pmap.c revision 110532
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 110532 2003-02-08 05:41:41Z alc $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154static struct pmaplist allpmaps;
155static struct mtx allpmaps_lock;
156
157vm_offset_t avail_start;	/* PA of first available physical page */
158vm_offset_t avail_end;		/* PA of last available physical page */
159vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
160vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
161static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
162static int pgeflag;		/* PG_G or-in */
163static int pseflag;		/* PG_PS or-in */
164
165static vm_object_t kptobj;
166
167static int nkpt;
168vm_offset_t kernel_vm_end;
169extern u_int32_t KERNend;
170
171/*
172 * Data for the pv entry allocation mechanism
173 */
174static uma_zone_t pvzone;
175static struct vm_object pvzone_obj;
176static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
177int pmap_pagedaemon_waken;
178
179/*
180 * All those kernel PT submaps that BSD is so fond of
181 */
182pt_entry_t *CMAP1 = 0;
183static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
184caddr_t CADDR1 = 0, ptvmmap = 0;
185static caddr_t CADDR2, CADDR3;
186static pt_entry_t *msgbufmap;
187struct msgbuf *msgbufp = 0;
188
189/*
190 * Crashdump maps.
191 */
192static pt_entry_t *pt_crashdumpmap;
193static caddr_t crashdumpmap;
194
195#ifdef SMP
196extern pt_entry_t *SMPpt;
197#endif
198static pt_entry_t *PMAP1 = 0;
199static pt_entry_t *PADDR1 = 0;
200
201static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
202static pt_entry_t *get_ptbase(pmap_t pmap);
203static pv_entry_t get_pv_entry(void);
204static void	i386_protection_init(void);
205static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
206
207static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
208				      vm_page_t m, vm_page_t mpte);
209static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
210static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
211static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
212					vm_offset_t va);
213static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
214		vm_page_t mpte, vm_page_t m);
215
216static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
217
218static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
219static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
220static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
221static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
222static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
223static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
224static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
225
226static pd_entry_t pdir4mb;
227
228/*
229 *	Routine:	pmap_pte
230 *	Function:
231 *		Extract the page table entry associated
232 *		with the given map/virtual_address pair.
233 */
234
235PMAP_INLINE pt_entry_t *
236pmap_pte(pmap, va)
237	register pmap_t pmap;
238	vm_offset_t va;
239{
240	pd_entry_t *pdeaddr;
241
242	if (pmap) {
243		pdeaddr = pmap_pde(pmap, va);
244		if (*pdeaddr & PG_PS)
245			return pdeaddr;
246		if (*pdeaddr) {
247			return get_ptbase(pmap) + i386_btop(va);
248		}
249	}
250	return (0);
251}
252
253/*
254 * Move the kernel virtual free pointer to the next
255 * 4MB.  This is used to help improve performance
256 * by using a large (4MB) page for much of the kernel
257 * (.text, .data, .bss)
258 */
259static vm_offset_t
260pmap_kmem_choose(vm_offset_t addr)
261{
262	vm_offset_t newaddr = addr;
263
264#ifndef DISABLE_PSE
265	if (cpu_feature & CPUID_PSE)
266		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
267#endif
268	return newaddr;
269}
270
271/*
272 *	Bootstrap the system enough to run with virtual memory.
273 *
274 *	On the i386 this is called after mapping has already been enabled
275 *	and just syncs the pmap module with what has already been done.
276 *	[We can't call it easily with mapping off since the kernel is not
277 *	mapped with PA == VA, hence we would have to relocate every address
278 *	from the linked base (virtual) address "KERNBASE" to the actual
279 *	(physical) address starting relative to 0]
280 */
281void
282pmap_bootstrap(firstaddr, loadaddr)
283	vm_offset_t firstaddr;
284	vm_offset_t loadaddr;
285{
286	vm_offset_t va;
287	pt_entry_t *pte;
288	int i;
289
290	avail_start = firstaddr;
291
292	/*
293	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
294	 * large. It should instead be correctly calculated in locore.s and
295	 * not based on 'first' (which is a physical address, not a virtual
296	 * address, for the start of unused physical memory). The kernel
297	 * page tables are NOT double mapped and thus should not be included
298	 * in this calculation.
299	 */
300	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
301	virtual_avail = pmap_kmem_choose(virtual_avail);
302
303	virtual_end = VM_MAX_KERNEL_ADDRESS;
304
305	/*
306	 * Initialize protection array.
307	 */
308	i386_protection_init();
309
310	/*
311	 * Initialize the kernel pmap (which is statically allocated).
312	 */
313	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
314	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
315	TAILQ_INIT(&kernel_pmap->pm_pvlist);
316	LIST_INIT(&allpmaps);
317	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
318	mtx_lock_spin(&allpmaps_lock);
319	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
320	mtx_unlock_spin(&allpmaps_lock);
321	nkpt = NKPT;
322
323	/*
324	 * Reserve some special page table entries/VA space for temporary
325	 * mapping of pages.
326	 */
327#define	SYSMAP(c, p, v, n)	\
328	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
329
330	va = virtual_avail;
331	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
332
333	/*
334	 * CMAP1/CMAP2 are used for zeroing and copying pages.
335	 * CMAP3 is used for the idle process page zeroing.
336	 */
337	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
338	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
339	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
340
341	/*
342	 * Crashdump maps.
343	 */
344	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
345
346	/*
347	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
348	 * XXX ptmmap is not used.
349	 */
350	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
351
352	/*
353	 * msgbufp is used to map the system message buffer.
354	 * XXX msgbufmap is not used.
355	 */
356	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
357	       atop(round_page(MSGBUF_SIZE)))
358
359	/*
360	 * ptemap is used for pmap_pte_quick
361	 */
362	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
363
364	virtual_avail = va;
365
366	*CMAP1 = *CMAP2 = 0;
367	for (i = 0; i < NKPT; i++)
368		PTD[i] = 0;
369
370	pgeflag = 0;
371#ifndef DISABLE_PG_G
372	if (cpu_feature & CPUID_PGE)
373		pgeflag = PG_G;
374#endif
375
376/*
377 * Initialize the 4MB page size flag
378 */
379	pseflag = 0;
380/*
381 * The 4MB page version of the initial
382 * kernel page mapping.
383 */
384	pdir4mb = 0;
385
386#ifndef DISABLE_PSE
387	if (cpu_feature & CPUID_PSE) {
388		pd_entry_t ptditmp;
389		/*
390		 * Note that we have enabled PSE mode
391		 */
392		pseflag = PG_PS;
393		ptditmp = *(PTmap + i386_btop(KERNBASE));
394		ptditmp &= ~(NBPDR - 1);
395		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
396		pdir4mb = ptditmp;
397	}
398#endif
399#ifndef SMP
400	/*
401	 * Turn on PGE/PSE.  SMP does this later on since the
402	 * 4K page tables are required for AP boot (for now).
403	 * XXX fixme.
404	 */
405	pmap_set_opt();
406#endif
407#ifdef SMP
408	if (cpu_apic_address == 0)
409		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
410
411	/* local apic is mapped on last page */
412	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
413	    (cpu_apic_address & PG_FRAME));
414#endif
415	invltlb();
416}
417
418/*
419 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
420 * BSP will run this after all the AP's have started up.
421 */
422void
423pmap_set_opt(void)
424{
425	pt_entry_t *pte;
426	vm_offset_t va, endva;
427
428	if (pgeflag && (cpu_feature & CPUID_PGE)) {
429		load_cr4(rcr4() | CR4_PGE);
430		invltlb();		/* Insurance */
431	}
432#ifndef DISABLE_PSE
433	if (pseflag && (cpu_feature & CPUID_PSE)) {
434		load_cr4(rcr4() | CR4_PSE);
435		invltlb();		/* Insurance */
436	}
437#endif
438	if (PCPU_GET(cpuid) == 0) {
439#ifndef DISABLE_PSE
440		if (pdir4mb) {
441			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
442			invltlb();	/* Insurance */
443		}
444#endif
445		if (pgeflag) {
446			/* Turn on PG_G for text, data, bss pages. */
447			va = (vm_offset_t)btext;
448#ifndef DISABLE_PSE
449			if (pseflag && (cpu_feature & CPUID_PSE)) {
450				if (va < KERNBASE + (1 << PDRSHIFT))
451					va = KERNBASE + (1 << PDRSHIFT);
452			}
453#endif
454			endva = KERNBASE + KERNend;
455			while (va < endva) {
456				pte = vtopte(va);
457				if (*pte)
458					*pte |= pgeflag;
459				va += PAGE_SIZE;
460			}
461			invltlb();	/* Insurance */
462		}
463		/*
464		 * We do not need to broadcast the invltlb here, because
465		 * each AP does it the moment it is released from the boot
466		 * lock.  See ap_init().
467		 */
468	}
469}
470
471static void *
472pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
473{
474	*flags = UMA_SLAB_PRIV;
475	return (void *)kmem_alloc(kernel_map, bytes);
476}
477
478/*
479 *	Initialize the pmap module.
480 *	Called by vm_init, to initialize any structures that the pmap
481 *	system needs to map virtual memory.
482 *	pmap_init has been enhanced to support in a fairly consistant
483 *	way, discontiguous physical memory.
484 */
485void
486pmap_init(phys_start, phys_end)
487	vm_offset_t phys_start, phys_end;
488{
489	int i;
490	int initial_pvs;
491
492	/*
493	 * object for kernel page table pages
494	 */
495	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
496
497	/*
498	 * Allocate memory for random pmap data structures.  Includes the
499	 * pv_head_table.
500	 */
501
502	for(i = 0; i < vm_page_array_size; i++) {
503		vm_page_t m;
504
505		m = &vm_page_array[i];
506		TAILQ_INIT(&m->md.pv_list);
507		m->md.pv_list_count = 0;
508	}
509
510	/*
511	 * init the pv free list
512	 */
513	initial_pvs = vm_page_array_size;
514	if (initial_pvs < MINPV)
515		initial_pvs = MINPV;
516	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
517	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
518	uma_zone_set_allocf(pvzone, pmap_allocf);
519	uma_prealloc(pvzone, initial_pvs);
520
521	/*
522	 * Now it is safe to enable pv_table recording.
523	 */
524	pmap_initialized = TRUE;
525}
526
527/*
528 * Initialize the address space (zone) for the pv_entries.  Set a
529 * high water mark so that the system can recover from excessive
530 * numbers of pv entries.
531 */
532void
533pmap_init2()
534{
535	int shpgperproc = PMAP_SHPGPERPROC;
536
537	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
538	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
539	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
540	pv_entry_high_water = 9 * (pv_entry_max / 10);
541	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
542}
543
544
545/***************************************************
546 * Low level helper routines.....
547 ***************************************************/
548
549#if defined(PMAP_DIAGNOSTIC)
550
551/*
552 * This code checks for non-writeable/modified pages.
553 * This should be an invalid condition.
554 */
555static int
556pmap_nw_modified(pt_entry_t ptea)
557{
558	int pte;
559
560	pte = (int) ptea;
561
562	if ((pte & (PG_M|PG_RW)) == PG_M)
563		return 1;
564	else
565		return 0;
566}
567#endif
568
569
570/*
571 * this routine defines the region(s) of memory that should
572 * not be tested for the modified bit.
573 */
574static PMAP_INLINE int
575pmap_track_modified(vm_offset_t va)
576{
577	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
578		return 1;
579	else
580		return 0;
581}
582
583#ifdef I386_CPU
584/*
585 * i386 only has "invalidate everything" and no SMP to worry about.
