pmap.c revision 110480
1264790Sbapt/*
2264790Sbapt * Copyright (c) 1991 Regents of the University of California.
3264790Sbapt * All rights reserved.
4264790Sbapt * Copyright (c) 1994 John S. Dyson
5264790Sbapt * All rights reserved.
6264790Sbapt * Copyright (c) 1994 David Greenman
7264790Sbapt * All rights reserved.
8264790Sbapt *
9264790Sbapt * This code is derived from software contributed to Berkeley by
10264790Sbapt * the Systems Programming Group of the University of Utah Computer
11264790Sbapt * Science Department and William Jolitz of UUNET Technologies Inc.
12264790Sbapt *
13264790Sbapt * Redistribution and use in source and binary forms, with or without
14264790Sbapt * modification, are permitted provided that the following conditions
15264790Sbapt * are met:
16264790Sbapt * 1. Redistributions of source code must retain the above copyright
17264790Sbapt *    notice, this list of conditions and the following disclaimer.
18264790Sbapt * 2. Redistributions in binary form must reproduce the above copyright
19264790Sbapt *    notice, this list of conditions and the following disclaimer in the
20264790Sbapt *    documentation and/or other materials provided with the distribution.
21264790Sbapt * 3. All advertising materials mentioning features or use of this software
22264790Sbapt *    must display the following acknowledgement:
23264790Sbapt *	This product includes software developed by the University of
24264790Sbapt *	California, Berkeley and its contributors.
25264790Sbapt * 4. Neither the name of the University nor the names of its contributors
26264790Sbapt *    may be used to endorse or promote products derived from this software
27264790Sbapt *    without specific prior written permission.
28264790Sbapt *
29264790Sbapt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30264790Sbapt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31264790Sbapt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32264790Sbapt * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33264790Sbapt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34264790Sbapt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35264790Sbapt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36264790Sbapt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37264790Sbapt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38264790Sbapt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39264790Sbapt * SUCH DAMAGE.
40264790Sbapt *
41264790Sbapt *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42264790Sbapt * $FreeBSD: head/sys/i386/i386/pmap.c 110480 2003-02-07 01:52:06Z peter $
43264790Sbapt */
44264790Sbapt
45264790Sbapt/*
46264790Sbapt *	Manages physical address maps.
47264790Sbapt *
48264790Sbapt *	In addition to hardware address maps, this
49264790Sbapt *	module is called upon to provide software-use-only
50264790Sbapt *	maps which may or may not be stored in the same
51264790Sbapt *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154static struct pmaplist allpmaps;
155
156vm_offset_t avail_start;	/* PA of first available physical page */
157vm_offset_t avail_end;		/* PA of last available physical page */
158vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
159vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
160static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
161static int pgeflag;		/* PG_G or-in */
162static int pseflag;		/* PG_PS or-in */
163
164static vm_object_t kptobj;
165
166static int nkpt;
167vm_offset_t kernel_vm_end;
168extern u_int32_t KERNend;
169
170/*
171 * Data for the pv entry allocation mechanism
172 */
173static uma_zone_t pvzone;
174static struct vm_object pvzone_obj;
175static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
176int pmap_pagedaemon_waken;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2, CADDR3;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
207				      vm_page_t m, vm_page_t mpte);
208static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
209static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
210static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
211					vm_offset_t va);
212static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
213		vm_page_t mpte, vm_page_t m);
214
215static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
216
217static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
218static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
219static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
220static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
221static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
222static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
223static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
224
225static pd_entry_t pdir4mb;
226
227/*
228 *	Routine:	pmap_pte
229 *	Function:
230 *		Extract the page table entry associated
231 *		with the given map/virtual_address pair.
232 */
233
234PMAP_INLINE pt_entry_t *
235pmap_pte(pmap, va)
236	register pmap_t pmap;
237	vm_offset_t va;
238{
239	pd_entry_t *pdeaddr;
240
241	if (pmap) {
242		pdeaddr = pmap_pde(pmap, va);
243		if (*pdeaddr & PG_PS)
244			return pdeaddr;
245		if (*pdeaddr) {
246			return get_ptbase(pmap) + i386_btop(va);
247		}
248	}
249	return (0);
250}
251
252/*
253 * Move the kernel virtual free pointer to the next
254 * 4MB.  This is used to help improve performance
255 * by using a large (4MB) page for much of the kernel
256 * (.text, .data, .bss)
257 */
258static vm_offset_t
259pmap_kmem_choose(vm_offset_t addr)
260{
261	vm_offset_t newaddr = addr;
262
263#ifndef DISABLE_PSE
264	if (cpu_feature & CPUID_PSE)
265		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
266#endif
267	return newaddr;
268}
269
270/*
271 *	Bootstrap the system enough to run with virtual memory.
272 *
273 *	On the i386 this is called after mapping has already been enabled
274 *	and just syncs the pmap module with what has already been done.
275 *	[We can't call it easily with mapping off since the kernel is not
276 *	mapped with PA == VA, hence we would have to relocate every address
277 *	from the linked base (virtual) address "KERNBASE" to the actual
278 *	(physical) address starting relative to 0]
279 */
280void
281pmap_bootstrap(firstaddr, loadaddr)
282	vm_offset_t firstaddr;
283	vm_offset_t loadaddr;
284{
285	vm_offset_t va;
286	pt_entry_t *pte;
287	int i;
288
289	avail_start = firstaddr;
290
291	/*
292	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
293	 * large. It should instead be correctly calculated in locore.s and
294	 * not based on 'first' (which is a physical address, not a virtual
295	 * address, for the start of unused physical memory). The kernel
296	 * page tables are NOT double mapped and thus should not be included
297	 * in this calculation.
298	 */
299	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
300	virtual_avail = pmap_kmem_choose(virtual_avail);
301
302	virtual_end = VM_MAX_KERNEL_ADDRESS;
303
304	/*
305	 * Initialize protection array.
306	 */
307	i386_protection_init();
308
309	/*
310	 * Initialize the kernel pmap (which is statically allocated).
311	 */
312	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
313	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
314	TAILQ_INIT(&kernel_pmap->pm_pvlist);
315	LIST_INIT(&allpmaps);
316	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
317	nkpt = NKPT;
318
319	/*
320	 * Reserve some special page table entries/VA space for temporary
321	 * mapping of pages.
322	 */
323#define	SYSMAP(c, p, v, n)	\
324	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
325
326	va = virtual_avail;
327	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
328
329	/*
330	 * CMAP1/CMAP2 are used for zeroing and copying pages.
331	 * CMAP3 is used for the idle process page zeroing.
332	 */
333	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
334	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
335	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
336
337	/*
338	 * Crashdump maps.
339	 */
340	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
341
342	/*
343	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
344	 * XXX ptmmap is not used.
345	 */
346	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
347
348	/*
349	 * msgbufp is used to map the system message buffer.
350	 * XXX msgbufmap is not used.
351	 */
352	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
353	       atop(round_page(MSGBUF_SIZE)))
354
355	/*
356	 * ptemap is used for pmap_pte_quick
357	 */
358	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
359
360	virtual_avail = va;
361
362	*CMAP1 = *CMAP2 = 0;
363	for (i = 0; i < NKPT; i++)
364		PTD[i] = 0;
365
366	pgeflag = 0;
367#ifndef DISABLE_PG_G
368	if (cpu_feature & CPUID_PGE)
369		pgeflag = PG_G;
370#endif
371
372/*
373 * Initialize the 4MB page size flag
374 */
375	pseflag = 0;
376/*
377 * The 4MB page version of the initial
378 * kernel page mapping.
379 */
380	pdir4mb = 0;
381
382#ifndef DISABLE_PSE
383	if (cpu_feature & CPUID_PSE) {
384		pd_entry_t ptditmp;
385		/*
386		 * Note that we have enabled PSE mode
387		 */
388		pseflag = PG_PS;
389		ptditmp = *(PTmap + i386_btop(KERNBASE));
390		ptditmp &= ~(NBPDR - 1);
391		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
392		pdir4mb = ptditmp;
393	}
394#endif
395#ifndef SMP
396	/*
397	 * Turn on PGE/PSE.  SMP does this later on since the
398	 * 4K page tables are required for AP boot (for now).
399	 * XXX fixme.
400	 */
401	pmap_set_opt();
402#endif
403#ifdef SMP
404	if (cpu_apic_address == 0)
405		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
406
407	/* local apic is mapped on last page */
408	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
409	    (cpu_apic_address & PG_FRAME));
410#endif
411	invltlb();
412}
413
414/*
415 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
416 * BSP will run this after all the AP's have started up.
417 */
418void
419pmap_set_opt(void)
420{
421	pt_entry_t *pte;
422	vm_offset_t va, endva;
423
424	if (pgeflag && (cpu_feature & CPUID_PGE)) {
425		load_cr4(rcr4() | CR4_PGE);
426		invltlb();		/* Insurance */
427	}
428#ifndef DISABLE_PSE
429	if (pseflag && (cpu_feature & CPUID_PSE)) {
430		load_cr4(rcr4() | CR4_PSE);
431		invltlb();		/* Insurance */
432	}
433#endif
434	if (PCPU_GET(cpuid) == 0) {
435#ifndef DISABLE_PSE
436		if (pdir4mb) {
437			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
438			invltlb();	/* Insurance */
439		}
440#endif
441		if (pgeflag) {
442			/* Turn on PG_G for text, data, bss pages. */
443			va = (vm_offset_t)btext;
444#ifndef DISABLE_PSE
445			if (pseflag && (cpu_feature & CPUID_PSE)) {
446				if (va < KERNBASE + (1 << PDRSHIFT))
447					va = KERNBASE + (1 << PDRSHIFT);
448			}
449#endif
450			endva = KERNBASE + KERNend;
451			while (va < endva) {
452				pte = vtopte(va);
453				if (*pte)
454					*pte |= pgeflag;
455				va += PAGE_SIZE;
456			}
457			invltlb();	/* Insurance */
458		}
459		/*
460		 * We do not need to broadcast the invltlb here, because
461		 * each AP does it the moment it is released from the boot
462		 * lock.  See ap_init().
463		 */
464	}
465}
466
467static void *
468pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
469{
470	*flags = UMA_SLAB_PRIV;
471	return (void *)kmem_alloc(kernel_map, bytes);
472}
473
474/*
475 *	Initialize the pmap module.
476 *	Called by vm_init, to initialize any structures that the pmap
477 *	system needs to map virtual memory.
478 *	pmap_init has been enhanced to support in a fairly consistant
479 *	way, discontiguous physical memory.
480 */
481void
482pmap_init(phys_start, phys_end)
483	vm_offset_t phys_start, phys_end;
484{
485	int i;
486	int initial_pvs;
487
488	/*
489	 * object for kernel page table pages
490	 */
491	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
492
493	/*
494	 * Allocate memory for random pmap data structures.  Includes the
495	 * pv_head_table.
496	 */
497
498	for(i = 0; i < vm_page_array_size; i++) {
499		vm_page_t m;
500
501		m = &vm_page_array[i];
502		TAILQ_INIT(&m->md.pv_list);
503		m->md.pv_list_count = 0;
504	}
505
506	/*
507	 * init the pv free list
508	 */
509	initial_pvs = vm_page_array_size;
510	if (initial_pvs < MINPV)
511		initial_pvs = MINPV;
512	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
513	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
514	uma_zone_set_allocf(pvzone, pmap_allocf);
515	uma_prealloc(pvzone, initial_pvs);
516
517	/*
518	 * Now it is safe to enable pv_table recording.
519	 */
520	pmap_initialized = TRUE;
521}
522
523/*
524 * Initialize the address space (zone) for the pv_entries.  Set a
525 * high water mark so that the system can recover from excessive
526 * numbers of pv entries.
527 */
528void
529pmap_init2()
530{
531	int shpgperproc = PMAP_SHPGPERPROC;
532
533	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
534	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
535	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
536	pv_entry_high_water = 9 * (pv_entry_max / 10);
537	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
538}
539
540
541/***************************************************
542 * Low level helper routines.....
