pmap.c revision 108253
11573Srgrimes/*
21573Srgrimes * Copyright (c) 1991 Regents of the University of California.
31573Srgrimes * All rights reserved.
41573Srgrimes * Copyright (c) 1994 John S. Dyson
51573Srgrimes * All rights reserved.
61573Srgrimes * Copyright (c) 1994 David Greenman
71573Srgrimes * All rights reserved.
81573Srgrimes *
91573Srgrimes * This code is derived from software contributed to Berkeley by
101573Srgrimes * the Systems Programming Group of the University of Utah Computer
111573Srgrimes * Science Department and William Jolitz of UUNET Technologies Inc.
121573Srgrimes *
131573Srgrimes * Redistribution and use in source and binary forms, with or without
141573Srgrimes * modification, are permitted provided that the following conditions
151573Srgrimes * are met:
16148834Sstefanf * 1. Redistributions of source code must retain the above copyright
171573Srgrimes *    notice, this list of conditions and the following disclaimer.
181573Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
191573Srgrimes *    notice, this list of conditions and the following disclaimer in the
201573Srgrimes *    documentation and/or other materials provided with the distribution.
211573Srgrimes * 3. All advertising materials mentioning features or use of this software
221573Srgrimes *    must display the following acknowledgement:
231573Srgrimes *	This product includes software developed by the University of
241573Srgrimes *	California, Berkeley and its contributors.
251573Srgrimes * 4. Neither the name of the University nor the names of its contributors
261573Srgrimes *    may be used to endorse or promote products derived from this software
271573Srgrimes *    without specific prior written permission.
281573Srgrimes *
291573Srgrimes * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
301573Srgrimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
311573Srgrimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
321573Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33268782Spfg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3484260Sobrien * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
351573Srgrimes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
361573Srgrimes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
371573Srgrimes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
381573Srgrimes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
391573Srgrimes * SUCH DAMAGE.
401573Srgrimes *
4184260Sobrien *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
421573Srgrimes * $FreeBSD: head/sys/i386/i386/pmap.c 108253 2002-12-24 07:32:38Z alc $
431573Srgrimes */
441573Srgrimes
4584260Sobrien/*
461573Srgrimes *	Manages physical address maps.
471573Srgrimes *
48268782Spfg *	In addition to hardware address maps, this
49268782Spfg *	module is called upon to provide software-use-only
50237448Spfg *	maps which may or may not be stored in the same
51237448Spfg *	form as hardware maps.  These pseudo-maps are
521573Srgrimes *	used to store intermediate results from copy
531573Srgrimes *	operations to and from address spaces.
5484260Sobrien *
55237448Spfg *	Since the information managed by this module is
56237448Spfg *	also stored by the logical address mapping module,
5784260Sobrien *	this module may throw away valid virtual-to-physical
5884260Sobrien *	mappings at almost any time.  However, invalidations
591573Srgrimes *	of virtual-to-physical mappings must be done as
601573Srgrimes *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154struct pmaplist allpmaps;
155
156vm_offset_t avail_start;	/* PA of first available physical page */
157vm_offset_t avail_end;		/* PA of last available physical page */
158vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
159vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
160static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
161static int pgeflag;		/* PG_G or-in */
162static int pseflag;		/* PG_PS or-in */
163
164static vm_object_t kptobj;
165
166static int nkpt;
167vm_offset_t kernel_vm_end;
168extern u_int32_t KERNend;
169
170/*
171 * Data for the pv entry allocation mechanism
172 */
173static uma_zone_t pvzone;
174static struct vm_object pvzone_obj;
175static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
176int pmap_pagedaemon_waken;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2, CADDR3;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
207				      vm_page_t m, vm_page_t mpte);
208static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
209static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
210static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
211					vm_offset_t va);
212static boolean_t pmap_testbit(vm_page_t m, int bit);
213static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
214		vm_page_t mpte, vm_page_t m);
215
216static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
217
218static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
219static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
220static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
221static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
222static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
223static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
224static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
225
226static pd_entry_t pdir4mb;
227
228/*
229 *	Routine:	pmap_pte
230 *	Function:
231 *		Extract the page table entry associated
232 *		with the given map/virtual_address pair.
233 */
234
235PMAP_INLINE pt_entry_t *
236pmap_pte(pmap, va)
237	register pmap_t pmap;
238	vm_offset_t va;
239{
240	pd_entry_t *pdeaddr;
241
242	if (pmap) {
243		pdeaddr = pmap_pde(pmap, va);
244		if (*pdeaddr & PG_PS)
245			return pdeaddr;
246		if (*pdeaddr) {
247			return get_ptbase(pmap) + i386_btop(va);
248		}
249	}
250	return (0);
251}
252
253/*
254 * Move the kernel virtual free pointer to the next
255 * 4MB.  This is used to help improve performance
256 * by using a large (4MB) page for much of the kernel
257 * (.text, .data, .bss)
258 */
259static vm_offset_t
260pmap_kmem_choose(vm_offset_t addr)
261{
262	vm_offset_t newaddr = addr;
263
264#ifndef DISABLE_PSE
265	if (cpu_feature & CPUID_PSE)
266		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
267#endif
268	return newaddr;
269}
270
271/*
272 *	Bootstrap the system enough to run with virtual memory.
273 *
274 *	On the i386 this is called after mapping has already been enabled
275 *	and just syncs the pmap module with what has already been done.
276 *	[We can't call it easily with mapping off since the kernel is not
277 *	mapped with PA == VA, hence we would have to relocate every address
278 *	from the linked base (virtual) address "KERNBASE" to the actual
279 *	(physical) address starting relative to 0]
280 */
281void
282pmap_bootstrap(firstaddr, loadaddr)
283	vm_offset_t firstaddr;
284	vm_offset_t loadaddr;
285{
286	vm_offset_t va;
287	pt_entry_t *pte;
288	int i;
289
290	avail_start = firstaddr;
291
292	/*
293	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
294	 * large. It should instead be correctly calculated in locore.s and
295	 * not based on 'first' (which is a physical address, not a virtual
296	 * address, for the start of unused physical memory). The kernel
297	 * page tables are NOT double mapped and thus should not be included
298	 * in this calculation.
299	 */
300	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
301	virtual_avail = pmap_kmem_choose(virtual_avail);
302
303	virtual_end = VM_MAX_KERNEL_ADDRESS;
304
305	/*
306	 * Initialize protection array.
307	 */
308	i386_protection_init();
309
310	/*
311	 * Initialize the kernel pmap (which is statically allocated).
312	 */
313	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
314	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
315	TAILQ_INIT(&kernel_pmap->pm_pvlist);
316	LIST_INIT(&allpmaps);
317	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
318	nkpt = NKPT;
319
320	/*
321	 * Reserve some special page table entries/VA space for temporary
322	 * mapping of pages.
323	 */
324#define	SYSMAP(c, p, v, n)	\
325	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
326
327	va = virtual_avail;
328	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
329
330	/*
331	 * CMAP1/CMAP2 are used for zeroing and copying pages.
332	 * CMAP3 is used for the idle process page zeroing.
333	 */
334	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
335	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
336	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
337
338	/*
339	 * Crashdump maps.
340	 */
341	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
342
343	/*
344	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
345	 * XXX ptmmap is not used.
346	 */
347	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
348
349	/*
350	 * msgbufp is used to map the system message buffer.
351	 * XXX msgbufmap is not used.
352	 */
353	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
354	       atop(round_page(MSGBUF_SIZE)))
355
356	/*
357	 * ptemap is used for pmap_pte_quick
358	 */
359	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
360
361	virtual_avail = va;
362
363	*CMAP1 = *CMAP2 = 0;
364	for (i = 0; i < NKPT; i++)
365		PTD[i] = 0;
366
367	pgeflag = 0;
368#ifndef DISABLE_PG_G
369	if (cpu_feature & CPUID_PGE)
370		pgeflag = PG_G;
371#endif
372
373/*
374 * Initialize the 4MB page size flag
375 */
376	pseflag = 0;
377/*
378 * The 4MB page version of the initial
379 * kernel page mapping.
380 */
381	pdir4mb = 0;
382
383#ifndef DISABLE_PSE
384	if (cpu_feature & CPUID_PSE) {
385		pd_entry_t ptditmp;
386		/*
387		 * Note that we have enabled PSE mode
388		 */
389		pseflag = PG_PS;
390		ptditmp = *(PTmap + i386_btop(KERNBASE));
391		ptditmp &= ~(NBPDR - 1);
392		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
393		pdir4mb = ptditmp;
394	}
395#endif
396#ifndef SMP
397	/*
398	 * Turn on PGE/PSE.  SMP does this later on since the
399	 * 4K page tables are required for AP boot (for now).
400	 * XXX fixme.
401	 */
402	pmap_set_opt();
403#endif
404#ifdef SMP
405	if (cpu_apic_address == 0)
406		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
407
408	/* local apic is mapped on last page */
409	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
410	    (cpu_apic_address & PG_FRAME));
411#endif
412	invltlb();
413}
414
415/*
416 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
417 * BSP will run this after all the AP's have started up.
418 */
419void
420pmap_set_opt(void)
421{
422	pt_entry_t *pte;
423	vm_offset_t va, endva;
424
425	if (pgeflag && (cpu_feature & CPUID_PGE)) {
426		load_cr4(rcr4() | CR4_PGE);
427		invltlb();		/* Insurance */
428	}
429#ifndef DISABLE_PSE
430	if (pseflag && (cpu_feature & CPUID_PSE)) {
431		load_cr4(rcr4() | CR4_PSE);
432		invltlb();		/* Insurance */
433	}
434#endif
435	if (PCPU_GET(cpuid) == 0) {
436#ifndef DISABLE_PSE
437		if (pdir4mb) {
438			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
439			invltlb();	/* Insurance */
440		}
441#endif
442		if (pgeflag) {
443			/* Turn on PG_G for text, data, bss pages. */
444			va = (vm_offset_t)btext;
445#ifndef DISABLE_PSE
446			if (pseflag && (cpu_feature & CPUID_PSE)) {
447				if (va < KERNBASE + (1 << PDRSHIFT))
448					va = KERNBASE + (1 << PDRSHIFT);
449			}
450#endif
451			endva = KERNBASE + KERNend;
452			while (va < endva) {
453				pte = vtopte(va);
454				if (*pte)
455					*pte |= pgeflag;
456				va += PAGE_SIZE;
457			}
458			invltlb();	/* Insurance */
459		}
460		/*
461		 * We do not need to broadcast the invltlb here, because
462		 * each AP does it the moment it is released from the boot
463		 * lock.  See ap_init().
464		 */
465	}
466}
467
468static void *
469pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
470{
471	*flags = UMA_SLAB_PRIV;
472	return (void *)kmem_alloc(kernel_map, bytes);
473}
474
475/*
476 *	Initialize the pmap module.
477 *	Called by vm_init, to initialize any structures that the pmap
478 *	system needs to map virtual memory.
479 *	pmap_init has been enhanced to support in a fairly consistant
480 *	way, discontiguous physical memory.
481 */
482void
483pmap_init(phys_start, phys_end)
484	vm_offset_t phys_start, phys_end;
485{
486	int i;
487	int initial_pvs;
488
489	/*
490	 * object for kernel page table pages
491	 */
492	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
493
494	/*
495	 * Allocate memory for random pmap data structures.  Includes the
496	 * pv_head_table.
497	 */
498
499	for(i = 0; i < vm_page_array_size; i++) {
500		vm_page_t m;
501
502		m = &vm_page_array[i];
503		TAILQ_INIT(&m->md.pv_list);
504		m->md.pv_list_count = 0;
505	}
506
507	/*
508	 * init the pv free list
509	 */
510	initial_pvs = vm_page_array_size;
511	if (initial_pvs < MINPV)
512		initial_pvs = MINPV;
513	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
514	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
515	uma_zone_set_allocf(pvzone, pmap_allocf);
516	uma_prealloc(pvzone, initial_pvs);
517
518	/*
519	 * Now it is safe to enable pv_table recording.