586 */
587PMAP_INLINE void
588pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
589{
590
591	if (pmap == kernel_pmap || pmap->pm_active)
592		invltlb();
593}
594
595PMAP_INLINE void
596pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
597{
598
599	if (pmap == kernel_pmap || pmap->pm_active)
600		invltlb();
601}
602
603PMAP_INLINE void
604pmap_invalidate_all(pmap_t pmap)
605{
606
607	if (pmap == kernel_pmap || pmap->pm_active)
608		invltlb();
609}
610#else /* !I386_CPU */
611#ifdef SMP
612/*
613 * For SMP, these functions have to use the IPI mechanism for coherence.
614 */
615void
616pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
617{
618	u_int cpumask;
619	u_int other_cpus;
620
621	critical_enter();
622	/*
623	 * We need to disable interrupt preemption but MUST NOT have
624	 * interrupts disabled here.
625	 * XXX we may need to hold schedlock to get a coherent pm_active
626	 */
627	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
628		invlpg(va);
629		smp_invlpg(va);
630	} else {
631		cpumask = PCPU_GET(cpumask);
632		other_cpus = PCPU_GET(other_cpus);
633		if (pmap->pm_active & cpumask)
634			invlpg(va);
635		if (pmap->pm_active & other_cpus)
636			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
637	}
638	critical_exit();
639}
640
641void
642pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
643{
644	u_int cpumask;
645	u_int other_cpus;
646	vm_offset_t addr;
647
648	critical_enter();
649	/*
650	 * We need to disable interrupt preemption but MUST NOT have
651	 * interrupts disabled here.
652	 * XXX we may need to hold schedlock to get a coherent pm_active
653	 */
654	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
655		for (addr = sva; addr < eva; addr += PAGE_SIZE)
656			invlpg(addr);
657		smp_invlpg_range(sva, eva);
658	} else {
659		cpumask = PCPU_GET(cpumask);
660		other_cpus = PCPU_GET(other_cpus);
661		if (pmap->pm_active & cpumask)
662			for (addr = sva; addr < eva; addr += PAGE_SIZE)
663				invlpg(addr);
664		if (pmap->pm_active & other_cpus)
665			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
666			    sva, eva);
667	}
668	critical_exit();
669}
670
671void
672pmap_invalidate_all(pmap_t pmap)
673{
674	u_int cpumask;
675	u_int other_cpus;
676
677#ifdef SWTCH_OPTIM_STATS
678	tlb_flush_count++;
679#endif
680	critical_enter();
681	/*
682	 * We need to disable interrupt preemption but MUST NOT have
683	 * interrupts disabled here.
684	 * XXX we may need to hold schedlock to get a coherent pm_active
685	 */
686	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
687		invltlb();
688		smp_invltlb();
689	} else {
690		cpumask = PCPU_GET(cpumask);
691		other_cpus = PCPU_GET(other_cpus);
692		if (pmap->pm_active & cpumask)
693			invltlb();
694		if (pmap->pm_active & other_cpus)
695			smp_masked_invltlb(pmap->pm_active & other_cpus);
696	}
697	critical_exit();
698}
699#else /* !SMP */
700/*
701 * Normal, non-SMP, 486+ invalidation functions.
702 * We inline these within pmap.c for speed.
703 */
704PMAP_INLINE void
705pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
706{
707
708	if (pmap == kernel_pmap || pmap->pm_active)
709		invlpg(va);
710}
711
712PMAP_INLINE void
713pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
714{
715	vm_offset_t addr;
716
717	if (pmap == kernel_pmap || pmap->pm_active)
718		for (addr = sva; addr < eva; addr += PAGE_SIZE)
719			invlpg(addr);
720}
721
722PMAP_INLINE void
723pmap_invalidate_all(pmap_t pmap)
724{
725
726	if (pmap == kernel_pmap || pmap->pm_active)
727		invltlb();
728}
729#endif /* !SMP */
730#endif /* !I386_CPU */
731
732/*
733 * Return an address which is the base of the Virtual mapping of
734 * all the PTEs for the given pmap. Note this doesn't say that
735 * all the PTEs will be present or that the pages there are valid.
736 * The PTEs are made available by the recursive mapping trick.
737 * It will map in the alternate PTE space if needed.
738 */
739static pt_entry_t *
740get_ptbase(pmap)
741	pmap_t pmap;
742{
743	pd_entry_t frame;
744
745	/* are we current address space or kernel? */
746	if (pmap == kernel_pmap)
747		return PTmap;
748	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
749	if (frame == (PTDpde & PG_FRAME))
750		return PTmap;
751	/* otherwise, we are alternate address space */
752	if (frame != (APTDpde & PG_FRAME)) {
753		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
754		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
755	}
756	return APTmap;
757}
758
759/*
760 * Super fast pmap_pte routine best used when scanning
761 * the pv lists.  This eliminates many coarse-grained
762 * invltlb calls.  Note that many of the pv list
763 * scans are across different pmaps.  It is very wasteful
764 * to do an entire invltlb for checking a single mapping.
765 */
766
767static pt_entry_t *
768pmap_pte_quick(pmap, va)
769	register pmap_t pmap;
770	vm_offset_t va;
771{
772	pd_entry_t pde, newpf;
773	pde = pmap->pm_pdir[va >> PDRSHIFT];
774	if (pde != 0) {
775		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
776		unsigned index = i386_btop(va);
777		/* are we current address space or kernel? */
778		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
779			return PTmap + index;
780		newpf = pde & PG_FRAME;
781		if (((*PMAP1) & PG_FRAME) != newpf) {
782			*PMAP1 = newpf | PG_RW | PG_V;
783			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
784		}
785		return PADDR1 + (index & (NPTEPG - 1));
786	}
787	return (0);
788}
789
790/*
791 *	Routine:	pmap_extract
792 *	Function:
793 *		Extract the physical page address associated
794 *		with the given map/virtual_address pair.
795 */
796vm_offset_t
797pmap_extract(pmap, va)
798	register pmap_t pmap;
799	vm_offset_t va;
800{
801	vm_offset_t rtval;	/* XXX FIXME */
802	vm_offset_t pdirindex;
803
804	if (pmap == 0)
805		return 0;
806	pdirindex = va >> PDRSHIFT;
807	rtval = pmap->pm_pdir[pdirindex];
808	if (rtval != 0) {
809		pt_entry_t *pte;
810		if ((rtval & PG_PS) != 0) {
811			rtval &= ~(NBPDR - 1);
812			rtval |= va & (NBPDR - 1);
813			return rtval;
814		}
815		pte = get_ptbase(pmap) + i386_btop(va);
816		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
817		return rtval;
818	}
819	return 0;
820
821}
822
823/***************************************************
824 * Low level mapping routines.....
825 ***************************************************/
826
827/*
828 * Add a wired page to the kva.
829 * Note: not SMP coherent.
830 */
831PMAP_INLINE void
832pmap_kenter(vm_offset_t va, vm_offset_t pa)
833{
834	pt_entry_t *pte;
835
836	pte = vtopte(va);
837	*pte = pa | PG_RW | PG_V | pgeflag;
838}
839
840/*
841 * Remove a page from the kernel pagetables.
842 * Note: not SMP coherent.
843 */
844PMAP_INLINE void
845pmap_kremove(vm_offset_t va)
846{
847	pt_entry_t *pte;
848
849	pte = vtopte(va);
850	*pte = 0;
851}
852
853/*
854 *	Used to map a range of physical addresses into kernel
855 *	virtual address space.
856 *
857 *	The value passed in '*virt' is a suggested virtual address for
858 *	the mapping. Architectures which can support a direct-mapped
859 *	physical to virtual region can return the appropriate address
860 *	within that region, leaving '*virt' unchanged. Other
861 *	architectures should map the pages starting at '*virt' and
862 *	update '*virt' with the first usable address after the mapped
863 *	region.
864 */
865vm_offset_t
866pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
867{
868	vm_offset_t va, sva;
869
870	va = sva = *virt;
871	while (start < end) {
872		pmap_kenter(va, start);
873		va += PAGE_SIZE;
874		start += PAGE_SIZE;
875	}
876	pmap_invalidate_range(kernel_pmap, sva, va);
877	*virt = va;
878	return (sva);
879}
880
881
882/*
883 * Add a list of wired pages to the kva
884 * this routine is only used for temporary
885 * kernel mappings that do not need to have
886 * page modification or references recorded.
887 * Note that old mappings are simply written
888 * over.  The page *must* be wired.
889 * Note: SMP coherent.  Uses a ranged shootdown IPI.
890 */
891void
892pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
893{
894	vm_offset_t va;
895
896	va = sva;
897	while (count-- > 0) {
898		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
899		va += PAGE_SIZE;
900		m++;
901	}
902	pmap_invalidate_range(kernel_pmap, sva, va);
903}
904
905/*
906 * This routine tears out page mappings from the
907 * kernel -- it is meant only for temporary mappings.
908 * Note: SMP coherent.  Uses a ranged shootdown IPI.
909 */
910void
911pmap_qremove(vm_offset_t sva, int count)
912{
913	vm_offset_t va;
914
915	va = sva;
916	while (count-- > 0) {
917		pmap_kremove(va);
918		va += PAGE_SIZE;
919	}
920	pmap_invalidate_range(kernel_pmap, sva, va);
921}
922
923static vm_page_t
924pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
925{
926	vm_page_t m;
927
928retry:
929	m = vm_page_lookup(object, pindex);
930	if (m != NULL) {
931		vm_page_lock_queues();
932		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
933			goto retry;
934		vm_page_unlock_queues();
935	}
936	return m;
937}
938
939#ifndef KSTACK_MAX_PAGES
940#define KSTACK_MAX_PAGES 32
941#endif
942
943/*
944 * Create the kernel stack (including pcb for i386) for a new thread.
945 * This routine directly affects the fork perf for a process and
946 * create performance for a thread.
947 */
948void
949pmap_new_thread(struct thread *td, int pages)
950{
951	int i;
952	vm_page_t ma[KSTACK_MAX_PAGES];
953	vm_object_t ksobj;
954	vm_page_t m;
955	vm_offset_t ks;
956
957	/* Bounds check */
958	if (pages <= 1)
959		pages = KSTACK_PAGES;
960	else if (pages > KSTACK_MAX_PAGES)
961		pages = KSTACK_MAX_PAGES;
962
963	/*
964	 * allocate object for the kstack
965	 */
966	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
967	td->td_kstack_obj = ksobj;
968
969	/* get a kernel virtual address for the kstack for this thread */
970#ifdef KSTACK_GUARD
971	ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
972	if (ks == 0)
973		panic("pmap_new_thread: kstack allocation failed");
974	if (*vtopte(ks) != 0)
975		pmap_qremove(ks, 1);
976	ks += PAGE_SIZE;
977	td->td_kstack = ks;
978#else
979	/* get a kernel virtual address for the kstack for this thread */
980	ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
981	if (ks == 0)
982		panic("pmap_new_thread: kstack allocation failed");
983	td->td_kstack = ks;
984#endif
985	/*
986	 * Knowing the number of pages allocated is useful when you
987	 * want to deallocate them.
988	 */
989	td->td_kstack_pages = pages;
990
991	/*
992	 * For the length of the stack, link in a real page of ram for each
993	 * page of stack.
994	 */
995	for (i = 0; i < pages; i++) {
996		/*
997		 * Get a kernel stack page
998		 */
999		m = vm_page_grab(ksobj, i,
1000		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
1001		ma[i] = m;
1002
1003		vm_page_lock_queues();
1004		vm_page_wakeup(m);
1005		vm_page_flag_clear(m, PG_ZERO);
1006		m->valid = VM_PAGE_BITS_ALL;
1007		vm_page_unlock_queues();
1008	}
1009	pmap_qenter(ks, ma, pages);
1010}
1011
1012/*
1013 * Dispose the kernel stack for a thread that has exited.
1014 * This routine directly impacts the exit perf of a process and thread.