543 ***************************************************/
544
545#if defined(PMAP_DIAGNOSTIC)
546
547/*
548 * This code checks for non-writeable/modified pages.
549 * This should be an invalid condition.
550 */
551static int
552pmap_nw_modified(pt_entry_t ptea)
553{
554	int pte;
555
556	pte = (int) ptea;
557
558	if ((pte & (PG_M|PG_RW)) == PG_M)
559		return 1;
560	else
561		return 0;
562}
563#endif
564
565
566/*
567 * this routine defines the region(s) of memory that should
568 * not be tested for the modified bit.
569 */
570static PMAP_INLINE int
571pmap_track_modified(vm_offset_t va)
572{
573	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
574		return 1;
575	else
576		return 0;
577}
578
579#ifdef I386_CPU
580/*
581 * i386 only has "invalidate everything" and no SMP to worry about.
582 */
583PMAP_INLINE void
584pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
585{
586
587	if (pmap == kernel_pmap || pmap->pm_active)
588		invltlb();
589}
590
591PMAP_INLINE void
592pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
593{
594
595	if (pmap == kernel_pmap || pmap->pm_active)
596		invltlb();
597}
598
599PMAP_INLINE void
600pmap_invalidate_all(pmap_t pmap)
601{
602
603	if (pmap == kernel_pmap || pmap->pm_active)
604		invltlb();
605}
606#else /* !I386_CPU */
607#ifdef SMP
608/*
609 * For SMP, these functions have to use the IPI mechanism for coherence.
610 */
611void
612pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
613{
614	u_int cpumask;
615	u_int other_cpus;
616
617	critical_enter();
618	/*
619	 * We need to disable interrupt preemption but MUST NOT have
620	 * interrupts disabled here.
621	 * XXX we may need to hold schedlock to get a coherent pm_active
622	 */
623	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
624		invlpg(va);
625		smp_invlpg(va);
626	} else {
627		cpumask = PCPU_GET(cpumask);
628		other_cpus = PCPU_GET(other_cpus);
629		if (pmap->pm_active & cpumask)
630			invlpg(va);
631		if (pmap->pm_active & other_cpus)
632			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
633	}
634	critical_exit();
635}
636
637void
638pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
639{
640	u_int cpumask;
641	u_int other_cpus;
642	vm_offset_t addr;
643
644	critical_enter();
645	/*
646	 * We need to disable interrupt preemption but MUST NOT have
647	 * interrupts disabled here.
648	 * XXX we may need to hold schedlock to get a coherent pm_active
649	 */
650	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
651		for (addr = sva; addr < eva; addr += PAGE_SIZE)
652			invlpg(addr);
653		smp_invlpg_range(sva, eva);
654	} else {
655		cpumask = PCPU_GET(cpumask);
656		other_cpus = PCPU_GET(other_cpus);
657		if (pmap->pm_active & cpumask)
658			for (addr = sva; addr < eva; addr += PAGE_SIZE)
659				invlpg(addr);
660		if (pmap->pm_active & other_cpus)
661			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
662			    sva, eva);
663	}
664	critical_exit();
665}
666
667void
668pmap_invalidate_all(pmap_t pmap)
669{
670	u_int cpumask;
671	u_int other_cpus;
672
673#ifdef SWTCH_OPTIM_STATS
674	tlb_flush_count++;
675#endif
676	critical_enter();
677	/*
678	 * We need to disable interrupt preemption but MUST NOT have
679	 * interrupts disabled here.
680	 * XXX we may need to hold schedlock to get a coherent pm_active
681	 */
682	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
683		invltlb();
684		smp_invltlb();
685	} else {
686		cpumask = PCPU_GET(cpumask);
687		other_cpus = PCPU_GET(other_cpus);
688		if (pmap->pm_active & cpumask)
689			invltlb();
690		if (pmap->pm_active & other_cpus)
691			smp_masked_invltlb(pmap->pm_active & other_cpus);
692	}
693	critical_exit();
694}
695#else /* !SMP */
696/*
697 * Normal, non-SMP, 486+ invalidation functions.
698 * We inline these within pmap.c for speed.
699 */
700PMAP_INLINE void
701pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
702{
703
704	if (pmap == kernel_pmap || pmap->pm_active)
705		invlpg(va);
706}
707
708PMAP_INLINE void
709pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
710{
711	vm_offset_t addr;
712
713	if (pmap == kernel_pmap || pmap->pm_active)
714		for (addr = sva; addr < eva; addr += PAGE_SIZE)
715			invlpg(addr);
716}
717
718PMAP_INLINE void
719pmap_invalidate_all(pmap_t pmap)
720{
721
722	if (pmap == kernel_pmap || pmap->pm_active)
723		invltlb();
724}
725#endif /* !SMP */
726#endif /* !I386_CPU */
727
728/*
729 * Return an address which is the base of the Virtual mapping of
730 * all the PTEs for the given pmap. Note this doesn't say that
731 * all the PTEs will be present or that the pages there are valid.
732 * The PTEs are made available by the recursive mapping trick.
733 * It will map in the alternate PTE space if needed.
734 */
735static pt_entry_t *
736get_ptbase(pmap)
737	pmap_t pmap;
738{
739	pd_entry_t frame;
740
741	/* are we current address space or kernel? */
742	if (pmap == kernel_pmap)
743		return PTmap;
744	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
745	if (frame == (PTDpde & PG_FRAME))
746		return PTmap;
747	/* otherwise, we are alternate address space */
748	if (frame != (APTDpde & PG_FRAME)) {
749		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
750		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
751	}
752	return APTmap;
753}
754
755/*
756 * Super fast pmap_pte routine best used when scanning
757 * the pv lists.  This eliminates many coarse-grained
758 * invltlb calls.  Note that many of the pv list
759 * scans are across different pmaps.  It is very wasteful
760 * to do an entire invltlb for checking a single mapping.
761 */
762
763static pt_entry_t *
764pmap_pte_quick(pmap, va)
765	register pmap_t pmap;
766	vm_offset_t va;
767{
768	pd_entry_t pde, newpf;
769	pde = pmap->pm_pdir[va >> PDRSHIFT];
770	if (pde != 0) {
771		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
772		unsigned index = i386_btop(va);
773		/* are we current address space or kernel? */
774		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
775			return PTmap + index;
776		newpf = pde & PG_FRAME;
777		if (((*PMAP1) & PG_FRAME) != newpf) {
778			*PMAP1 = newpf | PG_RW | PG_V;
779			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
780		}
781		return PADDR1 + (index & (NPTEPG - 1));
782	}
783	return (0);
784}
785
786/*
787 *	Routine:	pmap_extract
788 *	Function:
789 *		Extract the physical page address associated
790 *		with the given map/virtual_address pair.
791 */
792vm_offset_t
793pmap_extract(pmap, va)
794	register pmap_t pmap;
795	vm_offset_t va;
796{
797	vm_offset_t rtval;	/* XXX FIXME */
798	vm_offset_t pdirindex;
799
800	if (pmap == 0)
801		return 0;
802	pdirindex = va >> PDRSHIFT;
803	rtval = pmap->pm_pdir[pdirindex];
804	if (rtval != 0) {
805		pt_entry_t *pte;
806		if ((rtval & PG_PS) != 0) {
807			rtval &= ~(NBPDR - 1);
808			rtval |= va & (NBPDR - 1);
809			return rtval;
810		}
811		pte = get_ptbase(pmap) + i386_btop(va);
812		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
813		return rtval;
814	}
815	return 0;
816
817}
818
819/***************************************************
820 * Low level mapping routines.....
821 ***************************************************/
822
823/*
824 * Add a wired page to the kva.
825 * Note: not SMP coherent.
826 */
827PMAP_INLINE void
828pmap_kenter(vm_offset_t va, vm_offset_t pa)
829{
830	pt_entry_t *pte;
831
832	pte = vtopte(va);
833	*pte = pa | PG_RW | PG_V | pgeflag;
834}
835
836/*
837 * Remove a page from the kernel pagetables.
838 * Note: not SMP coherent.
839 */
840PMAP_INLINE void
841pmap_kremove(vm_offset_t va)
842{
843	pt_entry_t *pte;
844
845	pte = vtopte(va);
846	*pte = 0;
847}
848
849/*
850 *	Used to map a range of physical addresses into kernel
851 *	virtual address space.
852 *
853 *	The value passed in '*virt' is a suggested virtual address for
854 *	the mapping. Architectures which can support a direct-mapped
855 *	physical to virtual region can return the appropriate address
856 *	within that region, leaving '*virt' unchanged. Other
857 *	architectures should map the pages starting at '*virt' and
858 *	update '*virt' with the first usable address after the mapped
859 *	region.
860 */
861vm_offset_t
862pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
863{
864	vm_offset_t va, sva;
865
866	va = sva = *virt;
867	while (start < end) {
868		pmap_kenter(va, start);
869		va += PAGE_SIZE;
870		start += PAGE_SIZE;
871	}
872	pmap_invalidate_range(kernel_pmap, sva, va);
873	*virt = va;
874	return (sva);
875}
876
877
878/*
879 * Add a list of wired pages to the kva
880 * this routine is only used for temporary
881 * kernel mappings that do not need to have
882 * page modification or references recorded.
883 * Note that old mappings are simply written
884 * over.  The page *must* be wired.
885 * Note: SMP coherent.  Uses a ranged shootdown IPI.
886 */
887void
888pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
889{
890	vm_offset_t va;
891
892	va = sva;
893	while (count-- > 0) {
894		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
895		va += PAGE_SIZE;
896		m++;
897	}
898	pmap_invalidate_range(kernel_pmap, sva, va);
899}
900
901/*
902 * This routine tears out page mappings from the
903 * kernel -- it is meant only for temporary mappings.
904 * Note: SMP coherent.  Uses a ranged shootdown IPI.
905 */
906void
907pmap_qremove(vm_offset_t sva, int count)
908{
909	vm_offset_t va;
910
911	va = sva;
912	while (count-- > 0) {
913		pmap_kremove(va);
914		va += PAGE_SIZE;
915	}
916	pmap_invalidate_range(kernel_pmap, sva, va);
917}
918
919static vm_page_t
920pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
921{
922	vm_page_t m;
923
924retry:
925	m = vm_page_lookup(object, pindex);
926	if (m != NULL) {
927		vm_page_lock_queues();
928		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
929			goto retry;
930		vm_page_unlock_queues();
931	}
932	return m;
933}
934
935#ifndef KSTACK_MAX_PAGES
936#define KSTACK_MAX_PAGES 32
937#endif
938
939/*
940 * Create the kernel stack (including pcb for i386) for a new thread.
941 * This routine directly affects the fork perf for a process and
942 * create performance for a thread.
943 */
944void
945pmap_new_thread(struct thread *td, int pages)
946{
947	int i;
948	vm_page_t ma[KSTACK_MAX_PAGES];
949	vm_object_t ksobj;
950	vm_page_t m;
951	vm_offset_t ks;
952
953	/* Bounds check */
954	if (pages <= 1)
955		pages = KSTACK_PAGES;
956	else if (pages > KSTACK_MAX_PAGES)
957		pages = KSTACK_MAX_PAGES;
958
959	/*
960	 * allocate object for the kstack
961	 */
962	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
963	td->td_kstack_obj = ksobj;
964
965	/* get a kernel virtual address for the kstack for this thread */
966#ifdef KSTACK_GUARD
967	ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
968	if (ks == 0)
969		panic("pmap_new_thread: kstack allocation failed");
970	if (*vtopte(ks) != 0)
971		pmap_qremove(ks, 1);
972	ks += PAGE_SIZE;
973	td->td_kstack = ks;
974#else
975	/* get a kernel virtual address for the kstack for this thread */
976	ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
977	if (ks == 0)
978		panic("pmap_new_thread: kstack allocation failed");
979	td->td_kstack = ks;
980#endif
981	/*
982	 * Knowing the number of pages allocated is useful when you
983	 * want to deallocate them.