520	 */
521	pmap_initialized = TRUE;
522}
523
524/*
525 * Initialize the address space (zone) for the pv_entries.  Set a
526 * high water mark so that the system can recover from excessive
527 * numbers of pv entries.
528 */
529void
530pmap_init2()
531{
532	int shpgperproc = PMAP_SHPGPERPROC;
533
534	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
535	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
536	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
537	pv_entry_high_water = 9 * (pv_entry_max / 10);
538	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
539}
540
541
542/***************************************************
543 * Low level helper routines.....
544 ***************************************************/
545
546#if defined(PMAP_DIAGNOSTIC)
547
548/*
549 * This code checks for non-writeable/modified pages.
550 * This should be an invalid condition.
551 */
552static int
553pmap_nw_modified(pt_entry_t ptea)
554{
555	int pte;
556
557	pte = (int) ptea;
558
559	if ((pte & (PG_M|PG_RW)) == PG_M)
560		return 1;
561	else
562		return 0;
563}
564#endif
565
566
567/*
568 * this routine defines the region(s) of memory that should
569 * not be tested for the modified bit.
570 */
571static PMAP_INLINE int
572pmap_track_modified(vm_offset_t va)
573{
574	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
575		return 1;
576	else
577		return 0;
578}
579
580#ifdef I386_CPU
581/*
582 * i386 only has "invalidate everything" and no SMP to worry about.
583 */
584PMAP_INLINE void
585pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
586{
587
588	if (pmap == kernel_pmap || pmap->pm_active)
589		invltlb();
590}
591
592PMAP_INLINE void
593pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
594{
595
596	if (pmap == kernel_pmap || pmap->pm_active)
597		invltlb();
598}
599
600PMAP_INLINE void
601pmap_invalidate_all(pmap_t pmap)
602{
603
604	if (pmap == kernel_pmap || pmap->pm_active)
605		invltlb();
606}
607#else /* !I386_CPU */
608#ifdef SMP
609/*
610 * For SMP, these functions have to use the IPI mechanism for coherence.
611 */
612void
613pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
614{
615	u_int cpumask;
616	u_int other_cpus;
617
618	critical_enter();
619	/*
620	 * We need to disable interrupt preemption but MUST NOT have
621	 * interrupts disabled here.
622	 * XXX we may need to hold schedlock to get a coherent pm_active
623	 */
624	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
625		invlpg(va);
626		smp_invlpg(va);
627	} else {
628		cpumask = PCPU_GET(cpumask);
629		other_cpus = PCPU_GET(other_cpus);
630		if (pmap->pm_active & cpumask)
631			invlpg(va);
632		if (pmap->pm_active & other_cpus)
633			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
634	}
635	critical_exit();
636}
637
638void
639pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
640{
641	u_int cpumask;
642	u_int other_cpus;
643	vm_offset_t addr;
644
645	critical_enter();
646	/*
647	 * We need to disable interrupt preemption but MUST NOT have
648	 * interrupts disabled here.
649	 * XXX we may need to hold schedlock to get a coherent pm_active
650	 */
651	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
652		for (addr = sva; addr < eva; addr += PAGE_SIZE)
653			invlpg(addr);
654		smp_invlpg_range(sva, eva);
655	} else {
656		cpumask = PCPU_GET(cpumask);
657		other_cpus = PCPU_GET(other_cpus);
658		if (pmap->pm_active & cpumask)
659			for (addr = sva; addr < eva; addr += PAGE_SIZE)
660				invlpg(addr);
661		if (pmap->pm_active & other_cpus)
662			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
663			    sva, eva);
664	}
665	critical_exit();
666}
667
668void
669pmap_invalidate_all(pmap_t pmap)
670{
671	u_int cpumask;
672	u_int other_cpus;
673
674#ifdef SWTCH_OPTIM_STATS
675	tlb_flush_count++;
676#endif
677	critical_enter();
678	/*
679	 * We need to disable interrupt preemption but MUST NOT have
680	 * interrupts disabled here.
681	 * XXX we may need to hold schedlock to get a coherent pm_active
682	 */
683	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
684		invltlb();
685		smp_invltlb();
686	} else {
687		cpumask = PCPU_GET(cpumask);
688		other_cpus = PCPU_GET(other_cpus);
689		if (pmap->pm_active & cpumask)
690			invltlb();
691		if (pmap->pm_active & other_cpus)
692			smp_masked_invltlb(pmap->pm_active & other_cpus);
693	}
694	critical_exit();
695}
696#else /* !SMP */
697/*
698 * Normal, non-SMP, 486+ invalidation functions.
699 * We inline these within pmap.c for speed.
700 */
701PMAP_INLINE void
702pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
703{
704
705	if (pmap == kernel_pmap || pmap->pm_active)
706		invlpg(va);
707}
708
709PMAP_INLINE void
710pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
711{
712	vm_offset_t addr;
713
714	if (pmap == kernel_pmap || pmap->pm_active)
715		for (addr = sva; addr < eva; addr += PAGE_SIZE)
716			invlpg(addr);
717}
718
719PMAP_INLINE void
720pmap_invalidate_all(pmap_t pmap)
721{
722
723	if (pmap == kernel_pmap || pmap->pm_active)
724		invltlb();
725}
726#endif /* !SMP */
727#endif /* !I386_CPU */
728
729/*
730 * Return an address which is the base of the Virtual mapping of
731 * all the PTEs for the given pmap. Note this doesn't say that
732 * all the PTEs will be present or that the pages there are valid.
733 * The PTEs are made available by the recursive mapping trick.
734 * It will map in the alternate PTE space if needed.
735 */
736static pt_entry_t *
737get_ptbase(pmap)
738	pmap_t pmap;
739{
740	pd_entry_t frame;
741
742	/* are we current address space or kernel? */
743	if (pmap == kernel_pmap)
744		return PTmap;
745	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
746	if (frame == (PTDpde & PG_FRAME))
747		return PTmap;
748	/* otherwise, we are alternate address space */
749	if (frame != (APTDpde & PG_FRAME)) {
750		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
751		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
752	}
753	return APTmap;
754}
755
756/*
757 * Super fast pmap_pte routine best used when scanning
758 * the pv lists.  This eliminates many coarse-grained
759 * invltlb calls.  Note that many of the pv list
760 * scans are across different pmaps.  It is very wasteful
761 * to do an entire invltlb for checking a single mapping.
762 */
763
764static pt_entry_t *
765pmap_pte_quick(pmap, va)
766	register pmap_t pmap;
767	vm_offset_t va;
768{
769	pd_entry_t pde, newpf;
770	pde = pmap->pm_pdir[va >> PDRSHIFT];
771	if (pde != 0) {
772		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
773		unsigned index = i386_btop(va);
774		/* are we current address space or kernel? */
775		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
776			return PTmap + index;
777		newpf = pde & PG_FRAME;
778		if (((*PMAP1) & PG_FRAME) != newpf) {
779			*PMAP1 = newpf | PG_RW | PG_V;
780			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
781		}
782		return PADDR1 + (index & (NPTEPG - 1));
783	}
784	return (0);
785}
786
787/*
788 *	Routine:	pmap_extract
789 *	Function:
790 *		Extract the physical page address associated
791 *		with the given map/virtual_address pair.
792 */
793vm_offset_t
794pmap_extract(pmap, va)
795	register pmap_t pmap;
796	vm_offset_t va;
797{
798	vm_offset_t rtval;	/* XXX FIXME */
799	vm_offset_t pdirindex;
800
801	if (pmap == 0)
802		return 0;
803	pdirindex = va >> PDRSHIFT;
804	rtval = pmap->pm_pdir[pdirindex];
805	if (rtval != 0) {
806		pt_entry_t *pte;
807		if ((rtval & PG_PS) != 0) {
808			rtval &= ~(NBPDR - 1);
809			rtval |= va & (NBPDR - 1);
810			return rtval;
811		}
812		pte = get_ptbase(pmap) + i386_btop(va);
813		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
814		return rtval;
815	}
816	return 0;
817
818}
819
820/***************************************************
821 * Low level mapping routines.....
822 ***************************************************/
823
824/*
825 * Add a wired page to the kva.
826 * Note: not SMP coherent.
827 */
828PMAP_INLINE void
829pmap_kenter(vm_offset_t va, vm_offset_t pa)
830{
831	pt_entry_t *pte;
832
833	pte = vtopte(va);
834	*pte = pa | PG_RW | PG_V | pgeflag;
835}
836
837/*
838 * Remove a page from the kernel pagetables.
839 * Note: not SMP coherent.
840 */
841PMAP_INLINE void
842pmap_kremove(vm_offset_t va)
843{
844	pt_entry_t *pte;
845
846	pte = vtopte(va);
847	*pte = 0;
848}
849
850/*
851 *	Used to map a range of physical addresses into kernel
852 *	virtual address space.
853 *
854 *	The value passed in '*virt' is a suggested virtual address for
855 *	the mapping. Architectures which can support a direct-mapped
856 *	physical to virtual region can return the appropriate address
857 *	within that region, leaving '*virt' unchanged. Other
858 *	architectures should map the pages starting at '*virt' and
859 *	update '*virt' with the first usable address after the mapped
860 *	region.
861 */
862vm_offset_t
863pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
864{
865	vm_offset_t va, sva;
866
867	va = sva = *virt;
868	while (start < end) {
869		pmap_kenter(va, start);
870		va += PAGE_SIZE;
871		start += PAGE_SIZE;
872	}
873	pmap_invalidate_range(kernel_pmap, sva, va);
874	*virt = va;
875	return (sva);
876}
877
878
879/*
880 * Add a list of wired pages to the kva
881 * this routine is only used for temporary
882 * kernel mappings that do not need to have
883 * page modification or references recorded.
884 * Note that old mappings are simply written
885 * over.  The page *must* be wired.
886 * Note: SMP coherent.  Uses a ranged shootdown IPI.
887 */
888void
889pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
890{
891	vm_offset_t va;
892
893	va = sva;
894	while (count-- > 0) {
895		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
896		va += PAGE_SIZE;
897		m++;
898	}
899	pmap_invalidate_range(kernel_pmap, sva, va);
900}
901
902/*
903 * This routine tears out page mappings from the
904 * kernel -- it is meant only for temporary mappings.
905 * Note: SMP coherent.  Uses a ranged shootdown IPI.
906 */
907void
908pmap_qremove(vm_offset_t sva, int count)
909{
910	vm_offset_t va;
911
912	va = sva;
913	while (count-- > 0) {
914		pmap_kremove(va);
915		va += PAGE_SIZE;
916	}
917	pmap_invalidate_range(kernel_pmap, sva, va);
918}
919
920static vm_page_t
921pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
922{
923	vm_page_t m;
924
925retry:
926	m = vm_page_lookup(object, pindex);
927	if (m != NULL) {
928		vm_page_lock_queues();
929		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
930			goto retry;
931		vm_page_unlock_queues();
932	}
933	return m;
934}
935
936#ifndef KSTACK_MAX_PAGES
937#define KSTACK_MAX_PAGES 32
938#endif
939
940/*
941 * Create the kernel stack (including pcb for i386) for a new thread.
942 * This routine directly affects the fork perf for a process and
943 * create performance for a thread.
944 */
945void
946pmap_new_thread(struct thread *td, int pages)
947{
948	int i;
949	vm_page_t ma[KSTACK_MAX_PAGES];
950	vm_object_t ksobj;
951	vm_page_t m;
952	vm_offset_t ks;
953
954	/* Bounds check */
955	if (pages <= 1)
956		pages = KSTACK_PAGES;
957	else if (pages > KSTACK_MAX_PAGES)
958		pages = KSTACK_MAX_PAGES;
959
960	/*
961	 * allocate object for the kstack
962	 */
963	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
964	td->td_kstack_obj = ksobj;
965
966	/* get a kernel virtual address for the kstack for this thread */
967#ifdef KSTACK_GUARD
968	ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
969	if (ks == 0)
970		panic("pmap_new_thread: kstack allocation failed");
971	if (*vtopte(ks) != 0)
972		pmap_qremove(ks, 1);
973	ks += PAGE_SIZE;
974	td->td_kstack = ks;
975#else
976	/* get a kernel virtual address for the kstack for this thread */
977	ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
978	if (ks == 0)
979		panic("pmap_new_thread: kstack allocation failed");
980	td->td_kstack = ks;
981#endif
982	/*
983	 * Knowing the number of pages allocated is useful when you
984	 * want to deallocate them.