1015 */
1016void
1017pmap_dispose_thread(td)
1018	struct thread *td;
1019{
1020	int i;
1021	int pages;
1022	vm_object_t ksobj;
1023	vm_offset_t ks;
1024	vm_page_t m;
1025
1026	pages = td->td_kstack_pages;
1027	ksobj = td->td_kstack_obj;
1028	ks = td->td_kstack;
1029	pmap_qremove(ks, pages);
1030	for (i = 0; i < pages; i++) {
1031		m = vm_page_lookup(ksobj, i);
1032		if (m == NULL)
1033			panic("pmap_dispose_thread: kstack already missing?");
1034		vm_page_lock_queues();
1035		vm_page_busy(m);
1036		vm_page_unwire(m, 0);
1037		vm_page_free(m);
1038		vm_page_unlock_queues();
1039	}
1040	/*
1041	 * Free the space that this stack was mapped to in the kernel
1042	 * address map.
1043	 */
1044#ifdef KSTACK_GUARD
1045	kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
1046#else
1047	kmem_free(kernel_map, ks, pages * PAGE_SIZE);
1048#endif
1049	vm_object_deallocate(ksobj);
1050}
1051
1052/*
1053 * Set up a variable sized alternate kstack.  Though it may look MI, it may
1054 * need to be different on certain arches like ia64.
1055 */
1056void
1057pmap_new_altkstack(struct thread *td, int pages)
1058{
1059	/* shuffle the original stack */
1060	td->td_altkstack_obj = td->td_kstack_obj;
1061	td->td_altkstack = td->td_kstack;
1062	td->td_altkstack_pages = td->td_kstack_pages;
1063
1064	pmap_new_thread(td, pages);
1065}
1066
1067void
1068pmap_dispose_altkstack(td)
1069	struct thread *td;
1070{
1071	pmap_dispose_thread(td);
1072
1073	/* restore the original kstack */
1074	td->td_kstack = td->td_altkstack;
1075	td->td_kstack_obj = td->td_altkstack_obj;
1076	td->td_kstack_pages = td->td_altkstack_pages;
1077	td->td_altkstack = 0;
1078	td->td_altkstack_obj = NULL;
1079	td->td_altkstack_pages = 0;
1080}
1081
1082/*
1083 * Allow the Kernel stack for a thread to be prejudicially paged out.
1084 */
1085void
1086pmap_swapout_thread(td)
1087	struct thread *td;
1088{
1089	int i;
1090	int pages;
1091	vm_object_t ksobj;
1092	vm_offset_t ks;
1093	vm_page_t m;
1094
1095	pages = td->td_kstack_pages;
1096	ksobj = td->td_kstack_obj;
1097	ks = td->td_kstack;
1098	pmap_qremove(ks, pages);
1099	for (i = 0; i < pages; i++) {
1100		m = vm_page_lookup(ksobj, i);
1101		if (m == NULL)
1102			panic("pmap_swapout_thread: kstack already missing?");
1103		vm_page_lock_queues();
1104		vm_page_dirty(m);
1105		vm_page_unwire(m, 0);
1106		vm_page_unlock_queues();
1107	}
1108}
1109
1110/*
1111 * Bring the kernel stack for a specified thread back in.
1112 */
1113void
1114pmap_swapin_thread(td)
1115	struct thread *td;
1116{
1117	int i, rv;
1118	int pages;
1119	vm_page_t ma[KSTACK_MAX_PAGES];
1120	vm_object_t ksobj;
1121	vm_offset_t ks;
1122	vm_page_t m;
1123
1124	pages = td->td_kstack_pages;
1125	ksobj = td->td_kstack_obj;
1126	ks = td->td_kstack;
1127	for (i = 0; i < pages; i++) {
1128		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1129		if (m->valid != VM_PAGE_BITS_ALL) {
1130			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1131			if (rv != VM_PAGER_OK)
1132				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1133			m = vm_page_lookup(ksobj, i);
1134			m->valid = VM_PAGE_BITS_ALL;
1135		}
1136		ma[i] = m;
1137		vm_page_lock_queues();
1138		vm_page_wire(m);
1139		vm_page_wakeup(m);
1140		vm_page_unlock_queues();
1141	}
1142	pmap_qenter(ks, ma, pages);
1143}
1144
1145/***************************************************
1146 * Page table page management routines.....
1147 ***************************************************/
1148
1149/*
1150 * This routine unholds page table pages, and if the hold count
1151 * drops to zero, then it decrements the wire count.
1152 */
1153static int
1154_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1155{
1156
1157	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1158		vm_page_lock_queues();
1159
1160	if (m->hold_count == 0) {
1161		vm_offset_t pteva;
1162		/*
1163		 * unmap the page table page
1164		 */
1165		pmap->pm_pdir[m->pindex] = 0;
1166		--pmap->pm_stats.resident_count;
1167		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1168		    (PTDpde & PG_FRAME)) {
1169			/*
1170			 * Do an invltlb to make the invalidated mapping
1171			 * take effect immediately.
1172			 */
1173			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1174			pmap_invalidate_page(pmap, pteva);
1175		}
1176
1177		if (pmap->pm_ptphint == m)
1178			pmap->pm_ptphint = NULL;
1179
1180		/*
1181		 * If the page is finally unwired, simply free it.
1182		 */
1183		--m->wire_count;
1184		if (m->wire_count == 0) {
1185			vm_page_busy(m);
1186			vm_page_free_zero(m);
1187			atomic_subtract_int(&cnt.v_wire_count, 1);
1188		}
1189		return 1;
1190	}
1191	return 0;
1192}
1193
1194static PMAP_INLINE int
1195pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1196{
1197	vm_page_unhold(m);
1198	if (m->hold_count == 0)
1199		return _pmap_unwire_pte_hold(pmap, m);
1200	else
1201		return 0;
1202}
1203
1204/*
1205 * After removing a page table entry, this routine is used to
1206 * conditionally free the page, and manage the hold/wire counts.
1207 */
1208static int
1209pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1210{
1211	unsigned ptepindex;
1212	if (va >= VM_MAXUSER_ADDRESS)
1213		return 0;
1214
1215	if (mpte == NULL) {
1216		ptepindex = (va >> PDRSHIFT);
1217		if (pmap->pm_ptphint &&
1218			(pmap->pm_ptphint->pindex == ptepindex)) {
1219			mpte = pmap->pm_ptphint;
1220		} else {
1221			while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
1222			       vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
1223				vm_page_lock_queues();
1224			pmap->pm_ptphint = mpte;
1225		}
1226	}
1227
1228	return pmap_unwire_pte_hold(pmap, mpte);
1229}
1230
1231void
1232pmap_pinit0(pmap)
1233	struct pmap *pmap;
1234{
1235	pmap->pm_pdir =
1236		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1237	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1238#ifndef I386_CPU
1239	invlpg((vm_offset_t)pmap->pm_pdir);
1240#else
1241	invltlb();
1242#endif
1243	pmap->pm_ptphint = NULL;
1244	pmap->pm_active = 0;
1245	TAILQ_INIT(&pmap->pm_pvlist);
1246	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1247	mtx_lock_spin(&allpmaps_lock);
1248	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1249	mtx_unlock_spin(&allpmaps_lock);
1250}
1251
1252/*
1253 * Initialize a preallocated and zeroed pmap structure,
1254 * such as one in a vmspace structure.
1255 */
1256void
1257pmap_pinit(pmap)
1258	register struct pmap *pmap;
1259{
1260	vm_page_t ptdpg;
1261
1262	/*
1263	 * No need to allocate page table space yet but we do need a valid
1264	 * page directory table.
1265	 */
1266	if (pmap->pm_pdir == NULL)
1267		pmap->pm_pdir =
1268			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1269
1270	/*
1271	 * allocate object for the ptes
1272	 */
1273	if (pmap->pm_pteobj == NULL)
1274		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1275
1276	/*
1277	 * allocate the page directory page
1278	 */
1279	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1280	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1281	vm_page_lock_queues();
1282	vm_page_flag_clear(ptdpg, PG_BUSY);
1283	ptdpg->valid = VM_PAGE_BITS_ALL;
1284	vm_page_unlock_queues();
1285
1286	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1287	if ((ptdpg->flags & PG_ZERO) == 0)
1288		bzero(pmap->pm_pdir, PAGE_SIZE);
1289
1290	mtx_lock_spin(&allpmaps_lock);
1291	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1292	mtx_unlock_spin(&allpmaps_lock);
1293	/* Wire in kernel global address entries. */
1294	/* XXX copies current process, does not fill in MPPTDI */
1295	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1296#ifdef SMP
1297	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1298#endif
1299
1300	/* install self-referential address mapping entry */
1301	pmap->pm_pdir[PTDPTDI] =
1302		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1303
1304	pmap->pm_active = 0;
1305	pmap->pm_ptphint = NULL;
1306	TAILQ_INIT(&pmap->pm_pvlist);
1307	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1308}
1309
1310/*
1311 * Wire in kernel global address entries.  To avoid a race condition
1312 * between pmap initialization and pmap_growkernel, this procedure
1313 * should be called after the vmspace is attached to the process
1314 * but before this pmap is activated.
1315 */
1316void
1317pmap_pinit2(pmap)
1318	struct pmap *pmap;
1319{
1320	/* XXX: Remove this stub when no longer called */
1321}
1322
1323static int
1324pmap_release_free_page(pmap_t pmap, vm_page_t p)
1325{
1326	pd_entry_t *pde = pmap->pm_pdir;
1327
1328	/*
1329	 * This code optimizes the case of freeing non-busy
1330	 * page-table pages.  Those pages are zero now, and
1331	 * might as well be placed directly into the zero queue.
1332	 */
1333	vm_page_lock_queues();
1334	if (vm_page_sleep_if_busy(p, FALSE, "pmaprl"))
1335		return (0);
1336	vm_page_busy(p);
1337
1338	/*
1339	 * Remove the page table page from the processes address space.
1340	 */
1341	pde[p->pindex] = 0;
1342	pmap->pm_stats.resident_count--;
1343
1344	if (p->hold_count)  {
1345		panic("pmap_release: freeing held page table page");
1346	}
1347	/*
1348	 * Page directory pages need to have the kernel
1349	 * stuff cleared, so they can go into the zero queue also.
1350	 */
1351	if (p->pindex == PTDPTDI) {
1352		bzero(pde + KPTDI, nkpt * PTESIZE);
1353#ifdef SMP
1354		pde[MPPTDI] = 0;
1355#endif
1356		pde[APTDPTDI] = 0;
1357		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1358	}
1359
1360	if (pmap->pm_ptphint == p)
1361		pmap->pm_ptphint = NULL;
1362
1363	p->wire_count--;
1364	atomic_subtract_int(&cnt.v_wire_count, 1);
1365	vm_page_free_zero(p);
1366	vm_page_unlock_queues();
1367	return 1;
1368}
1369
1370/*
1371 * this routine is called if the page table page is not
1372 * mapped correctly.
1373 */
1374static vm_page_t
1375_pmap_allocpte(pmap, ptepindex)
1376	pmap_t	pmap;
1377	unsigned ptepindex;
1378{
1379	vm_offset_t pteva, ptepa;	/* XXXPA */
1380	vm_page_t m;
1381
1382	/*
1383	 * Find or fabricate a new pagetable page
1384	 */
1385	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1386	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1387
1388	KASSERT(m->queue == PQ_NONE,
1389		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1390
1391	/*
1392	 * Increment the hold count for the page table page
1393	 * (denoting a new mapping.)
1394	 */
1395	m->hold_count++;
1396
1397	/*
1398	 * Map the pagetable page into the process address space, if
1399	 * it isn't already there.
1400	 */
1401
1402	pmap->pm_stats.resident_count++;
1403
1404	ptepa = VM_PAGE_TO_PHYS(m);
1405	pmap->pm_pdir[ptepindex] =
1406		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1407
1408	/*
1409	 * Set the page table hint
1410	 */
1411	pmap->pm_ptphint = m;
1412
1413	/*
1414	 * Try to use the new mapping, but if we cannot, then
1415	 * do it with the routine that maps the page explicitly.
