pmap.c revision 106753
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 106753 2002-11-11 05:17:34Z alc $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154struct pmaplist allpmaps;
155
156vm_offset_t avail_start;	/* PA of first available physical page */
157vm_offset_t avail_end;		/* PA of last available physical page */
158vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
159vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
160static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
161static int pgeflag;		/* PG_G or-in */
162static int pseflag;		/* PG_PS or-in */
163
164static vm_object_t kptobj;
165
166static int nkpt;
167vm_offset_t kernel_vm_end;
168extern u_int32_t KERNend;
169
170/*
171 * Data for the pv entry allocation mechanism
172 */
173static uma_zone_t pvzone;
174static struct vm_object pvzone_obj;
175static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
176static int pmap_pagedaemon_waken = 0;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2, CADDR3;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
207				      vm_page_t m, vm_page_t mpte);
208static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
209static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
210static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
211					vm_offset_t va);
212static boolean_t pmap_testbit(vm_page_t m, int bit);
213static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
214		vm_page_t mpte, vm_page_t m);
215
216static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
217
218static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
219static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
220static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
221static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
222static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
223static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
224static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
225
226static pd_entry_t pdir4mb;
227
228/*
229 *	Routine:	pmap_pte
230 *	Function:
231 *		Extract the page table entry associated
232 *		with the given map/virtual_address pair.
233 */
234
235PMAP_INLINE pt_entry_t *
236pmap_pte(pmap, va)
237	register pmap_t pmap;
238	vm_offset_t va;
239{
240	pd_entry_t *pdeaddr;
241
242	if (pmap) {
243		pdeaddr = pmap_pde(pmap, va);
244		if (*pdeaddr & PG_PS)
245			return pdeaddr;
246		if (*pdeaddr) {
247			return get_ptbase(pmap) + i386_btop(va);
248		}
249	}
250	return (0);
251}
252
253/*
254 * Move the kernel virtual free pointer to the next
255 * 4MB.  This is used to help improve performance
256 * by using a large (4MB) page for much of the kernel
257 * (.text, .data, .bss)
258 */
259static vm_offset_t
260pmap_kmem_choose(vm_offset_t addr)
261{
262	vm_offset_t newaddr = addr;
263
264#ifndef DISABLE_PSE
265	if (cpu_feature & CPUID_PSE)
266		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
267#endif
268	return newaddr;
269}
270
271/*
272 *	Bootstrap the system enough to run with virtual memory.
273 *
274 *	On the i386 this is called after mapping has already been enabled
275 *	and just syncs the pmap module with what has already been done.
276 *	[We can't call it easily with mapping off since the kernel is not
277 *	mapped with PA == VA, hence we would have to relocate every address
278 *	from the linked base (virtual) address "KERNBASE" to the actual
279 *	(physical) address starting relative to 0]
280 */
281void
282pmap_bootstrap(firstaddr, loadaddr)
283	vm_offset_t firstaddr;
284	vm_offset_t loadaddr;
285{
286	vm_offset_t va;
287	pt_entry_t *pte;
288	int i;
289
290	avail_start = firstaddr;
291
292	/*
293	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
294	 * large. It should instead be correctly calculated in locore.s and
295	 * not based on 'first' (which is a physical address, not a virtual
296	 * address, for the start of unused physical memory). The kernel
297	 * page tables are NOT double mapped and thus should not be included
298	 * in this calculation.
299	 */
300	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
301	virtual_avail = pmap_kmem_choose(virtual_avail);
302
303	virtual_end = VM_MAX_KERNEL_ADDRESS;
304
305	/*
306	 * Initialize protection array.
307	 */
308	i386_protection_init();
309
310	/*
311	 * Initialize the kernel pmap (which is statically allocated).
312	 */
313	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
314	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
315	TAILQ_INIT(&kernel_pmap->pm_pvlist);
316	LIST_INIT(&allpmaps);
317	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
318	nkpt = NKPT;
319
320	/*
321	 * Reserve some special page table entries/VA space for temporary
322	 * mapping of pages.
323	 */
324#define	SYSMAP(c, p, v, n)	\
325	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
326
327	va = virtual_avail;
328	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
329
330	/*
331	 * CMAP1/CMAP2 are used for zeroing and copying pages.