985	 */
986	td->td_kstack_pages = pages;
987
988	/*
989	 * For the length of the stack, link in a real page of ram for each
990	 * page of stack.
991	 */
992	for (i = 0; i < pages; i++) {
993		/*
994		 * Get a kernel stack page
995		 */
996		m = vm_page_grab(ksobj, i,
997		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
998		ma[i] = m;
999
1000		vm_page_lock_queues();
1001		vm_page_wakeup(m);
1002		vm_page_flag_clear(m, PG_ZERO);
1003		m->valid = VM_PAGE_BITS_ALL;
1004		vm_page_unlock_queues();
1005	}
1006	pmap_qenter(ks, ma, pages);
1007}
1008
1009/*
1010 * Dispose the kernel stack for a thread that has exited.
1011 * This routine directly impacts the exit perf of a process and thread.
1012 */
1013void
1014pmap_dispose_thread(td)
1015	struct thread *td;
1016{
1017	int i;
1018	int pages;
1019	vm_object_t ksobj;
1020	vm_offset_t ks;
1021	vm_page_t m;
1022
1023	pages = td->td_kstack_pages;
1024	ksobj = td->td_kstack_obj;
1025	ks = td->td_kstack;
1026	pmap_qremove(ks, pages);
1027	for (i = 0; i < pages; i++) {
1028		m = vm_page_lookup(ksobj, i);
1029		if (m == NULL)
1030			panic("pmap_dispose_thread: kstack already missing?");
1031		vm_page_lock_queues();
1032		vm_page_busy(m);
1033		vm_page_unwire(m, 0);
1034		vm_page_free(m);
1035		vm_page_unlock_queues();
1036	}
1037	/*
1038	 * Free the space that this stack was mapped to in the kernel
1039	 * address map.
1040	 */
1041#ifdef KSTACK_GUARD
1042	kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
1043#else
1044	kmem_free(kernel_map, ks, pages * PAGE_SIZE);
1045#endif
1046	vm_object_deallocate(ksobj);
1047}
1048
1049/*
1050 * Set up a variable sized alternate kstack.  Though it may look MI, it may
1051 * need to be different on certain arches like ia64.
1052 */
1053void
1054pmap_new_altkstack(struct thread *td, int pages)
1055{
1056	/* shuffle the original stack */
1057	td->td_altkstack_obj = td->td_kstack_obj;
1058	td->td_altkstack = td->td_kstack;
1059	td->td_altkstack_pages = td->td_kstack_pages;
1060
1061	pmap_new_thread(td, pages);
1062}
1063
1064void
1065pmap_dispose_altkstack(td)
1066	struct thread *td;
1067{
1068	pmap_dispose_thread(td);
1069
1070	/* restore the original kstack */
1071	td->td_kstack = td->td_altkstack;
1072	td->td_kstack_obj = td->td_altkstack_obj;
1073	td->td_kstack_pages = td->td_altkstack_pages;
1074	td->td_altkstack = 0;
1075	td->td_altkstack_obj = NULL;
1076	td->td_altkstack_pages = 0;
1077}
1078
1079/*
1080 * Allow the Kernel stack for a thread to be prejudicially paged out.
1081 */
1082void
1083pmap_swapout_thread(td)
1084	struct thread *td;
1085{
1086	int i;
1087	int pages;
1088	vm_object_t ksobj;
1089	vm_offset_t ks;
1090	vm_page_t m;
1091
1092	pages = td->td_kstack_pages;
1093	ksobj = td->td_kstack_obj;
1094	ks = td->td_kstack;
1095	pmap_qremove(ks, pages);
1096	for (i = 0; i < pages; i++) {
1097		m = vm_page_lookup(ksobj, i);
1098		if (m == NULL)
1099			panic("pmap_swapout_thread: kstack already missing?");
1100		vm_page_lock_queues();
1101		vm_page_dirty(m);
1102		vm_page_unwire(m, 0);
1103		vm_page_unlock_queues();
1104	}
1105}
1106
1107/*
1108 * Bring the kernel stack for a specified thread back in.
1109 */
1110void
1111pmap_swapin_thread(td)
1112	struct thread *td;
1113{
1114	int i, rv;
1115	int pages;
1116	vm_page_t ma[KSTACK_MAX_PAGES];
1117	vm_object_t ksobj;
1118	vm_offset_t ks;
1119	vm_page_t m;
1120
1121	pages = td->td_kstack_pages;
1122	ksobj = td->td_kstack_obj;
1123	ks = td->td_kstack;
1124	for (i = 0; i < pages; i++) {
1125		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1126		if (m->valid != VM_PAGE_BITS_ALL) {
1127			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1128			if (rv != VM_PAGER_OK)
1129				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1130			m = vm_page_lookup(ksobj, i);
1131			m->valid = VM_PAGE_BITS_ALL;
1132		}
1133		ma[i] = m;
1134		vm_page_lock_queues();
1135		vm_page_wire(m);
1136		vm_page_wakeup(m);
1137		vm_page_unlock_queues();
1138	}
1139	pmap_qenter(ks, ma, pages);
1140}
1141
1142/***************************************************
1143 * Page table page management routines.....
1144 ***************************************************/
1145
1146/*
1147 * This routine unholds page table pages, and if the hold count
1148 * drops to zero, then it decrements the wire count.
1149 */
1150static int
1151_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1152{
1153
1154	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1155		vm_page_lock_queues();
1156
1157	if (m->hold_count == 0) {
1158		vm_offset_t pteva;
1159		/*
1160		 * unmap the page table page
1161		 */
1162		pmap->pm_pdir[m->pindex] = 0;
1163		--pmap->pm_stats.resident_count;
1164		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1165		    (PTDpde & PG_FRAME)) {
1166			/*
1167			 * Do a invltlb to make the invalidated mapping
1168			 * take effect immediately.
1169			 */
1170			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1171			pmap_invalidate_page(pmap, pteva);
1172		}
1173
1174		if (pmap->pm_ptphint == m)
1175			pmap->pm_ptphint = NULL;
1176
1177		/*
1178		 * If the page is finally unwired, simply free it.
1179		 */
1180		--m->wire_count;
1181		if (m->wire_count == 0) {
1182			vm_page_busy(m);
1183			vm_page_free_zero(m);
1184			--cnt.v_wire_count;
1185		}
1186		return 1;
1187	}
1188	return 0;
1189}
1190
1191static PMAP_INLINE int
1192pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1193{
1194	vm_page_unhold(m);
1195	if (m->hold_count == 0)
1196		return _pmap_unwire_pte_hold(pmap, m);
1197	else
1198		return 0;
1199}
1200
1201/*
1202 * After removing a page table entry, this routine is used to
1203 * conditionally free the page, and manage the hold/wire counts.
1204 */
1205static int
1206pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1207{
1208	unsigned ptepindex;
1209	if (va >= VM_MAXUSER_ADDRESS)
1210		return 0;
1211
1212	if (mpte == NULL) {
1213		ptepindex = (va >> PDRSHIFT);
1214		if (pmap->pm_ptphint &&
1215			(pmap->pm_ptphint->pindex == ptepindex)) {
1216			mpte = pmap->pm_ptphint;
1217		} else {
1218			while ((mpte = vm_page_lookup(pmap->pm_pteobj, ptepindex)) != NULL &&
1219			       vm_page_sleep_if_busy(mpte, FALSE, "pulook"))
1220				vm_page_lock_queues();
1221			pmap->pm_ptphint = mpte;
1222		}
1223	}
1224
1225	return pmap_unwire_pte_hold(pmap, mpte);
1226}
1227
1228void
1229pmap_pinit0(pmap)
1230	struct pmap *pmap;
1231{
1232	pmap->pm_pdir =
1233		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1234	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1235#ifndef I386_CPU
1236	invlpg((vm_offset_t)pmap->pm_pdir);
1237#else
1238	invltlb();
1239#endif
1240	pmap->pm_ptphint = NULL;
1241	pmap->pm_active = 0;
1242	TAILQ_INIT(&pmap->pm_pvlist);
1243	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1244	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1245}
1246
1247/*
1248 * Initialize a preallocated and zeroed pmap structure,
1249 * such as one in a vmspace structure.
1250 */
1251void
1252pmap_pinit(pmap)
1253	register struct pmap *pmap;
1254{
1255	vm_page_t ptdpg;
1256
1257	/*
1258	 * No need to allocate page table space yet but we do need a valid
1259	 * page directory table.
1260	 */
1261	if (pmap->pm_pdir == NULL)
1262		pmap->pm_pdir =
1263			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1264
1265	/*
1266	 * allocate object for the ptes
1267	 */
1268	if (pmap->pm_pteobj == NULL)
1269		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1270
1271	/*
1272	 * allocate the page directory page
1273	 */
1274	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1275	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1276	vm_page_lock_queues();
1277	vm_page_flag_clear(ptdpg, PG_BUSY);
1278	ptdpg->valid = VM_PAGE_BITS_ALL;
1279	vm_page_unlock_queues();
1280
1281	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1282	if ((ptdpg->flags & PG_ZERO) == 0)
1283		bzero(pmap->pm_pdir, PAGE_SIZE);
1284
1285	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1286	/* Wire in kernel global address entries. */
1287	/* XXX copies current process, does not fill in MPPTDI */
1288	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1289#ifdef SMP
1290	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1291#endif
1292
1293	/* install self-referential address mapping entry */
1294	pmap->pm_pdir[PTDPTDI] =
1295		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1296
1297	pmap->pm_active = 0;
1298	pmap->pm_ptphint = NULL;
1299	TAILQ_INIT(&pmap->pm_pvlist);
1300	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1301}
1302
1303/*
1304 * Wire in kernel global address entries.  To avoid a race condition
1305 * between pmap initialization and pmap_growkernel, this procedure
1306 * should be called after the vmspace is attached to the process
1307 * but before this pmap is activated.
1308 */
1309void
1310pmap_pinit2(pmap)
1311	struct pmap *pmap;
1312{
1313	/* XXX: Remove this stub when no longer called */
1314}
1315
1316static int
1317pmap_release_free_page(pmap_t pmap, vm_page_t p)
1318{
1319	pd_entry_t *pde = pmap->pm_pdir;
1320
1321	/*
1322	 * This code optimizes the case of freeing non-busy
1323	 * page-table pages.  Those pages are zero now, and
1324	 * might as well be placed directly into the zero queue.
1325	 */
1326	vm_page_lock_queues();
1327	if (vm_page_sleep_if_busy(p, FALSE, "pmaprl"))
1328		return (0);
1329	vm_page_busy(p);
1330
1331	/*
1332	 * Remove the page table page from the processes address space.
1333	 */
1334	pde[p->pindex] = 0;
1335	pmap->pm_stats.resident_count--;
1336
1337	if (p->hold_count)  {
1338		panic("pmap_release: freeing held page table page");
1339	}
1340	/*
1341	 * Page directory pages need to have the kernel
1342	 * stuff cleared, so they can go into the zero queue also.
1343	 */
1344	if (p->pindex == PTDPTDI) {
1345		bzero(pde + KPTDI, nkpt * PTESIZE);
1346#ifdef SMP
1347		pde[MPPTDI] = 0;
1348#endif
1349		pde[APTDPTDI] = 0;
1350		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1351	}
1352
1353	if (pmap->pm_ptphint == p)
1354		pmap->pm_ptphint = NULL;
1355
1356	p->wire_count--;
1357	cnt.v_wire_count--;
1358	vm_page_free_zero(p);
1359	vm_page_unlock_queues();
1360	return 1;
1361}
1362
1363/*
1364 * this routine is called if the page table page is not
1365 * mapped correctly.