1416	 */
1417	if ((m->flags & PG_ZERO) == 0) {
1418		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1419		    (PTDpde & PG_FRAME)) {
1420			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1421			bzero((caddr_t) pteva, PAGE_SIZE);
1422		} else {
1423			pmap_zero_page(m);
1424		}
1425	}
1426	vm_page_lock_queues();
1427	m->valid = VM_PAGE_BITS_ALL;
1428	vm_page_flag_clear(m, PG_ZERO);
1429	vm_page_wakeup(m);
1430	vm_page_unlock_queues();
1431
1432	return m;
1433}
1434
1435static vm_page_t
1436pmap_allocpte(pmap_t pmap, vm_offset_t va)
1437{
1438	unsigned ptepindex;
1439	pd_entry_t ptepa;
1440	vm_page_t m;
1441
1442	/*
1443	 * Calculate pagetable page index
1444	 */
1445	ptepindex = va >> PDRSHIFT;
1446
1447	/*
1448	 * Get the page directory entry
1449	 */
1450	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1451
1452	/*
1453	 * This supports switching from a 4MB page to a
1454	 * normal 4K page.
1455	 */
1456	if (ptepa & PG_PS) {
1457		pmap->pm_pdir[ptepindex] = 0;
1458		ptepa = 0;
1459		pmap_invalidate_all(kernel_pmap);
1460	}
1461
1462	/*
1463	 * If the page table page is mapped, we just increment the
1464	 * hold count, and activate it.
1465	 */
1466	if (ptepa) {
1467		/*
1468		 * In order to get the page table page, try the
1469		 * hint first.
1470		 */
1471		if (pmap->pm_ptphint &&
1472			(pmap->pm_ptphint->pindex == ptepindex)) {
1473			m = pmap->pm_ptphint;
1474		} else {
1475			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1476			pmap->pm_ptphint = m;
1477		}
1478		m->hold_count++;
1479		return m;
1480	}
1481	/*
1482	 * Here if the pte page isn't mapped, or if it has been deallocated.
1483	 */
1484	return _pmap_allocpte(pmap, ptepindex);
1485}
1486
1487
1488/***************************************************
1489* Pmap allocation/deallocation routines.
1490 ***************************************************/
1491
1492/*
1493 * Release any resources held by the given physical map.
1494 * Called when a pmap initialized by pmap_pinit is being released.
1495 * Should only be called if the map contains no valid mappings.
1496 */
1497void
1498pmap_release(pmap_t pmap)
1499{
1500	vm_page_t p,n,ptdpg;
1501	vm_object_t object = pmap->pm_pteobj;
1502	int curgeneration;
1503
1504#if defined(DIAGNOSTIC)
1505	if (object->ref_count != 1)
1506		panic("pmap_release: pteobj reference count != 1");
1507#endif
1508
1509	ptdpg = NULL;
1510	mtx_lock_spin(&allpmaps_lock);
1511	LIST_REMOVE(pmap, pm_list);
1512	mtx_unlock_spin(&allpmaps_lock);
1513retry:
1514	curgeneration = object->generation;
1515	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1516		n = TAILQ_NEXT(p, listq);
1517		if (p->pindex == PTDPTDI) {
1518			ptdpg = p;
1519			continue;
1520		}
1521		while (1) {
1522			if (!pmap_release_free_page(pmap, p) &&
1523				(object->generation != curgeneration))
1524				goto retry;
1525		}
1526	}
1527
1528	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1529		goto retry;
1530}
1531
1532static int
1533kvm_size(SYSCTL_HANDLER_ARGS)
1534{
1535	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1536
1537	return sysctl_handle_long(oidp, &ksize, 0, req);
1538}
1539SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1540    0, 0, kvm_size, "IU", "Size of KVM");
1541
1542static int
1543kvm_free(SYSCTL_HANDLER_ARGS)
1544{
1545	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1546
1547	return sysctl_handle_long(oidp, &kfree, 0, req);
1548}
1549SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1550    0, 0, kvm_free, "IU", "Amount of KVM free");
1551
1552/*
1553 * grow the number of kernel page table entries, if needed
1554 */
1555void
1556pmap_growkernel(vm_offset_t addr)
1557{
1558	struct pmap *pmap;
1559	int s;
1560	vm_offset_t ptppaddr;
1561	vm_page_t nkpg;
1562	pd_entry_t newpdir;
1563
1564	s = splhigh();
1565	if (kernel_vm_end == 0) {
1566		kernel_vm_end = KERNBASE;
1567		nkpt = 0;
1568		while (pdir_pde(PTD, kernel_vm_end)) {
1569			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1570			nkpt++;
1571		}
1572	}
1573	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1574	while (kernel_vm_end < addr) {
1575		if (pdir_pde(PTD, kernel_vm_end)) {
1576			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1577			continue;
1578		}
1579
1580		/*
1581		 * This index is bogus, but out of the way
1582		 */
1583		nkpg = vm_page_alloc(kptobj, nkpt,
1584				     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1585		if (!nkpg)
1586			panic("pmap_growkernel: no memory to grow kernel");
1587
1588		nkpt++;
1589
1590		pmap_zero_page(nkpg);
1591		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1592		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1593		pdir_pde(PTD, kernel_vm_end) = newpdir;
1594
1595		mtx_lock_spin(&allpmaps_lock);
1596		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1597			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1598		}
1599		mtx_unlock_spin(&allpmaps_lock);
1600		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1601	}
1602	splx(s);
1603}
1604
1605
1606/***************************************************
1607 * page management routines.
1608 ***************************************************/
1609
1610/*
1611 * free the pv_entry back to the free list
1612 */
1613static PMAP_INLINE void
1614free_pv_entry(pv_entry_t pv)
1615{
1616	pv_entry_count--;
1617	uma_zfree(pvzone, pv);
1618}
1619
1620/*
1621 * get a new pv_entry, allocating a block from the system
1622 * when needed.
1623 * the memory allocation is performed bypassing the malloc code
1624 * because of the possibility of allocations at interrupt time.
1625 */
1626static pv_entry_t
1627get_pv_entry(void)
1628{
1629	pv_entry_count++;
1630	if (pv_entry_high_water &&
1631		(pv_entry_count > pv_entry_high_water) &&
1632		(pmap_pagedaemon_waken == 0)) {
1633		pmap_pagedaemon_waken = 1;
1634		wakeup (&vm_pages_needed);
1635	}
1636	return uma_zalloc(pvzone, M_NOWAIT);
1637}
1638
1639/*
1640 * If it is the first entry on the list, it is actually
1641 * in the header and we must copy the following entry up
1642 * to the header.  Otherwise we must search the list for
1643 * the entry.  In either case we free the now unused entry.
1644 */
1645
1646static int
1647pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1648{
1649	pv_entry_t pv;
1650	int rtval;
1651	int s;
1652
1653	s = splvm();
1654	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1655	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1656		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1657			if (pmap == pv->pv_pmap && va == pv->pv_va)
1658				break;
1659		}
1660	} else {
1661		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1662			if (va == pv->pv_va)
1663				break;
1664		}
1665	}
1666
1667	rtval = 0;
1668	if (pv) {
1669		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1670		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1671		m->md.pv_list_count--;
1672		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1673			vm_page_flag_clear(m, PG_WRITEABLE);
1674
1675		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1676		free_pv_entry(pv);
1677	}
1678
1679	splx(s);
1680	return rtval;
1681}
1682
1683/*
1684 * Create a pv entry for page at pa for
1685 * (pmap, va).
1686 */
1687static void
1688pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1689{
1690
1691	int s;
1692	pv_entry_t pv;
1693
1694	s = splvm();
1695	pv = get_pv_entry();
1696	pv->pv_va = va;
1697	pv->pv_pmap = pmap;
1698	pv->pv_ptem = mpte;
1699
1700	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1701	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1702	m->md.pv_list_count++;
1703
1704	splx(s);
1705}
1706
1707/*
1708 * pmap_remove_pte: do the things to unmap a page in a process
1709 */
1710static int
1711pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1712{
1713	pt_entry_t oldpte;
1714	vm_page_t m;
1715
1716	oldpte = atomic_readandclear_int(ptq);
1717	if (oldpte & PG_W)
1718		pmap->pm_stats.wired_count -= 1;
1719	/*
1720	 * Machines that don't support invlpg, also don't support
1721	 * PG_G.
1722	 */
1723	if (oldpte & PG_G)
1724		pmap_invalidate_page(kernel_pmap, va);
1725	pmap->pm_stats.resident_count -= 1;
1726	if (oldpte & PG_MANAGED) {
1727		m = PHYS_TO_VM_PAGE(oldpte);
1728		if (oldpte & PG_M) {
1729#if defined(PMAP_DIAGNOSTIC)
1730			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1731				printf(
1732	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1733				    va, oldpte);
1734			}
1735#endif
1736			if (pmap_track_modified(va))
1737				vm_page_dirty(m);
1738		}
1739		if (oldpte & PG_A)
1740			vm_page_flag_set(m, PG_REFERENCED);
1741		return pmap_remove_entry(pmap, m, va);
1742	} else {
1743		return pmap_unuse_pt(pmap, va, NULL);
1744	}
1745
1746	return 0;
1747}
1748
1749/*
1750 * Remove a single page from a process address space
1751 */
1752static void
1753pmap_remove_page(pmap_t pmap, vm_offset_t va)
1754{
1755	register pt_entry_t *ptq;
1756
1757	/*
1758	 * if there is no pte for this address, just skip it!!!
1759	 */
1760	if (*pmap_pde(pmap, va) == 0) {
1761		return;
1762	}
1763
1764	/*
1765	 * get a local va for mappings for this pmap.
1766	 */
1767	ptq = get_ptbase(pmap) + i386_btop(va);
1768	if (*ptq) {
1769		(void) pmap_remove_pte(pmap, ptq, va);
1770		pmap_invalidate_page(pmap, va);
1771	}
1772	return;
1773}
1774
1775/*
1776 *	Remove the given range of addresses from the specified map.
1777 *
1778 *	It is assumed that the start and end are properly
1779 *	rounded to the page size.
1780 */
1781void
1782pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1783{
1784	register pt_entry_t *ptbase;
1785	vm_offset_t pdnxt;
1786	pd_entry_t ptpaddr;
1787	vm_offset_t sindex, eindex;
1788	int anyvalid;
1789
1790	if (pmap == NULL)
1791		return;
1792
1793	if (pmap->pm_stats.resident_count == 0)
1794		return;
1795
1796	/*
1797	 * special handling of removing one page.  a very
1798	 * common operation and easy to short circuit some
1799	 * code.
1800	 */
1801	if ((sva + PAGE_SIZE == eva) &&
1802	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1803		pmap_remove_page(pmap, sva);
1804		return;
1805	}
1806
1807	anyvalid = 0;
1808
1809	/*
1810	 * Get a local virtual address for the mappings that are being
1811	 * worked with.
1812	 */
1813	ptbase = get_ptbase(pmap);
1814
1815	sindex = i386_btop(sva);
1816	eindex = i386_btop(eva);
1817
1818	for (; sindex < eindex; sindex = pdnxt) {
1819		unsigned pdirindex;
1820
1821		/*
1822		 * Calculate index for next page table.
1823		 */
1824		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1825		if (pmap->pm_stats.resident_count == 0)
1826			break;
1827
1828		pdirindex = sindex / NPDEPG;
1829		ptpaddr = pmap->pm_pdir[pdirindex];
1830		if ((ptpaddr & PG_PS) != 0) {
1831			pmap->pm_pdir[pdirindex] = 0;
1832			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1833			anyvalid++;
1834			continue;
1835		}
1836
1837		/*
1838		 * Weed out invalid mappings. Note: we assume that the page
1839		 * directory table is always allocated, and in kernel virtual.
