pmap.c revision 110747
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 110747 2003-02-12 04:35:37Z alc $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154static struct pmaplist allpmaps;
155static struct mtx allpmaps_lock;
156
157vm_offset_t avail_start;	/* PA of first available physical page */
158vm_offset_t avail_end;		/* PA of last available physical page */
159vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
160vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
161static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
162static int pgeflag;		/* PG_G or-in */
163static int pseflag;		/* PG_PS or-in */
164
165static int nkpt;
166vm_offset_t kernel_vm_end;
167extern u_int32_t KERNend;
168
169/*
170 * Data for the pv entry allocation mechanism
171 */
172static uma_zone_t pvzone;
173static struct vm_object pvzone_obj;
174static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
175int pmap_pagedaemon_waken;
176
177/*
178 * All those kernel PT submaps that BSD is so fond of
179 */
180pt_entry_t *CMAP1 = 0;
181static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
182caddr_t CADDR1 = 0, ptvmmap = 0;
183static caddr_t CADDR2, CADDR3;
184static pt_entry_t *msgbufmap;
185struct msgbuf *msgbufp = 0;
186
187/*
188 * Crashdump maps.
189 */
190static pt_entry_t *pt_crashdumpmap;
191static caddr_t crashdumpmap;
192
193#ifdef SMP
194extern pt_entry_t *SMPpt;
195#endif
196static pt_entry_t *PMAP1 = 0;
197static pt_entry_t *PADDR1 = 0;
198
199static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
200static pt_entry_t *get_ptbase(pmap_t pmap);
201static pv_entry_t get_pv_entry(void);
202static void	i386_protection_init(void);
203static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
204
205static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
206				      vm_page_t m, vm_page_t mpte);
207static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
208static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
209static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
210					vm_offset_t va);
211static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
212		vm_page_t mpte, vm_page_t m);
213
214static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
215
216static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
217static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
218static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
219static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
220static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
221static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
222static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
223
224static pd_entry_t pdir4mb;
225
226/*
227 *	Routine:	pmap_pte
228 *	Function:
229 *		Extract the page table entry associated
230 *		with the given map/virtual_address pair.
231 */
232
233PMAP_INLINE pt_entry_t *
234pmap_pte(pmap, va)
235	register pmap_t pmap;
236	vm_offset_t va;
237{
238	pd_entry_t *pdeaddr;
239
240	if (pmap) {
241		pdeaddr = pmap_pde(pmap, va);
242		if (*pdeaddr & PG_PS)
243			return pdeaddr;
244		if (*pdeaddr) {
245			return get_ptbase(pmap) + i386_btop(va);
246		}
247	}
248	return (0);
249}
250
251/*
252 * Move the kernel virtual free pointer to the next
253 * 4MB.  This is used to help improve performance
254 * by using a large (4MB) page for much of the kernel
255 * (.text, .data, .bss)
256 */
257static vm_offset_t
258pmap_kmem_choose(vm_offset_t addr)
259{
260	vm_offset_t newaddr = addr;
261
262#ifndef DISABLE_PSE
263	if (cpu_feature & CPUID_PSE)
264		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
265#endif
266	return newaddr;
267}
268
269/*
270 *	Bootstrap the system enough to run with virtual memory.
271 *
272 *	On the i386 this is called after mapping has already been enabled
273 *	and just syncs the pmap module with what has already been done.
274 *	[We can't call it easily with mapping off since the kernel is not
275 *	mapped with PA == VA, hence we would have to relocate every address
276 *	from the linked base (virtual) address "KERNBASE" to the actual
277 *	(physical) address starting relative to 0]
278 */
279void
280pmap_bootstrap(firstaddr, loadaddr)
281	vm_offset_t firstaddr;
282	vm_offset_t loadaddr;
283{
284	vm_offset_t va;
285	pt_entry_t *pte;
286	int i;
287
288	avail_start = firstaddr;
289
290	/*
291	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
292	 * large. It should instead be correctly calculated in locore.s and
293	 * not based on 'first' (which is a physical address, not a virtual
294	 * address, for the start of unused physical memory). The kernel
295	 * page tables are NOT double mapped and thus should not be included
296	 * in this calculation.
297	 */
298	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
299	virtual_avail = pmap_kmem_choose(virtual_avail);
300
301	virtual_end = VM_MAX_KERNEL_ADDRESS;
302
303	/*
304	 * Initialize protection array.
305	 */
306	i386_protection_init();
307
308	/*
309	 * Initialize the kernel pmap (which is statically allocated).
310	 */
311	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
312	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
313	TAILQ_INIT(&kernel_pmap->pm_pvlist);
314	LIST_INIT(&allpmaps);
315	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
316	mtx_lock_spin(&allpmaps_lock);
317	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
318	mtx_unlock_spin(&allpmaps_lock);
319	nkpt = NKPT;
320
321	/*
322	 * Reserve some special page table entries/VA space for temporary
323	 * mapping of pages.
324	 */
325#define	SYSMAP(c, p, v, n)	\
326	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
327
328	va = virtual_avail;
329	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
330
331	/*
332	 * CMAP1/CMAP2 are used for zeroing and copying pages.
333	 * CMAP3 is used for the idle process page zeroing.
334	 */
335	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
336	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
337	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
338
339	/*
340	 * Crashdump maps.
341	 */
342	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
343
344	/*
345	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
346	 * XXX ptmmap is not used.
347	 */
348	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
349
350	/*
351	 * msgbufp is used to map the system message buffer.
352	 * XXX msgbufmap is not used.
353	 */
354	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
355	       atop(round_page(MSGBUF_SIZE)))
356
357	/*
358	 * ptemap is used for pmap_pte_quick
359	 */
360	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
361
362	virtual_avail = va;
363
364	*CMAP1 = *CMAP2 = 0;
365	for (i = 0; i < NKPT; i++)
366		PTD[i] = 0;
367
368	pgeflag = 0;
369#ifndef DISABLE_PG_G
370	if (cpu_feature & CPUID_PGE)
371		pgeflag = PG_G;
372#endif
373
374/*
375 * Initialize the 4MB page size flag
376 */
377	pseflag = 0;
378/*
379 * The 4MB page version of the initial
380 * kernel page mapping.
381 */
382	pdir4mb = 0;
383
384#ifndef DISABLE_PSE
385	if (cpu_feature & CPUID_PSE) {
386		pd_entry_t ptditmp;
387		/*
388		 * Note that we have enabled PSE mode
389		 */
390		pseflag = PG_PS;
391		ptditmp = *(PTmap + i386_btop(KERNBASE));
392		ptditmp &= ~(NBPDR - 1);
393		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
394		pdir4mb = ptditmp;
395	}
396#endif
397#ifndef SMP
398	/*
399	 * Turn on PGE/PSE.  SMP does this later on since the
400	 * 4K page tables are required for AP boot (for now).
401	 * XXX fixme.
402	 */
403	pmap_set_opt();
404#endif
405#ifdef SMP
406	if (cpu_apic_address == 0)
407		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
408
409	/* local apic is mapped on last page */
410	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
411	    (cpu_apic_address & PG_FRAME));
412#endif
413	invltlb();
414}
415
416/*
417 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
418 * BSP will run this after all the AP's have started up.
419 */
420void
421pmap_set_opt(void)
422{
423	pt_entry_t *pte;
424	vm_offset_t va, endva;
425
426	if (pgeflag && (cpu_feature & CPUID_PGE)) {
427		load_cr4(rcr4() | CR4_PGE);
428		invltlb();		/* Insurance */
429	}
430#ifndef DISABLE_PSE
431	if (pseflag && (cpu_feature & CPUID_PSE)) {
432		load_cr4(rcr4() | CR4_PSE);
433		invltlb();		/* Insurance */
434	}
435#endif
436	if (PCPU_GET(cpuid) == 0) {
437#ifndef DISABLE_PSE
438		if (pdir4mb) {
439			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
440			invltlb();	/* Insurance */
441		}
442#endif
443		if (pgeflag) {
444			/* Turn on PG_G for text, data, bss pages. */
445			va = (vm_offset_t)btext;
446#ifndef DISABLE_PSE
447			if (pseflag && (cpu_feature & CPUID_PSE)) {
448				if (va < KERNBASE + (1 << PDRSHIFT))
449					va = KERNBASE + (1 << PDRSHIFT);
450			}
451#endif
452			endva = KERNBASE + KERNend;
453			while (va < endva) {
454				pte = vtopte(va);
455				if (*pte)
456					*pte |= pgeflag;
457				va += PAGE_SIZE;
458			}
459			invltlb();	/* Insurance */
460		}
461		/*
462		 * We do not need to broadcast the invltlb here, because
463		 * each AP does it the moment it is released from the boot
464		 * lock.  See ap_init().
465		 */
466	}
467}
468
469static void *
470pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
471{
472	*flags = UMA_SLAB_PRIV;
473	return (void *)kmem_alloc(kernel_map, bytes);
474}
475
476/*
477 *	Initialize the pmap module.
478 *	Called by vm_init, to initialize any structures that the pmap
479 *	system needs to map virtual memory.
480 *	pmap_init has been enhanced to support in a fairly consistant
481 *	way, discontiguous physical memory.
482 */
483void
484pmap_init(phys_start, phys_end)
485	vm_offset_t phys_start, phys_end;
486{
487	int i;
488	int initial_pvs;
489
490	/*
491	 * Allocate memory for random pmap data structures.  Includes the
492	 * pv_head_table.
493	 */
494
495	for(i = 0; i < vm_page_array_size; i++) {
496		vm_page_t m;
497
498		m = &vm_page_array[i];
499		TAILQ_INIT(&m->md.pv_list);
500		m->md.pv_list_count = 0;
501	}
502
503	/*
504	 * init the pv free list
505	 */
506	initial_pvs = vm_page_array_size;
507	if (initial_pvs < MINPV)
508		initial_pvs = MINPV;
509	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
510	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
511	uma_zone_set_allocf(pvzone, pmap_allocf);
512	uma_prealloc(pvzone, initial_pvs);
513
514	/*
515	 * Now it is safe to enable pv_table recording.
516	 */
517	pmap_initialized = TRUE;
518}
519
520/*
521 * Initialize the address space (zone) for the pv_entries.  Set a
522 * high water mark so that the system can recover from excessive
523 * numbers of pv entries.
524 */
525void
526pmap_init2()
527{
528	int shpgperproc = PMAP_SHPGPERPROC;
529
530	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
531	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
532	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
533	pv_entry_high_water = 9 * (pv_entry_max / 10);
534	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
535}
536
537
538/***************************************************
539 * Low level helper routines.....
540 ***************************************************/
541
542#if defined(PMAP_DIAGNOSTIC)
543
544/*
545 * This code checks for non-writeable/modified pages.
546 * This should be an invalid condition.
547 */
548static int
549pmap_nw_modified(pt_entry_t ptea)
550{
551	int pte;
552
553	pte = (int) ptea;
554
555	if ((pte & (PG_M|PG_RW)) == PG_M)
556		return 1;
557	else
558		return 0;
559}
560#endif
561
562
563/*
564 * this routine defines the region(s) of memory that should
565 * not be tested for the modified bit.
566 */
567static PMAP_INLINE int
568pmap_track_modified(vm_offset_t va)
569{
570	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
571		return 1;
572	else
573		return 0;
574}
575
576#ifdef I386_CPU
577/*
578 * i386 only has "invalidate everything" and no SMP to worry about.
579 */
580PMAP_INLINE void
581pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
582{
583
584	if (pmap == kernel_pmap || pmap->pm_active)
585		invltlb();
586}
587
588PMAP_INLINE void
589pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
590{
591
592	if (pmap == kernel_pmap || pmap->pm_active)
593		invltlb();
594}
595
596PMAP_INLINE void
597pmap_invalidate_all(pmap_t pmap)
598{
599
600	if (pmap == kernel_pmap || pmap->pm_active)
601		invltlb();
602}
603#else /* !I386_CPU */
604#ifdef SMP
605/*
606 * For SMP, these functions have to use the IPI mechanism for coherence.
