
2862
2863	mtx_lock(&CMAPCADDR12_lock);
2864	if (*CMAP1)
2865		panic("pmap_copy_page: CMAP1 busy");
2866	if (*CMAP2)
2867		panic("pmap_copy_page: CMAP2 busy");
2868	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2869	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2870#ifdef I386_CPU
2871	invltlb();
2872#else
2873#ifdef SMP
2874	curthread->td_switchin = pmap_zpi_switchin12;
2875#endif
2876	invlpg((u_int)CADDR1);
2877	invlpg((u_int)CADDR2);
2878#endif
2879	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2880#ifdef SMP
2881	curthread->td_switchin = NULL;
2882#endif
2883	*CMAP1 = 0;
2884	*CMAP2 = 0;
2885	mtx_unlock(&CMAPCADDR12_lock);
2886}
2887
2888/*
2889 * Returns true if the pmap's pv is one of the first
2890 * 16 pvs linked to from this page.  This count may
2891 * be changed upwards or downwards in the future; it
2892 * is only necessary that true be returned for a small
2893 * subset of pmaps for proper page aging.
2894 */
2895boolean_t
2896pmap_page_exists_quick(pmap, m)
2897	pmap_t pmap;
2898	vm_page_t m;
2899{
2900	pv_entry_t pv;
2901	int loops = 0;
2902	int s;
2903
2904	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2905		return FALSE;
2906
2907	s = splvm();
2908	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2909	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2910		if (pv->pv_pmap == pmap) {
2911			splx(s);
2912			return TRUE;
2913		}
2914		loops++;
2915		if (loops >= 16)
2916			break;
2917	}
2918	splx(s);
2919	return (FALSE);
2920}
2921
2922#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2923/*
2924 * Remove all pages from specified address space
2925 * this aids process exit speeds.  Also, this code
2926 * is special cased for current process only, but
2927 * can have the more generic (and slightly slower)
2928 * mode enabled.  This is much faster than pmap_remove
2929 * in the case of running down an entire address space.
2930 */
2931void
2932pmap_remove_pages(pmap, sva, eva)
2933	pmap_t pmap;
2934	vm_offset_t sva, eva;
2935{
2936	pt_entry_t *pte, tpte;
2937	vm_page_t m;
2938	pv_entry_t pv, npv;
2939	int s;
2940
2941#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2942	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2943		printf("warning: pmap_remove_pages called with non-current pmap\n");
2944		return;
2945	}
2946#endif
2947	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2948	s = splvm();
2949	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2950
2951		if (pv->pv_va >= eva || pv->pv_va < sva) {
2952			npv = TAILQ_NEXT(pv, pv_plist);
2953			continue;
2954		}
2955
2956#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2957		pte = vtopte(pv->pv_va);
2958#else
2959		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2960#endif
2961		tpte = *pte;
2962
2963		if (tpte == 0) {
2964			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2965							pte, pv->pv_va);
2966			panic("bad pte");
2967		}
2968
2969/*
2970 * We cannot remove wired pages from a process' mapping at this time
2971 */
2972		if (tpte & PG_W) {
2973			npv = TAILQ_NEXT(pv, pv_plist);
2974			continue;
2975		}
2976
2977		m = PHYS_TO_VM_PAGE(tpte);
2978		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2979		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2980		    m, m->phys_addr, tpte));
2981
2982		KASSERT(m < &vm_page_array[vm_page_array_size],
2983			("pmap_remove_pages: bad tpte %x", tpte));
2984
2985		pv->pv_pmap->pm_stats.resident_count--;
2986
2987		*pte = 0;
2988
2989		/*
2990		 * Update the vm_page_t clean and reference bits.
2991		 */
2992		if (tpte & PG_M) {
2993			vm_page_dirty(m);
2994		}
2995
2996		npv = TAILQ_NEXT(pv, pv_plist);
2997		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2998
2999		m->md.pv_list_count--;
3000		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3001		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3002			vm_page_flag_clear(m, PG_WRITEABLE);
3003		}
3004
3005		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3006		free_pv_entry(pv);
3007	}
3008	splx(s);
3009	pmap_invalidate_all(pmap);
3010}
3011
3012/*
3013 *	pmap_is_modified:
3014 *
3015 *	Return whether or not the specified physical page was modified
3016 *	in any physical maps.