1840		 */
1841		if (ptpaddr == 0)
1842			continue;
1843
1844		/*
1845		 * Limit our scan to either the end of the va represented
1846		 * by the current page table page, or to the end of the
1847		 * range being removed.
1848		 */
1849		if (pdnxt > eindex) {
1850			pdnxt = eindex;
1851		}
1852
1853		for (; sindex != pdnxt; sindex++) {
1854			vm_offset_t va;
1855			if (ptbase[sindex] == 0) {
1856				continue;
1857			}
1858			va = i386_ptob(sindex);
1859
1860			anyvalid++;
1861			if (pmap_remove_pte(pmap, ptbase + sindex, va))
1862				break;
1863		}
1864	}
1865
1866	if (anyvalid)
1867		pmap_invalidate_all(pmap);
1868}
1869
1870/*
1871 *	Routine:	pmap_remove_all
1872 *	Function:
1873 *		Removes this physical page from
1874 *		all physical maps in which it resides.
1875 *		Reflects back modify bits to the pager.
1876 *
1877 *	Notes:
1878 *		Original versions of this routine were very
1879 *		inefficient because they iteratively called
1880 *		pmap_remove (slow...)
1881 */
1882
1883void
1884pmap_remove_all(vm_page_t m)
1885{
1886	register pv_entry_t pv;
1887	pt_entry_t *pte, tpte;
1888	int s;
1889
1890#if defined(PMAP_DIAGNOSTIC)
1891	/*
1892	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1893	 */
1894	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1895		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1896		    VM_PAGE_TO_PHYS(m));
1897	}
1898#endif
1899	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1900	s = splvm();
1901	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1902		pv->pv_pmap->pm_stats.resident_count--;
1903		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1904		tpte = atomic_readandclear_int(pte);
1905		if (tpte & PG_W)
1906			pv->pv_pmap->pm_stats.wired_count--;
1907		if (tpte & PG_A)
1908			vm_page_flag_set(m, PG_REFERENCED);
1909
1910		/*
1911		 * Update the vm_page_t clean and reference bits.
1912		 */
1913		if (tpte & PG_M) {
1914#if defined(PMAP_DIAGNOSTIC)
1915			if (pmap_nw_modified((pt_entry_t) tpte)) {
1916				printf(
1917	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1918				    pv->pv_va, tpte);
1919			}
1920#endif
1921			if (pmap_track_modified(pv->pv_va))
1922				vm_page_dirty(m);
1923		}
1924		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1925		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1926		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1927		m->md.pv_list_count--;
1928		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1929		free_pv_entry(pv);
1930	}
1931	vm_page_flag_clear(m, PG_WRITEABLE);
1932	splx(s);
1933}
1934
1935/*
1936 *	Set the physical protection on the
1937 *	specified range of this map as requested.
1938 */
1939void
1940pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1941{
1942	register pt_entry_t *ptbase;
1943	vm_offset_t pdnxt;
1944	pd_entry_t ptpaddr;
1945	vm_offset_t sindex, eindex;
1946	int anychanged;
1947
1948	if (pmap == NULL)
1949		return;
1950
1951	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1952		pmap_remove(pmap, sva, eva);
1953		return;
1954	}
1955
1956	if (prot & VM_PROT_WRITE)
1957		return;
1958
1959	anychanged = 0;
1960
1961	ptbase = get_ptbase(pmap);
1962
1963	sindex = i386_btop(sva);
1964	eindex = i386_btop(eva);
1965
1966	for (; sindex < eindex; sindex = pdnxt) {
1967
1968		unsigned pdirindex;
1969
1970		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1971
1972		pdirindex = sindex / NPDEPG;
1973		ptpaddr = pmap->pm_pdir[pdirindex];
1974		if ((ptpaddr & PG_PS) != 0) {
1975			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1976			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1977			anychanged++;
1978			continue;
1979		}
1980
1981		/*
1982		 * Weed out invalid mappings. Note: we assume that the page
1983		 * directory table is always allocated, and in kernel virtual.
1984		 */
1985		if (ptpaddr == 0)
1986			continue;
1987
1988		if (pdnxt > eindex) {
1989			pdnxt = eindex;
1990		}
1991
1992		for (; sindex != pdnxt; sindex++) {
1993
1994			pt_entry_t pbits;
1995			vm_page_t m;
1996
1997			pbits = ptbase[sindex];
1998
1999			if (pbits & PG_MANAGED) {
2000				m = NULL;
2001				if (pbits & PG_A) {
2002					m = PHYS_TO_VM_PAGE(pbits);
2003					vm_page_flag_set(m, PG_REFERENCED);
2004					pbits &= ~PG_A;
2005				}
2006				if (pbits & PG_M) {
2007					if (pmap_track_modified(i386_ptob(sindex))) {
2008						if (m == NULL)
2009							m = PHYS_TO_VM_PAGE(pbits);
2010						vm_page_dirty(m);
2011						pbits &= ~PG_M;
2012					}
2013				}
2014			}
2015
2016			pbits &= ~PG_RW;
2017
2018			if (pbits != ptbase[sindex]) {
2019				ptbase[sindex] = pbits;
2020				anychanged = 1;
2021			}
2022		}
2023	}
2024	if (anychanged)
2025		pmap_invalidate_all(pmap);
2026}
2027
2028/*
2029 *	Insert the given physical page (p) at
2030 *	the specified virtual address (v) in the
2031 *	target physical map with the protection requested.
2032 *
2033 *	If specified, the page will be wired down, meaning
2034 *	that the related pte can not be reclaimed.
2035 *
2036 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2037 *	or lose information.  That is, this routine must actually
2038 *	insert this page into the given map NOW.
2039 */
2040void
2041pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2042	   boolean_t wired)
2043{
2044	vm_offset_t pa;
2045	register pt_entry_t *pte;
2046	vm_offset_t opa;
2047	pt_entry_t origpte, newpte;
2048	vm_page_t mpte;
2049
2050	if (pmap == NULL)
2051		return;
2052
2053	va &= PG_FRAME;
2054#ifdef PMAP_DIAGNOSTIC
2055	if (va > VM_MAX_KERNEL_ADDRESS)
2056		panic("pmap_enter: toobig");
2057	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2058		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2059#endif
2060
2061	mpte = NULL;
2062	/*
2063	 * In the case that a page table page is not
2064	 * resident, we are creating it here.
2065	 */
2066	if (va < VM_MAXUSER_ADDRESS) {
2067		mpte = pmap_allocpte(pmap, va);
2068	}
2069#if 0 && defined(PMAP_DIAGNOSTIC)
2070	else {
2071		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2072		origpte = *pdeaddr;
2073		if ((origpte & PG_V) == 0) {
2074			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2075				pmap->pm_pdir[PTDPTDI], origpte, va);
2076		}
2077	}
2078#endif
2079
2080	pte = pmap_pte(pmap, va);
2081
2082	/*
2083	 * Page Directory table entry not valid, we need a new PT page
2084	 */
2085	if (pte == NULL) {
2086		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2087			(void *)pmap->pm_pdir[PTDPTDI], va);
2088	}
2089
2090	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2091	origpte = *(vm_offset_t *)pte;
2092	opa = origpte & PG_FRAME;
2093
2094	if (origpte & PG_PS)
2095		panic("pmap_enter: attempted pmap_enter on 4MB page");
2096
2097	/*
2098	 * Mapping has not changed, must be protection or wiring change.
2099	 */
2100	if (origpte && (opa == pa)) {
2101		/*
2102		 * Wiring change, just update stats. We don't worry about
2103		 * wiring PT pages as they remain resident as long as there
2104		 * are valid mappings in them. Hence, if a user page is wired,
2105		 * the PT page will be also.
2106		 */
2107		if (wired && ((origpte & PG_W) == 0))
2108			pmap->pm_stats.wired_count++;
2109		else if (!wired && (origpte & PG_W))
2110			pmap->pm_stats.wired_count--;
2111
2112#if defined(PMAP_DIAGNOSTIC)
2113		if (pmap_nw_modified((pt_entry_t) origpte)) {
2114			printf(
2115	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2116			    va, origpte);
2117		}
2118#endif
2119
2120		/*
2121		 * Remove extra pte reference
2122		 */
2123		if (mpte)
2124			mpte->hold_count--;
2125
2126		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2127			if ((origpte & PG_RW) == 0) {
2128				*pte |= PG_RW;
2129				pmap_invalidate_page(pmap, va);
2130			}
2131			return;
2132		}
2133
2134		/*
2135		 * We might be turning off write access to the page,
2136		 * so we go ahead and sense modify status.
2137		 */
2138		if (origpte & PG_MANAGED) {
2139			if ((origpte & PG_M) && pmap_track_modified(va)) {
2140				vm_page_t om;
2141				om = PHYS_TO_VM_PAGE(opa);
2142				vm_page_dirty(om);
2143			}
2144			pa |= PG_MANAGED;
2145		}
2146		goto validate;
2147	}
2148	/*
2149	 * Mapping has changed, invalidate old range and fall through to
2150	 * handle validating new mapping.
2151	 */
2152	if (opa) {
2153		int err;
2154		vm_page_lock_queues();
2155		err = pmap_remove_pte(pmap, pte, va);
2156		vm_page_unlock_queues();
2157		if (err)
2158			panic("pmap_enter: pte vanished, va: 0x%x", va);
2159	}
2160
2161	/*
2162	 * Enter on the PV list if part of our managed memory. Note that we
2163	 * raise IPL while manipulating pv_table since pmap_enter can be
2164	 * called at interrupt time.
2165	 */
2166	if (pmap_initialized &&
2167	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2168		pmap_insert_entry(pmap, va, mpte, m);
2169		pa |= PG_MANAGED;
2170	}
2171
2172	/*
2173	 * Increment counters
2174	 */
2175	pmap->pm_stats.resident_count++;
2176	if (wired)
2177		pmap->pm_stats.wired_count++;
2178
2179validate:
2180	/*
2181	 * Now validate mapping with desired protection/wiring.
2182	 */
2183	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2184
2185	if (wired)
2186		newpte |= PG_W;
2187	if (va < VM_MAXUSER_ADDRESS)
2188		newpte |= PG_U;
2189	if (pmap == kernel_pmap)
2190		newpte |= pgeflag;
2191
2192	/*
2193	 * if the mapping or permission bits are different, we need
2194	 * to update the pte.
2195	 */
2196	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2197		*pte = newpte | PG_A;
2198		/*if (origpte)*/ {
2199			pmap_invalidate_page(pmap, va);
2200		}
2201	}
2202}
2203
2204/*
2205 * this code makes some *MAJOR* assumptions:
2206 * 1. Current pmap & pmap exists.
2207 * 2. Not wired.
2208 * 3. Read access.
2209 * 4. No page table pages.
2210 * 5. Tlbflush is deferred to calling procedure.
2211 * 6. Page IS managed.
2212 * but is *MUCH* faster than pmap_enter...
2213 */
2214
2215static vm_page_t
2216pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2217{
2218	pt_entry_t *pte;
2219	vm_offset_t pa;
2220
2221	/*
2222	 * In the case that a page table page is not
2223	 * resident, we are creating it here.
2224	 */
2225	if (va < VM_MAXUSER_ADDRESS) {
2226		unsigned ptepindex;
2227		pd_entry_t ptepa;
2228
2229		/*
2230		 * Calculate pagetable page index
2231		 */
2232		ptepindex = va >> PDRSHIFT;
2233		if (mpte && (mpte->pindex == ptepindex)) {
2234			mpte->hold_count++;
2235		} else {
2236retry:
2237			/*
2238			 * Get the page directory entry
2239			 */
2240			ptepa = pmap->pm_pdir[ptepindex];
2241
2242			/*
2243			 * If the page table page is mapped, we just increment
2244			 * the hold count, and activate it.