607 */
608void
609pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
610{
611	u_int cpumask;
612	u_int other_cpus;
613
614	critical_enter();
615	/*
616	 * We need to disable interrupt preemption but MUST NOT have
617	 * interrupts disabled here.
618	 * XXX we may need to hold schedlock to get a coherent pm_active
619	 */
620	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
621		invlpg(va);
622		smp_invlpg(va);
623	} else {
624		cpumask = PCPU_GET(cpumask);
625		other_cpus = PCPU_GET(other_cpus);
626		if (pmap->pm_active & cpumask)
627			invlpg(va);
628		if (pmap->pm_active & other_cpus)
629			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
630	}
631	critical_exit();
632}
633
634void
635pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
636{
637	u_int cpumask;
638	u_int other_cpus;
639	vm_offset_t addr;
640
641	critical_enter();
642	/*
643	 * We need to disable interrupt preemption but MUST NOT have
644	 * interrupts disabled here.
645	 * XXX we may need to hold schedlock to get a coherent pm_active
646	 */
647	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
648		for (addr = sva; addr < eva; addr += PAGE_SIZE)
649			invlpg(addr);
650		smp_invlpg_range(sva, eva);
651	} else {
652		cpumask = PCPU_GET(cpumask);
653		other_cpus = PCPU_GET(other_cpus);
654		if (pmap->pm_active & cpumask)
655			for (addr = sva; addr < eva; addr += PAGE_SIZE)
656				invlpg(addr);
657		if (pmap->pm_active & other_cpus)
658			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
659			    sva, eva);
660	}
661	critical_exit();
662}
663
664void
665pmap_invalidate_all(pmap_t pmap)
666{
667	u_int cpumask;
668	u_int other_cpus;
669
670#ifdef SWTCH_OPTIM_STATS
671	tlb_flush_count++;
672#endif
673	critical_enter();
674	/*
675	 * We need to disable interrupt preemption but MUST NOT have
676	 * interrupts disabled here.
677	 * XXX we may need to hold schedlock to get a coherent pm_active
678	 */
679	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
680		invltlb();
681		smp_invltlb();
682	} else {
683		cpumask = PCPU_GET(cpumask);
684		other_cpus = PCPU_GET(other_cpus);
685		if (pmap->pm_active & cpumask)
686			invltlb();
687		if (pmap->pm_active & other_cpus)
688			smp_masked_invltlb(pmap->pm_active & other_cpus);
689	}
690	critical_exit();
691}
692#else /* !SMP */
693/*
694 * Normal, non-SMP, 486+ invalidation functions.
695 * We inline these within pmap.c for speed.
696 */
697PMAP_INLINE void
698pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
699{
700
701	if (pmap == kernel_pmap || pmap->pm_active)
702		invlpg(va);
703}
704
705PMAP_INLINE void
706pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
707{
708	vm_offset_t addr;
709
710	if (pmap == kernel_pmap || pmap->pm_active)
711		for (addr = sva; addr < eva; addr += PAGE_SIZE)
712			invlpg(addr);
713}
714
715PMAP_INLINE void
716pmap_invalidate_all(pmap_t pmap)
717{
718
719	if (pmap == kernel_pmap || pmap->pm_active)
720		invltlb();
721}
722#endif /* !SMP */
723#endif /* !I386_CPU */
724
725/*
726 * Return an address which is the base of the Virtual mapping of
727 * all the PTEs for the given pmap. Note this doesn't say that
728 * all the PTEs will be present or that the pages there are valid.
729 * The PTEs are made available by the recursive mapping trick.
730 * It will map in the alternate PTE space if needed.
731 */
732static pt_entry_t *
733get_ptbase(pmap)
734	pmap_t pmap;
735{
736	pd_entry_t frame;
737
738	/* are we current address space or kernel? */
739	if (pmap == kernel_pmap)
740		return PTmap;
741	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
742	if (frame == (PTDpde & PG_FRAME))
743		return PTmap;
744	/* otherwise, we are alternate address space */
745	if (frame != (APTDpde & PG_FRAME)) {
746		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
747		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
748	}
749	return APTmap;
750}
751
752/*
753 * Super fast pmap_pte routine best used when scanning
754 * the pv lists.  This eliminates many coarse-grained
755 * invltlb calls.  Note that many of the pv list
756 * scans are across different pmaps.  It is very wasteful
757 * to do an entire invltlb for checking a single mapping.
758 */
759
760static pt_entry_t *
761pmap_pte_quick(pmap, va)
762	register pmap_t pmap;
763	vm_offset_t va;
764{
765	pd_entry_t pde, newpf;
766	pde = pmap->pm_pdir[va >> PDRSHIFT];
767	if (pde != 0) {
768		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
769		unsigned index = i386_btop(va);
770		/* are we current address space or kernel? */
771		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
772			return PTmap + index;
773		newpf = pde & PG_FRAME;
774		if (((*PMAP1) & PG_FRAME) != newpf) {
775			*PMAP1 = newpf | PG_RW | PG_V;
776			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
777		}
778		return PADDR1 + (index & (NPTEPG - 1));
779	}
780	return (0);
781}
782
783/*
784 *	Routine:	pmap_extract
785 *	Function:
786 *		Extract the physical page address associated
787 *		with the given map/virtual_address pair.
788 */
789vm_offset_t
790pmap_extract(pmap, va)
791	register pmap_t pmap;
792	vm_offset_t va;
793{
794	vm_offset_t rtval;	/* XXX FIXME */
795	vm_offset_t pdirindex;
796
797	if (pmap == 0)
798		return 0;
799	pdirindex = va >> PDRSHIFT;
800	rtval = pmap->pm_pdir[pdirindex];
801	if (rtval != 0) {
802		pt_entry_t *pte;
803		if ((rtval & PG_PS) != 0) {
804			rtval &= ~(NBPDR - 1);
805			rtval |= va & (NBPDR - 1);
806			return rtval;
807		}
808		pte = get_ptbase(pmap) + i386_btop(va);
809		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
810		return rtval;
811	}
812	return 0;
813
814}
815
816/***************************************************
817 * Low level mapping routines.....
818 ***************************************************/
819
820/*
821 * Add a wired page to the kva.
822 * Note: not SMP coherent.
823 */
824PMAP_INLINE void
825pmap_kenter(vm_offset_t va, vm_offset_t pa)
826{
827	pt_entry_t *pte;
828
829	pte = vtopte(va);
830	*pte = pa | PG_RW | PG_V | pgeflag;
831}
832
833/*
834 * Remove a page from the kernel pagetables.
835 * Note: not SMP coherent.
836 */
837PMAP_INLINE void
838pmap_kremove(vm_offset_t va)
839{
840	pt_entry_t *pte;
841
842	pte = vtopte(va);
843	*pte = 0;
844}
845
846/*
847 *	Used to map a range of physical addresses into kernel
848 *	virtual address space.
849 *
850 *	The value passed in '*virt' is a suggested virtual address for
851 *	the mapping. Architectures which can support a direct-mapped
852 *	physical to virtual region can return the appropriate address
853 *	within that region, leaving '*virt' unchanged. Other
854 *	architectures should map the pages starting at '*virt' and
855 *	update '*virt' with the first usable address after the mapped
856 *	region.
857 */
858vm_offset_t
859pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
860{
861	vm_offset_t va, sva;
862
863	va = sva = *virt;
864	while (start < end) {
865		pmap_kenter(va, start);
866		va += PAGE_SIZE;
867		start += PAGE_SIZE;
868	}
869	pmap_invalidate_range(kernel_pmap, sva, va);
870	*virt = va;
871	return (sva);
872}
873
874
875/*
876 * Add a list of wired pages to the kva
877 * this routine is only used for temporary
878 * kernel mappings that do not need to have
879 * page modification or references recorded.
880 * Note that old mappings are simply written
881 * over.  The page *must* be wired.
882 * Note: SMP coherent.  Uses a ranged shootdown IPI.
883 */
884void
885pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
886{
887	vm_offset_t va;
888
889	va = sva;
890	while (count-- > 0) {
891		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
892		va += PAGE_SIZE;
893		m++;
894	}
895	pmap_invalidate_range(kernel_pmap, sva, va);
896}
897
898/*
899 * This routine tears out page mappings from the
900 * kernel -- it is meant only for temporary mappings.
901 * Note: SMP coherent.  Uses a ranged shootdown IPI.
902 */
903void
904pmap_qremove(vm_offset_t sva, int count)
905{
906	vm_offset_t va;
907
908	va = sva;
909	while (count-- > 0) {
910		pmap_kremove(va);
911		va += PAGE_SIZE;
912	}
913	pmap_invalidate_range(kernel_pmap, sva, va);
914}
915
916static vm_page_t
917pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
918{
919	vm_page_t m;
920
921retry:
922	m = vm_page_lookup(object, pindex);
923	if (m != NULL) {
924		vm_page_lock_queues();
925		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
926			goto retry;
927		vm_page_unlock_queues();
928	}
929	return m;
930}
931
932#ifndef KSTACK_MAX_PAGES
933#define KSTACK_MAX_PAGES 32
934#endif
935
936/*
937 * Create the kernel stack (including pcb for i386) for a new thread.
938 * This routine directly affects the fork perf for a process and
939 * create performance for a thread.
940 */
941void
942pmap_new_thread(struct thread *td, int pages)
943{
944	int i;
945	vm_page_t ma[KSTACK_MAX_PAGES];
946	vm_object_t ksobj;
947	vm_page_t m;
948	vm_offset_t ks;
949
950	/* Bounds check */
951	if (pages <= 1)
952		pages = KSTACK_PAGES;
953	else if (pages > KSTACK_MAX_PAGES)
954		pages = KSTACK_MAX_PAGES;
955
956	/*
957	 * allocate object for the kstack
958	 */
959	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
960	td->td_kstack_obj = ksobj;
961
962	/* get a kernel virtual address for the kstack for this thread */
963#ifdef KSTACK_GUARD
964	ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
965	if (ks == 0)
966		panic("pmap_new_thread: kstack allocation failed");
967	if (*vtopte(ks) != 0)
968		pmap_qremove(ks, 1);
969	ks += PAGE_SIZE;
970	td->td_kstack = ks;
971#else
972	/* get a kernel virtual address for the kstack for this thread */
973	ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
974	if (ks == 0)
975		panic("pmap_new_thread: kstack allocation failed");
976	td->td_kstack = ks;
977#endif
978	/*
979	 * Knowing the number of pages allocated is useful when you
980	 * want to deallocate them.
981	 */
982	td->td_kstack_pages = pages;
983
984	/*
985	 * For the length of the stack, link in a real page of ram for each
986	 * page of stack.
987	 */
988	for (i = 0; i < pages; i++) {
989		/*
990		 * Get a kernel stack page
991		 */
992		m = vm_page_grab(ksobj, i,
993		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
994		ma[i] = m;
995
996		vm_page_lock_queues();
997		vm_page_wakeup(m);
998		vm_page_flag_clear(m, PG_ZERO);
999		m->valid = VM_PAGE_BITS_ALL;
1000		vm_page_unlock_queues();
1001	}
1002	pmap_qenter(ks, ma, pages);
1003}
1004
1005/*
1006 * Dispose the kernel stack for a thread that has exited.
1007 * This routine directly impacts the exit perf of a process and thread.