984	 */
985	td->td_kstack_pages = pages;
986
987	/*
988	 * For the length of the stack, link in a real page of ram for each
989	 * page of stack.
990	 */
991	for (i = 0; i < pages; i++) {
992		/*
993		 * Get a kernel stack page
994		 */
995		m = vm_page_grab(ksobj, i,
996		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
997		ma[i] = m;
998
999		vm_page_lock_queues();
1000		vm_page_wakeup(m);
1001		vm_page_flag_clear(m, PG_ZERO);
1002		m->valid = VM_PAGE_BITS_ALL;
1003		vm_page_unlock_queues();
1004	}
1005	pmap_qenter(ks, ma, pages);
1006}
1007
1008/*
1009 * Dispose the kernel stack for a thread that has exited.
1010 * This routine directly impacts the exit perf of a process and thread.
1011 */
1012void
1013pmap_dispose_thread(td)
1014	struct thread *td;
1015{
1016	int i;
1017	int pages;
1018	vm_object_t ksobj;
1019	vm_offset_t ks;
1020	vm_page_t m;
1021
1022	pages = td->td_kstack_pages;
1023	ksobj = td->td_kstack_obj;
1024	ks = td->td_kstack;
1025	pmap_qremove(ks, pages);
1026	for (i = 0; i < pages; i++) {
1027		m = vm_page_lookup(ksobj, i);
1028		if (m == NULL)
1029			panic("pmap_dispose_thread: kstack already missing?");
1030		vm_page_lock_queues();
1031		vm_page_busy(m);
1032		vm_page_unwire(m, 0);
1033		vm_page_free(m);
1034		vm_page_unlock_queues();
1035	}
1036	/*
1037	 * Free the space that this stack was mapped to in the kernel
1038	 * address map.
1039	 */
1040#ifdef KSTACK_GUARD
1041	kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
1042#else
1043	kmem_free(kernel_map, ks, pages * PAGE_SIZE);
1044#endif
1045	vm_object_deallocate(ksobj);
1046}
1047
1048/*
1049 * Set up a variable sized alternate kstack.  Though it may look MI, it may
1050 * need to be different on certain arches like ia64.
1051 */
1052void
1053pmap_new_altkstack(struct thread *td, int pages)
1054{
1055	/* shuffle the original stack */
1056	td->td_altkstack_obj = td->td_kstack_obj;
1057	td->td_altkstack = td->td_kstack;
1058	td->td_altkstack_pages = td->td_kstack_pages;
1059
1060	pmap_new_thread(td, pages);
1061}
1062
1063void
1064pmap_dispose_altkstack(td)
1065	struct thread *td;
1066{
1067	pmap_dispose_thread(td);
1068
1069	/* restore the original kstack */
1070	td->td_kstack = td->td_altkstack;
1071	td->td_kstack_obj = td->td_altkstack_obj;
1072	td->td_kstack_pages = td->td_altkstack_pages;
1073	td->td_altkstack = 0;
1074	td->td_altkstack_obj = NULL;
1075	td->td_altkstack_pages = 0;
1076}
1077
1078/*
1079 * Allow the Kernel stack for a thread to be prejudicially paged out.
1080 */
1081void
1082pmap_swapout_thread(td)
1083	struct thread *td;
1084{
1085	int i;
1086	int pages;
1087	vm_object_t ksobj;
1088	vm_offset_t ks;
1089	vm_page_t m;
1090
1091	pages = td->td_kstack_pages;
1092	ksobj = td->td_kstack_obj;
1093	ks = td->td_kstack;
1094	pmap_qremove(ks, pages);
1095	for (i = 0; i < pages; i++) {
1096		m = vm_page_lookup(ksobj, i);
1097		if (m == NULL)
1098			panic("pmap_swapout_thread: kstack already missing?");
1099		vm_page_lock_queues();
1100		vm_page_dirty(m);
1101		vm_page_unwire(m, 0);
1102		vm_page_unlock_queues();
1103	}
1104}
1105
1106/*
1107 * Bring the kernel stack for a specified thread back in.
1108 */
1109void
1110pmap_swapin_thread(td)
1111	struct thread *td;
1112{
1113	int i, rv;
1114	int pages;
1115	vm_page_t ma[KSTACK_MAX_PAGES];
1116	vm_object_t ksobj;
1117	vm_offset_t ks;
1118	vm_page_t m;
1119
1120	pages = td->td_kstack_pages;
1121	ksobj = td->td_kstack_obj;
1122	ks = td->td_kstack;
1123	for (i = 0; i < pages; i++) {
1124		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1125		if (m->valid != VM_PAGE_BITS_ALL) {
1126			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1127			if (rv != VM_PAGER_OK)
1128				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1129			m = vm_page_lookup(ksobj, i);
1130			m->valid = VM_PAGE_BITS_ALL;
1131		}
1132		ma[i] = m;
1133		vm_page_lock_queues();
1134		vm_page_wire(m);
1135		vm_page_wakeup(m);
1136		vm_page_unlock_queues();
1137	}
1138	pmap_qenter(ks, ma, pages);
1139}
1140
1141/***************************************************
1142 * Page table page management routines.....
1143 ***************************************************/
1144
1145/*
1146 * This routine unholds page table pages, and if the hold count
1147 * drops to zero, then it decrements the wire count.
1148 */
1149static int
1150_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1151{
1152
1153	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1154		vm_page_lock_queues();
1155
1156	if (m->hold_count == 0) {
1157		vm_offset_t pteva;
1158		/*
1159		 * unmap the page table page
1160		 */
1161		pmap->pm_pdir[m->pindex] = 0;
1162		--pmap->pm_stats.resident_count;
1163		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1164		    (PTDpde & PG_FRAME)) {
1165			/*
1166			 * Do an invltlb to make the invalidated mapping
1167			 * take effect immediately.
1168			 */
1169			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1170			pmap_invalidate_page(pmap, pteva);
1171		}
1172
1173		if (pmap->pm_ptphint == m)
1174			pmap->pm_ptphint = NULL;
1175
1176		/*
1177		 * If the page is finally unwired, simply free it.
1178		 */
1179		--m->wire_count;
1180		if (m->wire_count == 0) {
1181			vm_page_busy(m);
1182			vm_page_free_zero(m);
1183			atomic_subtract_int(&cnt.v_wire_count, 1);
1184		}
1185		return 1;
1186	}
1187	return 0;
1188}
1189
1190static PMAP_INLINE int
1191pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1192{
1193	vm_page_unhold(m);
1194	if (m->hold_count == 0)
1195		return _pmap_unwire_pte_hold(pmap, m);
1196	else
1197		return 0;
1198}
1199
1200/*
1201 * After removing a page table entry, this routine is used to
1202 * conditionally free the page, and manage the hold/wire counts.
1203 */
1204static int
1205pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1206{
1207	unsigned ptepindex;
1208	if (va >= VM_MAXUSER_ADDRESS)
1209		return 0;
1210
1211	if (mpte == NULL) {
1212		ptepindex = (va >> PDRSHIFT);
1213		if (pmap->pm_ptphint &&
1214			(pmap->pm_ptphint->pindex == ptepindex)) {
1215			mpte = pmap->pm_ptphint;
1216		} else {
1217			while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
1218			       vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
1219				vm_page_lock_queues();
1220			pmap->pm_ptphint = mpte;
1221		}
1222	}
1223
1224	return pmap_unwire_pte_hold(pmap, mpte);
1225}
1226
1227void
1228pmap_pinit0(pmap)
1229	struct pmap *pmap;
1230{
1231	pmap->pm_pdir =
1232		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1233	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1234#ifndef I386_CPU
1235	invlpg((vm_offset_t)pmap->pm_pdir);
1236#else
1237	invltlb();
1238#endif
1239	pmap->pm_ptphint = NULL;
1240	pmap->pm_active = 0;
1241	TAILQ_INIT(&pmap->pm_pvlist);
1242	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1243	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1244}
1245
1246/*
1247 * Initialize a preallocated and zeroed pmap structure,
1248 * such as one in a vmspace structure.
1249 */
1250void
1251pmap_pinit(pmap)
1252	register struct pmap *pmap;
1253{
1254	vm_page_t ptdpg;
1255
1256	/*
1257	 * No need to allocate page table space yet but we do need a valid
1258	 * page directory table.
1259	 */
1260	if (pmap->pm_pdir == NULL)
1261		pmap->pm_pdir =
1262			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1263
1264	/*
1265	 * allocate object for the ptes
1266	 */
1267	if (pmap->pm_pteobj == NULL)
1268		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1269
1270	/*
1271	 * allocate the page directory page
1272	 */
1273	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1274	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1275	vm_page_lock_queues();
1276	vm_page_flag_clear(ptdpg, PG_BUSY);
1277	ptdpg->valid = VM_PAGE_BITS_ALL;
1278	vm_page_unlock_queues();
1279
1280	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1281	if ((ptdpg->flags & PG_ZERO) == 0)
1282		bzero(pmap->pm_pdir, PAGE_SIZE);
1283
1284	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1285	/* Wire in kernel global address entries. */
1286	/* XXX copies current process, does not fill in MPPTDI */
1287	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1288#ifdef SMP
1289	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1290#endif
1291
1292	/* install self-referential address mapping entry */
1293	pmap->pm_pdir[PTDPTDI] =
1294		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1295
1296	pmap->pm_active = 0;
1297	pmap->pm_ptphint = NULL;
1298	TAILQ_INIT(&pmap->pm_pvlist);
1299	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1300}
1301
1302/*
1303 * Wire in kernel global address entries.  To avoid a race condition
1304 * between pmap initialization and pmap_growkernel, this procedure
1305 * should be called after the vmspace is attached to the process
1306 * but before this pmap is activated.
1307 */
1308void
1309pmap_pinit2(pmap)
1310	struct pmap *pmap;
1311{
1312	/* XXX: Remove this stub when no longer called */
1313}
1314
1315static int
1316pmap_release_free_page(pmap_t pmap, vm_page_t p)
1317{
1318	pd_entry_t *pde = pmap->pm_pdir;
1319
1320	/*
1321	 * This code optimizes the case of freeing non-busy
1322	 * page-table pages.  Those pages are zero now, and
1323	 * might as well be placed directly into the zero queue.
1324	 */
1325	vm_page_lock_queues();
1326	if (vm_page_sleep_if_busy(p, FALSE, "pmaprl"))
1327		return (0);
1328	vm_page_busy(p);
1329
1330	/*
1331	 * Remove the page table page from the processes address space.
1332	 */
1333	pde[p->pindex] = 0;
1334	pmap->pm_stats.resident_count--;
1335
1336	if (p->hold_count)  {
1337		panic("pmap_release: freeing held page table page");
1338	}
1339	/*
1340	 * Page directory pages need to have the kernel
1341	 * stuff cleared, so they can go into the zero queue also.
1342	 */
1343	if (p->pindex == PTDPTDI) {
1344		bzero(pde + KPTDI, nkpt * PTESIZE);
1345#ifdef SMP
1346		pde[MPPTDI] = 0;
1347#endif
1348		pde[APTDPTDI] = 0;
1349		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1350	}
1351
1352	if (pmap->pm_ptphint == p)
1353		pmap->pm_ptphint = NULL;
1354
1355	p->wire_count--;
1356	atomic_subtract_int(&cnt.v_wire_count, 1);
1357	vm_page_free_zero(p);
1358	vm_page_unlock_queues();
1359	return 1;
1360}
1361
1362/*
1363 * this routine is called if the page table page is not
1364 * mapped correctly.