2245			 */
2246			if (ptepa) {
2247				if (ptepa & PG_PS)
2248					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2249				if (pmap->pm_ptphint &&
2250					(pmap->pm_ptphint->pindex == ptepindex)) {
2251					mpte = pmap->pm_ptphint;
2252				} else {
2253					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2254					pmap->pm_ptphint = mpte;
2255				}
2256				if (mpte == NULL)
2257					goto retry;
2258				mpte->hold_count++;
2259			} else {
2260				mpte = _pmap_allocpte(pmap, ptepindex);
2261			}
2262		}
2263	} else {
2264		mpte = NULL;
2265	}
2266
2267	/*
2268	 * This call to vtopte makes the assumption that we are
2269	 * entering the page into the current pmap.  In order to support
2270	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2271	 * But that isn't as quick as vtopte.
2272	 */
2273	pte = vtopte(va);
2274	if (*pte) {
2275		if (mpte != NULL) {
2276			vm_page_lock_queues();
2277			pmap_unwire_pte_hold(pmap, mpte);
2278			vm_page_unlock_queues();
2279		}
2280		return 0;
2281	}
2282
2283	/*
2284	 * Enter on the PV list if part of our managed memory. Note that we
2285	 * raise IPL while manipulating pv_table since pmap_enter can be
2286	 * called at interrupt time.
2287	 */
2288	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2289		pmap_insert_entry(pmap, va, mpte, m);
2290
2291	/*
2292	 * Increment counters
2293	 */
2294	pmap->pm_stats.resident_count++;
2295
2296	pa = VM_PAGE_TO_PHYS(m);
2297
2298	/*
2299	 * Now validate mapping with RO protection
2300	 */
2301	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2302		*pte = pa | PG_V | PG_U;
2303	else
2304		*pte = pa | PG_V | PG_U | PG_MANAGED;
2305
2306	return mpte;
2307}
2308
2309/*
2310 * Make a temporary mapping for a physical address.  This is only intended
2311 * to be used for panic dumps.
2312 */
2313void *
2314pmap_kenter_temporary(vm_offset_t pa, int i)
2315{
2316	vm_offset_t va;
2317
2318	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2319	pmap_kenter(va, pa);
2320#ifndef I386_CPU
2321	invlpg(va);
2322#else
2323	invltlb();
2324#endif
2325	return ((void *)crashdumpmap);
2326}
2327
2328#define MAX_INIT_PT (96)
2329/*
2330 * pmap_object_init_pt preloads the ptes for a given object
2331 * into the specified pmap.  This eliminates the blast of soft
2332 * faults on process startup and immediately after an mmap.
2333 */
2334void
2335pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2336		    vm_object_t object, vm_pindex_t pindex,
2337		    vm_size_t size, int limit)
2338{
2339	vm_offset_t tmpidx;
2340	int psize;
2341	vm_page_t p, mpte;
2342
2343	if (pmap == NULL || object == NULL)
2344		return;
2345
2346	/*
2347	 * This code maps large physical mmap regions into the
2348	 * processor address space.  Note that some shortcuts
2349	 * are taken, but the code works.
2350	 */
2351	if (pseflag && (object->type == OBJT_DEVICE) &&
2352	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2353		int i;
2354		vm_page_t m[1];
2355		unsigned int ptepindex;
2356		int npdes;
2357		pd_entry_t ptepa;
2358
2359		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2360			return;
2361
2362retry:
2363		p = vm_page_lookup(object, pindex);
2364		if (p != NULL) {
2365			vm_page_lock_queues();
2366			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2367				goto retry;
2368		} else {
2369			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2370			if (p == NULL)
2371				return;
2372			m[0] = p;
2373
2374			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2375				vm_page_lock_queues();
2376				vm_page_free(p);
2377				vm_page_unlock_queues();
2378				return;
2379			}
2380
2381			p = vm_page_lookup(object, pindex);
2382			vm_page_lock_queues();
2383			vm_page_wakeup(p);
2384		}
2385		vm_page_unlock_queues();
2386
2387		ptepa = VM_PAGE_TO_PHYS(p);
2388		if (ptepa & (NBPDR - 1)) {
2389			return;
2390		}
2391
2392		p->valid = VM_PAGE_BITS_ALL;
2393
2394		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2395		npdes = size >> PDRSHIFT;
2396		for(i = 0; i < npdes; i++) {
2397			pmap->pm_pdir[ptepindex] =
2398			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2399			ptepa += NBPDR;
2400			ptepindex += 1;
2401		}
2402		pmap_invalidate_all(kernel_pmap);
2403		return;
2404	}
2405
2406	psize = i386_btop(size);
2407
2408	if ((object->type != OBJT_VNODE) ||
2409	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2410	     (object->resident_page_count > MAX_INIT_PT))) {
2411		return;
2412	}
2413
2414	if (psize + pindex > object->size) {
2415		if (object->size < pindex)
2416			return;
2417		psize = object->size - pindex;
2418	}
2419
2420	mpte = NULL;
2421
2422	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
2423		if (p->pindex < pindex) {
2424			p = vm_page_splay(pindex, object->root);
2425			if ((object->root = p)->pindex < pindex)
2426				p = TAILQ_NEXT(p, listq);
2427		}
2428	}
2429	/*
2430	 * Assert: the variable p is either (1) the page with the
2431	 * least pindex greater than or equal to the parameter pindex
2432	 * or (2) NULL.
2433	 */
2434	for (;
2435	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2436	     p = TAILQ_NEXT(p, listq)) {
2437		/*
2438		 * don't allow an madvise to blow away our really
2439		 * free pages allocating pv entries.
2440		 */
2441		if ((limit & MAP_PREFAULT_MADVISE) &&
2442		    cnt.v_free_count < cnt.v_free_reserved) {
2443			break;
2444		}
2445		vm_page_lock_queues();
2446		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2447		    (p->busy == 0) &&
2448		    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2449			if ((p->queue - p->pc) == PQ_CACHE)
2450				vm_page_deactivate(p);
2451			vm_page_busy(p);
2452			vm_page_unlock_queues();
2453			mpte = pmap_enter_quick(pmap,
2454				addr + i386_ptob(tmpidx), p, mpte);
2455			vm_page_lock_queues();
2456			vm_page_wakeup(p);
2457		}
2458		vm_page_unlock_queues();
2459	}
2460	return;
2461}
2462
2463/*
2464 * pmap_prefault provides a quick way of clustering
2465 * pagefaults into a processes address space.  It is a "cousin"
2466 * of pmap_object_init_pt, except it runs at page fault time instead
2467 * of mmap time.
2468 */
2469#define PFBAK 4
2470#define PFFOR 4
2471#define PAGEORDER_SIZE (PFBAK+PFFOR)
2472
2473static int pmap_prefault_pageorder[] = {
2474	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2475	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2476	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2477	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2478};
2479
2480void
2481pmap_prefault(pmap, addra, entry)
2482	pmap_t pmap;
2483	vm_offset_t addra;
2484	vm_map_entry_t entry;
2485{
2486	int i;
2487	vm_offset_t starta;
2488	vm_offset_t addr;
2489	vm_pindex_t pindex;
2490	vm_page_t m, mpte;
2491	vm_object_t object;
2492
2493	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2494		return;
2495
2496	object = entry->object.vm_object;
2497
2498	starta = addra - PFBAK * PAGE_SIZE;
2499	if (starta < entry->start) {
2500		starta = entry->start;
2501	} else if (starta > addra) {
2502		starta = 0;
2503	}
2504
2505	mpte = NULL;
2506	for (i = 0; i < PAGEORDER_SIZE; i++) {
2507		vm_object_t lobject;
2508		pt_entry_t *pte;
2509
2510		addr = addra + pmap_prefault_pageorder[i];
2511		if (addr > addra + (PFFOR * PAGE_SIZE))
2512			addr = 0;
2513
2514		if (addr < starta || addr >= entry->end)
2515			continue;
2516
2517		if ((*pmap_pde(pmap, addr)) == 0)
2518			continue;
2519
2520		pte = vtopte(addr);
2521		if (*pte)
2522			continue;
2523
2524		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2525		lobject = object;
2526		for (m = vm_page_lookup(lobject, pindex);
2527		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2528		    lobject = lobject->backing_object) {
2529			if (lobject->backing_object_offset & PAGE_MASK)
2530				break;
2531			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2532			m = vm_page_lookup(lobject->backing_object, pindex);
2533		}
2534
2535		/*
2536		 * give-up when a page is not in memory
2537		 */
2538		if (m == NULL)
2539			break;
2540		vm_page_lock_queues();
2541		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2542			(m->busy == 0) &&
2543		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2544
2545			if ((m->queue - m->pc) == PQ_CACHE) {
2546				vm_page_deactivate(m);
2547			}
2548			vm_page_busy(m);
2549			vm_page_unlock_queues();
2550			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2551			vm_page_lock_queues();
2552			vm_page_wakeup(m);
2553		}
2554		vm_page_unlock_queues();
2555	}
2556}
2557
2558/*
2559 *	Routine:	pmap_change_wiring
2560 *	Function:	Change the wiring attribute for a map/virtual-address
2561 *			pair.
2562 *	In/out conditions:
2563 *			The mapping must already exist in the pmap.
2564 */
2565void
2566pmap_change_wiring(pmap, va, wired)
2567	register pmap_t pmap;
2568	vm_offset_t va;
2569	boolean_t wired;
2570{
2571	register pt_entry_t *pte;
2572
2573	if (pmap == NULL)
2574		return;
2575
2576	pte = pmap_pte(pmap, va);
2577
2578	if (wired && !pmap_pte_w(pte))
2579		pmap->pm_stats.wired_count++;
2580	else if (!wired && pmap_pte_w(pte))
2581		pmap->pm_stats.wired_count--;
2582
2583	/*
2584	 * Wiring is not a hardware characteristic so there is no need to
2585	 * invalidate TLB.
2586	 */
2587	pmap_pte_set_w(pte, wired);
2588}
2589
2590
2591
2592/*
2593 *	Copy the range specified by src_addr/len
2594 *	from the source map to the range dst_addr/len
2595 *	in the destination map.
2596 *
2597 *	This routine is only advisory and need not do anything.
2598 */
2599
2600void
2601pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2602	  vm_offset_t src_addr)
2603{
2604	vm_offset_t addr;
2605	vm_offset_t end_addr = src_addr + len;
2606	vm_offset_t pdnxt;
2607	pd_entry_t src_frame, dst_frame;
2608	vm_page_t m;
2609
2610	if (dst_addr != src_addr)
2611		return;
2612
2613	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2614	if (src_frame != (PTDpde & PG_FRAME))
2615		return;
2616
2617	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2618	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2619		pt_entry_t *src_pte, *dst_pte;
2620		vm_page_t dstmpte, srcmpte;
2621		pd_entry_t srcptepaddr;
2622		unsigned ptepindex;
2623
2624		if (addr >= UPT_MIN_ADDRESS)
2625			panic("pmap_copy: invalid to pmap_copy page tables\n");
2626
2627		/*
2628		 * Don't let optional prefaulting of pages make us go
2629		 * way below the low water mark of free pages or way
2630		 * above high water mark of used pv entries.
2631		 */
2632		if (cnt.v_free_count < cnt.v_free_reserved ||
2633		    pv_entry_count > pv_entry_high_water)
2634			break;
2635
2636		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2637		ptepindex = addr >> PDRSHIFT;
2638
2639		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2640		if (srcptepaddr == 0)
2641			continue;
2642
2643		if (srcptepaddr & PG_PS) {
2644			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2645				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2646				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2647			}
2648			continue;
2649		}
2650
2651		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2652		if ((srcmpte == NULL) ||
2653		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2654			continue;
2655
2656		if (pdnxt > end_addr)
2657			pdnxt = end_addr;
2658
2659		/*
2660		 * Have to recheck this before every avtopte() call below
2661		 * in case we have blocked and something else used APTDpde.