332	 * CMAP3 is used for the idle process page zeroing.
333	 */
334	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
335	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
336	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
337
338	/*
339	 * Crashdump maps.
340	 */
341	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
342
343	/*
344	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
345	 * XXX ptmmap is not used.
346	 */
347	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
348
349	/*
350	 * msgbufp is used to map the system message buffer.
351	 * XXX msgbufmap is not used.
352	 */
353	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
354	       atop(round_page(MSGBUF_SIZE)))
355
356	/*
357	 * ptemap is used for pmap_pte_quick
358	 */
359	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
360
361	virtual_avail = va;
362
363	*CMAP1 = *CMAP2 = 0;
364	for (i = 0; i < NKPT; i++)
365		PTD[i] = 0;
366
367	pgeflag = 0;
368#ifndef DISABLE_PG_G
369	if (cpu_feature & CPUID_PGE)
370		pgeflag = PG_G;
371#endif
372
373/*
374 * Initialize the 4MB page size flag
375 */
376	pseflag = 0;
377/*
378 * The 4MB page version of the initial
379 * kernel page mapping.
380 */
381	pdir4mb = 0;
382
383#ifndef DISABLE_PSE
384	if (cpu_feature & CPUID_PSE) {
385		pd_entry_t ptditmp;
386		/*
387		 * Note that we have enabled PSE mode
388		 */
389		pseflag = PG_PS;
390		ptditmp = *(PTmap + i386_btop(KERNBASE));
391		ptditmp &= ~(NBPDR - 1);
392		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
393		pdir4mb = ptditmp;
394	}
395#endif
396#ifndef SMP
397	/*
398	 * Turn on PGE/PSE.  SMP does this later on since the
399	 * 4K page tables are required for AP boot (for now).
400	 * XXX fixme.
401	 */
402	pmap_set_opt();
403#endif
404#ifdef SMP
405	if (cpu_apic_address == 0)
406		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
407
408	/* local apic is mapped on last page */
409	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
410	    (cpu_apic_address & PG_FRAME));
411#endif
412	invltlb();
413}
414
415/*
416 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
417 * BSP will run this after all the AP's have started up.
418 */
419void
420pmap_set_opt(void)
421{
422	pt_entry_t *pte;
423	vm_offset_t va, endva;
424
425	if (pgeflag && (cpu_feature & CPUID_PGE)) {
426		load_cr4(rcr4() | CR4_PGE);
427		invltlb();		/* Insurance */
428	}
429#ifndef DISABLE_PSE
430	if (pseflag && (cpu_feature & CPUID_PSE)) {
431		load_cr4(rcr4() | CR4_PSE);
432		invltlb();		/* Insurance */
433	}
434#endif
435	if (PCPU_GET(cpuid) == 0) {
436#ifndef DISABLE_PSE
437		if (pdir4mb) {
438			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
439			invltlb();	/* Insurance */
440		}
441#endif
442		if (pgeflag) {
443			/* Turn on PG_G for text, data, bss pages. */
444			va = (vm_offset_t)btext;
445#ifndef DISABLE_PSE
446			if (pseflag && (cpu_feature & CPUID_PSE)) {
447				if (va < KERNBASE + (1 << PDRSHIFT))
448					va = KERNBASE + (1 << PDRSHIFT);
449			}
450#endif
451			endva = KERNBASE + KERNend;
452			while (va < endva) {
453				pte = vtopte(va);
454				if (*pte)
455					*pte |= pgeflag;
456				va += PAGE_SIZE;
457			}
458			invltlb();	/* Insurance */
459		}
460		/*
461		 * We do not need to broadcast the invltlb here, because
462		 * each AP does it the moment it is released from the boot
463		 * lock.  See ap_init().
464		 */
465	}
466}
467
468static void *
469pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
470{
471	*flags = UMA_SLAB_PRIV;
472	return (void *)kmem_alloc(kernel_map, bytes);
473}
474
475/*
476 *	Initialize the pmap module.
477 *	Called by vm_init, to initialize any structures that the pmap
478 *	system needs to map virtual memory.
479 *	pmap_init has been enhanced to support in a fairly consistant
480 *	way, discontiguous physical memory.