1366 */
1367static vm_page_t
1368_pmap_allocpte(pmap, ptepindex)
1369	pmap_t	pmap;
1370	unsigned ptepindex;
1371{
1372	vm_offset_t pteva, ptepa;	/* XXXPA */
1373	vm_page_t m;
1374
1375	/*
1376	 * Find or fabricate a new pagetable page
1377	 */
1378	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1379	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1380
1381	KASSERT(m->queue == PQ_NONE,
1382		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1383
1384	/*
1385	 * Increment the hold count for the page table page
1386	 * (denoting a new mapping.)
1387	 */
1388	m->hold_count++;
1389
1390	/*
1391	 * Map the pagetable page into the process address space, if
1392	 * it isn't already there.
1393	 */
1394
1395	pmap->pm_stats.resident_count++;
1396
1397	ptepa = VM_PAGE_TO_PHYS(m);
1398	pmap->pm_pdir[ptepindex] =
1399		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1400
1401	/*
1402	 * Set the page table hint
1403	 */
1404	pmap->pm_ptphint = m;
1405
1406	/*
1407	 * Try to use the new mapping, but if we cannot, then
1408	 * do it with the routine that maps the page explicitly.
1409	 */
1410	if ((m->flags & PG_ZERO) == 0) {
1411		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1412		    (PTDpde & PG_FRAME)) {
1413			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1414			bzero((caddr_t) pteva, PAGE_SIZE);
1415		} else {
1416			pmap_zero_page(m);
1417		}
1418	}
1419	vm_page_lock_queues();
1420	m->valid = VM_PAGE_BITS_ALL;
1421	vm_page_flag_clear(m, PG_ZERO);
1422	vm_page_wakeup(m);
1423	vm_page_unlock_queues();
1424
1425	return m;
1426}
1427
1428static vm_page_t
1429pmap_allocpte(pmap_t pmap, vm_offset_t va)
1430{
1431	unsigned ptepindex;
1432	pd_entry_t ptepa;
1433	vm_page_t m;
1434
1435	/*
1436	 * Calculate pagetable page index
1437	 */
1438	ptepindex = va >> PDRSHIFT;
1439
1440	/*
1441	 * Get the page directory entry
1442	 */
1443	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1444
1445	/*
1446	 * This supports switching from a 4MB page to a
1447	 * normal 4K page.
1448	 */
1449	if (ptepa & PG_PS) {
1450		pmap->pm_pdir[ptepindex] = 0;
1451		ptepa = 0;
1452		pmap_invalidate_all(kernel_pmap);
1453	}
1454
1455	/*
1456	 * If the page table page is mapped, we just increment the
1457	 * hold count, and activate it.
1458	 */
1459	if (ptepa) {
1460		/*
1461		 * In order to get the page table page, try the
1462		 * hint first.
1463		 */
1464		if (pmap->pm_ptphint &&
1465			(pmap->pm_ptphint->pindex == ptepindex)) {
1466			m = pmap->pm_ptphint;
1467		} else {
1468			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1469			pmap->pm_ptphint = m;
1470		}
1471		m->hold_count++;
1472		return m;
1473	}
1474	/*
1475	 * Here if the pte page isn't mapped, or if it has been deallocated.
1476	 */
1477	return _pmap_allocpte(pmap, ptepindex);
1478}
1479
1480
1481/***************************************************
1482* Pmap allocation/deallocation routines.
1483 ***************************************************/
1484
1485/*
1486 * Release any resources held by the given physical map.
1487 * Called when a pmap initialized by pmap_pinit is being released.
1488 * Should only be called if the map contains no valid mappings.
1489 */
1490void
1491pmap_release(pmap_t pmap)
1492{
1493	vm_page_t p,n,ptdpg;
1494	vm_object_t object = pmap->pm_pteobj;
1495	int curgeneration;
1496
1497#if defined(DIAGNOSTIC)
1498	if (object->ref_count != 1)
1499		panic("pmap_release: pteobj reference count != 1");
1500#endif
1501
1502	ptdpg = NULL;
1503	LIST_REMOVE(pmap, pm_list);
1504retry:
1505	curgeneration = object->generation;
1506	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1507		n = TAILQ_NEXT(p, listq);
1508		if (p->pindex == PTDPTDI) {
1509			ptdpg = p;
1510			continue;
1511		}
1512		while (1) {
1513			if (!pmap_release_free_page(pmap, p) &&
1514				(object->generation != curgeneration))
1515				goto retry;
1516		}
1517	}
1518
1519	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1520		goto retry;
1521}
1522
1523static int
1524kvm_size(SYSCTL_HANDLER_ARGS)
1525{
1526	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1527
1528	return sysctl_handle_long(oidp, &ksize, 0, req);
1529}
1530SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1531    0, 0, kvm_size, "IU", "Size of KVM");
1532
1533static int
1534kvm_free(SYSCTL_HANDLER_ARGS)
1535{
1536	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1537
1538	return sysctl_handle_long(oidp, &kfree, 0, req);
1539}
1540SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1541    0, 0, kvm_free, "IU", "Amount of KVM free");
1542
1543/*
1544 * grow the number of kernel page table entries, if needed
1545 */
1546void
1547pmap_growkernel(vm_offset_t addr)
1548{
1549	struct pmap *pmap;
1550	int s;
1551	vm_offset_t ptppaddr;
1552	vm_page_t nkpg;
1553	pd_entry_t newpdir;
1554
1555	s = splhigh();
1556	if (kernel_vm_end == 0) {
1557		kernel_vm_end = KERNBASE;
1558		nkpt = 0;
1559		while (pdir_pde(PTD, kernel_vm_end)) {
1560			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1561			nkpt++;
1562		}
1563	}
1564	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1565	while (kernel_vm_end < addr) {
1566		if (pdir_pde(PTD, kernel_vm_end)) {
1567			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1568			continue;
1569		}
1570
1571		/*
1572		 * This index is bogus, but out of the way
1573		 */
1574		nkpg = vm_page_alloc(kptobj, nkpt,
1575				     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1576		if (!nkpg)
1577			panic("pmap_growkernel: no memory to grow kernel");
1578
1579		nkpt++;
1580
1581		pmap_zero_page(nkpg);
1582		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1583		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1584		pdir_pde(PTD, kernel_vm_end) = newpdir;
1585
1586		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1587			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1588		}
1589		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1590	}
1591	splx(s);
1592}
1593
1594
1595/***************************************************
1596 * page management routines.
1597 ***************************************************/
1598
1599/*
1600 * free the pv_entry back to the free list
1601 */
1602static PMAP_INLINE void
1603free_pv_entry(pv_entry_t pv)
1604{
1605	pv_entry_count--;
1606	uma_zfree(pvzone, pv);
1607}
1608
1609/*
1610 * get a new pv_entry, allocating a block from the system
1611 * when needed.
1612 * the memory allocation is performed bypassing the malloc code
1613 * because of the possibility of allocations at interrupt time.
1614 */
1615static pv_entry_t
1616get_pv_entry(void)
1617{
1618	pv_entry_count++;
1619	if (pv_entry_high_water &&
1620		(pv_entry_count > pv_entry_high_water) &&
1621		(pmap_pagedaemon_waken == 0)) {
1622		pmap_pagedaemon_waken = 1;
1623		wakeup (&vm_pages_needed);
1624	}
1625	return uma_zalloc(pvzone, M_NOWAIT);
1626}
1627
1628/*
1629 * If it is the first entry on the list, it is actually
1630 * in the header and we must copy the following entry up
1631 * to the header.  Otherwise we must search the list for
1632 * the entry.  In either case we free the now unused entry.
1633 */
1634
1635static int
1636pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1637{
1638	pv_entry_t pv;
1639	int rtval;
1640	int s;
1641
1642	s = splvm();
1643	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1644		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1645			if (pmap == pv->pv_pmap && va == pv->pv_va)
1646				break;
1647		}
1648	} else {
1649		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1650			if (va == pv->pv_va)
1651				break;
1652		}
1653	}
1654
1655	rtval = 0;
1656	if (pv) {
1657		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1658		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1659		m->md.pv_list_count--;
1660		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1661			vm_page_flag_clear(m, PG_WRITEABLE);
1662
1663		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1664		free_pv_entry(pv);
1665	}
1666
1667	splx(s);
1668	return rtval;
1669}
1670
1671/*
1672 * Create a pv entry for page at pa for
1673 * (pmap, va).
1674 */
1675static void
1676pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1677{
1678
1679	int s;
1680	pv_entry_t pv;
1681
1682	s = splvm();
1683	pv = get_pv_entry();
1684	pv->pv_va = va;
1685	pv->pv_pmap = pmap;
1686	pv->pv_ptem = mpte;
1687
1688	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1689	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1690	m->md.pv_list_count++;
1691
1692	splx(s);
1693}
1694
1695/*
1696 * pmap_remove_pte: do the things to unmap a page in a process
1697 */
1698static int
1699pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1700{
1701	pt_entry_t oldpte;
1702	vm_page_t m;
1703
1704	oldpte = atomic_readandclear_int(ptq);
1705	if (oldpte & PG_W)
1706		pmap->pm_stats.wired_count -= 1;
1707	/*
1708	 * Machines that don't support invlpg, also don't support
1709	 * PG_G.
1710	 */
1711	if (oldpte & PG_G)
1712		pmap_invalidate_page(kernel_pmap, va);
1713	pmap->pm_stats.resident_count -= 1;
1714	if (oldpte & PG_MANAGED) {
1715		m = PHYS_TO_VM_PAGE(oldpte);
1716		if (oldpte & PG_M) {
1717#if defined(PMAP_DIAGNOSTIC)
1718			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1719				printf(
1720	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1721				    va, oldpte);
1722			}
1723#endif
1724			if (pmap_track_modified(va))
1725				vm_page_dirty(m);
1726		}
1727		if (oldpte & PG_A)
1728			vm_page_flag_set(m, PG_REFERENCED);
1729		return pmap_remove_entry(pmap, m, va);
1730	} else {
1731		return pmap_unuse_pt(pmap, va, NULL);
1732	}
1733
1734	return 0;
1735}
1736
1737/*
1738 * Remove a single page from a process address space
1739 */
1740static void
1741pmap_remove_page(pmap_t pmap, vm_offset_t va)
1742{
1743	register pt_entry_t *ptq;
1744
1745	/*
1746	 * if there is no pte for this address, just skip it!!!
1747	 */
1748	if (*pmap_pde(pmap, va) == 0) {
1749		return;
1750	}
1751
1752	/*
1753	 * get a local va for mappings for this pmap.
1754	 */
1755	ptq = get_ptbase(pmap) + i386_btop(va);
1756	if (*ptq) {
1757		(void) pmap_remove_pte(pmap, ptq, va);
1758		pmap_invalidate_page(pmap, va);
1759	}
1760	return;
1761}
1762
1763/*
1764 *	Remove the given range of addresses from the specified map.
1765 *
1766 *	It is assumed that the start and end are properly
1767 *	rounded to the page size.
1768 */
1769void
1770pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1771{
1772	register pt_entry_t *ptbase;
1773	vm_offset_t pdnxt;
1774	pd_entry_t ptpaddr;
1775	vm_offset_t sindex, eindex;
1776	int anyvalid;
1777
1778	if (pmap == NULL)
1779		return;
1780
1781	if (pmap->pm_stats.resident_count == 0)
1782		return;
1783
1784	/*
1785	 * special handling of removing one page.  a very
1786	 * common operation and easy to short circuit some
1787	 * code.
1788	 */
1789	if ((sva + PAGE_SIZE == eva) &&
1790	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1791		pmap_remove_page(pmap, sva);
1792		return;
1793	}
1794
1795	anyvalid = 0;
1796
1797	/*
1798	 * Get a local virtual address for the mappings that are being
1799	 * worked with.
1800	 */
1801	ptbase = get_ptbase(pmap);
1802
1803	sindex = i386_btop(sva);
1804	eindex = i386_btop(eva);
1805
1806	for (; sindex < eindex; sindex = pdnxt) {
1807		unsigned pdirindex;
1808
1809		/*
1810		 * Calculate index for next page table.