2662		 */
2663		if (dst_frame != (APTDpde & PG_FRAME)) {
2664			APTDpde = dst_frame | PG_RW | PG_V;
2665			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2666		}
2667		src_pte = vtopte(addr);
2668		dst_pte = avtopte(addr);
2669		while (addr < pdnxt) {
2670			pt_entry_t ptetemp;
2671			ptetemp = *src_pte;
2672			/*
2673			 * we only virtual copy managed pages
2674			 */
2675			if ((ptetemp & PG_MANAGED) != 0) {
2676				/*
2677				 * We have to check after allocpte for the
2678				 * pte still being around...  allocpte can
2679				 * block.
2680				 */
2681				dstmpte = pmap_allocpte(dst_pmap, addr);
2682				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2683					/*
2684					 * Clear the modified and
2685					 * accessed (referenced) bits
2686					 * during the copy.
2687					 */
2688					m = PHYS_TO_VM_PAGE(ptetemp);
2689					*dst_pte = ptetemp & ~(PG_M | PG_A);
2690					dst_pmap->pm_stats.resident_count++;
2691					pmap_insert_entry(dst_pmap, addr,
2692						dstmpte, m);
2693	 			} else {
2694					vm_page_lock_queues();
2695					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2696					vm_page_unlock_queues();
2697				}
2698				if (dstmpte->hold_count >= srcmpte->hold_count)
2699					break;
2700			}
2701			addr += PAGE_SIZE;
2702			src_pte++;
2703			dst_pte++;
2704		}
2705	}
2706}
2707
2708#ifdef SMP
2709
2710/*
2711 *	pmap_zpi_switchin*()
2712 *
2713 *	These functions allow us to avoid doing IPIs alltogether in certain
2714 *	temporary page-mapping situations (page zeroing).  Instead to deal
2715 *	with being preempted and moved onto a different cpu we invalidate
2716 *	the page when the scheduler switches us in.  This does not occur
2717 *	very often so we remain relatively optimal with very little effort.
2718 */
2719static void
2720pmap_zpi_switchin12(void)
2721{
2722	invlpg((u_int)CADDR1);
2723	invlpg((u_int)CADDR2);
2724}
2725
2726static void
2727pmap_zpi_switchin2(void)
2728{
2729	invlpg((u_int)CADDR2);
2730}
2731
2732static void
2733pmap_zpi_switchin3(void)
2734{
2735	invlpg((u_int)CADDR3);
2736}
2737
2738#endif
2739
2740/*
2741 *	pmap_zero_page zeros the specified hardware page by mapping
2742 *	the page into KVM and using bzero to clear its contents.
2743 */
2744void
2745pmap_zero_page(vm_page_t m)
2746{
2747	vm_offset_t phys;
2748
2749	phys = VM_PAGE_TO_PHYS(m);
2750	if (*CMAP2)
2751		panic("pmap_zero_page: CMAP2 busy");
2752	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2753#ifdef I386_CPU
2754	invltlb();
2755#else
2756#ifdef SMP
2757	curthread->td_switchin = pmap_zpi_switchin2;
2758#endif
2759	invlpg((u_int)CADDR2);
2760#endif
2761#if defined(I686_CPU)
2762	if (cpu_class == CPUCLASS_686)
2763		i686_pagezero(CADDR2);
2764	else
2765#endif
2766		bzero(CADDR2, PAGE_SIZE);
2767#ifdef SMP
2768	curthread->td_switchin = NULL;
2769#endif
2770	*CMAP2 = 0;
2771}
2772
2773/*
2774 *	pmap_zero_page_area zeros the specified hardware page by mapping
2775 *	the page into KVM and using bzero to clear its contents.
2776 *
2777 *	off and size may not cover an area beyond a single hardware page.
2778 */
2779void
2780pmap_zero_page_area(vm_page_t m, int off, int size)
2781{
2782	vm_offset_t phys;
2783
2784	phys = VM_PAGE_TO_PHYS(m);
2785	if (*CMAP2)
2786		panic("pmap_zero_page: CMAP2 busy");
2787	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2788#ifdef I386_CPU
2789	invltlb();
2790#else
2791#ifdef SMP
2792	curthread->td_switchin = pmap_zpi_switchin2;
2793#endif
2794	invlpg((u_int)CADDR2);
2795#endif
2796#if defined(I686_CPU)
2797	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2798		i686_pagezero(CADDR2);
2799	else
2800#endif
2801		bzero((char *)CADDR2 + off, size);
2802#ifdef SMP
2803	curthread->td_switchin = NULL;
2804#endif
2805	*CMAP2 = 0;
2806}
2807
2808/*
2809 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2810 *	the page into KVM and using bzero to clear its contents.  This
2811 *	is intended to be called from the vm_pagezero process only and
2812 *	outside of Giant.
2813 */
2814void
2815pmap_zero_page_idle(vm_page_t m)
2816{
2817	vm_offset_t phys;
2818
2819	phys = VM_PAGE_TO_PHYS(m);
2820	if (*CMAP3)
2821		panic("pmap_zero_page: CMAP3 busy");
2822	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2823#ifdef I386_CPU
2824	invltlb();
2825#else
2826#ifdef SMP
2827	curthread->td_switchin = pmap_zpi_switchin3;
2828#endif
2829	invlpg((u_int)CADDR3);
2830#endif
2831#if defined(I686_CPU)
2832	if (cpu_class == CPUCLASS_686)
2833		i686_pagezero(CADDR3);
2834	else
2835#endif
2836		bzero(CADDR3, PAGE_SIZE);
2837#ifdef SMP
2838	curthread->td_switchin = NULL;
2839#endif
2840	*CMAP3 = 0;
2841}
2842
2843/*
2844 *	pmap_copy_page copies the specified (machine independent)
2845 *	page by mapping the page into virtual memory and using
2846 *	bcopy to copy the page, one machine dependent page at a
2847 *	time.
2848 */
2849void
2850pmap_copy_page(vm_page_t src, vm_page_t dst)
2851{
2852
2853	if (*CMAP1)
2854		panic("pmap_copy_page: CMAP1 busy");
2855	if (*CMAP2)
2856		panic("pmap_copy_page: CMAP2 busy");
2857	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2858	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2859#ifdef I386_CPU
2860	invltlb();
2861#else
2862#ifdef SMP
2863	curthread->td_switchin = pmap_zpi_switchin12;
2864#endif
2865	invlpg((u_int)CADDR1);
2866	invlpg((u_int)CADDR2);
2867#endif
2868	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2869#ifdef SMP
2870	curthread->td_switchin = NULL;
2871#endif
2872	*CMAP1 = 0;
2873	*CMAP2 = 0;
2874}
2875
2876/*
2877 * Returns true if the pmap's pv is one of the first
2878 * 16 pvs linked to from this page.  This count may
2879 * be changed upwards or downwards in the future; it
2880 * is only necessary that true be returned for a small
2881 * subset of pmaps for proper page aging.
2882 */
2883boolean_t
2884pmap_page_exists_quick(pmap, m)
2885	pmap_t pmap;
2886	vm_page_t m;
2887{
2888	pv_entry_t pv;
2889	int loops = 0;
2890	int s;
2891
2892	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2893		return FALSE;
2894
2895	s = splvm();
2896	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2897	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2898		if (pv->pv_pmap == pmap) {
2899			splx(s);
2900			return TRUE;
2901		}
2902		loops++;
2903		if (loops >= 16)
2904			break;
2905	}
2906	splx(s);
2907	return (FALSE);
2908}
2909
2910#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2911/*
2912 * Remove all pages from specified address space
2913 * this aids process exit speeds.  Also, this code
2914 * is special cased for current process only, but
2915 * can have the more generic (and slightly slower)
2916 * mode enabled.  This is much faster than pmap_remove
2917 * in the case of running down an entire address space.
2918 */
2919void
2920pmap_remove_pages(pmap, sva, eva)
2921	pmap_t pmap;
2922	vm_offset_t sva, eva;
2923{
2924	pt_entry_t *pte, tpte;
2925	vm_page_t m;
2926	pv_entry_t pv, npv;
2927	int s;
2928
2929#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2930	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2931		printf("warning: pmap_remove_pages called with non-current pmap\n");
2932		return;
2933	}
2934#endif
2935	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2936	s = splvm();
2937	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2938
2939		if (pv->pv_va >= eva || pv->pv_va < sva) {
2940			npv = TAILQ_NEXT(pv, pv_plist);
2941			continue;
2942		}
2943
2944#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2945		pte = vtopte(pv->pv_va);
2946#else
2947		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2948#endif
2949		tpte = *pte;
2950
2951		if (tpte == 0) {
2952			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2953							pte, pv->pv_va);
2954			panic("bad pte");
2955		}
2956
2957/*
2958 * We cannot remove wired pages from a process' mapping at this time
2959 */
2960		if (tpte & PG_W) {
2961			npv = TAILQ_NEXT(pv, pv_plist);
2962			continue;
2963		}
2964
2965		m = PHYS_TO_VM_PAGE(tpte);
2966		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2967		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2968		    m, m->phys_addr, tpte));
2969
2970		KASSERT(m < &vm_page_array[vm_page_array_size],
2971			("pmap_remove_pages: bad tpte %x", tpte));
2972
2973		pv->pv_pmap->pm_stats.resident_count--;
2974
2975		*pte = 0;
2976
2977		/*
2978		 * Update the vm_page_t clean and reference bits.
2979		 */
2980		if (tpte & PG_M) {
2981			vm_page_dirty(m);
2982		}
2983
2984		npv = TAILQ_NEXT(pv, pv_plist);
2985		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2986
2987		m->md.pv_list_count--;
2988		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2989		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2990			vm_page_flag_clear(m, PG_WRITEABLE);
2991		}
2992
2993		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2994		free_pv_entry(pv);
2995	}
2996	splx(s);
2997	pmap_invalidate_all(pmap);
2998}
2999
3000/*
3001 *	pmap_is_modified:
3002 *
3003 *	Return whether or not the specified physical page was modified
3004 *	in any physical maps.
3005 */
3006boolean_t
3007pmap_is_modified(vm_page_t m)
3008{
3009	pv_entry_t pv;
3010	pt_entry_t *pte;
3011	int s;
3012
3013	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3014		return FALSE;
3015
3016	s = splvm();
3017	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3018	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3019		/*
3020		 * if the bit being tested is the modified bit, then
3021		 * mark clean_map and ptes as never
3022		 * modified.
3023		 */
3024		if (!pmap_track_modified(pv->pv_va))
3025			continue;
3026#if defined(PMAP_DIAGNOSTIC)
3027		if (!pv->pv_pmap) {
3028			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3029			continue;
3030		}
3031#endif
3032		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3033		if (*pte & PG_M) {
3034			splx(s);
3035			return TRUE;
3036		}
3037	}
3038	splx(s);
3039	return (FALSE);
3040}
3041
3042/*
3043 * this routine is used to modify bits in ptes
3044 */
3045static __inline void
3046pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3047{
3048	register pv_entry_t pv;
3049	register pt_entry_t *pte;
3050	int s;
3051
3052	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
3053	    (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
3054		return;
3055
3056	s = splvm();
3057	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3058	/*
3059	 * Loop over all current mappings setting/clearing as appropos If
3060	 * setting RO do we need to clear the VAC?