481 */
482void
483pmap_init(phys_start, phys_end)
484	vm_offset_t phys_start, phys_end;
485{
486	int i;
487	int initial_pvs;
488
489	/*
490	 * object for kernel page table pages
491	 */
492	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
493
494	/*
495	 * Allocate memory for random pmap data structures.  Includes the
496	 * pv_head_table.
497	 */
498
499	for(i = 0; i < vm_page_array_size; i++) {
500		vm_page_t m;
501
502		m = &vm_page_array[i];
503		TAILQ_INIT(&m->md.pv_list);
504		m->md.pv_list_count = 0;
505	}
506
507	/*
508	 * init the pv free list
509	 */
510	initial_pvs = vm_page_array_size;
511	if (initial_pvs < MINPV)
512		initial_pvs = MINPV;
513	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
514	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
515	uma_zone_set_allocf(pvzone, pmap_allocf);
516	uma_prealloc(pvzone, initial_pvs);
517
518	/*
519	 * Now it is safe to enable pv_table recording.
520	 */
521	pmap_initialized = TRUE;
522}
523
524/*
525 * Initialize the address space (zone) for the pv_entries.  Set a
526 * high water mark so that the system can recover from excessive
527 * numbers of pv entries.
528 */
529void
530pmap_init2()
531{
532	int shpgperproc = PMAP_SHPGPERPROC;
533
534	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
535	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
536	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
537	pv_entry_high_water = 9 * (pv_entry_max / 10);
538	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
539}
540
541
542/***************************************************
543 * Low level helper routines.....
544 ***************************************************/
545
546#if defined(PMAP_DIAGNOSTIC)
547
548/*
549 * This code checks for non-writeable/modified pages.
550 * This should be an invalid condition.
551 */
552static int
553pmap_nw_modified(pt_entry_t ptea)
554{
555	int pte;
556
557	pte = (int) ptea;
558
559	if ((pte & (PG_M|PG_RW)) == PG_M)
560		return 1;
561	else
562		return 0;
563}
564#endif
565
566
567/*
568 * this routine defines the region(s) of memory that should
569 * not be tested for the modified bit.
570 */
571static PMAP_INLINE int
572pmap_track_modified(vm_offset_t va)
573{
574	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
575		return 1;
576	else
577		return 0;
578}
579
580#ifdef I386_CPU
581/*
582 * i386 only has "invalidate everything" and no SMP to worry about.
583 */
584PMAP_INLINE void
585pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
586{
587
588	if (pmap == kernel_pmap || pmap->pm_active)
589		invltlb();
590}
591
592PMAP_INLINE void
593pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
594{
595
596	if (pmap == kernel_pmap || pmap->pm_active)
597		invltlb();
598}
599
600PMAP_INLINE void
601pmap_invalidate_all(pmap_t pmap)
602{
603
604	if (pmap == kernel_pmap || pmap->pm_active)
605		invltlb();
606}
607#else /* !I386_CPU */
608#ifdef SMP
609/*
610 * For SMP, these functions have to use the IPI mechanism for coherence.
611 */
612void
613pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
614{
615	u_int cpumask;
616	u_int other_cpus;
617
618	critical_enter();
619	/*
620	 * We need to disable interrupt preemption but MUST NOT have
621	 * interrupts disabled here.
622	 * XXX we may need to hold schedlock to get a coherent pm_active
623	 */
624	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
625		invlpg(va);
626		smp_invlpg(va);
627	} else {
628		cpumask = PCPU_GET(cpumask);
629		other_cpus = PCPU_GET(other_cpus);
630		if (pmap->pm_active & cpumask)
631			invlpg(va);
632		if (pmap->pm_active & other_cpus)
633			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
634	}
635	critical_exit();
636}
637
638void
639pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
640{
641	u_int cpumask;
642	u_int other_cpus;
643	vm_offset_t addr;
644
645	critical_enter();
646	/*
647	 * We need to disable interrupt preemption but MUST NOT have
648	 * interrupts disabled here.