1008 */
1009void
1010pmap_dispose_thread(td)
1011	struct thread *td;
1012{
1013	int i;
1014	int pages;
1015	vm_object_t ksobj;
1016	vm_offset_t ks;
1017	vm_page_t m;
1018
1019	pages = td->td_kstack_pages;
1020	ksobj = td->td_kstack_obj;
1021	ks = td->td_kstack;
1022	pmap_qremove(ks, pages);
1023	for (i = 0; i < pages; i++) {
1024		m = vm_page_lookup(ksobj, i);
1025		if (m == NULL)
1026			panic("pmap_dispose_thread: kstack already missing?");
1027		vm_page_lock_queues();
1028		vm_page_busy(m);
1029		vm_page_unwire(m, 0);
1030		vm_page_free(m);
1031		vm_page_unlock_queues();
1032	}
1033	/*
1034	 * Free the space that this stack was mapped to in the kernel
1035	 * address map.
1036	 */
1037#ifdef KSTACK_GUARD
1038	kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
1039#else
1040	kmem_free(kernel_map, ks, pages * PAGE_SIZE);
1041#endif
1042	vm_object_deallocate(ksobj);
1043}
1044
1045/*
1046 * Set up a variable sized alternate kstack.  Though it may look MI, it may
1047 * need to be different on certain arches like ia64.
1048 */
1049void
1050pmap_new_altkstack(struct thread *td, int pages)
1051{
1052	/* shuffle the original stack */
1053	td->td_altkstack_obj = td->td_kstack_obj;
1054	td->td_altkstack = td->td_kstack;
1055	td->td_altkstack_pages = td->td_kstack_pages;
1056
1057	pmap_new_thread(td, pages);
1058}
1059
1060void
1061pmap_dispose_altkstack(td)
1062	struct thread *td;
1063{
1064	pmap_dispose_thread(td);
1065
1066	/* restore the original kstack */
1067	td->td_kstack = td->td_altkstack;
1068	td->td_kstack_obj = td->td_altkstack_obj;
1069	td->td_kstack_pages = td->td_altkstack_pages;
1070	td->td_altkstack = 0;
1071	td->td_altkstack_obj = NULL;
1072	td->td_altkstack_pages = 0;
1073}
1074
1075/*
1076 * Allow the Kernel stack for a thread to be prejudicially paged out.
1077 */
1078void
1079pmap_swapout_thread(td)
1080	struct thread *td;
1081{
1082	int i;
1083	int pages;
1084	vm_object_t ksobj;
1085	vm_offset_t ks;
1086	vm_page_t m;
1087
1088	pages = td->td_kstack_pages;
1089	ksobj = td->td_kstack_obj;
1090	ks = td->td_kstack;
1091	pmap_qremove(ks, pages);
1092	for (i = 0; i < pages; i++) {
1093		m = vm_page_lookup(ksobj, i);
1094		if (m == NULL)
1095			panic("pmap_swapout_thread: kstack already missing?");
1096		vm_page_lock_queues();
1097		vm_page_dirty(m);
1098		vm_page_unwire(m, 0);
1099		vm_page_unlock_queues();
1100	}
1101}
1102
1103/*
1104 * Bring the kernel stack for a specified thread back in.
1105 */
1106void
1107pmap_swapin_thread(td)
1108	struct thread *td;
1109{
1110	int i, rv;
1111	int pages;
1112	vm_page_t ma[KSTACK_MAX_PAGES];
1113	vm_object_t ksobj;
1114	vm_offset_t ks;
1115	vm_page_t m;
1116
1117	pages = td->td_kstack_pages;
1118	ksobj = td->td_kstack_obj;
1119	ks = td->td_kstack;
1120	for (i = 0; i < pages; i++) {
1121		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1122		if (m->valid != VM_PAGE_BITS_ALL) {
1123			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1124			if (rv != VM_PAGER_OK)
1125				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1126			m = vm_page_lookup(ksobj, i);
1127			m->valid = VM_PAGE_BITS_ALL;
1128		}
1129		ma[i] = m;
1130		vm_page_lock_queues();
1131		vm_page_wire(m);
1132		vm_page_wakeup(m);
1133		vm_page_unlock_queues();
1134	}
1135	pmap_qenter(ks, ma, pages);
1136}
1137
1138/***************************************************
1139 * Page table page management routines.....
1140 ***************************************************/
1141
1142/*
1143 * This routine unholds page table pages, and if the hold count
1144 * drops to zero, then it decrements the wire count.
1145 */
1146static int
1147_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1148{
1149
1150	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1151		vm_page_lock_queues();
1152
1153	if (m->hold_count == 0) {
1154		vm_offset_t pteva;
1155		/*
1156		 * unmap the page table page
1157		 */
1158		pmap->pm_pdir[m->pindex] = 0;
1159		--pmap->pm_stats.resident_count;
1160		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1161		    (PTDpde & PG_FRAME)) {
1162			/*
1163			 * Do an invltlb to make the invalidated mapping
1164			 * take effect immediately.
1165			 */
1166			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1167			pmap_invalidate_page(pmap, pteva);
1168		}
1169
1170		if (pmap->pm_ptphint == m)
1171			pmap->pm_ptphint = NULL;
1172
1173		/*
1174		 * If the page is finally unwired, simply free it.
1175		 */
1176		--m->wire_count;
1177		if (m->wire_count == 0) {
1178			vm_page_busy(m);
1179			vm_page_free_zero(m);
1180			atomic_subtract_int(&cnt.v_wire_count, 1);
1181		}
1182		return 1;
1183	}
1184	return 0;
1185}
1186
1187static PMAP_INLINE int
1188pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1189{
1190	vm_page_unhold(m);
1191	if (m->hold_count == 0)
1192		return _pmap_unwire_pte_hold(pmap, m);
1193	else
1194		return 0;
1195}
1196
1197/*
1198 * After removing a page table entry, this routine is used to
1199 * conditionally free the page, and manage the hold/wire counts.
1200 */
1201static int
1202pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1203{
1204	unsigned ptepindex;
1205	if (va >= VM_MAXUSER_ADDRESS)
1206		return 0;
1207
1208	if (mpte == NULL) {
1209		ptepindex = (va >> PDRSHIFT);
1210		if (pmap->pm_ptphint &&
1211			(pmap->pm_ptphint->pindex == ptepindex)) {
1212			mpte = pmap->pm_ptphint;
1213		} else {
1214			while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
1215			       vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
1216				vm_page_lock_queues();
1217			pmap->pm_ptphint = mpte;
1218		}
1219	}
1220
1221	return pmap_unwire_pte_hold(pmap, mpte);
1222}
1223
1224void
1225pmap_pinit0(pmap)
1226	struct pmap *pmap;
1227{
1228	pmap->pm_pdir =
1229		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1230	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1231#ifndef I386_CPU
1232	invlpg((vm_offset_t)pmap->pm_pdir);
1233#else
1234	invltlb();
1235#endif
1236	pmap->pm_ptphint = NULL;
1237	pmap->pm_active = 0;
1238	TAILQ_INIT(&pmap->pm_pvlist);
1239	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1240	mtx_lock_spin(&allpmaps_lock);
1241	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1242	mtx_unlock_spin(&allpmaps_lock);
1243}
1244
1245/*
1246 * Initialize a preallocated and zeroed pmap structure,
1247 * such as one in a vmspace structure.
1248 */
1249void
1250pmap_pinit(pmap)
1251	register struct pmap *pmap;
1252{
1253	vm_page_t ptdpg;
1254
1255	/*
1256	 * No need to allocate page table space yet but we do need a valid
1257	 * page directory table.
1258	 */
1259	if (pmap->pm_pdir == NULL)
1260		pmap->pm_pdir =
1261			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1262
1263	/*
1264	 * allocate object for the ptes
1265	 */
1266	if (pmap->pm_pteobj == NULL)
1267		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1268
1269	/*
1270	 * allocate the page directory page
1271	 */
1272	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1273	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1274	vm_page_lock_queues();
1275	vm_page_flag_clear(ptdpg, PG_BUSY);
1276	ptdpg->valid = VM_PAGE_BITS_ALL;
1277	vm_page_unlock_queues();
1278
1279	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1280	if ((ptdpg->flags & PG_ZERO) == 0)
1281		bzero(pmap->pm_pdir, PAGE_SIZE);
1282
1283	mtx_lock_spin(&allpmaps_lock);
1284	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1285	mtx_unlock_spin(&allpmaps_lock);
1286	/* Wire in kernel global address entries. */
1287	/* XXX copies current process, does not fill in MPPTDI */
1288	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1289#ifdef SMP
1290	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1291#endif
1292
1293	/* install self-referential address mapping entry */
1294	pmap->pm_pdir[PTDPTDI] =
1295		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1296
1297	pmap->pm_active = 0;
1298	pmap->pm_ptphint = NULL;
1299	TAILQ_INIT(&pmap->pm_pvlist);
1300	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1301}
1302
1303/*
1304 * Wire in kernel global address entries.  To avoid a race condition
1305 * between pmap initialization and pmap_growkernel, this procedure
1306 * should be called after the vmspace is attached to the process
1307 * but before this pmap is activated.
1308 */
1309void
1310pmap_pinit2(pmap)
1311	struct pmap *pmap;
1312{
1313	/* XXX: Remove this stub when no longer called */
1314}
1315
1316static int
1317pmap_release_free_page(pmap_t pmap, vm_page_t p)
1318{
1319	pd_entry_t *pde = pmap->pm_pdir;
1320
1321	/*
1322	 * This code optimizes the case of freeing non-busy
1323	 * page-table pages.  Those pages are zero now, and
1324	 * might as well be placed directly into the zero queue.
1325	 */
1326	vm_page_lock_queues();
1327	if (vm_page_sleep_if_busy(p, FALSE, "pmaprl"))
1328		return (0);
1329	vm_page_busy(p);
1330
1331	/*
1332	 * Remove the page table page from the processes address space.
1333	 */
1334	pde[p->pindex] = 0;
1335	pmap->pm_stats.resident_count--;
1336
1337	if (p->hold_count)  {
1338		panic("pmap_release: freeing held page table page");
1339	}
1340	/*
1341	 * Page directory pages need to have the kernel
1342	 * stuff cleared, so they can go into the zero queue also.
1343	 */
1344	if (p->pindex == PTDPTDI) {
1345		bzero(pde + KPTDI, nkpt * PTESIZE);
1346#ifdef SMP
1347		pde[MPPTDI] = 0;
1348#endif
1349		pde[APTDPTDI] = 0;
1350		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1351	}
1352
1353	if (pmap->pm_ptphint == p)
1354		pmap->pm_ptphint = NULL;
1355
1356	p->wire_count--;
1357	atomic_subtract_int(&cnt.v_wire_count, 1);
1358	vm_page_free_zero(p);
1359	vm_page_unlock_queues();
1360	return 1;
1361}
1362
1363/*
1364 * this routine is called if the page table page is not
1365 * mapped correctly.
1366 */
1367static vm_page_t
1368_pmap_allocpte(pmap, ptepindex)
1369	pmap_t	pmap;
1370	unsigned ptepindex;
1371{
1372	vm_offset_t pteva, ptepa;	/* XXXPA */
1373	vm_page_t m;
1374
1375	/*
1376	 * Find or fabricate a new pagetable page
1377	 */
1378	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1379	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1380
1381	KASSERT(m->queue == PQ_NONE,
1382		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1383
1384	/*
1385	 * Increment the hold count for the page table page
1386	 * (denoting a new mapping.)
1387	 */
1388	m->hold_count++;
1389
1390	/*
1391	 * Map the pagetable page into the process address space, if
1392	 * it isn't already there.
1393	 */
1394
1395	pmap->pm_stats.resident_count++;
1396
1397	ptepa = VM_PAGE_TO_PHYS(m);
1398	pmap->pm_pdir[ptepindex] =
1399		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1400
1401	/*
1402	 * Set the page table hint
1403	 */
1404	pmap->pm_ptphint = m;
1405
1406	/*
1407	 * Try to use the new mapping, but if we cannot, then
1408	 * do it with the routine that maps the page explicitly.