1811		 */
1812		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1813		if (pmap->pm_stats.resident_count == 0)
1814			break;
1815
1816		pdirindex = sindex / NPDEPG;
1817		ptpaddr = pmap->pm_pdir[pdirindex];
1818		if ((ptpaddr & PG_PS) != 0) {
1819			pmap->pm_pdir[pdirindex] = 0;
1820			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1821			anyvalid++;
1822			continue;
1823		}
1824
1825		/*
1826		 * Weed out invalid mappings. Note: we assume that the page
1827		 * directory table is always allocated, and in kernel virtual.
1828		 */
1829		if (ptpaddr == 0)
1830			continue;
1831
1832		/*
1833		 * Limit our scan to either the end of the va represented
1834		 * by the current page table page, or to the end of the
1835		 * range being removed.
1836		 */
1837		if (pdnxt > eindex) {
1838			pdnxt = eindex;
1839		}
1840
1841		for (; sindex != pdnxt; sindex++) {
1842			vm_offset_t va;
1843			if (ptbase[sindex] == 0) {
1844				continue;
1845			}
1846			va = i386_ptob(sindex);
1847
1848			anyvalid++;
1849			if (pmap_remove_pte(pmap,
1850				ptbase + sindex, va))
1851				break;
1852		}
1853	}
1854
1855	if (anyvalid)
1856		pmap_invalidate_all(pmap);
1857}
1858
1859/*
1860 *	Routine:	pmap_remove_all
1861 *	Function:
1862 *		Removes this physical page from
1863 *		all physical maps in which it resides.
1864 *		Reflects back modify bits to the pager.
1865 *
1866 *	Notes:
1867 *		Original versions of this routine were very
1868 *		inefficient because they iteratively called
1869 *		pmap_remove (slow...)
1870 */
1871
1872void
1873pmap_remove_all(vm_page_t m)
1874{
1875	register pv_entry_t pv;
1876	pt_entry_t *pte, tpte;
1877	int s;
1878
1879#if defined(PMAP_DIAGNOSTIC)
1880	/*
1881	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1882	 */
1883	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1884		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1885		    VM_PAGE_TO_PHYS(m));
1886	}
1887#endif
1888	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1889	s = splvm();
1890	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1891		pv->pv_pmap->pm_stats.resident_count--;
1892		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1893		tpte = atomic_readandclear_int(pte);
1894		if (tpte & PG_W)
1895			pv->pv_pmap->pm_stats.wired_count--;
1896		if (tpte & PG_A)
1897			vm_page_flag_set(m, PG_REFERENCED);
1898
1899		/*
1900		 * Update the vm_page_t clean and reference bits.
1901		 */
1902		if (tpte & PG_M) {
1903#if defined(PMAP_DIAGNOSTIC)
1904			if (pmap_nw_modified((pt_entry_t) tpte)) {
1905				printf(
1906	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1907				    pv->pv_va, tpte);
1908			}
1909#endif
1910			if (pmap_track_modified(pv->pv_va))
1911				vm_page_dirty(m);
1912		}
1913		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1914		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1915		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1916		m->md.pv_list_count--;
1917		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1918		free_pv_entry(pv);
1919	}
1920	vm_page_flag_clear(m, PG_WRITEABLE);
1921	splx(s);
1922}
1923
1924/*
1925 *	Set the physical protection on the
1926 *	specified range of this map as requested.
1927 */
1928void
1929pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1930{
1931	register pt_entry_t *ptbase;
1932	vm_offset_t pdnxt;
1933	pd_entry_t ptpaddr;
1934	vm_offset_t sindex, eindex;
1935	int anychanged;
1936
1937	if (pmap == NULL)
1938		return;
1939
1940	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1941		pmap_remove(pmap, sva, eva);
1942		return;
1943	}
1944
1945	if (prot & VM_PROT_WRITE)
1946		return;
1947
1948	anychanged = 0;
1949
1950	ptbase = get_ptbase(pmap);
1951
1952	sindex = i386_btop(sva);
1953	eindex = i386_btop(eva);
1954
1955	for (; sindex < eindex; sindex = pdnxt) {
1956
1957		unsigned pdirindex;
1958
1959		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1960
1961		pdirindex = sindex / NPDEPG;
1962		ptpaddr = pmap->pm_pdir[pdirindex];
1963		if ((ptpaddr & PG_PS) != 0) {
1964			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1965			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1966			anychanged++;
1967			continue;
1968		}
1969
1970		/*
1971		 * Weed out invalid mappings. Note: we assume that the page
1972		 * directory table is always allocated, and in kernel virtual.
1973		 */
1974		if (ptpaddr == 0)
1975			continue;
1976
1977		if (pdnxt > eindex) {
1978			pdnxt = eindex;
1979		}
1980
1981		for (; sindex != pdnxt; sindex++) {
1982
1983			pt_entry_t pbits;
1984			vm_page_t m;
1985
1986			pbits = ptbase[sindex];
1987
1988			if (pbits & PG_MANAGED) {
1989				m = NULL;
1990				if (pbits & PG_A) {
1991					m = PHYS_TO_VM_PAGE(pbits);
1992					vm_page_flag_set(m, PG_REFERENCED);
1993					pbits &= ~PG_A;
1994				}
1995				if (pbits & PG_M) {
1996					if (pmap_track_modified(i386_ptob(sindex))) {
1997						if (m == NULL)
1998							m = PHYS_TO_VM_PAGE(pbits);
1999						vm_page_dirty(m);
2000						pbits &= ~PG_M;
2001					}
2002				}
2003			}
2004
2005			pbits &= ~PG_RW;
2006
2007			if (pbits != ptbase[sindex]) {
2008				ptbase[sindex] = pbits;
2009				anychanged = 1;
2010			}
2011		}
2012	}
2013	if (anychanged)
2014		pmap_invalidate_all(pmap);
2015}
2016
2017/*
2018 *	Insert the given physical page (p) at
2019 *	the specified virtual address (v) in the
2020 *	target physical map with the protection requested.
2021 *
2022 *	If specified, the page will be wired down, meaning
2023 *	that the related pte can not be reclaimed.
2024 *
2025 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2026 *	or lose information.  That is, this routine must actually
2027 *	insert this page into the given map NOW.
2028 */
2029void
2030pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2031	   boolean_t wired)
2032{
2033	vm_offset_t pa;
2034	register pt_entry_t *pte;
2035	vm_offset_t opa;
2036	pt_entry_t origpte, newpte;
2037	vm_page_t mpte;
2038
2039	if (pmap == NULL)
2040		return;
2041
2042	va &= PG_FRAME;
2043#ifdef PMAP_DIAGNOSTIC
2044	if (va > VM_MAX_KERNEL_ADDRESS)
2045		panic("pmap_enter: toobig");
2046	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2047		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2048#endif
2049
2050	mpte = NULL;
2051	/*
2052	 * In the case that a page table page is not
2053	 * resident, we are creating it here.
2054	 */
2055	if (va < VM_MAXUSER_ADDRESS) {
2056		mpte = pmap_allocpte(pmap, va);
2057	}
2058#if 0 && defined(PMAP_DIAGNOSTIC)
2059	else {
2060		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2061		origpte = *pdeaddr;
2062		if ((origpte & PG_V) == 0) {
2063			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2064				pmap->pm_pdir[PTDPTDI], origpte, va);
2065		}
2066	}
2067#endif
2068
2069	pte = pmap_pte(pmap, va);
2070
2071	/*
2072	 * Page Directory table entry not valid, we need a new PT page
2073	 */
2074	if (pte == NULL) {
2075		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2076			(void *)pmap->pm_pdir[PTDPTDI], va);
2077	}
2078
2079	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2080	origpte = *(vm_offset_t *)pte;
2081	opa = origpte & PG_FRAME;
2082
2083	if (origpte & PG_PS)
2084		panic("pmap_enter: attempted pmap_enter on 4MB page");
2085
2086	/*
2087	 * Mapping has not changed, must be protection or wiring change.
2088	 */
2089	if (origpte && (opa == pa)) {
2090		/*
2091		 * Wiring change, just update stats. We don't worry about
2092		 * wiring PT pages as they remain resident as long as there
2093		 * are valid mappings in them. Hence, if a user page is wired,
2094		 * the PT page will be also.
2095		 */
2096		if (wired && ((origpte & PG_W) == 0))
2097			pmap->pm_stats.wired_count++;
2098		else if (!wired && (origpte & PG_W))
2099			pmap->pm_stats.wired_count--;
2100
2101#if defined(PMAP_DIAGNOSTIC)
2102		if (pmap_nw_modified((pt_entry_t) origpte)) {
2103			printf(
2104	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2105			    va, origpte);
2106		}
2107#endif
2108
2109		/*
2110		 * Remove extra pte reference
2111		 */
2112		if (mpte)
2113			mpte->hold_count--;
2114
2115		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2116			if ((origpte & PG_RW) == 0) {
2117				*pte |= PG_RW;
2118				pmap_invalidate_page(pmap, va);
2119			}
2120			return;
2121		}
2122
2123		/*
2124		 * We might be turning off write access to the page,
2125		 * so we go ahead and sense modify status.
2126		 */
2127		if (origpte & PG_MANAGED) {
2128			if ((origpte & PG_M) && pmap_track_modified(va)) {
2129				vm_page_t om;
2130				om = PHYS_TO_VM_PAGE(opa);
2131				vm_page_dirty(om);
2132			}
2133			pa |= PG_MANAGED;
2134		}
2135		goto validate;
2136	}
2137	/*
2138	 * Mapping has changed, invalidate old range and fall through to
2139	 * handle validating new mapping.
2140	 */
2141	if (opa) {
2142		int err;
2143		vm_page_lock_queues();
2144		err = pmap_remove_pte(pmap, pte, va);
2145		vm_page_unlock_queues();
2146		if (err)
2147			panic("pmap_enter: pte vanished, va: 0x%x", va);
2148	}
2149
2150	/*
2151	 * Enter on the PV list if part of our managed memory. Note that we
2152	 * raise IPL while manipulating pv_table since pmap_enter can be
2153	 * called at interrupt time.
2154	 */
2155	if (pmap_initialized &&
2156	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2157		pmap_insert_entry(pmap, va, mpte, m);
2158		pa |= PG_MANAGED;
2159	}
2160
2161	/*
2162	 * Increment counters
2163	 */
2164	pmap->pm_stats.resident_count++;
2165	if (wired)
2166		pmap->pm_stats.wired_count++;
2167
2168validate:
2169	/*
2170	 * Now validate mapping with desired protection/wiring.
2171	 */
2172	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2173
2174	if (wired)
2175		newpte |= PG_W;
2176	if (va < VM_MAXUSER_ADDRESS)
2177		newpte |= PG_U;
2178	if (pmap == kernel_pmap)
2179		newpte |= pgeflag;
2180
2181	/*
2182	 * if the mapping or permission bits are different, we need
2183	 * to update the pte.
2184	 */
2185	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2186		*pte = newpte | PG_A;
2187		/*if (origpte)*/ {
2188			pmap_invalidate_page(pmap, va);
2189		}
2190	}
2191}
2192
2193/*
2194 * this code makes some *MAJOR* assumptions:
2195 * 1. Current pmap & pmap exists.
2196 * 2. Not wired.
2197 * 3. Read access.
2198 * 4. No page table pages.
2199 * 5. Tlbflush is deferred to calling procedure.
2200 * 6. Page IS managed.
2201 * but is *MUCH* faster than pmap_enter...
2202 */
2203
2204static vm_page_t
2205pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2206{
2207	pt_entry_t *pte;
2208	vm_offset_t pa;
2209
2210	/*
2211	 * In the case that a page table page is not
2212	 * resident, we are creating it here.