1365 */
1366static vm_page_t
1367_pmap_allocpte(pmap, ptepindex)
1368	pmap_t	pmap;
1369	unsigned ptepindex;
1370{
1371	vm_offset_t pteva, ptepa;	/* XXXPA */
1372	vm_page_t m;
1373
1374	/*
1375	 * Find or fabricate a new pagetable page
1376	 */
1377	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1378	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1379
1380	KASSERT(m->queue == PQ_NONE,
1381		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1382
1383	/*
1384	 * Increment the hold count for the page table page
1385	 * (denoting a new mapping.)
1386	 */
1387	m->hold_count++;
1388
1389	/*
1390	 * Map the pagetable page into the process address space, if
1391	 * it isn't already there.
1392	 */
1393
1394	pmap->pm_stats.resident_count++;
1395
1396	ptepa = VM_PAGE_TO_PHYS(m);
1397	pmap->pm_pdir[ptepindex] =
1398		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1399
1400	/*
1401	 * Set the page table hint
1402	 */
1403	pmap->pm_ptphint = m;
1404
1405	/*
1406	 * Try to use the new mapping, but if we cannot, then
1407	 * do it with the routine that maps the page explicitly.
1408	 */
1409	if ((m->flags & PG_ZERO) == 0) {
1410		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1411		    (PTDpde & PG_FRAME)) {
1412			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1413			bzero((caddr_t) pteva, PAGE_SIZE);
1414		} else {
1415			pmap_zero_page(m);
1416		}
1417	}
1418	vm_page_lock_queues();
1419	m->valid = VM_PAGE_BITS_ALL;
1420	vm_page_flag_clear(m, PG_ZERO);
1421	vm_page_wakeup(m);
1422	vm_page_unlock_queues();
1423
1424	return m;
1425}
1426
1427static vm_page_t
1428pmap_allocpte(pmap_t pmap, vm_offset_t va)
1429{
1430	unsigned ptepindex;
1431	pd_entry_t ptepa;
1432	vm_page_t m;
1433
1434	/*
1435	 * Calculate pagetable page index
1436	 */
1437	ptepindex = va >> PDRSHIFT;
1438
1439	/*
1440	 * Get the page directory entry
1441	 */
1442	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1443
1444	/*
1445	 * This supports switching from a 4MB page to a
1446	 * normal 4K page.
1447	 */
1448	if (ptepa & PG_PS) {
1449		pmap->pm_pdir[ptepindex] = 0;
1450		ptepa = 0;
1451		pmap_invalidate_all(kernel_pmap);
1452	}
1453
1454	/*
1455	 * If the page table page is mapped, we just increment the
1456	 * hold count, and activate it.
1457	 */
1458	if (ptepa) {
1459		/*
1460		 * In order to get the page table page, try the
1461		 * hint first.
1462		 */
1463		if (pmap->pm_ptphint &&
1464			(pmap->pm_ptphint->pindex == ptepindex)) {
1465			m = pmap->pm_ptphint;
1466		} else {
1467			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1468			pmap->pm_ptphint = m;
1469		}
1470		m->hold_count++;
1471		return m;
1472	}
1473	/*
1474	 * Here if the pte page isn't mapped, or if it has been deallocated.
1475	 */
1476	return _pmap_allocpte(pmap, ptepindex);
1477}
1478
1479
1480/***************************************************
1481* Pmap allocation/deallocation routines.
1482 ***************************************************/
1483
1484/*
1485 * Release any resources held by the given physical map.
1486 * Called when a pmap initialized by pmap_pinit is being released.
1487 * Should only be called if the map contains no valid mappings.
1488 */
1489void
1490pmap_release(pmap_t pmap)
1491{
1492	vm_page_t p,n,ptdpg;
1493	vm_object_t object = pmap->pm_pteobj;
1494	int curgeneration;
1495
1496#if defined(DIAGNOSTIC)
1497	if (object->ref_count != 1)
1498		panic("pmap_release: pteobj reference count != 1");
1499#endif
1500
1501	ptdpg = NULL;
1502	LIST_REMOVE(pmap, pm_list);
1503retry:
1504	curgeneration = object->generation;
1505	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1506		n = TAILQ_NEXT(p, listq);
1507		if (p->pindex == PTDPTDI) {
1508			ptdpg = p;
1509			continue;
1510		}
1511		while (1) {
1512			if (!pmap_release_free_page(pmap, p) &&
1513				(object->generation != curgeneration))
1514				goto retry;
1515		}
1516	}
1517
1518	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1519		goto retry;
1520}
1521
1522static int
1523kvm_size(SYSCTL_HANDLER_ARGS)
1524{
1525	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1526
1527	return sysctl_handle_long(oidp, &ksize, 0, req);
1528}
1529SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1530    0, 0, kvm_size, "IU", "Size of KVM");
1531
1532static int
1533kvm_free(SYSCTL_HANDLER_ARGS)
1534{
1535	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1536
1537	return sysctl_handle_long(oidp, &kfree, 0, req);
1538}
1539SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1540    0, 0, kvm_free, "IU", "Amount of KVM free");
1541
1542/*
1543 * grow the number of kernel page table entries, if needed
1544 */
1545void
1546pmap_growkernel(vm_offset_t addr)
1547{
1548	struct pmap *pmap;
1549	int s;
1550	vm_offset_t ptppaddr;
1551	vm_page_t nkpg;
1552	pd_entry_t newpdir;
1553
1554	s = splhigh();
1555	if (kernel_vm_end == 0) {
1556		kernel_vm_end = KERNBASE;
1557		nkpt = 0;
1558		while (pdir_pde(PTD, kernel_vm_end)) {
1559			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1560			nkpt++;
1561		}
1562	}
1563	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1564	while (kernel_vm_end < addr) {
1565		if (pdir_pde(PTD, kernel_vm_end)) {
1566			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1567			continue;
1568		}
1569
1570		/*
1571		 * This index is bogus, but out of the way
1572		 */
1573		nkpg = vm_page_alloc(kptobj, nkpt,
1574				     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1575		if (!nkpg)
1576			panic("pmap_growkernel: no memory to grow kernel");
1577
1578		nkpt++;
1579
1580		pmap_zero_page(nkpg);
1581		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1582		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1583		pdir_pde(PTD, kernel_vm_end) = newpdir;
1584
1585		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1586			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1587		}
1588		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1589	}
1590	splx(s);
1591}
1592
1593
1594/***************************************************
1595 * page management routines.
1596 ***************************************************/
1597
1598/*
1599 * free the pv_entry back to the free list
1600 */
1601static PMAP_INLINE void
1602free_pv_entry(pv_entry_t pv)
1603{
1604	pv_entry_count--;
1605	uma_zfree(pvzone, pv);
1606}
1607
1608/*
1609 * get a new pv_entry, allocating a block from the system
1610 * when needed.
1611 * the memory allocation is performed bypassing the malloc code
1612 * because of the possibility of allocations at interrupt time.
1613 */
1614static pv_entry_t
1615get_pv_entry(void)
1616{
1617	pv_entry_count++;
1618	if (pv_entry_high_water &&
1619		(pv_entry_count > pv_entry_high_water) &&
1620		(pmap_pagedaemon_waken == 0)) {
1621		pmap_pagedaemon_waken = 1;
1622		wakeup (&vm_pages_needed);
1623	}
1624	return uma_zalloc(pvzone, M_NOWAIT);
1625}
1626
1627/*
1628 * If it is the first entry on the list, it is actually
1629 * in the header and we must copy the following entry up
1630 * to the header.  Otherwise we must search the list for
1631 * the entry.  In either case we free the now unused entry.
1632 */
1633
1634static int
1635pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1636{
1637	pv_entry_t pv;
1638	int rtval;
1639	int s;
1640
1641	s = splvm();
1642	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1643	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1644		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1645			if (pmap == pv->pv_pmap && va == pv->pv_va)
1646				break;
1647		}
1648	} else {
1649		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1650			if (va == pv->pv_va)
1651				break;
1652		}
1653	}
1654
1655	rtval = 0;
1656	if (pv) {
1657		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1658		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1659		m->md.pv_list_count--;
1660		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1661			vm_page_flag_clear(m, PG_WRITEABLE);
1662
1663		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1664		free_pv_entry(pv);
1665	}
1666
1667	splx(s);
1668	return rtval;
1669}
1670
1671/*
1672 * Create a pv entry for page at pa for
1673 * (pmap, va).
1674 */
1675static void
1676pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1677{
1678
1679	int s;
1680	pv_entry_t pv;
1681
1682	s = splvm();
1683	pv = get_pv_entry();
1684	pv->pv_va = va;
1685	pv->pv_pmap = pmap;
1686	pv->pv_ptem = mpte;
1687
1688	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1689	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1690	m->md.pv_list_count++;
1691
1692	splx(s);
1693}
1694
1695/*
1696 * pmap_remove_pte: do the things to unmap a page in a process
1697 */
1698static int
1699pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1700{
1701	pt_entry_t oldpte;
1702	vm_page_t m;
1703
1704	oldpte = atomic_readandclear_int(ptq);
1705	if (oldpte & PG_W)
1706		pmap->pm_stats.wired_count -= 1;
1707	/*
1708	 * Machines that don't support invlpg, also don't support
1709	 * PG_G.
1710	 */
1711	if (oldpte & PG_G)
1712		pmap_invalidate_page(kernel_pmap, va);
1713	pmap->pm_stats.resident_count -= 1;
1714	if (oldpte & PG_MANAGED) {
1715		m = PHYS_TO_VM_PAGE(oldpte);
1716		if (oldpte & PG_M) {
1717#if defined(PMAP_DIAGNOSTIC)
1718			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1719				printf(
1720	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1721				    va, oldpte);
1722			}
1723#endif
1724			if (pmap_track_modified(va))
1725				vm_page_dirty(m);
1726		}
1727		if (oldpte & PG_A)
1728			vm_page_flag_set(m, PG_REFERENCED);
1729		return pmap_remove_entry(pmap, m, va);
1730	} else {
1731		return pmap_unuse_pt(pmap, va, NULL);
1732	}
1733
1734	return 0;
1735}
1736
1737/*
1738 * Remove a single page from a process address space
1739 */
1740static void
1741pmap_remove_page(pmap_t pmap, vm_offset_t va)
1742{
1743	register pt_entry_t *ptq;
1744
1745	/*
1746	 * if there is no pte for this address, just skip it!!!
1747	 */
1748	if (*pmap_pde(pmap, va) == 0) {
1749		return;
1750	}
1751
1752	/*
1753	 * get a local va for mappings for this pmap.
1754	 */
1755	ptq = get_ptbase(pmap) + i386_btop(va);
1756	if (*ptq) {
1757		(void) pmap_remove_pte(pmap, ptq, va);
1758		pmap_invalidate_page(pmap, va);
1759	}
1760	return;
1761}
1762
1763/*
1764 *	Remove the given range of addresses from the specified map.
1765 *
1766 *	It is assumed that the start and end are properly
1767 *	rounded to the page size.
1768 */
1769void
1770pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1771{
1772	register pt_entry_t *ptbase;
1773	vm_offset_t pdnxt;
1774	pd_entry_t ptpaddr;
1775	vm_offset_t sindex, eindex;
1776	int anyvalid;
1777
1778	if (pmap == NULL)
1779		return;
1780
1781	if (pmap->pm_stats.resident_count == 0)
1782		return;
1783
1784	/*
1785	 * special handling of removing one page.  a very
1786	 * common operation and easy to short circuit some
1787	 * code.
1788	 */
1789	if ((sva + PAGE_SIZE == eva) &&
1790	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1791		pmap_remove_page(pmap, sva);
1792		return;
1793	}
1794
1795	anyvalid = 0;
1796
1797	/*
1798	 * Get a local virtual address for the mappings that are being
1799	 * worked with.
1800	 */
1801	ptbase = get_ptbase(pmap);
1802
1803	sindex = i386_btop(sva);
1804	eindex = i386_btop(eva);
1805
1806	for (; sindex < eindex; sindex = pdnxt) {
1807		unsigned pdirindex;
1808
1809		/*
1810		 * Calculate index for next page table.