3017 */
3018boolean_t
3019pmap_is_modified(vm_page_t m)
3020{
3021	pv_entry_t pv;
3022	pt_entry_t *pte;
3023	int s;
3024
3025	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3026		return FALSE;
3027
3028	s = splvm();
3029	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3030	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3031		/*
3032		 * if the bit being tested is the modified bit, then
3033		 * mark clean_map and ptes as never
3034		 * modified.
3035		 */
3036		if (!pmap_track_modified(pv->pv_va))
3037			continue;
3038#if defined(PMAP_DIAGNOSTIC)
3039		if (!pv->pv_pmap) {
3040			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3041			continue;
3042		}
3043#endif
3044		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3045		if (*pte & PG_M) {
3046			splx(s);
3047			return TRUE;
3048		}
3049	}
3050	splx(s);
3051	return (FALSE);
3052}
3053
3054/*
3055 * this routine is used to modify bits in ptes
3056 */
3057static __inline void
3058pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3059{
3060	register pv_entry_t pv;
3061	register pt_entry_t *pte;
3062	int s;
3063
3064	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
3065	    (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
3066		return;
3067
3068	s = splvm();
3069	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3070	/*
3071	 * Loop over all current mappings setting/clearing as appropos If
3072	 * setting RO do we need to clear the VAC?
3073	 */
3074	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3075		/*
3076		 * don't write protect pager mappings
3077		 */
3078		if (!setem && (bit == PG_RW)) {
3079			if (!pmap_track_modified(pv->pv_va))
3080				continue;
3081		}
3082
3083#if defined(PMAP_DIAGNOSTIC)
3084		if (!pv->pv_pmap) {
3085			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3086			continue;
3087		}
3088#endif
3089
3090		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3091
3092		if (setem) {
3093			*pte |= bit;
3094			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3095		} else {
3096			pt_entry_t pbits = *pte;
3097			if (pbits & bit) {
3098				if (bit == PG_RW) {
3099					if (pbits & PG_M) {
3100						vm_page_dirty(m);
3101					}
3102					*pte = pbits & ~(PG_M|PG_RW);
3103				} else {
3104					*pte = pbits & ~bit;
3105				}
3106				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3107			}
3108		}
3109	}
3110	if (!setem && bit == PG_RW)
3111		vm_page_flag_clear(m, PG_WRITEABLE);
3112	splx(s);
3113}
3114
3115/*
3116 *      pmap_page_protect:
3117 *
3118 *      Lower the permission for all mappings to a given page.
3119 */
3120void
3121pmap_page_protect(vm_page_t m, vm_prot_t prot)
3122{
3123	if ((prot & VM_PROT_WRITE) == 0) {
3124		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3125			pmap_changebit(m, PG_RW, FALSE);
3126		} else {
3127			pmap_remove_all(m);
3128		}
3129	}
3130}
3131
3132vm_offset_t
3133pmap_phys_address(ppn)
3134	int ppn;
3135{
3136	return (i386_ptob(ppn));
3137}
3138
3139/*
3140 *	pmap_ts_referenced:
3141 *
3142 *	Return a count of reference bits for a page, clearing those bits.
3143 *	It is not necessary for every reference bit to be cleared, but it
3144 *	is necessary that 0 only be returned when there are truly no
3145 *	reference bits set.
3146 *
3147 *	XXX: The exact number of bits to check and clear is a matter that
3148 *	should be tested and standardized at some point in the future for
3149 *	optimal aging of shared pages.
3150 */
3151int
3152pmap_ts_referenced(vm_page_t m)
3153{
3154	register pv_entry_t pv, pvf, pvn;
3155	pt_entry_t *pte;
3156	int s;
3157	int rtval = 0;
3158
3159	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3160		return (rtval);
3161
3162	s = splvm();
3163	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3164	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3165
3166		pvf = pv;
3167
3168		do {
3169			pvn = TAILQ_NEXT(pv, pv_list);
3170
3171			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3172
3173			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3174
3175			if (!pmap_track_modified(pv->pv_va))
3176				continue;
3177
3178			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3179
3180			if (pte && (*pte & PG_A)) {
3181				*pte &= ~PG_A;
3182
3183				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3184
3185				rtval++;
3186				if (rtval > 4) {
3187					break;
3188				}
3189			}
3190		} while ((pv = pvn) != NULL && pv != pvf);
3191	}
3192	splx(s);
3193
3194	return (rtval);
3195}
3196
3197/*
3198 *	Clear the modify bits on the specified physical page.