1409	 */
1410	if ((m->flags & PG_ZERO) == 0) {
1411		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1412		    (PTDpde & PG_FRAME)) {
1413			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1414			bzero((caddr_t) pteva, PAGE_SIZE);
1415		} else {
1416			pmap_zero_page(m);
1417		}
1418	}
1419	vm_page_lock_queues();
1420	m->valid = VM_PAGE_BITS_ALL;
1421	vm_page_flag_clear(m, PG_ZERO);
1422	vm_page_wakeup(m);
1423	vm_page_unlock_queues();
1424
1425	return m;
1426}
1427
1428static vm_page_t
1429pmap_allocpte(pmap_t pmap, vm_offset_t va)
1430{
1431	unsigned ptepindex;
1432	pd_entry_t ptepa;
1433	vm_page_t m;
1434
1435	/*
1436	 * Calculate pagetable page index
1437	 */
1438	ptepindex = va >> PDRSHIFT;
1439
1440	/*
1441	 * Get the page directory entry
1442	 */
1443	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1444
1445	/*
1446	 * This supports switching from a 4MB page to a
1447	 * normal 4K page.
1448	 */
1449	if (ptepa & PG_PS) {
1450		pmap->pm_pdir[ptepindex] = 0;
1451		ptepa = 0;
1452		pmap_invalidate_all(kernel_pmap);
1453	}
1454
1455	/*
1456	 * If the page table page is mapped, we just increment the
1457	 * hold count, and activate it.
1458	 */
1459	if (ptepa) {
1460		/*
1461		 * In order to get the page table page, try the
1462		 * hint first.
1463		 */
1464		if (pmap->pm_ptphint &&
1465			(pmap->pm_ptphint->pindex == ptepindex)) {
1466			m = pmap->pm_ptphint;
1467		} else {
1468			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1469			pmap->pm_ptphint = m;
1470		}
1471		m->hold_count++;
1472		return m;
1473	}
1474	/*
1475	 * Here if the pte page isn't mapped, or if it has been deallocated.
1476	 */
1477	return _pmap_allocpte(pmap, ptepindex);
1478}
1479
1480
1481/***************************************************
1482* Pmap allocation/deallocation routines.
1483 ***************************************************/
1484
1485/*
1486 * Release any resources held by the given physical map.
1487 * Called when a pmap initialized by pmap_pinit is being released.
1488 * Should only be called if the map contains no valid mappings.
1489 */
1490void
1491pmap_release(pmap_t pmap)
1492{
1493	vm_page_t p,n,ptdpg;
1494	vm_object_t object = pmap->pm_pteobj;
1495	int curgeneration;
1496
1497#if defined(DIAGNOSTIC)
1498	if (object->ref_count != 1)
1499		panic("pmap_release: pteobj reference count != 1");
1500#endif
1501
1502	ptdpg = NULL;
1503	mtx_lock_spin(&allpmaps_lock);
1504	LIST_REMOVE(pmap, pm_list);
1505	mtx_unlock_spin(&allpmaps_lock);
1506retry:
1507	curgeneration = object->generation;
1508	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1509		n = TAILQ_NEXT(p, listq);
1510		if (p->pindex == PTDPTDI) {
1511			ptdpg = p;
1512			continue;
1513		}
1514		while (1) {
1515			if (!pmap_release_free_page(pmap, p) &&
1516				(object->generation != curgeneration))
1517				goto retry;
1518		}
1519	}
1520
1521	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1522		goto retry;
1523}
1524
1525static int
1526kvm_size(SYSCTL_HANDLER_ARGS)
1527{
1528	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1529
1530	return sysctl_handle_long(oidp, &ksize, 0, req);
1531}
1532SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1533    0, 0, kvm_size, "IU", "Size of KVM");
1534
1535static int
1536kvm_free(SYSCTL_HANDLER_ARGS)
1537{
1538	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1539
1540	return sysctl_handle_long(oidp, &kfree, 0, req);
1541}
1542SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1543    0, 0, kvm_free, "IU", "Amount of KVM free");
1544
1545/*
1546 * grow the number of kernel page table entries, if needed
1547 */
1548void
1549pmap_growkernel(vm_offset_t addr)
1550{
1551	struct pmap *pmap;
1552	int s;
1553	vm_offset_t ptppaddr;
1554	vm_page_t nkpg;
1555	pd_entry_t newpdir;
1556
1557	s = splhigh();
1558	if (kernel_vm_end == 0) {
1559		kernel_vm_end = KERNBASE;
1560		nkpt = 0;
1561		while (pdir_pde(PTD, kernel_vm_end)) {
1562			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1563			nkpt++;
1564		}
1565	}
1566	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1567	while (kernel_vm_end < addr) {
1568		if (pdir_pde(PTD, kernel_vm_end)) {
1569			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1570			continue;
1571		}
1572
1573		/*
1574		 * This index is bogus, but out of the way
1575		 */
1576		nkpg = vm_page_alloc(NULL, nkpt,
1577		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1578		if (!nkpg)
1579			panic("pmap_growkernel: no memory to grow kernel");
1580
1581		nkpt++;
1582
1583		pmap_zero_page(nkpg);
1584		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1585		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1586		pdir_pde(PTD, kernel_vm_end) = newpdir;
1587
1588		mtx_lock_spin(&allpmaps_lock);
1589		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1590			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1591		}
1592		mtx_unlock_spin(&allpmaps_lock);
1593		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1594	}
1595	splx(s);
1596}
1597
1598
1599/***************************************************
1600 * page management routines.
1601 ***************************************************/
1602
1603/*
1604 * free the pv_entry back to the free list
1605 */
1606static PMAP_INLINE void
1607free_pv_entry(pv_entry_t pv)
1608{
1609	pv_entry_count--;
1610	uma_zfree(pvzone, pv);
1611}
1612
1613/*
1614 * get a new pv_entry, allocating a block from the system
1615 * when needed.
1616 * the memory allocation is performed bypassing the malloc code
1617 * because of the possibility of allocations at interrupt time.
1618 */
1619static pv_entry_t
1620get_pv_entry(void)
1621{
1622	pv_entry_count++;
1623	if (pv_entry_high_water &&
1624		(pv_entry_count > pv_entry_high_water) &&
1625		(pmap_pagedaemon_waken == 0)) {
1626		pmap_pagedaemon_waken = 1;
1627		wakeup (&vm_pages_needed);
1628	}
1629	return uma_zalloc(pvzone, M_NOWAIT);
1630}
1631
1632/*
1633 * If it is the first entry on the list, it is actually
1634 * in the header and we must copy the following entry up
1635 * to the header.  Otherwise we must search the list for
1636 * the entry.  In either case we free the now unused entry.
1637 */
1638
1639static int
1640pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1641{
1642	pv_entry_t pv;
1643	int rtval;
1644	int s;
1645
1646	s = splvm();
1647	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1648	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1649		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1650			if (pmap == pv->pv_pmap && va == pv->pv_va)
1651				break;
1652		}
1653	} else {
1654		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1655			if (va == pv->pv_va)
1656				break;
1657		}
1658	}
1659
1660	rtval = 0;
1661	if (pv) {
1662		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1663		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1664		m->md.pv_list_count--;
1665		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1666			vm_page_flag_clear(m, PG_WRITEABLE);
1667
1668		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1669		free_pv_entry(pv);
1670	}
1671
1672	splx(s);
1673	return rtval;
1674}
1675
1676/*
1677 * Create a pv entry for page at pa for
1678 * (pmap, va).
1679 */
1680static void
1681pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1682{
1683
1684	int s;
1685	pv_entry_t pv;
1686
1687	s = splvm();
1688	pv = get_pv_entry();
1689	pv->pv_va = va;
1690	pv->pv_pmap = pmap;
1691	pv->pv_ptem = mpte;
1692
1693	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1694	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1695	m->md.pv_list_count++;
1696
1697	splx(s);
1698}
1699
1700/*
1701 * pmap_remove_pte: do the things to unmap a page in a process
1702 */
1703static int
1704pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1705{
1706	pt_entry_t oldpte;
1707	vm_page_t m;
1708
1709	oldpte = atomic_readandclear_int(ptq);
1710	if (oldpte & PG_W)
1711		pmap->pm_stats.wired_count -= 1;
1712	/*
1713	 * Machines that don't support invlpg, also don't support
1714	 * PG_G.
1715	 */
1716	if (oldpte & PG_G)
1717		pmap_invalidate_page(kernel_pmap, va);
1718	pmap->pm_stats.resident_count -= 1;
1719	if (oldpte & PG_MANAGED) {
1720		m = PHYS_TO_VM_PAGE(oldpte);
1721		if (oldpte & PG_M) {
1722#if defined(PMAP_DIAGNOSTIC)
1723			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1724				printf(
1725	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1726				    va, oldpte);
1727			}
1728#endif
1729			if (pmap_track_modified(va))
1730				vm_page_dirty(m);
1731		}
1732		if (oldpte & PG_A)
1733			vm_page_flag_set(m, PG_REFERENCED);
1734		return pmap_remove_entry(pmap, m, va);
1735	} else {
1736		return pmap_unuse_pt(pmap, va, NULL);
1737	}
1738
1739	return 0;
1740}
1741
1742/*
1743 * Remove a single page from a process address space
1744 */
1745static void
1746pmap_remove_page(pmap_t pmap, vm_offset_t va)
1747{
1748	register pt_entry_t *ptq;
1749
1750	/*
1751	 * if there is no pte for this address, just skip it!!!
1752	 */
1753	if (*pmap_pde(pmap, va) == 0) {
1754		return;
1755	}
1756
1757	/*
1758	 * get a local va for mappings for this pmap.
1759	 */
1760	ptq = get_ptbase(pmap) + i386_btop(va);
1761	if (*ptq) {
1762		(void) pmap_remove_pte(pmap, ptq, va);
1763		pmap_invalidate_page(pmap, va);
1764	}
1765	return;
1766}
1767
1768/*
1769 *	Remove the given range of addresses from the specified map.
1770 *
1771 *	It is assumed that the start and end are properly
1772 *	rounded to the page size.
1773 */
1774void
1775pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1776{
1777	register pt_entry_t *ptbase;
1778	vm_offset_t pdnxt;
1779	pd_entry_t ptpaddr;
1780	vm_offset_t sindex, eindex;
1781	int anyvalid;
1782
1783	if (pmap == NULL)
1784		return;
1785
1786	if (pmap->pm_stats.resident_count == 0)
1787		return;
1788
1789	/*
1790	 * special handling of removing one page.  a very
1791	 * common operation and easy to short circuit some
1792	 * code.
1793	 */
1794	if ((sva + PAGE_SIZE == eva) &&
1795	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1796		pmap_remove_page(pmap, sva);
1797		return;
1798	}
1799
1800	anyvalid = 0;
1801
1802	/*
1803	 * Get a local virtual address for the mappings that are being
1804	 * worked with.
1805	 */
1806	ptbase = get_ptbase(pmap);
1807
1808	sindex = i386_btop(sva);
1809	eindex = i386_btop(eva);
1810
1811	for (; sindex < eindex; sindex = pdnxt) {
1812		unsigned pdirindex;
1813
1814		/*
1815		 * Calculate index for next page table.
1816		 */
1817		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1818		if (pmap->pm_stats.resident_count == 0)
1819			break;
1820
1821		pdirindex = sindex / NPDEPG;
1822		ptpaddr = pmap->pm_pdir[pdirindex];
1823		if ((ptpaddr & PG_PS) != 0) {
1824			pmap->pm_pdir[pdirindex] = 0;
1825			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1826			anyvalid++;
1827			continue;
1828		}
1829
1830		/*
1831		 * Weed out invalid mappings. Note: we assume that the page
1832		 * directory table is always allocated, and in kernel virtual.