1811		 */
1812		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1813		if (pmap->pm_stats.resident_count == 0)
1814			break;
1815
1816		pdirindex = sindex / NPDEPG;
1817		ptpaddr = pmap->pm_pdir[pdirindex];
1818		if ((ptpaddr & PG_PS) != 0) {
1819			pmap->pm_pdir[pdirindex] = 0;
1820			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1821			anyvalid++;
1822			continue;
1823		}
1824
1825		/*
1826		 * Weed out invalid mappings. Note: we assume that the page
1827		 * directory table is always allocated, and in kernel virtual.
1828		 */
1829		if (ptpaddr == 0)
1830			continue;
1831
1832		/*
1833		 * Limit our scan to either the end of the va represented
1834		 * by the current page table page, or to the end of the
1835		 * range being removed.
1836		 */
1837		if (pdnxt > eindex) {
1838			pdnxt = eindex;
1839		}
1840
1841		for (; sindex != pdnxt; sindex++) {
1842			vm_offset_t va;
1843			if (ptbase[sindex] == 0) {
1844				continue;
1845			}
1846			va = i386_ptob(sindex);
1847
1848			anyvalid++;
1849			if (pmap_remove_pte(pmap, ptbase + sindex, va))
1850				break;
1851		}
1852	}
1853
1854	if (anyvalid)
1855		pmap_invalidate_all(pmap);
1856}
1857
1858/*
1859 *	Routine:	pmap_remove_all
1860 *	Function:
1861 *		Removes this physical page from
1862 *		all physical maps in which it resides.
1863 *		Reflects back modify bits to the pager.
1864 *
1865 *	Notes:
1866 *		Original versions of this routine were very
1867 *		inefficient because they iteratively called
1868 *		pmap_remove (slow...)
1869 */
1870
1871void
1872pmap_remove_all(vm_page_t m)
1873{
1874	register pv_entry_t pv;
1875	pt_entry_t *pte, tpte;
1876	int s;
1877
1878#if defined(PMAP_DIAGNOSTIC)
1879	/*
1880	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1881	 */
1882	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1883		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1884		    VM_PAGE_TO_PHYS(m));
1885	}
1886#endif
1887	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1888	s = splvm();
1889	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1890		pv->pv_pmap->pm_stats.resident_count--;
1891		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1892		tpte = atomic_readandclear_int(pte);
1893		if (tpte & PG_W)
1894			pv->pv_pmap->pm_stats.wired_count--;
1895		if (tpte & PG_A)
1896			vm_page_flag_set(m, PG_REFERENCED);
1897
1898		/*
1899		 * Update the vm_page_t clean and reference bits.
1900		 */
1901		if (tpte & PG_M) {
1902#if defined(PMAP_DIAGNOSTIC)
1903			if (pmap_nw_modified((pt_entry_t) tpte)) {
1904				printf(
1905	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1906				    pv->pv_va, tpte);
1907			}
1908#endif
1909			if (pmap_track_modified(pv->pv_va))
1910				vm_page_dirty(m);
1911		}
1912		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1913		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1914		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1915		m->md.pv_list_count--;
1916		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1917		free_pv_entry(pv);
1918	}
1919	vm_page_flag_clear(m, PG_WRITEABLE);
1920	splx(s);
1921}
1922
1923/*
1924 *	Set the physical protection on the
1925 *	specified range of this map as requested.
1926 */
1927void
1928pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1929{
1930	register pt_entry_t *ptbase;
1931	vm_offset_t pdnxt;
1932	pd_entry_t ptpaddr;
1933	vm_offset_t sindex, eindex;
1934	int anychanged;
1935
1936	if (pmap == NULL)
1937		return;
1938
1939	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1940		pmap_remove(pmap, sva, eva);
1941		return;
1942	}
1943
1944	if (prot & VM_PROT_WRITE)
1945		return;
1946
1947	anychanged = 0;
1948
1949	ptbase = get_ptbase(pmap);
1950
1951	sindex = i386_btop(sva);
1952	eindex = i386_btop(eva);
1953
1954	for (; sindex < eindex; sindex = pdnxt) {
1955
1956		unsigned pdirindex;
1957
1958		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1959
1960		pdirindex = sindex / NPDEPG;
1961		ptpaddr = pmap->pm_pdir[pdirindex];
1962		if ((ptpaddr & PG_PS) != 0) {
1963			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1964			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1965			anychanged++;
1966			continue;
1967		}
1968
1969		/*
1970		 * Weed out invalid mappings. Note: we assume that the page
1971		 * directory table is always allocated, and in kernel virtual.
1972		 */
1973		if (ptpaddr == 0)
1974			continue;
1975
1976		if (pdnxt > eindex) {
1977			pdnxt = eindex;
1978		}
1979
1980		for (; sindex != pdnxt; sindex++) {
1981
1982			pt_entry_t pbits;
1983			vm_page_t m;
1984
1985			pbits = ptbase[sindex];
1986
1987			if (pbits & PG_MANAGED) {
1988				m = NULL;
1989				if (pbits & PG_A) {
1990					m = PHYS_TO_VM_PAGE(pbits);
1991					vm_page_flag_set(m, PG_REFERENCED);
1992					pbits &= ~PG_A;
1993				}
1994				if (pbits & PG_M) {
1995					if (pmap_track_modified(i386_ptob(sindex))) {
1996						if (m == NULL)
1997							m = PHYS_TO_VM_PAGE(pbits);
1998						vm_page_dirty(m);
1999						pbits &= ~PG_M;
2000					}
2001				}
2002			}
2003
2004			pbits &= ~PG_RW;
2005
2006			if (pbits != ptbase[sindex]) {
2007				ptbase[sindex] = pbits;
2008				anychanged = 1;
2009			}
2010		}
2011	}
2012	if (anychanged)
2013		pmap_invalidate_all(pmap);
2014}
2015
2016/*
2017 *	Insert the given physical page (p) at
2018 *	the specified virtual address (v) in the
2019 *	target physical map with the protection requested.
2020 *
2021 *	If specified, the page will be wired down, meaning
2022 *	that the related pte can not be reclaimed.
2023 *
2024 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2025 *	or lose information.  That is, this routine must actually
2026 *	insert this page into the given map NOW.
2027 */
2028void
2029pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2030	   boolean_t wired)
2031{
2032	vm_offset_t pa;
2033	register pt_entry_t *pte;
2034	vm_offset_t opa;
2035	pt_entry_t origpte, newpte;
2036	vm_page_t mpte;
2037
2038	if (pmap == NULL)
2039		return;
2040
2041	va &= PG_FRAME;
2042#ifdef PMAP_DIAGNOSTIC
2043	if (va > VM_MAX_KERNEL_ADDRESS)
2044		panic("pmap_enter: toobig");
2045	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2046		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2047#endif
2048
2049	mpte = NULL;
2050	/*
2051	 * In the case that a page table page is not
2052	 * resident, we are creating it here.
2053	 */
2054	if (va < VM_MAXUSER_ADDRESS) {
2055		mpte = pmap_allocpte(pmap, va);
2056	}
2057#if 0 && defined(PMAP_DIAGNOSTIC)
2058	else {
2059		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2060		origpte = *pdeaddr;
2061		if ((origpte & PG_V) == 0) {
2062			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2063				pmap->pm_pdir[PTDPTDI], origpte, va);
2064		}
2065	}
2066#endif
2067
2068	pte = pmap_pte(pmap, va);
2069
2070	/*
2071	 * Page Directory table entry not valid, we need a new PT page
2072	 */
2073	if (pte == NULL) {
2074		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2075			(void *)pmap->pm_pdir[PTDPTDI], va);
2076	}
2077
2078	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2079	origpte = *(vm_offset_t *)pte;
2080	opa = origpte & PG_FRAME;
2081
2082	if (origpte & PG_PS)
2083		panic("pmap_enter: attempted pmap_enter on 4MB page");
2084
2085	/*
2086	 * Mapping has not changed, must be protection or wiring change.
2087	 */
2088	if (origpte && (opa == pa)) {
2089		/*
2090		 * Wiring change, just update stats. We don't worry about
2091		 * wiring PT pages as they remain resident as long as there
2092		 * are valid mappings in them. Hence, if a user page is wired,
2093		 * the PT page will be also.
2094		 */
2095		if (wired && ((origpte & PG_W) == 0))
2096			pmap->pm_stats.wired_count++;
2097		else if (!wired && (origpte & PG_W))
2098			pmap->pm_stats.wired_count--;
2099
2100#if defined(PMAP_DIAGNOSTIC)
2101		if (pmap_nw_modified((pt_entry_t) origpte)) {
2102			printf(
2103	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2104			    va, origpte);
2105		}
2106#endif
2107
2108		/*
2109		 * Remove extra pte reference
2110		 */
2111		if (mpte)
2112			mpte->hold_count--;
2113
2114		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2115			if ((origpte & PG_RW) == 0) {
2116				*pte |= PG_RW;
2117				pmap_invalidate_page(pmap, va);
2118			}
2119			return;
2120		}
2121
2122		/*
2123		 * We might be turning off write access to the page,
2124		 * so we go ahead and sense modify status.
2125		 */
2126		if (origpte & PG_MANAGED) {
2127			if ((origpte & PG_M) && pmap_track_modified(va)) {
2128				vm_page_t om;
2129				om = PHYS_TO_VM_PAGE(opa);
2130				vm_page_dirty(om);
2131			}
2132			pa |= PG_MANAGED;
2133		}
2134		goto validate;
2135	}
2136	/*
2137	 * Mapping has changed, invalidate old range and fall through to
2138	 * handle validating new mapping.
2139	 */
2140	if (opa) {
2141		int err;
2142		vm_page_lock_queues();
2143		err = pmap_remove_pte(pmap, pte, va);
2144		vm_page_unlock_queues();
2145		if (err)
2146			panic("pmap_enter: pte vanished, va: 0x%x", va);
2147	}
2148
2149	/*
2150	 * Enter on the PV list if part of our managed memory. Note that we
2151	 * raise IPL while manipulating pv_table since pmap_enter can be
2152	 * called at interrupt time.
2153	 */
2154	if (pmap_initialized &&
2155	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2156		pmap_insert_entry(pmap, va, mpte, m);
2157		pa |= PG_MANAGED;
2158	}
2159
2160	/*
2161	 * Increment counters
2162	 */
2163	pmap->pm_stats.resident_count++;
2164	if (wired)
2165		pmap->pm_stats.wired_count++;
2166
2167validate:
2168	/*
2169	 * Now validate mapping with desired protection/wiring.
2170	 */
2171	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2172
2173	if (wired)
2174		newpte |= PG_W;
2175	if (va < VM_MAXUSER_ADDRESS)
2176		newpte |= PG_U;
2177	if (pmap == kernel_pmap)
2178		newpte |= pgeflag;
2179
2180	/*
2181	 * if the mapping or permission bits are different, we need
2182	 * to update the pte.
2183	 */
2184	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2185		*pte = newpte | PG_A;
2186		/*if (origpte)*/ {
2187			pmap_invalidate_page(pmap, va);
2188		}
2189	}
2190}
2191
2192/*
2193 * this code makes some *MAJOR* assumptions:
2194 * 1. Current pmap & pmap exists.
2195 * 2. Not wired.
2196 * 3. Read access.
2197 * 4. No page table pages.
2198 * 5. Tlbflush is deferred to calling procedure.
2199 * 6. Page IS managed.
2200 * but is *MUCH* faster than pmap_enter...
2201 */
2202
2203static vm_page_t
2204pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2205{
2206	pt_entry_t *pte;
2207	vm_offset_t pa;
2208
2209	/*
2210	 * In the case that a page table page is not
2211	 * resident, we are creating it here.