3199 */
3200void
3201pmap_clear_modify(vm_page_t m)
3202{
3203	pmap_changebit(m, PG_M, FALSE);
3204}
3205
3206/*
3207 *	pmap_clear_reference:
3208 *
3209 *	Clear the reference bit on the specified physical page.
3210 */
3211void
3212pmap_clear_reference(vm_page_t m)
3213{
3214	pmap_changebit(m, PG_A, FALSE);
3215}
3216
3217/*
3218 * Miscellaneous support routines follow
3219 */
3220
3221static void
3222i386_protection_init()
3223{
3224	register int *kp, prot;
3225
3226	kp = protection_codes;
3227	for (prot = 0; prot < 8; prot++) {
3228		switch (prot) {
3229		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3230			/*
3231			 * Read access is also 0. There isn't any execute bit,
3232			 * so just make it readable.
3233			 */
3234		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3235		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3236		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3237			*kp++ = 0;
3238			break;
3239		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3240		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3241		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3242		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3243			*kp++ = PG_RW;
3244			break;
3245		}
3246	}
3247}
3248
3249/*
3250 * Map a set of physical memory pages into the kernel virtual
3251 * address space. Return a pointer to where it is mapped. This
3252 * routine is intended to be used for mapping device memory,
3253 * NOT real memory.
3254 */
3255void *
3256pmap_mapdev(pa, size)
3257	vm_offset_t pa;
3258	vm_size_t size;
3259{
3260	vm_offset_t va, tmpva, offset;
3261
3262	offset = pa & PAGE_MASK;
3263	size = roundup(offset + size, PAGE_SIZE);
3264
3265	GIANT_REQUIRED;
3266
3267	va = kmem_alloc_pageable(kernel_map, size);
3268	if (!va)
3269		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3270
3271	pa = pa & PG_FRAME;
3272	for (tmpva = va; size > 0; ) {
3273		pmap_kenter(tmpva, pa);
3274		size -= PAGE_SIZE;
3275		tmpva += PAGE_SIZE;
3276		pa += PAGE_SIZE;
3277	}
3278	pmap_invalidate_range(kernel_pmap, va, tmpva);
3279	return ((void *)(va + offset));
3280}
3281
3282void
3283pmap_unmapdev(va, size)
3284	vm_offset_t va;
3285	vm_size_t size;
3286{
3287	vm_offset_t base, offset, tmpva;
3288	pt_entry_t *pte;
3289
3290	base = va & PG_FRAME;
3291	offset = va & PAGE_MASK;
3292	size = roundup(offset + size, PAGE_SIZE);
3293	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3294		pte = vtopte(tmpva);
3295		*pte = 0;
3296	}
3297	pmap_invalidate_range(kernel_pmap, va, tmpva);
3298	kmem_free(kernel_map, base, size);
3299}
3300
3301/*
3302 * perform the pmap work for mincore
3303 */
3304int
3305pmap_mincore(pmap, addr)
3306	pmap_t pmap;
3307	vm_offset_t addr;
3308{
3309	pt_entry_t *ptep, pte;
3310	vm_page_t m;
3311	int val = 0;
3312
3313	ptep = pmap_pte(pmap, addr);
3314	if (ptep == 0) {
3315		return 0;
3316	}
3317
3318	if ((pte = *ptep) != 0) {
3319		vm_offset_t pa;
3320
3321		val = MINCORE_INCORE;
3322		if ((pte & PG_MANAGED) == 0)
3323			return val;
3324
3325		pa = pte & PG_FRAME;
3326
3327		m = PHYS_TO_VM_PAGE(pa);
3328
3329		/*
3330		 * Modified by us
3331		 */
3332		if (pte & PG_M)
3333			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3334		else {
3335			/*
3336			 * Modified by someone else
3337			 */
3338			vm_page_lock_queues();
3339			if (m->dirty || pmap_is_modified(m))
3340				val |= MINCORE_MODIFIED_OTHER;
3341			vm_page_unlock_queues();
3342		}
3343		/*
3344		 * Referenced by us
3345		 */
3346		if (pte & PG_A)
3347			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3348		else {
3349			/*
3350			 * Referenced by someone else
3351			 */
3352			vm_page_lock_queues();
3353			if ((m->flags & PG_REFERENCED) ||
3354			    pmap_ts_referenced(m)) {
3355				val |= MINCORE_REFERENCED_OTHER;
3356				vm_page_flag_set(m, PG_REFERENCED);
3357			}
3358			vm_page_unlock_queues();
3359		}
3360	}
3361	return val;
3362}
3363
3364void
3365pmap_activate(struct thread *td)
3366{
3367	struct proc *p = td->td_proc;
3368	pmap_t	pmap;
3369	u_int32_t  cr3;
3370
3371	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3372#if defined(SMP)
3373	pmap->pm_active |= PCPU_GET(cpumask);
3374#else
3375	pmap->pm_active |= 1;
3376#endif
3377	cr3 = vtophys(pmap->pm_pdir);
3378	/* XXXKSE this is wrong.