1833		 */
1834		if (ptpaddr == 0)
1835			continue;
1836
1837		/*
1838		 * Limit our scan to either the end of the va represented
1839		 * by the current page table page, or to the end of the
1840		 * range being removed.
1841		 */
1842		if (pdnxt > eindex) {
1843			pdnxt = eindex;
1844		}
1845
1846		for (; sindex != pdnxt; sindex++) {
1847			vm_offset_t va;
1848			if (ptbase[sindex] == 0) {
1849				continue;
1850			}
1851			va = i386_ptob(sindex);
1852
1853			anyvalid++;
1854			if (pmap_remove_pte(pmap, ptbase + sindex, va))
1855				break;
1856		}
1857	}
1858
1859	if (anyvalid)
1860		pmap_invalidate_all(pmap);
1861}
1862
1863/*
1864 *	Routine:	pmap_remove_all
1865 *	Function:
1866 *		Removes this physical page from
1867 *		all physical maps in which it resides.
1868 *		Reflects back modify bits to the pager.
1869 *
1870 *	Notes:
1871 *		Original versions of this routine were very
1872 *		inefficient because they iteratively called
1873 *		pmap_remove (slow...)
1874 */
1875
1876void
1877pmap_remove_all(vm_page_t m)
1878{
1879	register pv_entry_t pv;
1880	pt_entry_t *pte, tpte;
1881	int s;
1882
1883#if defined(PMAP_DIAGNOSTIC)
1884	/*
1885	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1886	 */
1887	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1888		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1889		    VM_PAGE_TO_PHYS(m));
1890	}
1891#endif
1892	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1893	s = splvm();
1894	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1895		pv->pv_pmap->pm_stats.resident_count--;
1896		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1897		tpte = atomic_readandclear_int(pte);
1898		if (tpte & PG_W)
1899			pv->pv_pmap->pm_stats.wired_count--;
1900		if (tpte & PG_A)
1901			vm_page_flag_set(m, PG_REFERENCED);
1902
1903		/*
1904		 * Update the vm_page_t clean and reference bits.
1905		 */
1906		if (tpte & PG_M) {
1907#if defined(PMAP_DIAGNOSTIC)
1908			if (pmap_nw_modified((pt_entry_t) tpte)) {
1909				printf(
1910	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1911				    pv->pv_va, tpte);
1912			}
1913#endif
1914			if (pmap_track_modified(pv->pv_va))
1915				vm_page_dirty(m);
1916		}
1917		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1918		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1919		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1920		m->md.pv_list_count--;
1921		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1922		free_pv_entry(pv);
1923	}
1924	vm_page_flag_clear(m, PG_WRITEABLE);
1925	splx(s);
1926}
1927
1928/*
1929 *	Set the physical protection on the
1930 *	specified range of this map as requested.
1931 */
1932void
1933pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1934{
1935	register pt_entry_t *ptbase;
1936	vm_offset_t pdnxt;
1937	pd_entry_t ptpaddr;
1938	vm_offset_t sindex, eindex;
1939	int anychanged;
1940
1941	if (pmap == NULL)
1942		return;
1943
1944	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1945		pmap_remove(pmap, sva, eva);
1946		return;
1947	}
1948
1949	if (prot & VM_PROT_WRITE)
1950		return;
1951
1952	anychanged = 0;
1953
1954	ptbase = get_ptbase(pmap);
1955
1956	sindex = i386_btop(sva);
1957	eindex = i386_btop(eva);
1958
1959	for (; sindex < eindex; sindex = pdnxt) {
1960
1961		unsigned pdirindex;
1962
1963		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1964
1965		pdirindex = sindex / NPDEPG;
1966		ptpaddr = pmap->pm_pdir[pdirindex];
1967		if ((ptpaddr & PG_PS) != 0) {
1968			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1969			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1970			anychanged++;
1971			continue;
1972		}
1973
1974		/*
1975		 * Weed out invalid mappings. Note: we assume that the page
1976		 * directory table is always allocated, and in kernel virtual.
1977		 */
1978		if (ptpaddr == 0)
1979			continue;
1980
1981		if (pdnxt > eindex) {
1982			pdnxt = eindex;
1983		}
1984
1985		for (; sindex != pdnxt; sindex++) {
1986
1987			pt_entry_t pbits;
1988			vm_page_t m;
1989
1990			pbits = ptbase[sindex];
1991
1992			if (pbits & PG_MANAGED) {
1993				m = NULL;
1994				if (pbits & PG_A) {
1995					m = PHYS_TO_VM_PAGE(pbits);
1996					vm_page_flag_set(m, PG_REFERENCED);
1997					pbits &= ~PG_A;
1998				}
1999				if (pbits & PG_M) {
2000					if (pmap_track_modified(i386_ptob(sindex))) {
2001						if (m == NULL)
2002							m = PHYS_TO_VM_PAGE(pbits);
2003						vm_page_dirty(m);
2004						pbits &= ~PG_M;
2005					}
2006				}
2007			}
2008
2009			pbits &= ~PG_RW;
2010
2011			if (pbits != ptbase[sindex]) {
2012				ptbase[sindex] = pbits;
2013				anychanged = 1;
2014			}
2015		}
2016	}
2017	if (anychanged)
2018		pmap_invalidate_all(pmap);
2019}
2020
2021/*
2022 *	Insert the given physical page (p) at
2023 *	the specified virtual address (v) in the
2024 *	target physical map with the protection requested.
2025 *
2026 *	If specified, the page will be wired down, meaning
2027 *	that the related pte can not be reclaimed.
2028 *
2029 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2030 *	or lose information.  That is, this routine must actually
2031 *	insert this page into the given map NOW.
2032 */
2033void
2034pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2035	   boolean_t wired)
2036{
2037	vm_offset_t pa;
2038	register pt_entry_t *pte;
2039	vm_offset_t opa;
2040	pt_entry_t origpte, newpte;
2041	vm_page_t mpte;
2042
2043	if (pmap == NULL)
2044		return;
2045
2046	va &= PG_FRAME;
2047#ifdef PMAP_DIAGNOSTIC
2048	if (va > VM_MAX_KERNEL_ADDRESS)
2049		panic("pmap_enter: toobig");
2050	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2051		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2052#endif
2053
2054	mpte = NULL;
2055	/*
2056	 * In the case that a page table page is not
2057	 * resident, we are creating it here.
2058	 */
2059	if (va < VM_MAXUSER_ADDRESS) {
2060		mpte = pmap_allocpte(pmap, va);
2061	}
2062#if 0 && defined(PMAP_DIAGNOSTIC)
2063	else {
2064		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2065		origpte = *pdeaddr;
2066		if ((origpte & PG_V) == 0) {
2067			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2068				pmap->pm_pdir[PTDPTDI], origpte, va);
2069		}
2070	}
2071#endif
2072
2073	pte = pmap_pte(pmap, va);
2074
2075	/*
2076	 * Page Directory table entry not valid, we need a new PT page
2077	 */
2078	if (pte == NULL) {
2079		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2080			(void *)pmap->pm_pdir[PTDPTDI], va);
2081	}
2082
2083	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2084	origpte = *(vm_offset_t *)pte;
2085	opa = origpte & PG_FRAME;
2086
2087	if (origpte & PG_PS)
2088		panic("pmap_enter: attempted pmap_enter on 4MB page");
2089
2090	/*
2091	 * Mapping has not changed, must be protection or wiring change.
2092	 */
2093	if (origpte && (opa == pa)) {
2094		/*
2095		 * Wiring change, just update stats. We don't worry about
2096		 * wiring PT pages as they remain resident as long as there
2097		 * are valid mappings in them. Hence, if a user page is wired,
2098		 * the PT page will be also.
2099		 */
2100		if (wired && ((origpte & PG_W) == 0))
2101			pmap->pm_stats.wired_count++;
2102		else if (!wired && (origpte & PG_W))
2103			pmap->pm_stats.wired_count--;
2104
2105#if defined(PMAP_DIAGNOSTIC)
2106		if (pmap_nw_modified((pt_entry_t) origpte)) {
2107			printf(
2108	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2109			    va, origpte);
2110		}
2111#endif
2112
2113		/*
2114		 * Remove extra pte reference
2115		 */
2116		if (mpte)
2117			mpte->hold_count--;
2118
2119		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2120			if ((origpte & PG_RW) == 0) {
2121				*pte |= PG_RW;
2122				pmap_invalidate_page(pmap, va);
2123			}
2124			return;
2125		}
2126
2127		/*
2128		 * We might be turning off write access to the page,
2129		 * so we go ahead and sense modify status.
2130		 */
2131		if (origpte & PG_MANAGED) {
2132			if ((origpte & PG_M) && pmap_track_modified(va)) {
2133				vm_page_t om;
2134				om = PHYS_TO_VM_PAGE(opa);
2135				vm_page_dirty(om);
2136			}
2137			pa |= PG_MANAGED;
2138		}
2139		goto validate;
2140	}
2141	/*
2142	 * Mapping has changed, invalidate old range and fall through to
2143	 * handle validating new mapping.
2144	 */
2145	if (opa) {
2146		int err;
2147		vm_page_lock_queues();
2148		err = pmap_remove_pte(pmap, pte, va);
2149		vm_page_unlock_queues();
2150		if (err)
2151			panic("pmap_enter: pte vanished, va: 0x%x", va);
2152	}
2153
2154	/*
2155	 * Enter on the PV list if part of our managed memory. Note that we
2156	 * raise IPL while manipulating pv_table since pmap_enter can be
2157	 * called at interrupt time.
2158	 */
2159	if (pmap_initialized &&
2160	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2161		pmap_insert_entry(pmap, va, mpte, m);
2162		pa |= PG_MANAGED;
2163	}
2164
2165	/*
2166	 * Increment counters
2167	 */
2168	pmap->pm_stats.resident_count++;
2169	if (wired)
2170		pmap->pm_stats.wired_count++;
2171
2172validate:
2173	/*
2174	 * Now validate mapping with desired protection/wiring.
2175	 */
2176	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2177
2178	if (wired)
2179		newpte |= PG_W;
2180	if (va < VM_MAXUSER_ADDRESS)
2181		newpte |= PG_U;
2182	if (pmap == kernel_pmap)
2183		newpte |= pgeflag;
2184
2185	/*
2186	 * if the mapping or permission bits are different, we need
2187	 * to update the pte.
2188	 */
2189	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2190		*pte = newpte | PG_A;
2191		/*if (origpte)*/ {
2192			pmap_invalidate_page(pmap, va);
2193		}
2194	}
2195}
2196
2197/*
2198 * this code makes some *MAJOR* assumptions:
2199 * 1. Current pmap & pmap exists.
2200 * 2. Not wired.
2201 * 3. Read access.
2202 * 4. No page table pages.
2203 * 5. Tlbflush is deferred to calling procedure.
2204 * 6. Page IS managed.
2205 * but is *MUCH* faster than pmap_enter...
2206 */
2207
2208static vm_page_t
2209pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2210{
2211	pt_entry_t *pte;
2212	vm_offset_t pa;
2213
2214	/*
2215	 * In the case that a page table page is not
2216	 * resident, we are creating it here.
2217	 */
2218	if (va < VM_MAXUSER_ADDRESS) {
2219		unsigned ptepindex;
2220		pd_entry_t ptepa;
2221
2222		/*
2223		 * Calculate pagetable page index
2224		 */
2225		ptepindex = va >> PDRSHIFT;
2226		if (mpte && (mpte->pindex == ptepindex)) {
2227			mpte->hold_count++;
2228		} else {
2229retry:
2230			/*
2231			 * Get the page directory entry
2232			 */
2233			ptepa = pmap->pm_pdir[ptepindex];
2234
2235			/*
2236			 * If the page table page is mapped, we just increment
2237			 * the hold count, and activate it.