2213	 */
2214	if (va < VM_MAXUSER_ADDRESS) {
2215		unsigned ptepindex;
2216		pd_entry_t ptepa;
2217
2218		/*
2219		 * Calculate pagetable page index
2220		 */
2221		ptepindex = va >> PDRSHIFT;
2222		if (mpte && (mpte->pindex == ptepindex)) {
2223			mpte->hold_count++;
2224		} else {
2225retry:
2226			/*
2227			 * Get the page directory entry
2228			 */
2229			ptepa = pmap->pm_pdir[ptepindex];
2230
2231			/*
2232			 * If the page table page is mapped, we just increment
2233			 * the hold count, and activate it.
2234			 */
2235			if (ptepa) {
2236				if (ptepa & PG_PS)
2237					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2238				if (pmap->pm_ptphint &&
2239					(pmap->pm_ptphint->pindex == ptepindex)) {
2240					mpte = pmap->pm_ptphint;
2241				} else {
2242					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2243					pmap->pm_ptphint = mpte;
2244				}
2245				if (mpte == NULL)
2246					goto retry;
2247				mpte->hold_count++;
2248			} else {
2249				mpte = _pmap_allocpte(pmap, ptepindex);
2250			}
2251		}
2252	} else {
2253		mpte = NULL;
2254	}
2255
2256	/*
2257	 * This call to vtopte makes the assumption that we are
2258	 * entering the page into the current pmap.  In order to support
2259	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2260	 * But that isn't as quick as vtopte.
2261	 */
2262	pte = vtopte(va);
2263	if (*pte) {
2264		if (mpte != NULL) {
2265			vm_page_lock_queues();
2266			pmap_unwire_pte_hold(pmap, mpte);
2267			vm_page_unlock_queues();
2268		}
2269		return 0;
2270	}
2271
2272	/*
2273	 * Enter on the PV list if part of our managed memory. Note that we
2274	 * raise IPL while manipulating pv_table since pmap_enter can be
2275	 * called at interrupt time.
2276	 */
2277	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2278		pmap_insert_entry(pmap, va, mpte, m);
2279
2280	/*
2281	 * Increment counters
2282	 */
2283	pmap->pm_stats.resident_count++;
2284
2285	pa = VM_PAGE_TO_PHYS(m);
2286
2287	/*
2288	 * Now validate mapping with RO protection
2289	 */
2290	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2291		*pte = pa | PG_V | PG_U;
2292	else
2293		*pte = pa | PG_V | PG_U | PG_MANAGED;
2294
2295	return mpte;
2296}
2297
2298/*
2299 * Make a temporary mapping for a physical address.  This is only intended
2300 * to be used for panic dumps.
2301 */
2302void *
2303pmap_kenter_temporary(vm_offset_t pa, int i)
2304{
2305	vm_offset_t va;
2306
2307	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2308	pmap_kenter(va, pa);
2309#ifndef I386_CPU
2310	invlpg(va);
2311#else
2312	invltlb();
2313#endif
2314	return ((void *)crashdumpmap);
2315}
2316
2317#define MAX_INIT_PT (96)
2318/*
2319 * pmap_object_init_pt preloads the ptes for a given object
2320 * into the specified pmap.  This eliminates the blast of soft
2321 * faults on process startup and immediately after an mmap.
2322 */
2323void
2324pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2325		    vm_object_t object, vm_pindex_t pindex,
2326		    vm_size_t size, int limit)
2327{
2328	vm_offset_t tmpidx;
2329	int psize;
2330	vm_page_t p, mpte;
2331
2332	if (pmap == NULL || object == NULL)
2333		return;
2334
2335	/*
2336	 * This code maps large physical mmap regions into the
2337	 * processor address space.  Note that some shortcuts
2338	 * are taken, but the code works.
2339	 */
2340	if (pseflag && (object->type == OBJT_DEVICE) &&
2341	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2342		int i;
2343		vm_page_t m[1];
2344		unsigned int ptepindex;
2345		int npdes;
2346		pd_entry_t ptepa;
2347
2348		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2349			return;
2350
2351retry:
2352		p = vm_page_lookup(object, pindex);
2353		if (p != NULL) {
2354			vm_page_lock_queues();
2355			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2356				goto retry;
2357		} else {
2358			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2359			if (p == NULL)
2360				return;
2361			m[0] = p;
2362
2363			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2364				vm_page_lock_queues();
2365				vm_page_free(p);
2366				vm_page_unlock_queues();
2367				return;
2368			}
2369
2370			p = vm_page_lookup(object, pindex);
2371			vm_page_lock_queues();
2372			vm_page_wakeup(p);
2373		}
2374		vm_page_unlock_queues();
2375
2376		ptepa = VM_PAGE_TO_PHYS(p);
2377		if (ptepa & (NBPDR - 1)) {
2378			return;
2379		}
2380
2381		p->valid = VM_PAGE_BITS_ALL;
2382
2383		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2384		npdes = size >> PDRSHIFT;
2385		for(i = 0; i < npdes; i++) {
2386			pmap->pm_pdir[ptepindex] =
2387			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2388			ptepa += NBPDR;
2389			ptepindex += 1;
2390		}
2391		pmap_invalidate_all(kernel_pmap);
2392		return;
2393	}
2394
2395	psize = i386_btop(size);
2396
2397	if ((object->type != OBJT_VNODE) ||
2398	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2399	     (object->resident_page_count > MAX_INIT_PT))) {
2400		return;
2401	}
2402
2403	if (psize + pindex > object->size) {
2404		if (object->size < pindex)
2405			return;
2406		psize = object->size - pindex;
2407	}
2408
2409	mpte = NULL;
2410
2411	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
2412		if (p->pindex < pindex) {
2413			p = vm_page_splay(pindex, object->root);
2414			if ((object->root = p)->pindex < pindex)
2415				p = TAILQ_NEXT(p, listq);
2416		}
2417	}
2418	/*
2419	 * Assert: the variable p is either (1) the page with the
2420	 * least pindex greater than or equal to the parameter pindex
2421	 * or (2) NULL.
2422	 */
2423	for (;
2424	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2425	     p = TAILQ_NEXT(p, listq)) {
2426		/*
2427		 * don't allow an madvise to blow away our really
2428		 * free pages allocating pv entries.
2429		 */
2430		if ((limit & MAP_PREFAULT_MADVISE) &&
2431		    cnt.v_free_count < cnt.v_free_reserved) {
2432			break;
2433		}
2434		vm_page_lock_queues();
2435		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2436		    (p->busy == 0) &&
2437		    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2438			if ((p->queue - p->pc) == PQ_CACHE)
2439				vm_page_deactivate(p);
2440			vm_page_busy(p);
2441			vm_page_unlock_queues();
2442			mpte = pmap_enter_quick(pmap,
2443				addr + i386_ptob(tmpidx), p, mpte);
2444			vm_page_lock_queues();
2445			vm_page_wakeup(p);
2446		}
2447		vm_page_unlock_queues();
2448	}
2449	return;
2450}
2451
2452/*
2453 * pmap_prefault provides a quick way of clustering
2454 * pagefaults into a processes address space.  It is a "cousin"
2455 * of pmap_object_init_pt, except it runs at page fault time instead
2456 * of mmap time.
2457 */
2458#define PFBAK 4
2459#define PFFOR 4
2460#define PAGEORDER_SIZE (PFBAK+PFFOR)
2461
2462static int pmap_prefault_pageorder[] = {
2463	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2464	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2465	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2466	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2467};
2468
2469void
2470pmap_prefault(pmap, addra, entry)
2471	pmap_t pmap;
2472	vm_offset_t addra;
2473	vm_map_entry_t entry;
2474{
2475	int i;
2476	vm_offset_t starta;
2477	vm_offset_t addr;
2478	vm_pindex_t pindex;
2479	vm_page_t m, mpte;
2480	vm_object_t object;
2481
2482	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2483		return;
2484
2485	object = entry->object.vm_object;
2486
2487	starta = addra - PFBAK * PAGE_SIZE;
2488	if (starta < entry->start) {
2489		starta = entry->start;
2490	} else if (starta > addra) {
2491		starta = 0;
2492	}
2493
2494	mpte = NULL;
2495	for (i = 0; i < PAGEORDER_SIZE; i++) {
2496		vm_object_t lobject;
2497		pt_entry_t *pte;
2498
2499		addr = addra + pmap_prefault_pageorder[i];
2500		if (addr > addra + (PFFOR * PAGE_SIZE))
2501			addr = 0;
2502
2503		if (addr < starta || addr >= entry->end)
2504			continue;
2505
2506		if ((*pmap_pde(pmap, addr)) == 0)
2507			continue;
2508
2509		pte = vtopte(addr);
2510		if (*pte)
2511			continue;
2512
2513		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2514		lobject = object;
2515		for (m = vm_page_lookup(lobject, pindex);
2516		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2517		    lobject = lobject->backing_object) {
2518			if (lobject->backing_object_offset & PAGE_MASK)
2519				break;
2520			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2521			m = vm_page_lookup(lobject->backing_object, pindex);
2522		}
2523
2524		/*
2525		 * give-up when a page is not in memory
2526		 */
2527		if (m == NULL)
2528			break;
2529		vm_page_lock_queues();
2530		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2531			(m->busy == 0) &&
2532		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2533
2534			if ((m->queue - m->pc) == PQ_CACHE) {
2535				vm_page_deactivate(m);
2536			}
2537			vm_page_busy(m);
2538			vm_page_unlock_queues();
2539			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2540			vm_page_lock_queues();
2541			vm_page_wakeup(m);
2542		}
2543		vm_page_unlock_queues();
2544	}
2545}
2546
2547/*
2548 *	Routine:	pmap_change_wiring
2549 *	Function:	Change the wiring attribute for a map/virtual-address
2550 *			pair.
2551 *	In/out conditions:
2552 *			The mapping must already exist in the pmap.
2553 */
2554void
2555pmap_change_wiring(pmap, va, wired)
2556	register pmap_t pmap;
2557	vm_offset_t va;
2558	boolean_t wired;
2559{
2560	register pt_entry_t *pte;
2561
2562	if (pmap == NULL)
2563		return;
2564
2565	pte = pmap_pte(pmap, va);
2566
2567	if (wired && !pmap_pte_w(pte))
2568		pmap->pm_stats.wired_count++;
2569	else if (!wired && pmap_pte_w(pte))
2570		pmap->pm_stats.wired_count--;
2571
2572	/*
2573	 * Wiring is not a hardware characteristic so there is no need to
2574	 * invalidate TLB.
2575	 */
2576	pmap_pte_set_w(pte, wired);
2577}
2578
2579
2580
2581/*
2582 *	Copy the range specified by src_addr/len
2583 *	from the source map to the range dst_addr/len
2584 *	in the destination map.
2585 *
2586 *	This routine is only advisory and need not do anything.
2587 */
2588
2589void
2590pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2591	  vm_offset_t src_addr)
2592{
2593	vm_offset_t addr;
2594	vm_offset_t end_addr = src_addr + len;
2595	vm_offset_t pdnxt;
2596	pd_entry_t src_frame, dst_frame;
2597	vm_page_t m;
2598
2599	if (dst_addr != src_addr)
2600		return;
2601
2602	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2603	if (src_frame != (PTDpde & PG_FRAME))
2604		return;
2605
2606	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2607	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2608		pt_entry_t *src_pte, *dst_pte;
2609		vm_page_t dstmpte, srcmpte;
2610		pd_entry_t srcptepaddr;
2611		unsigned ptepindex;
2612
2613		if (addr >= UPT_MIN_ADDRESS)
2614			panic("pmap_copy: invalid to pmap_copy page tables\n");
2615
2616		/*
2617		 * Don't let optional prefaulting of pages make us go
2618		 * way below the low water mark of free pages or way
2619		 * above high water mark of used pv entries.
2620		 */
2621		if (cnt.v_free_count < cnt.v_free_reserved ||
2622		    pv_entry_count > pv_entry_high_water)
2623			break;
2624
2625		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2626		ptepindex = addr >> PDRSHIFT;
2627
2628		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2629		if (srcptepaddr == 0)
2630			continue;
2631
2632		if (srcptepaddr & PG_PS) {
2633			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2634				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2635				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2636			}
2637			continue;
2638		}
2639
2640		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2641		if ((srcmpte == NULL) ||
2642		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2643			continue;
2644
2645		if (pdnxt > end_addr)
2646			pdnxt = end_addr;
2647
2648		/*
2649		 * Have to recheck this before every avtopte() call below
2650		 * in case we have blocked and something else used APTDpde.