3379	 * pmap_activate is for the current thread on the current cpu
3380	 */
3381	if (p->p_flag & P_KSES) {
3382		/* Make sure all other cr3 entries are updated. */
3383		/* what if they are running?  XXXKSE (maybe abort them) */
3384		FOREACH_THREAD_IN_PROC(p, td) {
3385			td->td_pcb->pcb_cr3 = cr3;
3386		}
3387	} else {
3388		td->td_pcb->pcb_cr3 = cr3;
3389	}
3390	load_cr3(cr3);
3391#ifdef SWTCH_OPTIM_STATS
3392	tlb_flush_count++;
3393#endif
3394}
3395
3396vm_offset_t
3397pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3398{
3399
3400	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3401		return addr;
3402	}
3403
3404	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3405	return addr;
3406}
3407
3408
3409#if defined(PMAP_DEBUG)
3410pmap_pid_dump(int pid)
3411{
3412	pmap_t pmap;
3413	struct proc *p;
3414	int npte = 0;
3415	int index;
3416
3417	sx_slock(&allproc_lock);
3418	LIST_FOREACH(p, &allproc, p_list) {
3419		if (p->p_pid != pid)
3420			continue;
3421
3422		if (p->p_vmspace) {
3423			int i,j;
3424			index = 0;
3425			pmap = vmspace_pmap(p->p_vmspace);
3426			for (i = 0; i < NPDEPG; i++) {
3427				pd_entry_t *pde;
3428				pt_entry_t *pte;
3429				vm_offset_t base = i << PDRSHIFT;
3430
3431				pde = &pmap->pm_pdir[i];
3432				if (pde && pmap_pde_v(pde)) {
3433					for (j = 0; j < NPTEPG; j++) {
3434						vm_offset_t va = base + (j << PAGE_SHIFT);
3435						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3436							if (index) {
3437								index = 0;
3438								printf("\n");
3439							}
3440							sx_sunlock(&allproc_lock);
3441							return npte;
3442						}
3443						pte = pmap_pte_quick(pmap, va);
3444						if (pte && pmap_pte_v(pte)) {
3445							pt_entry_t pa;
3446							vm_page_t m;
3447							pa = *pte;
3448							m = PHYS_TO_VM_PAGE(pa);
3449							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3450								va, pa, m->hold_count, m->wire_count, m->flags);
3451							npte++;
3452							index++;
3453							if (index >= 2) {
3454								index = 0;
3455								printf("\n");
3456							} else {
3457								printf(" ");
3458							}
3459						}
3460					}
3461				}
3462			}
3463		}
3464	}
3465	sx_sunlock(&allproc_lock);
3466	return npte;
3467}
3468#endif
3469
3470#if defined(DEBUG)
3471
3472static void	pads(pmap_t pm);
3473void		pmap_pvdump(vm_offset_t pa);
3474
3475/* print address space of pmap*/
3476static void
3477pads(pm)
3478	pmap_t pm;
3479{
3480	int i, j;
3481	vm_offset_t va;
3482	pt_entry_t *ptep;
3483
3484	if (pm == kernel_pmap)
3485		return;
3486	for (i = 0; i < NPDEPG; i++)
3487		if (pm->pm_pdir[i])
3488			for (j = 0; j < NPTEPG; j++) {
3489				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3490				if (pm == kernel_pmap && va < KERNBASE)
3491					continue;
3492				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3493					continue;
3494				ptep = pmap_pte_quick(pm, va);
3495				if (pmap_pte_v(ptep))
3496					printf("%x:%x ", va, *ptep);
3497			};
3498
3499}
3500
3501void
3502pmap_pvdump(pa)
3503	vm_offset_t pa;
3504{
3505	pv_entry_t pv;
3506	vm_page_t m;
3507
3508	printf("pa %x", pa);
3509	m = PHYS_TO_VM_PAGE(pa);
3510	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3511		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3512		pads(pv->pv_pmap);
3513	}
3514	printf(" ");
3515}
3516#endif
3517