2238			 */
2239			if (ptepa) {
2240				if (ptepa & PG_PS)
2241					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2242				if (pmap->pm_ptphint &&
2243					(pmap->pm_ptphint->pindex == ptepindex)) {
2244					mpte = pmap->pm_ptphint;
2245				} else {
2246					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2247					pmap->pm_ptphint = mpte;
2248				}
2249				if (mpte == NULL)
2250					goto retry;
2251				mpte->hold_count++;
2252			} else {
2253				mpte = _pmap_allocpte(pmap, ptepindex);
2254			}
2255		}
2256	} else {
2257		mpte = NULL;
2258	}
2259
2260	/*
2261	 * This call to vtopte makes the assumption that we are
2262	 * entering the page into the current pmap.  In order to support
2263	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2264	 * But that isn't as quick as vtopte.
2265	 */
2266	pte = vtopte(va);
2267	if (*pte) {
2268		if (mpte != NULL) {
2269			vm_page_lock_queues();
2270			pmap_unwire_pte_hold(pmap, mpte);
2271			vm_page_unlock_queues();
2272		}
2273		return 0;
2274	}
2275
2276	/*
2277	 * Enter on the PV list if part of our managed memory. Note that we
2278	 * raise IPL while manipulating pv_table since pmap_enter can be
2279	 * called at interrupt time.
2280	 */
2281	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2282		pmap_insert_entry(pmap, va, mpte, m);
2283
2284	/*
2285	 * Increment counters
2286	 */
2287	pmap->pm_stats.resident_count++;
2288
2289	pa = VM_PAGE_TO_PHYS(m);
2290
2291	/*
2292	 * Now validate mapping with RO protection
2293	 */
2294	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2295		*pte = pa | PG_V | PG_U;
2296	else
2297		*pte = pa | PG_V | PG_U | PG_MANAGED;
2298
2299	return mpte;
2300}
2301
2302/*
2303 * Make a temporary mapping for a physical address.  This is only intended
2304 * to be used for panic dumps.
2305 */
2306void *
2307pmap_kenter_temporary(vm_offset_t pa, int i)
2308{
2309	vm_offset_t va;
2310
2311	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2312	pmap_kenter(va, pa);
2313#ifndef I386_CPU
2314	invlpg(va);
2315#else
2316	invltlb();
2317#endif
2318	return ((void *)crashdumpmap);
2319}
2320
2321#define MAX_INIT_PT (96)
2322/*
2323 * pmap_object_init_pt preloads the ptes for a given object
2324 * into the specified pmap.  This eliminates the blast of soft
2325 * faults on process startup and immediately after an mmap.
2326 */
2327void
2328pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2329		    vm_object_t object, vm_pindex_t pindex,
2330		    vm_size_t size, int limit)
2331{
2332	vm_offset_t tmpidx;
2333	int psize;
2334	vm_page_t p, mpte;
2335
2336	if (pmap == NULL || object == NULL)
2337		return;
2338
2339	/*
2340	 * This code maps large physical mmap regions into the
2341	 * processor address space.  Note that some shortcuts
2342	 * are taken, but the code works.
2343	 */
2344	if (pseflag && (object->type == OBJT_DEVICE) &&
2345	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2346		int i;
2347		vm_page_t m[1];
2348		unsigned int ptepindex;
2349		int npdes;
2350		pd_entry_t ptepa;
2351
2352		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2353			return;
2354
2355retry:
2356		p = vm_page_lookup(object, pindex);
2357		if (p != NULL) {
2358			vm_page_lock_queues();
2359			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2360				goto retry;
2361		} else {
2362			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2363			if (p == NULL)
2364				return;
2365			m[0] = p;
2366
2367			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2368				vm_page_lock_queues();
2369				vm_page_free(p);
2370				vm_page_unlock_queues();
2371				return;
2372			}
2373
2374			p = vm_page_lookup(object, pindex);
2375			vm_page_lock_queues();
2376			vm_page_wakeup(p);
2377		}
2378		vm_page_unlock_queues();
2379
2380		ptepa = VM_PAGE_TO_PHYS(p);
2381		if (ptepa & (NBPDR - 1)) {
2382			return;
2383		}
2384
2385		p->valid = VM_PAGE_BITS_ALL;
2386
2387		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2388		npdes = size >> PDRSHIFT;
2389		for(i = 0; i < npdes; i++) {
2390			pmap->pm_pdir[ptepindex] =
2391			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2392			ptepa += NBPDR;
2393			ptepindex += 1;
2394		}
2395		pmap_invalidate_all(kernel_pmap);
2396		return;
2397	}
2398
2399	psize = i386_btop(size);
2400
2401	if ((object->type != OBJT_VNODE) ||
2402	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2403	     (object->resident_page_count > MAX_INIT_PT))) {
2404		return;
2405	}
2406
2407	if (psize + pindex > object->size) {
2408		if (object->size < pindex)
2409			return;
2410		psize = object->size - pindex;
2411	}
2412
2413	mpte = NULL;
2414
2415	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
2416		if (p->pindex < pindex) {
2417			p = vm_page_splay(pindex, object->root);
2418			if ((object->root = p)->pindex < pindex)
2419				p = TAILQ_NEXT(p, listq);
2420		}
2421	}
2422	/*
2423	 * Assert: the variable p is either (1) the page with the
2424	 * least pindex greater than or equal to the parameter pindex
2425	 * or (2) NULL.
2426	 */
2427	for (;
2428	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2429	     p = TAILQ_NEXT(p, listq)) {
2430		/*
2431		 * don't allow an madvise to blow away our really
2432		 * free pages allocating pv entries.
2433		 */
2434		if ((limit & MAP_PREFAULT_MADVISE) &&
2435		    cnt.v_free_count < cnt.v_free_reserved) {
2436			break;
2437		}
2438		vm_page_lock_queues();
2439		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2440		    (p->busy == 0) &&
2441		    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2442			if ((p->queue - p->pc) == PQ_CACHE)
2443				vm_page_deactivate(p);
2444			vm_page_busy(p);
2445			vm_page_unlock_queues();
2446			mpte = pmap_enter_quick(pmap,
2447				addr + i386_ptob(tmpidx), p, mpte);
2448			vm_page_lock_queues();
2449			vm_page_wakeup(p);
2450		}
2451		vm_page_unlock_queues();
2452	}
2453	return;
2454}
2455
2456/*
2457 * pmap_prefault provides a quick way of clustering
2458 * pagefaults into a processes address space.  It is a "cousin"
2459 * of pmap_object_init_pt, except it runs at page fault time instead
2460 * of mmap time.
2461 */
2462#define PFBAK 4
2463#define PFFOR 4
2464#define PAGEORDER_SIZE (PFBAK+PFFOR)
2465
2466static int pmap_prefault_pageorder[] = {
2467	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2468	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2469	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2470	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2471};
2472
2473void
2474pmap_prefault(pmap, addra, entry)
2475	pmap_t pmap;
2476	vm_offset_t addra;
2477	vm_map_entry_t entry;
2478{
2479	int i;
2480	vm_offset_t starta;
2481	vm_offset_t addr;
2482	vm_pindex_t pindex;
2483	vm_page_t m, mpte;
2484	vm_object_t object;
2485
2486	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2487		return;
2488
2489	object = entry->object.vm_object;
2490
2491	starta = addra - PFBAK * PAGE_SIZE;
2492	if (starta < entry->start) {
2493		starta = entry->start;
2494	} else if (starta > addra) {
2495		starta = 0;
2496	}
2497
2498	mpte = NULL;
2499	for (i = 0; i < PAGEORDER_SIZE; i++) {
2500		vm_object_t lobject;
2501		pt_entry_t *pte;
2502
2503		addr = addra + pmap_prefault_pageorder[i];
2504		if (addr > addra + (PFFOR * PAGE_SIZE))
2505			addr = 0;
2506
2507		if (addr < starta || addr >= entry->end)
2508			continue;
2509
2510		if ((*pmap_pde(pmap, addr)) == 0)
2511			continue;
2512
2513		pte = vtopte(addr);
2514		if (*pte)
2515			continue;
2516
2517		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2518		lobject = object;
2519		for (m = vm_page_lookup(lobject, pindex);
2520		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2521		    lobject = lobject->backing_object) {
2522			if (lobject->backing_object_offset & PAGE_MASK)
2523				break;
2524			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2525			m = vm_page_lookup(lobject->backing_object, pindex);
2526		}
2527
2528		/*
2529		 * give-up when a page is not in memory
2530		 */
2531		if (m == NULL)
2532			break;
2533		vm_page_lock_queues();
2534		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2535			(m->busy == 0) &&
2536		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2537
2538			if ((m->queue - m->pc) == PQ_CACHE) {
2539				vm_page_deactivate(m);
2540			}
2541			vm_page_busy(m);
2542			vm_page_unlock_queues();
2543			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2544			vm_page_lock_queues();
2545			vm_page_wakeup(m);
2546		}
2547		vm_page_unlock_queues();
2548	}
2549}
2550
2551/*
2552 *	Routine:	pmap_change_wiring
2553 *	Function:	Change the wiring attribute for a map/virtual-address
2554 *			pair.
2555 *	In/out conditions:
2556 *			The mapping must already exist in the pmap.
2557 */
2558void
2559pmap_change_wiring(pmap, va, wired)
2560	register pmap_t pmap;
2561	vm_offset_t va;
2562	boolean_t wired;
2563{
2564	register pt_entry_t *pte;
2565
2566	if (pmap == NULL)
2567		return;
2568
2569	pte = pmap_pte(pmap, va);
2570
2571	if (wired && !pmap_pte_w(pte))
2572		pmap->pm_stats.wired_count++;
2573	else if (!wired && pmap_pte_w(pte))
2574		pmap->pm_stats.wired_count--;
2575
2576	/*
2577	 * Wiring is not a hardware characteristic so there is no need to
2578	 * invalidate TLB.
2579	 */
2580	pmap_pte_set_w(pte, wired);
2581}
2582
2583
2584
2585/*
2586 *	Copy the range specified by src_addr/len
2587 *	from the source map to the range dst_addr/len
2588 *	in the destination map.
2589 *
2590 *	This routine is only advisory and need not do anything.
2591 */
2592
2593void
2594pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2595	  vm_offset_t src_addr)
2596{
2597	vm_offset_t addr;
2598	vm_offset_t end_addr = src_addr + len;
2599	vm_offset_t pdnxt;
2600	pd_entry_t src_frame, dst_frame;
2601	vm_page_t m;
2602
2603	if (dst_addr != src_addr)
2604		return;
2605
2606	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2607	if (src_frame != (PTDpde & PG_FRAME))
2608		return;
2609
2610	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2611	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2612		pt_entry_t *src_pte, *dst_pte;
2613		vm_page_t dstmpte, srcmpte;
2614		pd_entry_t srcptepaddr;
2615		unsigned ptepindex;
2616
2617		if (addr >= UPT_MIN_ADDRESS)
2618			panic("pmap_copy: invalid to pmap_copy page tables\n");
2619
2620		/*
2621		 * Don't let optional prefaulting of pages make us go
2622		 * way below the low water mark of free pages or way
2623		 * above high water mark of used pv entries.
2624		 */
2625		if (cnt.v_free_count < cnt.v_free_reserved ||
2626		    pv_entry_count > pv_entry_high_water)
2627			break;
2628
2629		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2630		ptepindex = addr >> PDRSHIFT;
2631
2632		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2633		if (srcptepaddr == 0)
2634			continue;
2635
2636		if (srcptepaddr & PG_PS) {
2637			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2638				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2639				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2640			}
2641			continue;
2642		}
2643
2644		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2645		if ((srcmpte == NULL) ||
2646		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2647			continue;
2648
2649		if (pdnxt > end_addr)
2650			pdnxt = end_addr;
2651
2652		/*
2653		 * Have to recheck this before every avtopte() call below
2654		 * in case we have blocked and something else used APTDpde.