2651		 */
2652		if (dst_frame != (APTDpde & PG_FRAME)) {
2653			APTDpde = dst_frame | PG_RW | PG_V;
2654			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2655		}
2656		src_pte = vtopte(addr);
2657		dst_pte = avtopte(addr);
2658		while (addr < pdnxt) {
2659			pt_entry_t ptetemp;
2660			ptetemp = *src_pte;
2661			/*
2662			 * we only virtual copy managed pages
2663			 */
2664			if ((ptetemp & PG_MANAGED) != 0) {
2665				/*
2666				 * We have to check after allocpte for the
2667				 * pte still being around...  allocpte can
2668				 * block.
2669				 */
2670				dstmpte = pmap_allocpte(dst_pmap, addr);
2671				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2672					/*
2673					 * Clear the modified and
2674					 * accessed (referenced) bits
2675					 * during the copy.
2676					 */
2677					m = PHYS_TO_VM_PAGE(ptetemp);
2678					*dst_pte = ptetemp & ~(PG_M | PG_A);
2679					dst_pmap->pm_stats.resident_count++;
2680					pmap_insert_entry(dst_pmap, addr,
2681						dstmpte, m);
2682	 			} else {
2683					vm_page_lock_queues();
2684					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2685					vm_page_unlock_queues();
2686				}
2687				if (dstmpte->hold_count >= srcmpte->hold_count)
2688					break;
2689			}
2690			addr += PAGE_SIZE;
2691			src_pte++;
2692			dst_pte++;
2693		}
2694	}
2695}
2696
2697#ifdef SMP
2698
2699/*
2700 *	pmap_zpi_switchin*()
2701 *
2702 *	These functions allow us to avoid doing IPIs alltogether in certain
2703 *	temporary page-mapping situations (page zeroing).  Instead to deal
2704 *	with being preempted and moved onto a different cpu we invalidate
2705 *	the page when the scheduler switches us in.  This does not occur
2706 *	very often so we remain relatively optimal with very little effort.
2707 */
2708static void
2709pmap_zpi_switchin12(void)
2710{
2711	invlpg((u_int)CADDR1);
2712	invlpg((u_int)CADDR2);
2713}
2714
2715static void
2716pmap_zpi_switchin2(void)
2717{
2718	invlpg((u_int)CADDR2);
2719}
2720
2721static void
2722pmap_zpi_switchin3(void)
2723{
2724	invlpg((u_int)CADDR3);
2725}
2726
2727#endif
2728
2729/*
2730 *	pmap_zero_page zeros the specified hardware page by mapping
2731 *	the page into KVM and using bzero to clear its contents.
2732 */
2733void
2734pmap_zero_page(vm_page_t m)
2735{
2736	vm_offset_t phys;
2737
2738	phys = VM_PAGE_TO_PHYS(m);
2739	if (*CMAP2)
2740		panic("pmap_zero_page: CMAP2 busy");
2741	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2742#ifdef I386_CPU
2743	invltlb();
2744#else
2745#ifdef SMP
2746	curthread->td_switchin = pmap_zpi_switchin2;
2747#endif
2748	invlpg((u_int)CADDR2);
2749#endif
2750#if defined(I686_CPU)
2751	if (cpu_class == CPUCLASS_686)
2752		i686_pagezero(CADDR2);
2753	else
2754#endif
2755		bzero(CADDR2, PAGE_SIZE);
2756#ifdef SMP
2757	curthread->td_switchin = NULL;
2758#endif
2759	*CMAP2 = 0;
2760}
2761
2762/*
2763 *	pmap_zero_page_area zeros the specified hardware page by mapping
2764 *	the page into KVM and using bzero to clear its contents.
2765 *
2766 *	off and size may not cover an area beyond a single hardware page.
2767 */
2768void
2769pmap_zero_page_area(vm_page_t m, int off, int size)
2770{
2771	vm_offset_t phys;
2772
2773	phys = VM_PAGE_TO_PHYS(m);
2774	if (*CMAP2)
2775		panic("pmap_zero_page: CMAP2 busy");
2776	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2777#ifdef I386_CPU
2778	invltlb();
2779#else
2780#ifdef SMP
2781	curthread->td_switchin = pmap_zpi_switchin2;
2782#endif
2783	invlpg((u_int)CADDR2);
2784#endif
2785#if defined(I686_CPU)
2786	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2787		i686_pagezero(CADDR2);
2788	else
2789#endif
2790		bzero((char *)CADDR2 + off, size);
2791#ifdef SMP
2792	curthread->td_switchin = NULL;
2793#endif
2794	*CMAP2 = 0;
2795}
2796
2797/*
2798 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2799 *	the page into KVM and using bzero to clear its contents.  This
2800 *	is intended to be called from the vm_pagezero process only and
2801 *	outside of Giant.
2802 */
2803void
2804pmap_zero_page_idle(vm_page_t m)
2805{
2806	vm_offset_t phys;
2807
2808	phys = VM_PAGE_TO_PHYS(m);
2809	if (*CMAP3)
2810		panic("pmap_zero_page: CMAP3 busy");
2811	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2812#ifdef I386_CPU
2813	invltlb();
2814#else
2815#ifdef SMP
2816	curthread->td_switchin = pmap_zpi_switchin3;
2817#endif
2818	invlpg((u_int)CADDR3);
2819#endif
2820#if defined(I686_CPU)
2821	if (cpu_class == CPUCLASS_686)
2822		i686_pagezero(CADDR3);
2823	else
2824#endif
2825		bzero(CADDR3, PAGE_SIZE);
2826#ifdef SMP
2827	curthread->td_switchin = NULL;
2828#endif
2829	*CMAP3 = 0;
2830}
2831
2832/*
2833 *	pmap_copy_page copies the specified (machine independent)
2834 *	page by mapping the page into virtual memory and using
2835 *	bcopy to copy the page, one machine dependent page at a
2836 *	time.
2837 */
2838void
2839pmap_copy_page(vm_page_t src, vm_page_t dst)
2840{
2841
2842	if (*CMAP1)
2843		panic("pmap_copy_page: CMAP1 busy");
2844	if (*CMAP2)
2845		panic("pmap_copy_page: CMAP2 busy");
2846	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2847	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2848#ifdef I386_CPU
2849	invltlb();
2850#else
2851#ifdef SMP
2852	curthread->td_switchin = pmap_zpi_switchin12;
2853#endif
2854	invlpg((u_int)CADDR1);
2855	invlpg((u_int)CADDR2);
2856#endif
2857	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2858#ifdef SMP
2859	curthread->td_switchin = NULL;
2860#endif
2861	*CMAP1 = 0;
2862	*CMAP2 = 0;
2863}
2864
2865/*
2866 * Returns true if the pmap's pv is one of the first
2867 * 16 pvs linked to from this page.  This count may
2868 * be changed upwards or downwards in the future; it
2869 * is only necessary that true be returned for a small
2870 * subset of pmaps for proper page aging.
2871 */
2872boolean_t
2873pmap_page_exists_quick(pmap, m)
2874	pmap_t pmap;
2875	vm_page_t m;
2876{
2877	pv_entry_t pv;
2878	int loops = 0;
2879	int s;
2880
2881	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2882		return FALSE;
2883
2884	s = splvm();
2885	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2886	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2887		if (pv->pv_pmap == pmap) {
2888			splx(s);
2889			return TRUE;
2890		}
2891		loops++;
2892		if (loops >= 16)
2893			break;
2894	}
2895	splx(s);
2896	return (FALSE);
2897}
2898
2899#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2900/*
2901 * Remove all pages from specified address space
2902 * this aids process exit speeds.  Also, this code
2903 * is special cased for current process only, but
2904 * can have the more generic (and slightly slower)
2905 * mode enabled.  This is much faster than pmap_remove
2906 * in the case of running down an entire address space.
2907 */
2908void
2909pmap_remove_pages(pmap, sva, eva)
2910	pmap_t pmap;
2911	vm_offset_t sva, eva;
2912{
2913	pt_entry_t *pte, tpte;
2914	vm_page_t m;
2915	pv_entry_t pv, npv;
2916	int s;
2917
2918#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2919	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2920		printf("warning: pmap_remove_pages called with non-current pmap\n");
2921		return;
2922	}
2923#endif
2924	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2925	s = splvm();
2926	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2927
2928		if (pv->pv_va >= eva || pv->pv_va < sva) {
2929			npv = TAILQ_NEXT(pv, pv_plist);
2930			continue;
2931		}
2932
2933#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2934		pte = vtopte(pv->pv_va);
2935#else
2936		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2937#endif
2938		tpte = *pte;
2939
2940		if (tpte == 0) {
2941			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2942							pte, pv->pv_va);
2943			panic("bad pte");
2944		}
2945
2946/*
2947 * We cannot remove wired pages from a process' mapping at this time
2948 */
2949		if (tpte & PG_W) {
2950			npv = TAILQ_NEXT(pv, pv_plist);
2951			continue;
2952		}
2953
2954		m = PHYS_TO_VM_PAGE(tpte);
2955		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2956		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2957		    m, m->phys_addr, tpte));
2958
2959		KASSERT(m < &vm_page_array[vm_page_array_size],
2960			("pmap_remove_pages: bad tpte %x", tpte));
2961
2962		pv->pv_pmap->pm_stats.resident_count--;
2963
2964		*pte = 0;
2965
2966		/*
2967		 * Update the vm_page_t clean and reference bits.
2968		 */
2969		if (tpte & PG_M) {
2970			vm_page_dirty(m);
2971		}
2972
2973		npv = TAILQ_NEXT(pv, pv_plist);
2974		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2975
2976		m->md.pv_list_count--;
2977		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2978		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
2979			vm_page_flag_clear(m, PG_WRITEABLE);
2980		}
2981
2982		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2983		free_pv_entry(pv);
2984	}
2985	splx(s);
2986	pmap_invalidate_all(pmap);
2987}
2988
2989/*
2990 * pmap_testbit tests bits in pte's
2991 * note that the testbit/changebit routines are inline,
2992 * and a lot of things compile-time evaluate.
2993 */
2994static boolean_t
2995pmap_testbit(m, bit)
2996	vm_page_t m;
2997	int bit;
2998{
2999	pv_entry_t pv;
3000	pt_entry_t *pte;
3001	int s;
3002
3003	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3004		return FALSE;
3005
3006	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3007		return FALSE;
3008
3009	s = splvm();
3010
3011	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3012		/*
3013		 * if the bit being tested is the modified bit, then
3014		 * mark clean_map and ptes as never
3015		 * modified.
3016		 */
3017		if (bit & (PG_A|PG_M)) {
3018			if (!pmap_track_modified(pv->pv_va))
3019				continue;
3020		}
3021
3022#if defined(PMAP_DIAGNOSTIC)
3023		if (!pv->pv_pmap) {
3024			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3025			continue;
3026		}
3027#endif
3028		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3029		if (*pte & bit) {
3030			splx(s);
3031			return TRUE;
3032		}
3033	}
3034	splx(s);
3035	return (FALSE);
3036}
3037
3038/*
3039 * this routine is used to modify bits in ptes
3040 */
3041static __inline void
3042pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3043{
3044	register pv_entry_t pv;
3045	register pt_entry_t *pte;
3046	int s;
3047
3048	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
3049	    (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
3050		return;
3051
3052	s = splvm();
3053	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3054	/*
3055	 * Loop over all current mappings setting/clearing as appropos If
3056	 * setting RO do we need to clear the VAC?