649	 * XXX we may need to hold schedlock to get a coherent pm_active
650	 */
651	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
652		for (addr = sva; addr < eva; addr += PAGE_SIZE)
653			invlpg(addr);
654		smp_invlpg_range(sva, eva);
655	} else {
656		cpumask = PCPU_GET(cpumask);
657		other_cpus = PCPU_GET(other_cpus);
658		if (pmap->pm_active & cpumask)
659			for (addr = sva; addr < eva; addr += PAGE_SIZE)
660				invlpg(addr);
661		if (pmap->pm_active & other_cpus)
662			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
663			    sva, eva);
664	}
665	critical_exit();
666}
667
668void
669pmap_invalidate_all(pmap_t pmap)
670{
671	u_int cpumask;
672	u_int other_cpus;
673
674#ifdef SWTCH_OPTIM_STATS
675	tlb_flush_count++;
676#endif
677	critical_enter();
678	/*
679	 * We need to disable interrupt preemption but MUST NOT have
680	 * interrupts disabled here.
681	 * XXX we may need to hold schedlock to get a coherent pm_active
682	 */
683	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
684		invltlb();
685		smp_invltlb();
686	} else {
687		cpumask = PCPU_GET(cpumask);
688		other_cpus = PCPU_GET(other_cpus);
689		if (pmap->pm_active & cpumask)
690			invltlb();
691		if (pmap->pm_active & other_cpus)
692			smp_masked_invltlb(pmap->pm_active & other_cpus);
693	}
694	critical_exit();
695}
696#else /* !SMP */
697/*
698 * Normal, non-SMP, 486+ invalidation functions.
699 * We inline these within pmap.c for speed.
700 */
701PMAP_INLINE void
702pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
703{
704
705	if (pmap == kernel_pmap || pmap->pm_active)
706		invlpg(va);
707}
708
709PMAP_INLINE void
710pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
711{
712	vm_offset_t addr;
713
714	if (pmap == kernel_pmap || pmap->pm_active)
715		for (addr = sva; addr < eva; addr += PAGE_SIZE)
716			invlpg(addr);
717}
718
719PMAP_INLINE void
720pmap_invalidate_all(pmap_t pmap)
721{
722
723	if (pmap == kernel_pmap || pmap->pm_active)
724		invltlb();
725}
726#endif /* !SMP */
727#endif /* !I386_CPU */
728
729/*
730 * Return an address which is the base of the Virtual mapping of
731 * all the PTEs for the given pmap. Note this doesn't say that
732 * all the PTEs will be present or that the pages there are valid.
733 * The PTEs are made available by the recursive mapping trick.
734 * It will map in the alternate PTE space if needed.
735 */
736static pt_entry_t *
737get_ptbase(pmap)
738	pmap_t pmap;
739{
740	pd_entry_t frame;
741
742	/* are we current address space or kernel? */
743	if (pmap == kernel_pmap)
744		return PTmap;
745	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
746	if (frame == (PTDpde & PG_FRAME))
747		return PTmap;
748	/* otherwise, we are alternate address space */
749	if (frame != (APTDpde & PG_FRAME)) {
750		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
751		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
752	}
753	return APTmap;
754}
755
756/*
757 * Super fast pmap_pte routine best used when scanning
758 * the pv lists.  This eliminates many coarse-grained
759 * invltlb calls.  Note that many of the pv list
760 * scans are across different pmaps.  It is very wasteful
761 * to do an entire invltlb for checking a single mapping.
762 */
763
764static pt_entry_t *
765pmap_pte_quick(pmap, va)
766	register pmap_t pmap;
767	vm_offset_t va;
768{
769	pd_entry_t pde, newpf;
770	pde = pmap->pm_pdir[va >> PDRSHIFT];
771	if (pde != 0) {
772		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
773		unsigned index = i386_btop(va);
774		/* are we current address space or kernel? */
775		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
776			return PTmap + index;
777		newpf = pde & PG_FRAME;
778		if (((*PMAP1) & PG_FRAME) != newpf) {
779			*PMAP1 = newpf | PG_RW | PG_V;
780			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
781		}
782		return PADDR1 + (index & (NPTEPG - 1));
783	}
784	return (0);
785}
786
787/*
788 *	Routine:	pmap_extract
789 *	Function:
790 *		Extract the physical page address associated
791 *		with the given map/virtual_address pair.