2212	 */
2213	if (va < VM_MAXUSER_ADDRESS) {
2214		unsigned ptepindex;
2215		pd_entry_t ptepa;
2216
2217		/*
2218		 * Calculate pagetable page index
2219		 */
2220		ptepindex = va >> PDRSHIFT;
2221		if (mpte && (mpte->pindex == ptepindex)) {
2222			mpte->hold_count++;
2223		} else {
2224retry:
2225			/*
2226			 * Get the page directory entry
2227			 */
2228			ptepa = pmap->pm_pdir[ptepindex];
2229
2230			/*
2231			 * If the page table page is mapped, we just increment
2232			 * the hold count, and activate it.
2233			 */
2234			if (ptepa) {
2235				if (ptepa & PG_PS)
2236					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2237				if (pmap->pm_ptphint &&
2238					(pmap->pm_ptphint->pindex == ptepindex)) {
2239					mpte = pmap->pm_ptphint;
2240				} else {
2241					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2242					pmap->pm_ptphint = mpte;
2243				}
2244				if (mpte == NULL)
2245					goto retry;
2246				mpte->hold_count++;
2247			} else {
2248				mpte = _pmap_allocpte(pmap, ptepindex);
2249			}
2250		}
2251	} else {
2252		mpte = NULL;
2253	}
2254
2255	/*
2256	 * This call to vtopte makes the assumption that we are
2257	 * entering the page into the current pmap.  In order to support
2258	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2259	 * But that isn't as quick as vtopte.
2260	 */
2261	pte = vtopte(va);
2262	if (*pte) {
2263		if (mpte != NULL) {
2264			vm_page_lock_queues();
2265			pmap_unwire_pte_hold(pmap, mpte);
2266			vm_page_unlock_queues();
2267		}
2268		return 0;
2269	}
2270
2271	/*
2272	 * Enter on the PV list if part of our managed memory. Note that we
2273	 * raise IPL while manipulating pv_table since pmap_enter can be
2274	 * called at interrupt time.
2275	 */
2276	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2277		pmap_insert_entry(pmap, va, mpte, m);
2278
2279	/*
2280	 * Increment counters
2281	 */
2282	pmap->pm_stats.resident_count++;
2283
2284	pa = VM_PAGE_TO_PHYS(m);
2285
2286	/*
2287	 * Now validate mapping with RO protection
2288	 */
2289	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2290		*pte = pa | PG_V | PG_U;
2291	else
2292		*pte = pa | PG_V | PG_U | PG_MANAGED;
2293
2294	return mpte;
2295}
2296
2297/*
2298 * Make a temporary mapping for a physical address.  This is only intended
2299 * to be used for panic dumps.
2300 */
2301void *
2302pmap_kenter_temporary(vm_offset_t pa, int i)
2303{
2304	vm_offset_t va;
2305
2306	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2307	pmap_kenter(va, pa);
2308#ifndef I386_CPU
2309	invlpg(va);
2310#else
2311	invltlb();
2312#endif
2313	return ((void *)crashdumpmap);
2314}
2315
2316#define MAX_INIT_PT (96)
2317/*
2318 * pmap_object_init_pt preloads the ptes for a given object
2319 * into the specified pmap.  This eliminates the blast of soft
2320 * faults on process startup and immediately after an mmap.
2321 */
2322void
2323pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2324		    vm_object_t object, vm_pindex_t pindex,
2325		    vm_size_t size, int limit)
2326{
2327	vm_offset_t tmpidx;
2328	int psize;
2329	vm_page_t p, mpte;
2330
2331	if (pmap == NULL || object == NULL)
2332		return;
2333
2334	/*
2335	 * This code maps large physical mmap regions into the
2336	 * processor address space.  Note that some shortcuts
2337	 * are taken, but the code works.
2338	 */
2339	if (pseflag && (object->type == OBJT_DEVICE) &&
2340	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2341		int i;
2342		vm_page_t m[1];
2343		unsigned int ptepindex;
2344		int npdes;
2345		pd_entry_t ptepa;
2346
2347		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2348			return;
2349
2350retry:
2351		p = vm_page_lookup(object, pindex);
2352		if (p != NULL) {
2353			vm_page_lock_queues();
2354			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2355				goto retry;
2356		} else {
2357			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2358			if (p == NULL)
2359				return;
2360			m[0] = p;
2361
2362			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2363				vm_page_lock_queues();
2364				vm_page_free(p);
2365				vm_page_unlock_queues();
2366				return;
2367			}
2368
2369			p = vm_page_lookup(object, pindex);
2370			vm_page_lock_queues();
2371			vm_page_wakeup(p);
2372		}
2373		vm_page_unlock_queues();
2374
2375		ptepa = VM_PAGE_TO_PHYS(p);
2376		if (ptepa & (NBPDR - 1)) {
2377			return;
2378		}
2379
2380		p->valid = VM_PAGE_BITS_ALL;
2381
2382		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2383		npdes = size >> PDRSHIFT;
2384		for(i = 0; i < npdes; i++) {
2385			pmap->pm_pdir[ptepindex] =
2386			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2387			ptepa += NBPDR;
2388			ptepindex += 1;
2389		}
2390		pmap_invalidate_all(kernel_pmap);
2391		return;
2392	}
2393
2394	psize = i386_btop(size);
2395
2396	if ((object->type != OBJT_VNODE) ||
2397	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2398	     (object->resident_page_count > MAX_INIT_PT))) {
2399		return;
2400	}
2401
2402	if (psize + pindex > object->size) {
2403		if (object->size < pindex)
2404			return;
2405		psize = object->size - pindex;
2406	}
2407
2408	mpte = NULL;
2409
2410	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
2411		if (p->pindex < pindex) {
2412			p = vm_page_splay(pindex, object->root);
2413			if ((object->root = p)->pindex < pindex)
2414				p = TAILQ_NEXT(p, listq);
2415		}
2416	}
2417	/*
2418	 * Assert: the variable p is either (1) the page with the
2419	 * least pindex greater than or equal to the parameter pindex
2420	 * or (2) NULL.
2421	 */
2422	for (;
2423	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2424	     p = TAILQ_NEXT(p, listq)) {
2425		/*
2426		 * don't allow an madvise to blow away our really
2427		 * free pages allocating pv entries.
2428		 */
2429		if ((limit & MAP_PREFAULT_MADVISE) &&
2430		    cnt.v_free_count < cnt.v_free_reserved) {
2431			break;
2432		}
2433		vm_page_lock_queues();
2434		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2435		    (p->busy == 0) &&
2436		    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2437			if ((p->queue - p->pc) == PQ_CACHE)
2438				vm_page_deactivate(p);
2439			vm_page_busy(p);
2440			vm_page_unlock_queues();
2441			mpte = pmap_enter_quick(pmap,
2442				addr + i386_ptob(tmpidx), p, mpte);
2443			vm_page_lock_queues();
2444			vm_page_wakeup(p);
2445		}
2446		vm_page_unlock_queues();
2447	}
2448	return;
2449}
2450
2451/*
2452 * pmap_prefault provides a quick way of clustering
2453 * pagefaults into a processes address space.  It is a "cousin"
2454 * of pmap_object_init_pt, except it runs at page fault time instead
2455 * of mmap time.
2456 */
2457#define PFBAK 4
2458#define PFFOR 4
2459#define PAGEORDER_SIZE (PFBAK+PFFOR)
2460
2461static int pmap_prefault_pageorder[] = {
2462	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2463	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2464	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2465	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2466};
2467
2468void
2469pmap_prefault(pmap, addra, entry)
2470	pmap_t pmap;
2471	vm_offset_t addra;
2472	vm_map_entry_t entry;
2473{
2474	int i;
2475	vm_offset_t starta;
2476	vm_offset_t addr;
2477	vm_pindex_t pindex;
2478	vm_page_t m, mpte;
2479	vm_object_t object;
2480
2481	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2482		return;
2483
2484	object = entry->object.vm_object;
2485
2486	starta = addra - PFBAK * PAGE_SIZE;
2487	if (starta < entry->start) {
2488		starta = entry->start;
2489	} else if (starta > addra) {
2490		starta = 0;
2491	}
2492
2493	mpte = NULL;
2494	for (i = 0; i < PAGEORDER_SIZE; i++) {
2495		vm_object_t lobject;
2496		pt_entry_t *pte;
2497
2498		addr = addra + pmap_prefault_pageorder[i];
2499		if (addr > addra + (PFFOR * PAGE_SIZE))
2500			addr = 0;
2501
2502		if (addr < starta || addr >= entry->end)
2503			continue;
2504
2505		if ((*pmap_pde(pmap, addr)) == 0)
2506			continue;
2507
2508		pte = vtopte(addr);
2509		if (*pte)
2510			continue;
2511
2512		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2513		lobject = object;
2514		for (m = vm_page_lookup(lobject, pindex);
2515		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2516		    lobject = lobject->backing_object) {
2517			if (lobject->backing_object_offset & PAGE_MASK)
2518				break;
2519			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2520			m = vm_page_lookup(lobject->backing_object, pindex);
2521		}
2522
2523		/*
2524		 * give-up when a page is not in memory
2525		 */
2526		if (m == NULL)
2527			break;
2528		vm_page_lock_queues();
2529		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2530			(m->busy == 0) &&
2531		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2532
2533			if ((m->queue - m->pc) == PQ_CACHE) {
2534				vm_page_deactivate(m);
2535			}
2536			vm_page_busy(m);
2537			vm_page_unlock_queues();
2538			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2539			vm_page_lock_queues();
2540			vm_page_wakeup(m);
2541		}
2542		vm_page_unlock_queues();
2543	}
2544}
2545
2546/*
2547 *	Routine:	pmap_change_wiring
2548 *	Function:	Change the wiring attribute for a map/virtual-address
2549 *			pair.
2550 *	In/out conditions:
2551 *			The mapping must already exist in the pmap.
2552 */
2553void
2554pmap_change_wiring(pmap, va, wired)
2555	register pmap_t pmap;
2556	vm_offset_t va;
2557	boolean_t wired;
2558{
2559	register pt_entry_t *pte;
2560
2561	if (pmap == NULL)
2562		return;
2563
2564	pte = pmap_pte(pmap, va);
2565
2566	if (wired && !pmap_pte_w(pte))
2567		pmap->pm_stats.wired_count++;
2568	else if (!wired && pmap_pte_w(pte))
2569		pmap->pm_stats.wired_count--;
2570
2571	/*
2572	 * Wiring is not a hardware characteristic so there is no need to
2573	 * invalidate TLB.
2574	 */
2575	pmap_pte_set_w(pte, wired);
2576}
2577
2578
2579
2580/*
2581 *	Copy the range specified by src_addr/len
2582 *	from the source map to the range dst_addr/len
2583 *	in the destination map.
2584 *
2585 *	This routine is only advisory and need not do anything.
2586 */
2587
2588void
2589pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2590	  vm_offset_t src_addr)
2591{
2592	vm_offset_t addr;
2593	vm_offset_t end_addr = src_addr + len;
2594	vm_offset_t pdnxt;
2595	pd_entry_t src_frame, dst_frame;
2596	vm_page_t m;
2597
2598	if (dst_addr != src_addr)
2599		return;
2600
2601	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2602	if (src_frame != (PTDpde & PG_FRAME))
2603		return;
2604
2605	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2606	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2607		pt_entry_t *src_pte, *dst_pte;
2608		vm_page_t dstmpte, srcmpte;
2609		pd_entry_t srcptepaddr;
2610		unsigned ptepindex;
2611
2612		if (addr >= UPT_MIN_ADDRESS)
2613			panic("pmap_copy: invalid to pmap_copy page tables\n");
2614
2615		/*
2616		 * Don't let optional prefaulting of pages make us go
2617		 * way below the low water mark of free pages or way
2618		 * above high water mark of used pv entries.