2655		 */
2656		if (dst_frame != (APTDpde & PG_FRAME)) {
2657			APTDpde = dst_frame | PG_RW | PG_V;
2658			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2659		}
2660		src_pte = vtopte(addr);
2661		dst_pte = avtopte(addr);
2662		while (addr < pdnxt) {
2663			pt_entry_t ptetemp;
2664			ptetemp = *src_pte;
2665			/*
2666			 * we only virtual copy managed pages
2667			 */
2668			if ((ptetemp & PG_MANAGED) != 0) {
2669				/*
2670				 * We have to check after allocpte for the
2671				 * pte still being around...  allocpte can
2672				 * block.
2673				 */
2674				dstmpte = pmap_allocpte(dst_pmap, addr);
2675				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2676					/*
2677					 * Clear the modified and
2678					 * accessed (referenced) bits
2679					 * during the copy.
2680					 */
2681					m = PHYS_TO_VM_PAGE(ptetemp);
2682					*dst_pte = ptetemp & ~(PG_M | PG_A);
2683					dst_pmap->pm_stats.resident_count++;
2684					pmap_insert_entry(dst_pmap, addr,
2685						dstmpte, m);
2686	 			} else {
2687					vm_page_lock_queues();
2688					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2689					vm_page_unlock_queues();
2690				}
2691				if (dstmpte->hold_count >= srcmpte->hold_count)
2692					break;
2693			}
2694			addr += PAGE_SIZE;
2695			src_pte++;
2696			dst_pte++;
2697		}
2698	}
2699}
2700
2701#ifdef SMP
2702
2703/*
2704 *	pmap_zpi_switchin*()
2705 *
2706 *	These functions allow us to avoid doing IPIs alltogether in certain
2707 *	temporary page-mapping situations (page zeroing).  Instead to deal
2708 *	with being preempted and moved onto a different cpu we invalidate
2709 *	the page when the scheduler switches us in.  This does not occur
2710 *	very often so we remain relatively optimal with very little effort.
2711 */
2712static void
2713pmap_zpi_switchin12(void)
2714{
2715	invlpg((u_int)CADDR1);
2716	invlpg((u_int)CADDR2);
2717}
2718
2719static void
2720pmap_zpi_switchin2(void)
2721{
2722	invlpg((u_int)CADDR2);
2723}
2724
2725static void
2726pmap_zpi_switchin3(void)
2727{
2728	invlpg((u_int)CADDR3);
2729}
2730
2731#endif
2732
2733/*
2734 *	pmap_zero_page zeros the specified hardware page by mapping
2735 *	the page into KVM and using bzero to clear its contents.
2736 */
2737void
2738pmap_zero_page(vm_page_t m)
2739{
2740	vm_offset_t phys;
2741
2742	phys = VM_PAGE_TO_PHYS(m);
2743	if (*CMAP2)
2744		panic("pmap_zero_page: CMAP2 busy");
2745	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2746#ifdef I386_CPU
2747	invltlb();
2748#else
2749#ifdef SMP
2750	curthread->td_switchin = pmap_zpi_switchin2;
2751#endif
2752	invlpg((u_int)CADDR2);
2753#endif
2754#if defined(I686_CPU)
2755	if (cpu_class == CPUCLASS_686)
2756		i686_pagezero(CADDR2);
2757	else
2758#endif
2759		bzero(CADDR2, PAGE_SIZE);
2760#ifdef SMP
2761	curthread->td_switchin = NULL;
2762#endif
2763	*CMAP2 = 0;
2764}
2765
2766/*
2767 *	pmap_zero_page_area zeros the specified hardware page by mapping
2768 *	the page into KVM and using bzero to clear its contents.
2769 *
2770 *	off and size may not cover an area beyond a single hardware page.
2771 */
2772void
2773pmap_zero_page_area(vm_page_t m, int off, int size)
2774{
2775	vm_offset_t phys;
2776
2777	phys = VM_PAGE_TO_PHYS(m);
2778	if (*CMAP2)
2779		panic("pmap_zero_page: CMAP2 busy");
2780	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2781#ifdef I386_CPU
2782	invltlb();
2783#else
2784#ifdef SMP
2785	curthread->td_switchin = pmap_zpi_switchin2;
2786#endif
2787	invlpg((u_int)CADDR2);
2788#endif
2789#if defined(I686_CPU)
2790	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2791		i686_pagezero(CADDR2);
2792	else
2793#endif
2794		bzero((char *)CADDR2 + off, size);
2795#ifdef SMP
2796	curthread->td_switchin = NULL;
2797#endif
2798	*CMAP2 = 0;
2799}
2800
2801/*
2802 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2803 *	the page into KVM and using bzero to clear its contents.  This
2804 *	is intended to be called from the vm_pagezero process only and
2805 *	outside of Giant.
2806 */
2807void
2808pmap_zero_page_idle(vm_page_t m)
2809{
2810	vm_offset_t phys;
2811
2812	phys = VM_PAGE_TO_PHYS(m);
2813	if (*CMAP3)
2814		panic("pmap_zero_page: CMAP3 busy");
2815	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2816#ifdef I386_CPU
2817	invltlb();
2818#else
2819#ifdef SMP
2820	curthread->td_switchin = pmap_zpi_switchin3;
2821#endif
2822	invlpg((u_int)CADDR3);
2823#endif
2824#if defined(I686_CPU)
2825	if (cpu_class == CPUCLASS_686)
2826		i686_pagezero(CADDR3);
2827	else
2828#endif
2829		bzero(CADDR3, PAGE_SIZE);
2830#ifdef SMP
2831	curthread->td_switchin = NULL;
2832#endif
2833	*CMAP3 = 0;
2834}
2835
2836/*
2837 *	pmap_copy_page copies the specified (machine independent)
2838 *	page by mapping the page into virtual memory and using
2839 *	bcopy to copy the page, one machine dependent page at a
2840 *	time.
2841 */
2842void
2843pmap_copy_page(vm_page_t src, vm_page_t dst)
2844{
2845
2846	if (*CMAP1)
2847		panic("pmap_copy_page: CMAP1 busy");
2848	if (*CMAP2)
2849		panic("pmap_copy_page: CMAP2 busy");
2850	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2851	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2852#ifdef I386_CPU
2853	invltlb();
2854#else
2855#ifdef SMP
2856	curthread->td_switchin = pmap_zpi_switchin12;
2857#endif
2858	invlpg((u_int)CADDR1);
2859	invlpg((u_int)CADDR2);
2860#endif
2861	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2862#ifdef SMP
2863	curthread->td_switchin = NULL;
2864#endif
2865	*CMAP1 = 0;
2866	*CMAP2 = 0;
2867}
2868
2869/*
2870 * Returns true if the pmap's pv is one of the first
2871 * 16 pvs linked to from this page.  This count may
2872 * be changed upwards or downwards in the future; it
2873 * is only necessary that true be returned for a small
2874 * subset of pmaps for proper page aging.
2875 */
2876boolean_t
2877pmap_page_exists_quick(pmap, m)
2878	pmap_t pmap;
2879	vm_page_t m;
2880{
2881	pv_entry_t pv;
2882	int loops = 0;
2883	int s;
2884
2885	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2886		return FALSE;
2887
2888	s = splvm();
2889	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2890	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2891		if (pv->pv_pmap == pmap) {
2892			splx(s);
2893			return TRUE;
2894		}
2895		loops++;
2896		if (loops >= 16)
2897			break;
2898	}
2899	splx(s);
2900	return (FALSE);
2901}
2902
2903#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2904/*
2905 * Remove all pages from specified address space
2906 * this aids process exit speeds.  Also, this code
2907 * is special cased for current process only, but
2908 * can have the more generic (and slightly slower)
2909 * mode enabled.  This is much faster than pmap_remove
2910 * in the case of running down an entire address space.
2911 */
2912void
2913pmap_remove_pages(pmap, sva, eva)
2914	pmap_t pmap;
2915	vm_offset_t sva, eva;
2916{
2917	pt_entry_t *pte, tpte;
2918	vm_page_t m;
2919	pv_entry_t pv, npv;
2920	int s;
2921
2922#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2923	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2924		printf("warning: pmap_remove_pages called with non-current pmap\n");
2925		return;
2926	}
2927#endif
2928	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2929	s = splvm();
2930	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2931
2932		if (pv->pv_va >= eva || pv->pv_va < sva) {
2933			npv = TAILQ_NEXT(pv, pv_plist);
2934			continue;
2935		}
2936
2937#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2938		pte = vtopte(pv->pv_va);
2939#else
2940		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2941#endif
2942		tpte = *pte;
2943
2944		if (tpte == 0) {
2945			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2946							pte, pv->pv_va);
2947			panic("bad pte");
2948		}
2949
2950/*
2951 * We cannot remove wired pages from a process' mapping at this time
2952 */
2953		if (tpte & PG_W) {
2954			npv = TAILQ_NEXT(pv, pv_plist);
2955			continue;
2956		}
2957
2958		m = PHYS_TO_VM_PAGE(tpte);
2959		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2960		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2961		    m, m->phys_addr, tpte));
2962
2963		KASSERT(m < &vm_page_array[vm_page_array_size],
2964			("pmap_remove_pages: bad tpte %x", tpte));
2965
2966		pv->pv_pmap->pm_stats.resident_count--;
2967
2968		*pte = 0;
2969
2970		/*
2971		 * Update the vm_page_t clean and reference bits.
2972		 */
2973		if (tpte & PG_M) {
2974			vm_page_dirty(m);
2975		}
2976
2977		npv = TAILQ_NEXT(pv, pv_plist);
2978		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2979
2980		m->md.pv_list_count--;
2981		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2982		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2983			vm_page_flag_clear(m, PG_WRITEABLE);
2984		}
2985
2986		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2987		free_pv_entry(pv);
2988	}
2989	splx(s);
2990	pmap_invalidate_all(pmap);
2991}
2992
2993/*
2994 *	pmap_is_modified:
2995 *
2996 *	Return whether or not the specified physical page was modified
2997 *	in any physical maps.
2998 */
2999boolean_t
3000pmap_is_modified(vm_page_t m)
3001{
3002	pv_entry_t pv;
3003	pt_entry_t *pte;
3004	int s;
3005
3006	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3007		return FALSE;
3008
3009	s = splvm();
3010	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3011	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3012		/*
3013		 * if the bit being tested is the modified bit, then
3014		 * mark clean_map and ptes as never
3015		 * modified.
3016		 */
3017		if (!pmap_track_modified(pv->pv_va))
3018			continue;
3019#if defined(PMAP_DIAGNOSTIC)
3020		if (!pv->pv_pmap) {
3021			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3022			continue;
3023		}
3024#endif
3025		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3026		if (*pte & PG_M) {
3027			splx(s);
3028			return TRUE;
3029		}
3030	}
3031	splx(s);
3032	return (FALSE);
3033}
3034
3035/*
3036 * this routine is used to modify bits in ptes
3037 */
3038static __inline void
3039pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3040{
3041	register pv_entry_t pv;
3042	register pt_entry_t *pte;
3043	int s;
3044
3045	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
3046	    (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
3047		return;
3048
3049	s = splvm();
3050	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3051	/*
3052	 * Loop over all current mappings setting/clearing as appropos If
3053	 * setting RO do we need to clear the VAC?