792 */
793vm_offset_t
794pmap_extract(pmap, va)
795	register pmap_t pmap;
796	vm_offset_t va;
797{
798	vm_offset_t rtval;	/* XXX FIXME */
799	vm_offset_t pdirindex;
800
801	if (pmap == 0)
802		return 0;
803	pdirindex = va >> PDRSHIFT;
804	rtval = pmap->pm_pdir[pdirindex];
805	if (rtval != 0) {
806		pt_entry_t *pte;
807		if ((rtval & PG_PS) != 0) {
808			rtval &= ~(NBPDR - 1);
809			rtval |= va & (NBPDR - 1);
810			return rtval;
811		}
812		pte = get_ptbase(pmap) + i386_btop(va);
813		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
814		return rtval;
815	}
816	return 0;
817
818}
819
820/***************************************************
821 * Low level mapping routines.....
822 ***************************************************/
823
824/*
825 * Add a wired page to the kva.
826 * Note: not SMP coherent.
827 */
828PMAP_INLINE void
829pmap_kenter(vm_offset_t va, vm_offset_t pa)
830{
831	pt_entry_t *pte;
832
833	pte = vtopte(va);
834	*pte = pa | PG_RW | PG_V | pgeflag;
835}
836
837/*
838 * Remove a page from the kernel pagetables.
839 * Note: not SMP coherent.
840 */
841PMAP_INLINE void
842pmap_kremove(vm_offset_t va)
843{
844	pt_entry_t *pte;
845
846	pte = vtopte(va);
847	*pte = 0;
848}
849
850/*
851 *	Used to map a range of physical addresses into kernel
852 *	virtual address space.
853 *
854 *	The value passed in '*virt' is a suggested virtual address for
855 *	the mapping. Architectures which can support a direct-mapped
856 *	physical to virtual region can return the appropriate address
857 *	within that region, leaving '*virt' unchanged. Other
858 *	architectures should map the pages starting at '*virt' and
859 *	update '*virt' with the first usable address after the mapped
860 *	region.
861 */
862vm_offset_t
863pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
864{
865	vm_offset_t va, sva;
866
867	va = sva = *virt;
868	while (start < end) {
869		pmap_kenter(va, start);
870		va += PAGE_SIZE;
871		start += PAGE_SIZE;
872	}
873	pmap_invalidate_range(kernel_pmap, sva, va);
874	*virt = va;
875	return (sva);
876}
877
878
879/*
880 * Add a list of wired pages to the kva
881 * this routine is only used for temporary
882 * kernel mappings that do not need to have
883 * page modification or references recorded.
884 * Note that old mappings are simply written
885 * over.  The page *must* be wired.
886 * Note: SMP coherent.  Uses a ranged shootdown IPI.
887 */
888void
889pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
890{
891	vm_offset_t va;
892
893	va = sva;
894	while (count-- > 0) {
895		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
896		va += PAGE_SIZE;
897		m++;
898	}
899	pmap_invalidate_range(kernel_pmap, sva, va);
900}
901
902/*
903 * This routine tears out page mappings from the
904 * kernel -- it is meant only for temporary mappings.
905 * Note: SMP coherent.  Uses a ranged shootdown IPI.
906 */
907void
908pmap_qremove(vm_offset_t sva, int count)
909{
910	vm_offset_t va;
911
912	va = sva;
913	while (count-- > 0) {
914		pmap_kremove(va);
915		va += PAGE_SIZE;
916	}
917	pmap_invalidate_range(kernel_pmap, sva, va);
918}
919
920static vm_page_t
921pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
922{
923	vm_page_t m;
924
925retry:
926	m = vm_page_lookup(object, pindex);
927	if (m != NULL) {
928		vm_page_lock_queues();
929		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
930			goto retry;
931		vm_page_unlock_queues();
932	}
933	return m;
934}
935
936#ifndef KSTACK_MAX_PAGES
937#define KSTACK_MAX_PAGES 32
938#endif
939
940/*
941 * Create the kernel stack (including pcb for i386) for a new thread.
942 * This routine directly affects the fork perf for a process and
943 * create performance for a thread.