2619		 */
2620		if (cnt.v_free_count < cnt.v_free_reserved ||
2621		    pv_entry_count > pv_entry_high_water)
2622			break;
2623
2624		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2625		ptepindex = addr >> PDRSHIFT;
2626
2627		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2628		if (srcptepaddr == 0)
2629			continue;
2630
2631		if (srcptepaddr & PG_PS) {
2632			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2633				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2634				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2635			}
2636			continue;
2637		}
2638
2639		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2640		if ((srcmpte == NULL) ||
2641		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2642			continue;
2643
2644		if (pdnxt > end_addr)
2645			pdnxt = end_addr;
2646
2647		/*
2648		 * Have to recheck this before every avtopte() call below
2649		 * in case we have blocked and something else used APTDpde.
2650		 */
2651		if (dst_frame != (APTDpde & PG_FRAME)) {
2652			APTDpde = dst_frame | PG_RW | PG_V;
2653			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2654		}
2655		src_pte = vtopte(addr);
2656		dst_pte = avtopte(addr);
2657		while (addr < pdnxt) {
2658			pt_entry_t ptetemp;
2659			ptetemp = *src_pte;
2660			/*
2661			 * we only virtual copy managed pages
2662			 */
2663			if ((ptetemp & PG_MANAGED) != 0) {
2664				/*
2665				 * We have to check after allocpte for the
2666				 * pte still being around...  allocpte can
2667				 * block.
2668				 */
2669				dstmpte = pmap_allocpte(dst_pmap, addr);
2670				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2671					/*
2672					 * Clear the modified and
2673					 * accessed (referenced) bits
2674					 * during the copy.
2675					 */
2676					m = PHYS_TO_VM_PAGE(ptetemp);
2677					*dst_pte = ptetemp & ~(PG_M | PG_A);
2678					dst_pmap->pm_stats.resident_count++;
2679					pmap_insert_entry(dst_pmap, addr,
2680						dstmpte, m);
2681	 			} else {
2682					vm_page_lock_queues();
2683					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2684					vm_page_unlock_queues();
2685				}
2686				if (dstmpte->hold_count >= srcmpte->hold_count)
2687					break;
2688			}
2689			addr += PAGE_SIZE;
2690			src_pte++;
2691			dst_pte++;
2692		}
2693	}
2694}
2695
2696#ifdef SMP
2697
2698/*
2699 *	pmap_zpi_switchin*()
2700 *
2701 *	These functions allow us to avoid doing IPIs alltogether in certain
2702 *	temporary page-mapping situations (page zeroing).  Instead to deal
2703 *	with being preempted and moved onto a different cpu we invalidate
2704 *	the page when the scheduler switches us in.  This does not occur
2705 *	very often so we remain relatively optimal with very little effort.
2706 */
2707static void
2708pmap_zpi_switchin12(void)
2709{
2710	invlpg((u_int)CADDR1);
2711	invlpg((u_int)CADDR2);
2712}
2713
2714static void
2715pmap_zpi_switchin2(void)
2716{
2717	invlpg((u_int)CADDR2);
2718}
2719
2720static void
2721pmap_zpi_switchin3(void)
2722{
2723	invlpg((u_int)CADDR3);
2724}
2725
2726#endif
2727
2728/*
2729 *	pmap_zero_page zeros the specified hardware page by mapping
2730 *	the page into KVM and using bzero to clear its contents.
2731 */
2732void
2733pmap_zero_page(vm_page_t m)
2734{
2735	vm_offset_t phys;
2736
2737	phys = VM_PAGE_TO_PHYS(m);
2738	if (*CMAP2)
2739		panic("pmap_zero_page: CMAP2 busy");
2740	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2741#ifdef I386_CPU
2742	invltlb();
2743#else
2744#ifdef SMP
2745	curthread->td_switchin = pmap_zpi_switchin2;
2746#endif
2747	invlpg((u_int)CADDR2);
2748#endif
2749#if defined(I686_CPU)
2750	if (cpu_class == CPUCLASS_686)
2751		i686_pagezero(CADDR2);
2752	else
2753#endif
2754		bzero(CADDR2, PAGE_SIZE);
2755#ifdef SMP
2756	curthread->td_switchin = NULL;
2757#endif
2758	*CMAP2 = 0;
2759}
2760
2761/*
2762 *	pmap_zero_page_area zeros the specified hardware page by mapping
2763 *	the page into KVM and using bzero to clear its contents.
2764 *
2765 *	off and size may not cover an area beyond a single hardware page.
2766 */
2767void
2768pmap_zero_page_area(vm_page_t m, int off, int size)
2769{
2770	vm_offset_t phys;
2771
2772	phys = VM_PAGE_TO_PHYS(m);
2773	if (*CMAP2)
2774		panic("pmap_zero_page: CMAP2 busy");
2775	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2776#ifdef I386_CPU
2777	invltlb();
2778#else
2779#ifdef SMP
2780	curthread->td_switchin = pmap_zpi_switchin2;
2781#endif
2782	invlpg((u_int)CADDR2);
2783#endif
2784#if defined(I686_CPU)
2785	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2786		i686_pagezero(CADDR2);
2787	else
2788#endif
2789		bzero((char *)CADDR2 + off, size);
2790#ifdef SMP
2791	curthread->td_switchin = NULL;
2792#endif
2793	*CMAP2 = 0;
2794}
2795
2796/*
2797 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2798 *	the page into KVM and using bzero to clear its contents.  This
2799 *	is intended to be called from the vm_pagezero process only and
2800 *	outside of Giant.
2801 */
2802void
2803pmap_zero_page_idle(vm_page_t m)
2804{
2805	vm_offset_t phys;
2806
2807	phys = VM_PAGE_TO_PHYS(m);
2808	if (*CMAP3)
2809		panic("pmap_zero_page: CMAP3 busy");
2810	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2811#ifdef I386_CPU
2812	invltlb();
2813#else
2814#ifdef SMP
2815	curthread->td_switchin = pmap_zpi_switchin3;
2816#endif
2817	invlpg((u_int)CADDR3);
2818#endif
2819#if defined(I686_CPU)
2820	if (cpu_class == CPUCLASS_686)
2821		i686_pagezero(CADDR3);
2822	else
2823#endif
2824		bzero(CADDR3, PAGE_SIZE);
2825#ifdef SMP
2826	curthread->td_switchin = NULL;
2827#endif
2828	*CMAP3 = 0;
2829}
2830
2831/*
2832 *	pmap_copy_page copies the specified (machine independent)
2833 *	page by mapping the page into virtual memory and using
2834 *	bcopy to copy the page, one machine dependent page at a
2835 *	time.
2836 */
2837void
2838pmap_copy_page(vm_page_t src, vm_page_t dst)
2839{
2840
2841	if (*CMAP1)
2842		panic("pmap_copy_page: CMAP1 busy");
2843	if (*CMAP2)
2844		panic("pmap_copy_page: CMAP2 busy");
2845	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2846	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2847#ifdef I386_CPU
2848	invltlb();
2849#else
2850#ifdef SMP
2851	curthread->td_switchin = pmap_zpi_switchin12;
2852#endif
2853	invlpg((u_int)CADDR1);
2854	invlpg((u_int)CADDR2);
2855#endif
2856	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2857#ifdef SMP
2858	curthread->td_switchin = NULL;
2859#endif
2860	*CMAP1 = 0;
2861	*CMAP2 = 0;
2862}
2863
2864/*
2865 * Returns true if the pmap's pv is one of the first
2866 * 16 pvs linked to from this page.  This count may
2867 * be changed upwards or downwards in the future; it
2868 * is only necessary that true be returned for a small
2869 * subset of pmaps for proper page aging.
2870 */
2871boolean_t
2872pmap_page_exists_quick(pmap, m)
2873	pmap_t pmap;
2874	vm_page_t m;
2875{
2876	pv_entry_t pv;
2877	int loops = 0;
2878	int s;
2879
2880	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2881		return FALSE;
2882
2883	s = splvm();
2884	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2885	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2886		if (pv->pv_pmap == pmap) {
2887			splx(s);
2888			return TRUE;
2889		}
2890		loops++;
2891		if (loops >= 16)
2892			break;
2893	}
2894	splx(s);
2895	return (FALSE);
2896}
2897
2898#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2899/*
2900 * Remove all pages from specified address space
2901 * this aids process exit speeds.  Also, this code
2902 * is special cased for current process only, but
2903 * can have the more generic (and slightly slower)
2904 * mode enabled.  This is much faster than pmap_remove
2905 * in the case of running down an entire address space.
2906 */
2907void
2908pmap_remove_pages(pmap, sva, eva)
2909	pmap_t pmap;
2910	vm_offset_t sva, eva;
2911{
2912	pt_entry_t *pte, tpte;
2913	vm_page_t m;
2914	pv_entry_t pv, npv;
2915	int s;
2916
2917#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2918	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2919		printf("warning: pmap_remove_pages called with non-current pmap\n");
2920		return;
2921	}
2922#endif
2923	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2924	s = splvm();
2925	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2926
2927		if (pv->pv_va >= eva || pv->pv_va < sva) {
2928			npv = TAILQ_NEXT(pv, pv_plist);
2929			continue;
2930		}
2931
2932#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2933		pte = vtopte(pv->pv_va);
2934#else
2935		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2936#endif
2937		tpte = *pte;
2938
2939		if (tpte == 0) {
2940			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2941							pte, pv->pv_va);
2942			panic("bad pte");
2943		}
2944
2945/*
2946 * We cannot remove wired pages from a process' mapping at this time
2947 */
2948		if (tpte & PG_W) {
2949			npv = TAILQ_NEXT(pv, pv_plist);
2950			continue;
2951		}
2952
2953		m = PHYS_TO_VM_PAGE(tpte);
2954		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2955		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2956		    m, m->phys_addr, tpte));
2957
2958		KASSERT(m < &vm_page_array[vm_page_array_size],
2959			("pmap_remove_pages: bad tpte %x", tpte));
2960
2961		pv->pv_pmap->pm_stats.resident_count--;
2962
2963		*pte = 0;
2964
2965		/*
2966		 * Update the vm_page_t clean and reference bits.
2967		 */
2968		if (tpte & PG_M) {
2969			vm_page_dirty(m);
2970		}
2971
2972		npv = TAILQ_NEXT(pv, pv_plist);
2973		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2974
2975		m->md.pv_list_count--;
2976		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2977		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2978			vm_page_flag_clear(m, PG_WRITEABLE);
2979		}
2980
2981		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2982		free_pv_entry(pv);
2983	}
2984	splx(s);
2985	pmap_invalidate_all(pmap);
2986}
2987
2988/*
2989 *	pmap_is_modified:
2990 *
2991 *	Return whether or not the specified physical page was modified
2992 *	in any physical maps.
2993 */
2994boolean_t
2995pmap_is_modified(vm_page_t m)
2996{
2997	pv_entry_t pv;
2998	pt_entry_t *pte;
2999	int s;
3000
3001	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3002		return FALSE;
3003
3004	s = splvm();
3005	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3006	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3007		/*
3008		 * if the bit being tested is the modified bit, then
3009		 * mark clean_map and ptes as never
3010		 * modified.
3011		 */
3012		if (!pmap_track_modified(pv->pv_va))
3013			continue;
3014#if defined(PMAP_DIAGNOSTIC)
3015		if (!pv->pv_pmap) {
3016			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3017			continue;
3018		}
3019#endif
3020		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3021		if (*pte & PG_M) {
3022			splx(s);
3023			return TRUE;
3024		}
3025	}
3026	splx(s);
3027	return (FALSE);
3028}
3029
3030/*
3031 * this routine is used to modify bits in ptes
3032 */
3033static __inline void
3034pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3035{
3036	register pv_entry_t pv;
3037	register pt_entry_t *pte;
3038	int s;
3039
3040	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
3041	    (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
3042		return;
3043
3044	s = splvm();
3045	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3046	/*
3047	 * Loop over all current mappings setting/clearing as appropos If
3048	 * setting RO do we need to clear the VAC?