3057	 */
3058	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3059		/*
3060		 * don't write protect pager mappings
3061		 */
3062		if (!setem && (bit == PG_RW)) {
3063			if (!pmap_track_modified(pv->pv_va))
3064				continue;
3065		}
3066
3067#if defined(PMAP_DIAGNOSTIC)
3068		if (!pv->pv_pmap) {
3069			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3070			continue;
3071		}
3072#endif
3073
3074		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3075
3076		if (setem) {
3077			*pte |= bit;
3078			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3079		} else {
3080			pt_entry_t pbits = *pte;
3081			if (pbits & bit) {
3082				if (bit == PG_RW) {
3083					if (pbits & PG_M) {
3084						vm_page_dirty(m);
3085					}
3086					*pte = pbits & ~(PG_M|PG_RW);
3087				} else {
3088					*pte = pbits & ~bit;
3089				}
3090				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3091			}
3092		}
3093	}
3094	if (!setem && bit == PG_RW)
3095		vm_page_flag_clear(m, PG_WRITEABLE);
3096	splx(s);
3097}
3098
3099/*
3100 *      pmap_page_protect:
3101 *
3102 *      Lower the permission for all mappings to a given page.
3103 */
3104void
3105pmap_page_protect(vm_page_t m, vm_prot_t prot)
3106{
3107	if ((prot & VM_PROT_WRITE) == 0) {
3108		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3109			pmap_changebit(m, PG_RW, FALSE);
3110		} else {
3111			pmap_remove_all(m);
3112		}
3113	}
3114}
3115
3116vm_offset_t
3117pmap_phys_address(ppn)
3118	int ppn;
3119{
3120	return (i386_ptob(ppn));
3121}
3122
3123/*
3124 *	pmap_ts_referenced:
3125 *
3126 *	Return a count of reference bits for a page, clearing those bits.
3127 *	It is not necessary for every reference bit to be cleared, but it
3128 *	is necessary that 0 only be returned when there are truly no
3129 *	reference bits set.
3130 *
3131 *	XXX: The exact number of bits to check and clear is a matter that
3132 *	should be tested and standardized at some point in the future for
3133 *	optimal aging of shared pages.
3134 */
3135int
3136pmap_ts_referenced(vm_page_t m)
3137{
3138	register pv_entry_t pv, pvf, pvn;
3139	pt_entry_t *pte;
3140	int s;
3141	int rtval = 0;
3142
3143	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3144		return (rtval);
3145
3146	s = splvm();
3147	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3148	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3149
3150		pvf = pv;
3151
3152		do {
3153			pvn = TAILQ_NEXT(pv, pv_list);
3154
3155			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3156
3157			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3158
3159			if (!pmap_track_modified(pv->pv_va))
3160				continue;
3161
3162			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3163
3164			if (pte && (*pte & PG_A)) {
3165				*pte &= ~PG_A;
3166
3167				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3168
3169				rtval++;
3170				if (rtval > 4) {
3171					break;
3172				}
3173			}
3174		} while ((pv = pvn) != NULL && pv != pvf);
3175	}
3176	splx(s);
3177
3178	return (rtval);
3179}
3180
3181/*
3182 *	pmap_is_modified:
3183 *
3184 *	Return whether or not the specified physical page was modified
3185 *	in any physical maps.
3186 */
3187boolean_t
3188pmap_is_modified(vm_page_t m)
3189{
3190	return pmap_testbit(m, PG_M);
3191}
3192
3193/*
3194 *	Clear the modify bits on the specified physical page.
3195 */
3196void
3197pmap_clear_modify(vm_page_t m)
3198{
3199	pmap_changebit(m, PG_M, FALSE);
3200}
3201
3202/*
3203 *	pmap_clear_reference:
3204 *
3205 *	Clear the reference bit on the specified physical page.
3206 */
3207void
3208pmap_clear_reference(vm_page_t m)
3209{
3210	pmap_changebit(m, PG_A, FALSE);
3211}
3212
3213/*
3214 * Miscellaneous support routines follow
3215 */
3216
3217static void
3218i386_protection_init()
3219{
3220	register int *kp, prot;
3221
3222	kp = protection_codes;
3223	for (prot = 0; prot < 8; prot++) {
3224		switch (prot) {
3225		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3226			/*
3227			 * Read access is also 0. There isn't any execute bit,
3228			 * so just make it readable.
3229			 */
3230		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3231		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3232		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3233			*kp++ = 0;
3234			break;
3235		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3236		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3237		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3238		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3239			*kp++ = PG_RW;
3240			break;
3241		}
3242	}
3243}
3244
3245/*
3246 * Map a set of physical memory pages into the kernel virtual
3247 * address space. Return a pointer to where it is mapped. This
3248 * routine is intended to be used for mapping device memory,
3249 * NOT real memory.
3250 */
3251void *
3252pmap_mapdev(pa, size)
3253	vm_offset_t pa;
3254	vm_size_t size;
3255{
3256	vm_offset_t va, tmpva, offset;
3257	pt_entry_t *pte;
3258
3259	offset = pa & PAGE_MASK;
3260	size = roundup(offset + size, PAGE_SIZE);
3261
3262	GIANT_REQUIRED;
3263
3264	va = kmem_alloc_pageable(kernel_map, size);
3265	if (!va)
3266		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3267
3268	pa = pa & PG_FRAME;
3269	for (tmpva = va; size > 0; ) {
3270		pte = vtopte(tmpva);
3271		*pte = pa | PG_RW | PG_V | pgeflag;
3272		size -= PAGE_SIZE;
3273		tmpva += PAGE_SIZE;
3274		pa += PAGE_SIZE;
3275	}
3276	pmap_invalidate_range(kernel_pmap, va, tmpva);
3277	return ((void *)(va + offset));
3278}
3279
3280void
3281pmap_unmapdev(va, size)
3282	vm_offset_t va;
3283	vm_size_t size;
3284{
3285	vm_offset_t base, offset, tmpva;
3286	pt_entry_t *pte;
3287
3288	base = va & PG_FRAME;
3289	offset = va & PAGE_MASK;
3290	size = roundup(offset + size, PAGE_SIZE);
3291	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3292		pte = vtopte(tmpva);
3293		*pte = 0;
3294	}
3295	pmap_invalidate_range(kernel_pmap, va, tmpva);
3296	kmem_free(kernel_map, base, size);
3297}
3298
3299/*
3300 * perform the pmap work for mincore
3301 */
3302int
3303pmap_mincore(pmap, addr)
3304	pmap_t pmap;
3305	vm_offset_t addr;
3306{
3307	pt_entry_t *ptep, pte;
3308	vm_page_t m;
3309	int val = 0;
3310
3311	ptep = pmap_pte(pmap, addr);
3312	if (ptep == 0) {
3313		return 0;
3314	}
3315
3316	if ((pte = *ptep) != 0) {
3317		vm_offset_t pa;
3318
3319		val = MINCORE_INCORE;
3320		if ((pte & PG_MANAGED) == 0)
3321			return val;
3322
3323		pa = pte & PG_FRAME;
3324
3325		m = PHYS_TO_VM_PAGE(pa);
3326
3327		/*
3328		 * Modified by us
3329		 */
3330		if (pte & PG_M)
3331			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3332		else {
3333			/*
3334			 * Modified by someone else
3335			 */
3336			vm_page_lock_queues();
3337			if (m->dirty || pmap_is_modified(m))
3338				val |= MINCORE_MODIFIED_OTHER;
3339			vm_page_unlock_queues();
3340		}
3341		/*
3342		 * Referenced by us
3343		 */
3344		if (pte & PG_A)
3345			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3346		else {
3347			/*
3348			 * Referenced by someone else
3349			 */
3350			vm_page_lock_queues();
3351			if ((m->flags & PG_REFERENCED) ||
3352			    pmap_ts_referenced(m)) {
3353				val |= MINCORE_REFERENCED_OTHER;
3354				vm_page_flag_set(m, PG_REFERENCED);
3355			}
3356			vm_page_unlock_queues();
3357		}
3358	}
3359	return val;
3360}
3361
3362void
3363pmap_activate(struct thread *td)
3364{
3365	struct proc *p = td->td_proc;
3366	pmap_t	pmap;
3367	u_int32_t  cr3;
3368
3369	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3370#if defined(SMP)
3371	pmap->pm_active |= PCPU_GET(cpumask);
3372#else
3373	pmap->pm_active |= 1;
3374#endif
3375	cr3 = vtophys(pmap->pm_pdir);
3376	/* XXXKSE this is wrong.
3377	 * pmap_activate is for the current thread on the current cpu
3378	 */
3379	if (p->p_flag & P_KSES) {
3380		/* Make sure all other cr3 entries are updated. */
3381		/* what if they are running?  XXXKSE (maybe abort them) */
3382		FOREACH_THREAD_IN_PROC(p, td) {
3383			td->td_pcb->pcb_cr3 = cr3;
3384		}
3385	} else {
3386		td->td_pcb->pcb_cr3 = cr3;
3387	}
3388	load_cr3(cr3);
3389#ifdef SWTCH_OPTIM_STATS
3390	tlb_flush_count++;
3391#endif
3392}
3393
3394vm_offset_t
3395pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3396{
3397
3398	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3399		return addr;
3400	}
3401
3402	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3403	return addr;
3404}
3405
3406
3407#if defined(PMAP_DEBUG)
3408pmap_pid_dump(int pid)
3409{
3410	pmap_t pmap;
3411	struct proc *p;
3412	int npte = 0;
3413	int index;
3414
3415	sx_slock(&allproc_lock);
3416	LIST_FOREACH(p, &allproc, p_list) {
3417		if (p->p_pid != pid)
3418			continue;
3419
3420		if (p->p_vmspace) {
3421			int i,j;
3422			index = 0;
3423			pmap = vmspace_pmap(p->p_vmspace);
3424			for (i = 0; i < NPDEPG; i++) {
3425				pd_entry_t *pde;
3426				pt_entry_t *pte;
3427				vm_offset_t base = i << PDRSHIFT;
3428
3429				pde = &pmap->pm_pdir[i];
3430				if (pde && pmap_pde_v(pde)) {
3431					for (j = 0; j < NPTEPG; j++) {
3432						vm_offset_t va = base + (j << PAGE_SHIFT);
3433						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3434							if (index) {
3435								index = 0;
3436								printf("\n");
3437							}
3438							sx_sunlock(&allproc_lock);
3439							return npte;
3440						}
3441						pte = pmap_pte_quick(pmap, va);
3442						if (pte && pmap_pte_v(pte)) {
3443							pt_entry_t pa;
3444							vm_page_t m;
3445							pa = *pte;
3446							m = PHYS_TO_VM_PAGE(pa);
3447							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3448								va, pa, m->hold_count, m->wire_count, m->flags);
3449							npte++;
3450							index++;
3451							if (index >= 2) {
3452								index = 0;
3453								printf("\n");
3454							} else {
3455								printf(" ");
3456							}
3457						}
3458					}
3459				}
3460			}
3461		}
3462	}
3463	sx_sunlock(&allproc_lock);
3464	return npte;
3465}
3466#endif
3467
3468#if defined(DEBUG)
3469
3470static void	pads(pmap_t pm);
3471void		pmap_pvdump(vm_offset_t pa);
3472
3473/* print address space of pmap*/
3474static void
3475pads(pm)
3476	pmap_t pm;
3477{
3478	int i, j;
3479	vm_offset_t va;
3480	pt_entry_t *ptep;
3481
3482	if (pm == kernel_pmap)
3483		return;
3484	for (i = 0; i < NPDEPG; i++)
3485		if (pm->pm_pdir[i])
3486			for (j = 0; j < NPTEPG; j++) {
3487				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3488				if (pm == kernel_pmap && va < KERNBASE)
3489					continue;
3490				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3491					continue;
3492				ptep = pmap_pte_quick(pm, va);
3493				if (pmap_pte_v(ptep))
3494					printf("%x:%x ", va, *ptep);
3495			};
3496
3497}
3498
3499void
3500pmap_pvdump(pa)
3501	vm_offset_t pa;
3502{
3503	pv_entry_t pv;
3504	vm_page_t m;
3505
3506	printf("pa %x", pa);
3507	m = PHYS_TO_VM_PAGE(pa);
3508	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3509		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3510		pads(pv->pv_pmap);
3511	}
3512	printf(" ");
3513}
3514#endif
3515