3061	 */
3062	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3063		/*
3064		 * don't write protect pager mappings
3065		 */
3066		if (!setem && (bit == PG_RW)) {
3067			if (!pmap_track_modified(pv->pv_va))
3068				continue;
3069		}
3070
3071#if defined(PMAP_DIAGNOSTIC)
3072		if (!pv->pv_pmap) {
3073			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3074			continue;
3075		}
3076#endif
3077
3078		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3079
3080		if (setem) {
3081			*pte |= bit;
3082			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3083		} else {
3084			pt_entry_t pbits = *pte;
3085			if (pbits & bit) {
3086				if (bit == PG_RW) {
3087					if (pbits & PG_M) {
3088						vm_page_dirty(m);
3089					}
3090					*pte = pbits & ~(PG_M|PG_RW);
3091				} else {
3092					*pte = pbits & ~bit;
3093				}
3094				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3095			}
3096		}
3097	}
3098	if (!setem && bit == PG_RW)
3099		vm_page_flag_clear(m, PG_WRITEABLE);
3100	splx(s);
3101}
3102
3103/*
3104 *      pmap_page_protect:
3105 *
3106 *      Lower the permission for all mappings to a given page.
3107 */
3108void
3109pmap_page_protect(vm_page_t m, vm_prot_t prot)
3110{
3111	if ((prot & VM_PROT_WRITE) == 0) {
3112		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3113			pmap_changebit(m, PG_RW, FALSE);
3114		} else {
3115			pmap_remove_all(m);
3116		}
3117	}
3118}
3119
3120vm_offset_t
3121pmap_phys_address(ppn)
3122	int ppn;
3123{
3124	return (i386_ptob(ppn));
3125}
3126
3127/*
3128 *	pmap_ts_referenced:
3129 *
3130 *	Return a count of reference bits for a page, clearing those bits.
3131 *	It is not necessary for every reference bit to be cleared, but it
3132 *	is necessary that 0 only be returned when there are truly no
3133 *	reference bits set.
3134 *
3135 *	XXX: The exact number of bits to check and clear is a matter that
3136 *	should be tested and standardized at some point in the future for
3137 *	optimal aging of shared pages.
3138 */
3139int
3140pmap_ts_referenced(vm_page_t m)
3141{
3142	register pv_entry_t pv, pvf, pvn;
3143	pt_entry_t *pte;
3144	int s;
3145	int rtval = 0;
3146
3147	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3148		return (rtval);
3149
3150	s = splvm();
3151	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3152	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3153
3154		pvf = pv;
3155
3156		do {
3157			pvn = TAILQ_NEXT(pv, pv_list);
3158
3159			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3160
3161			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3162
3163			if (!pmap_track_modified(pv->pv_va))
3164				continue;
3165
3166			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3167
3168			if (pte && (*pte & PG_A)) {
3169				*pte &= ~PG_A;
3170
3171				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3172
3173				rtval++;
3174				if (rtval > 4) {
3175					break;
3176				}
3177			}
3178		} while ((pv = pvn) != NULL && pv != pvf);
3179	}
3180	splx(s);
3181
3182	return (rtval);
3183}
3184
3185/*
3186 *	Clear the modify bits on the specified physical page.
3187 */
3188void
3189pmap_clear_modify(vm_page_t m)
3190{
3191	pmap_changebit(m, PG_M, FALSE);
3192}
3193
3194/*
3195 *	pmap_clear_reference:
3196 *
3197 *	Clear the reference bit on the specified physical page.
3198 */
3199void
3200pmap_clear_reference(vm_page_t m)
3201{
3202	pmap_changebit(m, PG_A, FALSE);
3203}
3204
3205/*
3206 * Miscellaneous support routines follow
3207 */
3208
3209static void
3210i386_protection_init()
3211{
3212	register int *kp, prot;
3213
3214	kp = protection_codes;
3215	for (prot = 0; prot < 8; prot++) {
3216		switch (prot) {
3217		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3218			/*
3219			 * Read access is also 0. There isn't any execute bit,
3220			 * so just make it readable.
3221			 */
3222		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3223		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3224		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3225			*kp++ = 0;
3226			break;
3227		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3228		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3229		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3230		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3231			*kp++ = PG_RW;
3232			break;
3233		}
3234	}
3235}
3236
3237/*
3238 * Map a set of physical memory pages into the kernel virtual
3239 * address space. Return a pointer to where it is mapped. This
3240 * routine is intended to be used for mapping device memory,
3241 * NOT real memory.
3242 */
3243void *
3244pmap_mapdev(pa, size)
3245	vm_offset_t pa;
3246	vm_size_t size;
3247{
3248	vm_offset_t va, tmpva, offset;
3249
3250	offset = pa & PAGE_MASK;
3251	size = roundup(offset + size, PAGE_SIZE);
3252
3253	GIANT_REQUIRED;
3254
3255	va = kmem_alloc_pageable(kernel_map, size);
3256	if (!va)
3257		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3258
3259	pa = pa & PG_FRAME;
3260	for (tmpva = va; size > 0; ) {
3261		pmap_kenter(tmpva, pa);
3262		size -= PAGE_SIZE;
3263		tmpva += PAGE_SIZE;
3264		pa += PAGE_SIZE;
3265	}
3266	pmap_invalidate_range(kernel_pmap, va, tmpva);
3267	return ((void *)(va + offset));
3268}
3269
3270void
3271pmap_unmapdev(va, size)
3272	vm_offset_t va;
3273	vm_size_t size;
3274{
3275	vm_offset_t base, offset, tmpva;
3276	pt_entry_t *pte;
3277
3278	base = va & PG_FRAME;
3279	offset = va & PAGE_MASK;
3280	size = roundup(offset + size, PAGE_SIZE);
3281	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3282		pte = vtopte(tmpva);
3283		*pte = 0;
3284	}
3285	pmap_invalidate_range(kernel_pmap, va, tmpva);
3286	kmem_free(kernel_map, base, size);
3287}
3288
3289/*
3290 * perform the pmap work for mincore
3291 */
3292int
3293pmap_mincore(pmap, addr)
3294	pmap_t pmap;
3295	vm_offset_t addr;
3296{
3297	pt_entry_t *ptep, pte;
3298	vm_page_t m;
3299	int val = 0;
3300
3301	ptep = pmap_pte(pmap, addr);
3302	if (ptep == 0) {
3303		return 0;
3304	}
3305
3306	if ((pte = *ptep) != 0) {
3307		vm_offset_t pa;
3308
3309		val = MINCORE_INCORE;
3310		if ((pte & PG_MANAGED) == 0)
3311			return val;
3312
3313		pa = pte & PG_FRAME;
3314
3315		m = PHYS_TO_VM_PAGE(pa);
3316
3317		/*
3318		 * Modified by us
3319		 */
3320		if (pte & PG_M)
3321			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3322		else {
3323			/*
3324			 * Modified by someone else
3325			 */
3326			vm_page_lock_queues();
3327			if (m->dirty || pmap_is_modified(m))
3328				val |= MINCORE_MODIFIED_OTHER;
3329			vm_page_unlock_queues();
3330		}
3331		/*
3332		 * Referenced by us
3333		 */
3334		if (pte & PG_A)
3335			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3336		else {
3337			/*
3338			 * Referenced by someone else
3339			 */
3340			vm_page_lock_queues();
3341			if ((m->flags & PG_REFERENCED) ||
3342			    pmap_ts_referenced(m)) {
3343				val |= MINCORE_REFERENCED_OTHER;
3344				vm_page_flag_set(m, PG_REFERENCED);
3345			}
3346			vm_page_unlock_queues();
3347		}
3348	}
3349	return val;
3350}
3351
3352void
3353pmap_activate(struct thread *td)
3354{
3355	struct proc *p = td->td_proc;
3356	pmap_t	pmap;
3357	u_int32_t  cr3;
3358
3359	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3360#if defined(SMP)
3361	pmap->pm_active |= PCPU_GET(cpumask);
3362#else
3363	pmap->pm_active |= 1;
3364#endif
3365	cr3 = vtophys(pmap->pm_pdir);
3366	/* XXXKSE this is wrong.
3367	 * pmap_activate is for the current thread on the current cpu
3368	 */
3369	if (p->p_flag & P_KSES) {
3370		/* Make sure all other cr3 entries are updated. */
3371		/* what if they are running?  XXXKSE (maybe abort them) */
3372		FOREACH_THREAD_IN_PROC(p, td) {
3373			td->td_pcb->pcb_cr3 = cr3;
3374		}
3375	} else {
3376		td->td_pcb->pcb_cr3 = cr3;
3377	}
3378	load_cr3(cr3);
3379#ifdef SWTCH_OPTIM_STATS
3380	tlb_flush_count++;
3381#endif
3382}
3383
3384vm_offset_t
3385pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3386{
3387
3388	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3389		return addr;
3390	}
3391
3392	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3393	return addr;
3394}
3395
3396
3397#if defined(PMAP_DEBUG)
3398pmap_pid_dump(int pid)
3399{
3400	pmap_t pmap;
3401	struct proc *p;
3402	int npte = 0;
3403	int index;
3404
3405	sx_slock(&allproc_lock);
3406	LIST_FOREACH(p, &allproc, p_list) {
3407		if (p->p_pid != pid)
3408			continue;
3409
3410		if (p->p_vmspace) {
3411			int i,j;
3412			index = 0;
3413			pmap = vmspace_pmap(p->p_vmspace);
3414			for (i = 0; i < NPDEPG; i++) {
3415				pd_entry_t *pde;
3416				pt_entry_t *pte;
3417				vm_offset_t base = i << PDRSHIFT;
3418
3419				pde = &pmap->pm_pdir[i];
3420				if (pde && pmap_pde_v(pde)) {
3421					for (j = 0; j < NPTEPG; j++) {
3422						vm_offset_t va = base + (j << PAGE_SHIFT);
3423						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3424							if (index) {
3425								index = 0;
3426								printf("\n");
3427							}
3428							sx_sunlock(&allproc_lock);
3429							return npte;
3430						}
3431						pte = pmap_pte_quick(pmap, va);
3432						if (pte && pmap_pte_v(pte)) {
3433							pt_entry_t pa;
3434							vm_page_t m;
3435							pa = *pte;
3436							m = PHYS_TO_VM_PAGE(pa);
3437							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3438								va, pa, m->hold_count, m->wire_count, m->flags);
3439							npte++;
3440							index++;
3441							if (index >= 2) {
3442								index = 0;
3443								printf("\n");
3444							} else {
3445								printf(" ");
3446							}
3447						}
3448					}
3449				}
3450			}
3451		}
3452	}
3453	sx_sunlock(&allproc_lock);
3454	return npte;
3455}
3456#endif
3457
3458#if defined(DEBUG)
3459
3460static void	pads(pmap_t pm);
3461void		pmap_pvdump(vm_offset_t pa);
3462
3463/* print address space of pmap*/
3464static void
3465pads(pm)
3466	pmap_t pm;
3467{
3468	int i, j;
3469	vm_offset_t va;
3470	pt_entry_t *ptep;
3471
3472	if (pm == kernel_pmap)
3473		return;
3474	for (i = 0; i < NPDEPG; i++)
3475		if (pm->pm_pdir[i])
3476			for (j = 0; j < NPTEPG; j++) {
3477				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3478				if (pm == kernel_pmap && va < KERNBASE)
3479					continue;
3480				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3481					continue;
3482				ptep = pmap_pte_quick(pm, va);
3483				if (pmap_pte_v(ptep))
3484					printf("%x:%x ", va, *ptep);
3485			};
3486
3487}
3488
3489void
3490pmap_pvdump(pa)
3491	vm_offset_t pa;
3492{
3493	pv_entry_t pv;
3494	vm_page_t m;
3495
3496	printf("pa %x", pa);
3497	m = PHYS_TO_VM_PAGE(pa);
3498	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3499		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3500		pads(pv->pv_pmap);
3501	}
3502	printf(" ");
3503}
3504#endif
3505