3049	 */
3050	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3051		/*
3052		 * don't write protect pager mappings
3053		 */
3054		if (!setem && (bit == PG_RW)) {
3055			if (!pmap_track_modified(pv->pv_va))
3056				continue;
3057		}
3058
3059#if defined(PMAP_DIAGNOSTIC)
3060		if (!pv->pv_pmap) {
3061			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3062			continue;
3063		}
3064#endif
3065
3066		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3067
3068		if (setem) {
3069			*pte |= bit;
3070			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3071		} else {
3072			pt_entry_t pbits = *pte;
3073			if (pbits & bit) {
3074				if (bit == PG_RW) {
3075					if (pbits & PG_M) {
3076						vm_page_dirty(m);
3077					}
3078					*pte = pbits & ~(PG_M|PG_RW);
3079				} else {
3080					*pte = pbits & ~bit;
3081				}
3082				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3083			}
3084		}
3085	}
3086	if (!setem && bit == PG_RW)
3087		vm_page_flag_clear(m, PG_WRITEABLE);
3088	splx(s);
3089}
3090
3091/*
3092 *      pmap_page_protect:
3093 *
3094 *      Lower the permission for all mappings to a given page.
3095 */
3096void
3097pmap_page_protect(vm_page_t m, vm_prot_t prot)
3098{
3099	if ((prot & VM_PROT_WRITE) == 0) {
3100		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3101			pmap_changebit(m, PG_RW, FALSE);
3102		} else {
3103			pmap_remove_all(m);
3104		}
3105	}
3106}
3107
3108vm_offset_t
3109pmap_phys_address(ppn)
3110	int ppn;
3111{
3112	return (i386_ptob(ppn));
3113}
3114
3115/*
3116 *	pmap_ts_referenced:
3117 *
3118 *	Return a count of reference bits for a page, clearing those bits.
3119 *	It is not necessary for every reference bit to be cleared, but it
3120 *	is necessary that 0 only be returned when there are truly no
3121 *	reference bits set.
3122 *
3123 *	XXX: The exact number of bits to check and clear is a matter that
3124 *	should be tested and standardized at some point in the future for
3125 *	optimal aging of shared pages.
3126 */
3127int
3128pmap_ts_referenced(vm_page_t m)
3129{
3130	register pv_entry_t pv, pvf, pvn;
3131	pt_entry_t *pte;
3132	int s;
3133	int rtval = 0;
3134
3135	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3136		return (rtval);
3137
3138	s = splvm();
3139	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3140	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3141
3142		pvf = pv;
3143
3144		do {
3145			pvn = TAILQ_NEXT(pv, pv_list);
3146
3147			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3148
3149			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3150
3151			if (!pmap_track_modified(pv->pv_va))
3152				continue;
3153
3154			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3155
3156			if (pte && (*pte & PG_A)) {
3157				*pte &= ~PG_A;
3158
3159				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3160
3161				rtval++;
3162				if (rtval > 4) {
3163					break;
3164				}
3165			}
3166		} while ((pv = pvn) != NULL && pv != pvf);
3167	}
3168	splx(s);
3169
3170	return (rtval);
3171}
3172
3173/*
3174 *	Clear the modify bits on the specified physical page.
3175 */
3176void
3177pmap_clear_modify(vm_page_t m)
3178{
3179	pmap_changebit(m, PG_M, FALSE);
3180}
3181
3182/*
3183 *	pmap_clear_reference:
3184 *
3185 *	Clear the reference bit on the specified physical page.
3186 */
3187void
3188pmap_clear_reference(vm_page_t m)
3189{
3190	pmap_changebit(m, PG_A, FALSE);
3191}
3192
3193/*
3194 * Miscellaneous support routines follow
3195 */
3196
3197static void
3198i386_protection_init()
3199{
3200	register int *kp, prot;
3201
3202	kp = protection_codes;
3203	for (prot = 0; prot < 8; prot++) {
3204		switch (prot) {
3205		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3206			/*
3207			 * Read access is also 0. There isn't any execute bit,
3208			 * so just make it readable.
3209			 */
3210		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3211		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3212		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3213			*kp++ = 0;
3214			break;
3215		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3216		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3217		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3218		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3219			*kp++ = PG_RW;
3220			break;
3221		}
3222	}
3223}
3224
3225/*
3226 * Map a set of physical memory pages into the kernel virtual
3227 * address space. Return a pointer to where it is mapped. This
3228 * routine is intended to be used for mapping device memory,
3229 * NOT real memory.
3230 */
3231void *
3232pmap_mapdev(pa, size)
3233	vm_offset_t pa;
3234	vm_size_t size;
3235{
3236	vm_offset_t va, tmpva, offset;
3237
3238	offset = pa & PAGE_MASK;
3239	size = roundup(offset + size, PAGE_SIZE);
3240
3241	GIANT_REQUIRED;
3242
3243	va = kmem_alloc_pageable(kernel_map, size);
3244	if (!va)
3245		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3246
3247	pa = pa & PG_FRAME;
3248	for (tmpva = va; size > 0; ) {
3249		pmap_kenter(tmpva, pa);
3250		size -= PAGE_SIZE;
3251		tmpva += PAGE_SIZE;
3252		pa += PAGE_SIZE;
3253	}
3254	pmap_invalidate_range(kernel_pmap, va, tmpva);
3255	return ((void *)(va + offset));
3256}
3257
3258void
3259pmap_unmapdev(va, size)
3260	vm_offset_t va;
3261	vm_size_t size;
3262{
3263	vm_offset_t base, offset, tmpva;
3264	pt_entry_t *pte;
3265
3266	base = va & PG_FRAME;
3267	offset = va & PAGE_MASK;
3268	size = roundup(offset + size, PAGE_SIZE);
3269	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3270		pte = vtopte(tmpva);
3271		*pte = 0;
3272	}
3273	pmap_invalidate_range(kernel_pmap, va, tmpva);
3274	kmem_free(kernel_map, base, size);
3275}
3276
3277/*
3278 * perform the pmap work for mincore
3279 */
3280int
3281pmap_mincore(pmap, addr)
3282	pmap_t pmap;
3283	vm_offset_t addr;
3284{
3285	pt_entry_t *ptep, pte;
3286	vm_page_t m;
3287	int val = 0;
3288
3289	ptep = pmap_pte(pmap, addr);
3290	if (ptep == 0) {
3291		return 0;
3292	}
3293
3294	if ((pte = *ptep) != 0) {
3295		vm_offset_t pa;
3296
3297		val = MINCORE_INCORE;
3298		if ((pte & PG_MANAGED) == 0)
3299			return val;
3300
3301		pa = pte & PG_FRAME;
3302
3303		m = PHYS_TO_VM_PAGE(pa);
3304
3305		/*
3306		 * Modified by us
3307		 */
3308		if (pte & PG_M)
3309			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3310		else {
3311			/*
3312			 * Modified by someone else
3313			 */
3314			vm_page_lock_queues();
3315			if (m->dirty || pmap_is_modified(m))
3316				val |= MINCORE_MODIFIED_OTHER;
3317			vm_page_unlock_queues();
3318		}
3319		/*
3320		 * Referenced by us
3321		 */
3322		if (pte & PG_A)
3323			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3324		else {
3325			/*
3326			 * Referenced by someone else
3327			 */
3328			vm_page_lock_queues();
3329			if ((m->flags & PG_REFERENCED) ||
3330			    pmap_ts_referenced(m)) {
3331				val |= MINCORE_REFERENCED_OTHER;
3332				vm_page_flag_set(m, PG_REFERENCED);
3333			}
3334			vm_page_unlock_queues();
3335		}
3336	}
3337	return val;
3338}
3339
3340void
3341pmap_activate(struct thread *td)
3342{
3343	struct proc *p = td->td_proc;
3344	pmap_t	pmap;
3345	u_int32_t  cr3;
3346
3347	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3348#if defined(SMP)
3349	pmap->pm_active |= PCPU_GET(cpumask);
3350#else
3351	pmap->pm_active |= 1;
3352#endif
3353	cr3 = vtophys(pmap->pm_pdir);
3354	/* XXXKSE this is wrong.
3355	 * pmap_activate is for the current thread on the current cpu
3356	 */
3357	if (p->p_flag & P_KSES) {
3358		/* Make sure all other cr3 entries are updated. */
3359		/* what if they are running?  XXXKSE (maybe abort them) */
3360		FOREACH_THREAD_IN_PROC(p, td) {
3361			td->td_pcb->pcb_cr3 = cr3;
3362		}
3363	} else {
3364		td->td_pcb->pcb_cr3 = cr3;
3365	}
3366	load_cr3(cr3);
3367#ifdef SWTCH_OPTIM_STATS
3368	tlb_flush_count++;
3369#endif
3370}
3371
3372vm_offset_t
3373pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3374{
3375
3376	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3377		return addr;
3378	}
3379
3380	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3381	return addr;
3382}
3383
3384
3385#if defined(PMAP_DEBUG)
3386pmap_pid_dump(int pid)
3387{
3388	pmap_t pmap;
3389	struct proc *p;
3390	int npte = 0;
3391	int index;
3392
3393	sx_slock(&allproc_lock);
3394	LIST_FOREACH(p, &allproc, p_list) {
3395		if (p->p_pid != pid)
3396			continue;
3397
3398		if (p->p_vmspace) {
3399			int i,j;
3400			index = 0;
3401			pmap = vmspace_pmap(p->p_vmspace);
3402			for (i = 0; i < NPDEPG; i++) {
3403				pd_entry_t *pde;
3404				pt_entry_t *pte;
3405				vm_offset_t base = i << PDRSHIFT;
3406
3407				pde = &pmap->pm_pdir[i];
3408				if (pde && pmap_pde_v(pde)) {
3409					for (j = 0; j < NPTEPG; j++) {
3410						vm_offset_t va = base + (j << PAGE_SHIFT);
3411						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3412							if (index) {
3413								index = 0;
3414								printf("\n");
3415							}
3416							sx_sunlock(&allproc_lock);
3417							return npte;
3418						}
3419						pte = pmap_pte_quick(pmap, va);
3420						if (pte && pmap_pte_v(pte)) {
3421							pt_entry_t pa;
3422							vm_page_t m;
3423							pa = *pte;
3424							m = PHYS_TO_VM_PAGE(pa);
3425							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3426								va, pa, m->hold_count, m->wire_count, m->flags);
3427							npte++;
3428							index++;
3429							if (index >= 2) {
3430								index = 0;
3431								printf("\n");
3432							} else {
3433								printf(" ");
3434							}
3435						}
3436					}
3437				}
3438			}
3439		}
3440	}
3441	sx_sunlock(&allproc_lock);
3442	return npte;
3443}
3444#endif
3445
3446#if defined(DEBUG)
3447
3448static void	pads(pmap_t pm);
3449void		pmap_pvdump(vm_offset_t pa);
3450
3451/* print address space of pmap*/
3452static void
3453pads(pm)
3454	pmap_t pm;
3455{
3456	int i, j;
3457	vm_offset_t va;
3458	pt_entry_t *ptep;
3459
3460	if (pm == kernel_pmap)
3461		return;
3462	for (i = 0; i < NPDEPG; i++)
3463		if (pm->pm_pdir[i])
3464			for (j = 0; j < NPTEPG; j++) {
3465				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3466				if (pm == kernel_pmap && va < KERNBASE)
3467					continue;
3468				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3469					continue;
3470				ptep = pmap_pte_quick(pm, va);
3471				if (pmap_pte_v(ptep))
3472					printf("%x:%x ", va, *ptep);
3473			};
3474
3475}
3476
3477void
3478pmap_pvdump(pa)
3479	vm_offset_t pa;
3480{
3481	pv_entry_t pv;
3482	vm_page_t m;
3483
3484	printf("pa %x", pa);
3485	m = PHYS_TO_VM_PAGE(pa);
3486	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3487		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3488		pads(pv->pv_pmap);
3489	}
3490	printf(" ");
3491}
3492#endif
3493