3054	 */
3055	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3056		/*
3057		 * don't write protect pager mappings
3058		 */
3059		if (!setem && (bit == PG_RW)) {
3060			if (!pmap_track_modified(pv->pv_va))
3061				continue;
3062		}
3063
3064#if defined(PMAP_DIAGNOSTIC)
3065		if (!pv->pv_pmap) {
3066			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3067			continue;
3068		}
3069#endif
3070
3071		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3072
3073		if (setem) {
3074			*pte |= bit;
3075			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3076		} else {
3077			pt_entry_t pbits = *pte;
3078			if (pbits & bit) {
3079				if (bit == PG_RW) {
3080					if (pbits & PG_M) {
3081						vm_page_dirty(m);
3082					}
3083					*pte = pbits & ~(PG_M|PG_RW);
3084				} else {
3085					*pte = pbits & ~bit;
3086				}
3087				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3088			}
3089		}
3090	}
3091	if (!setem && bit == PG_RW)
3092		vm_page_flag_clear(m, PG_WRITEABLE);
3093	splx(s);
3094}
3095
3096/*
3097 *      pmap_page_protect:
3098 *
3099 *      Lower the permission for all mappings to a given page.
3100 */
3101void
3102pmap_page_protect(vm_page_t m, vm_prot_t prot)
3103{
3104	if ((prot & VM_PROT_WRITE) == 0) {
3105		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3106			pmap_changebit(m, PG_RW, FALSE);
3107		} else {
3108			pmap_remove_all(m);
3109		}
3110	}
3111}
3112
3113vm_offset_t
3114pmap_phys_address(ppn)
3115	int ppn;
3116{
3117	return (i386_ptob(ppn));
3118}
3119
3120/*
3121 *	pmap_ts_referenced:
3122 *
3123 *	Return a count of reference bits for a page, clearing those bits.
3124 *	It is not necessary for every reference bit to be cleared, but it
3125 *	is necessary that 0 only be returned when there are truly no
3126 *	reference bits set.
3127 *
3128 *	XXX: The exact number of bits to check and clear is a matter that
3129 *	should be tested and standardized at some point in the future for
3130 *	optimal aging of shared pages.
3131 */
3132int
3133pmap_ts_referenced(vm_page_t m)
3134{
3135	register pv_entry_t pv, pvf, pvn;
3136	pt_entry_t *pte;
3137	int s;
3138	int rtval = 0;
3139
3140	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3141		return (rtval);
3142
3143	s = splvm();
3144	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3145	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3146
3147		pvf = pv;
3148
3149		do {
3150			pvn = TAILQ_NEXT(pv, pv_list);
3151
3152			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3153
3154			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3155
3156			if (!pmap_track_modified(pv->pv_va))
3157				continue;
3158
3159			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3160
3161			if (pte && (*pte & PG_A)) {
3162				*pte &= ~PG_A;
3163
3164				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3165
3166				rtval++;
3167				if (rtval > 4) {
3168					break;
3169				}
3170			}
3171		} while ((pv = pvn) != NULL && pv != pvf);
3172	}
3173	splx(s);
3174
3175	return (rtval);
3176}
3177
3178/*
3179 *	Clear the modify bits on the specified physical page.
3180 */
3181void
3182pmap_clear_modify(vm_page_t m)
3183{
3184	pmap_changebit(m, PG_M, FALSE);
3185}
3186
3187/*
3188 *	pmap_clear_reference:
3189 *
3190 *	Clear the reference bit on the specified physical page.
3191 */
3192void
3193pmap_clear_reference(vm_page_t m)
3194{
3195	pmap_changebit(m, PG_A, FALSE);
3196}
3197
3198/*
3199 * Miscellaneous support routines follow
3200 */
3201
3202static void
3203i386_protection_init()
3204{
3205	register int *kp, prot;
3206
3207	kp = protection_codes;
3208	for (prot = 0; prot < 8; prot++) {
3209		switch (prot) {
3210		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3211			/*
3212			 * Read access is also 0. There isn't any execute bit,
3213			 * so just make it readable.
3214			 */
3215		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3216		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3217		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3218			*kp++ = 0;
3219			break;
3220		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3221		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3222		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3223		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3224			*kp++ = PG_RW;
3225			break;
3226		}
3227	}
3228}
3229
3230/*
3231 * Map a set of physical memory pages into the kernel virtual
3232 * address space. Return a pointer to where it is mapped. This
3233 * routine is intended to be used for mapping device memory,
3234 * NOT real memory.
3235 */
3236void *
3237pmap_mapdev(pa, size)
3238	vm_offset_t pa;
3239	vm_size_t size;
3240{
3241	vm_offset_t va, tmpva, offset;
3242
3243	offset = pa & PAGE_MASK;
3244	size = roundup(offset + size, PAGE_SIZE);
3245
3246	GIANT_REQUIRED;
3247
3248	va = kmem_alloc_pageable(kernel_map, size);
3249	if (!va)
3250		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3251
3252	pa = pa & PG_FRAME;
3253	for (tmpva = va; size > 0; ) {
3254		pmap_kenter(tmpva, pa);
3255		size -= PAGE_SIZE;
3256		tmpva += PAGE_SIZE;
3257		pa += PAGE_SIZE;
3258	}
3259	pmap_invalidate_range(kernel_pmap, va, tmpva);
3260	return ((void *)(va + offset));
3261}
3262
3263void
3264pmap_unmapdev(va, size)
3265	vm_offset_t va;
3266	vm_size_t size;
3267{
3268	vm_offset_t base, offset, tmpva;
3269	pt_entry_t *pte;
3270
3271	base = va & PG_FRAME;
3272	offset = va & PAGE_MASK;
3273	size = roundup(offset + size, PAGE_SIZE);
3274	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3275		pte = vtopte(tmpva);
3276		*pte = 0;
3277	}
3278	pmap_invalidate_range(kernel_pmap, va, tmpva);
3279	kmem_free(kernel_map, base, size);
3280}
3281
3282/*
3283 * perform the pmap work for mincore
3284 */
3285int
3286pmap_mincore(pmap, addr)
3287	pmap_t pmap;
3288	vm_offset_t addr;
3289{
3290	pt_entry_t *ptep, pte;
3291	vm_page_t m;
3292	int val = 0;
3293
3294	ptep = pmap_pte(pmap, addr);
3295	if (ptep == 0) {
3296		return 0;
3297	}
3298
3299	if ((pte = *ptep) != 0) {
3300		vm_offset_t pa;
3301
3302		val = MINCORE_INCORE;
3303		if ((pte & PG_MANAGED) == 0)
3304			return val;
3305
3306		pa = pte & PG_FRAME;
3307
3308		m = PHYS_TO_VM_PAGE(pa);
3309
3310		/*
3311		 * Modified by us
3312		 */
3313		if (pte & PG_M)
3314			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3315		else {
3316			/*
3317			 * Modified by someone else
3318			 */
3319			vm_page_lock_queues();
3320			if (m->dirty || pmap_is_modified(m))
3321				val |= MINCORE_MODIFIED_OTHER;
3322			vm_page_unlock_queues();
3323		}
3324		/*
3325		 * Referenced by us
3326		 */
3327		if (pte & PG_A)
3328			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3329		else {
3330			/*
3331			 * Referenced by someone else
3332			 */
3333			vm_page_lock_queues();
3334			if ((m->flags & PG_REFERENCED) ||
3335			    pmap_ts_referenced(m)) {
3336				val |= MINCORE_REFERENCED_OTHER;
3337				vm_page_flag_set(m, PG_REFERENCED);
3338			}
3339			vm_page_unlock_queues();
3340		}
3341	}
3342	return val;
3343}
3344
3345void
3346pmap_activate(struct thread *td)
3347{
3348	struct proc *p = td->td_proc;
3349	pmap_t	pmap;
3350	u_int32_t  cr3;
3351
3352	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3353#if defined(SMP)
3354	pmap->pm_active |= PCPU_GET(cpumask);
3355#else
3356	pmap->pm_active |= 1;
3357#endif
3358	cr3 = vtophys(pmap->pm_pdir);
3359	/* XXXKSE this is wrong.
3360	 * pmap_activate is for the current thread on the current cpu
3361	 */
3362	if (p->p_flag & P_KSES) {
3363		/* Make sure all other cr3 entries are updated. */
3364		/* what if they are running?  XXXKSE (maybe abort them) */
3365		FOREACH_THREAD_IN_PROC(p, td) {
3366			td->td_pcb->pcb_cr3 = cr3;
3367		}
3368	} else {
3369		td->td_pcb->pcb_cr3 = cr3;
3370	}
3371	load_cr3(cr3);
3372#ifdef SWTCH_OPTIM_STATS
3373	tlb_flush_count++;
3374#endif
3375}
3376
3377vm_offset_t
3378pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3379{
3380
3381	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3382		return addr;
3383	}
3384
3385	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3386	return addr;
3387}
3388
3389
3390#if defined(PMAP_DEBUG)
3391pmap_pid_dump(int pid)
3392{
3393	pmap_t pmap;
3394	struct proc *p;
3395	int npte = 0;
3396	int index;
3397
3398	sx_slock(&allproc_lock);
3399	LIST_FOREACH(p, &allproc, p_list) {
3400		if (p->p_pid != pid)
3401			continue;
3402
3403		if (p->p_vmspace) {
3404			int i,j;
3405			index = 0;
3406			pmap = vmspace_pmap(p->p_vmspace);
3407			for (i = 0; i < NPDEPG; i++) {
3408				pd_entry_t *pde;
3409				pt_entry_t *pte;
3410				vm_offset_t base = i << PDRSHIFT;
3411
3412				pde = &pmap->pm_pdir[i];
3413				if (pde && pmap_pde_v(pde)) {
3414					for (j = 0; j < NPTEPG; j++) {
3415						vm_offset_t va = base + (j << PAGE_SHIFT);
3416						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3417							if (index) {
3418								index = 0;
3419								printf("\n");
3420							}
3421							sx_sunlock(&allproc_lock);
3422							return npte;
3423						}
3424						pte = pmap_pte_quick(pmap, va);
3425						if (pte && pmap_pte_v(pte)) {
3426							pt_entry_t pa;
3427							vm_page_t m;
3428							pa = *pte;
3429							m = PHYS_TO_VM_PAGE(pa);
3430							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3431								va, pa, m->hold_count, m->wire_count, m->flags);
3432							npte++;
3433							index++;
3434							if (index >= 2) {
3435								index = 0;
3436								printf("\n");
3437							} else {
3438								printf(" ");
3439							}
3440						}
3441					}
3442				}
3443			}
3444		}
3445	}
3446	sx_sunlock(&allproc_lock);
3447	return npte;
3448}
3449#endif
3450
3451#if defined(DEBUG)
3452
3453static void	pads(pmap_t pm);
3454void		pmap_pvdump(vm_offset_t pa);
3455
3456/* print address space of pmap*/
3457static void
3458pads(pm)
3459	pmap_t pm;
3460{
3461	int i, j;
3462	vm_offset_t va;
3463	pt_entry_t *ptep;
3464
3465	if (pm == kernel_pmap)
3466		return;
3467	for (i = 0; i < NPDEPG; i++)
3468		if (pm->pm_pdir[i])
3469			for (j = 0; j < NPTEPG; j++) {
3470				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3471				if (pm == kernel_pmap && va < KERNBASE)
3472					continue;
3473				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3474					continue;
3475				ptep = pmap_pte_quick(pm, va);
3476				if (pmap_pte_v(ptep))
3477					printf("%x:%x ", va, *ptep);
3478			};
3479
3480}
3481
3482void
3483pmap_pvdump(pa)
3484	vm_offset_t pa;
3485{
3486	pv_entry_t pv;
3487	vm_page_t m;
3488
3489	printf("pa %x", pa);
3490	m = PHYS_TO_VM_PAGE(pa);
3491	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3492		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3493		pads(pv->pv_pmap);
3494	}
3495	printf(" ");
3496}
3497#endif
3498