944 */
945void
946pmap_new_thread(struct thread *td, int pages)
947{
948	int i;
949	vm_page_t ma[KSTACK_MAX_PAGES];
950	vm_object_t ksobj;
951	vm_page_t m;
952	vm_offset_t ks;
953
954	/* Bounds check */
955	if (pages <= 1)
956		pages = KSTACK_PAGES;
957	else if (pages > KSTACK_MAX_PAGES)
958		pages = KSTACK_MAX_PAGES;
959
960	/*
961	 * allocate object for the kstack
962	 */
963	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
964	td->td_kstack_obj = ksobj;
965
966	/* get a kernel virtual address for the kstack for this thread */
967#ifdef KSTACK_GUARD
968	ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
969	if (ks == 0)
970		panic("pmap_new_thread: kstack allocation failed");
971	if (*vtopte(ks) != 0)
972		pmap_qremove(ks, 1);
973	ks += PAGE_SIZE;
974	td->td_kstack = ks;
975#else
976	/* get a kernel virtual address for the kstack for this thread */
977	ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
978	if (ks == 0)
979		panic("pmap_new_thread: kstack allocation failed");
980	td->td_kstack = ks;
981#endif
982	/*
983	 * Knowing the number of pages allocated is useful when you
984	 * want to deallocate them.
985	 */
986	td->td_kstack_pages = pages;
987
988	/*
989	 * For the length of the stack, link in a real page of ram for each
990	 * page of stack.
991	 */
992	for (i = 0; i < pages; i++) {
993		/*
994		 * Get a kernel stack page
995		 */
996		m = vm_page_grab(ksobj, i,
997		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
998		ma[i] = m;
999
1000		vm_page_wakeup(m);
1001		vm_page_flag_clear(m, PG_ZERO);
1002		m->valid = VM_PAGE_BITS_ALL;
1003	}
1004	pmap_qenter(ks, ma, pages);
1005}
1006
1007/*
1008 * Dispose the kernel stack for a thread that has exited.
1009 * This routine directly impacts the exit perf of a process and thread.
1010 */
1011void
1012pmap_dispose_thread(td)
1013	struct thread *td;
1014{
1015	int i;
1016	int pages;
1017	vm_object_t ksobj;
1018	vm_offset_t ks;
1019	vm_page_t m;
1020
1021	pages = td->td_kstack_pages;
1022	ksobj = td->td_kstack_obj;
1023	ks = td->td_kstack;
1024	pmap_qremove(ks, pages);
1025	for (i = 0; i < pages; i++) {
1026		m = vm_page_lookup(ksobj, i);
1027		if (m == NULL)
1028			panic("pmap_dispose_thread: kstack already missing?");
1029		vm_page_lock_queues();
1030		vm_page_busy(m);
1031		vm_page_unwire(m, 0);
1032		vm_page_free(m);
1033		vm_page_unlock_queues();
1034	}
1035	/*
1036	 * Free the space that this stack was mapped to in the kernel
1037	 * address map.
1038	 */
1039#ifdef KSTACK_GUARD
1040	kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
1041#else
1042	kmem_free(kernel_map, ks, pages * PAGE_SIZE);
1043#endif
1044	vm_object_deallocate(ksobj);
1045}
1046
1047/*
1048 * Set up a variable sized alternate kstack.  Though it may look MI, it may
1049 * need to be different on certain arches like ia64.
1050 */
1051void
1052pmap_new_altkstack(struct thread *td, int pages)
1053{
1054	/* shuffle the original stack */
1055	td->td_altkstack_obj = td->td_kstack_obj;
1056	td->td_altkstack = td->td_kstack;
1057	td->td_altkstack_pages = td->td_kstack_pages;
1058
1059	pmap_new_thread(td, pages);
1060}
1061
1062void
1063pmap_dispose_altkstack(td)
1064	struct thread *td;
1065{
1066	pmap_dispose_thread(td);
1067
1068	/* restore the original kstack */
1069	td->td_kstack = td->td_altkstack;
1070	td->td_kstack_obj = td->td_altkstack_obj;
1071	td->td_kstack_pages = td->td_altkstack_pages;
1072	td->td_altkstack = 0;
1073	td->td_altkstack_obj = NULL;
1074	td->td_altkstack_pages = 0;
1075}
1076
1077/*
1078 * Allow the Kernel stack for a thread to be prejudicially paged out.
1079 */
1080void
1081pmap_swapout_thread(td)
1082	struct thread *td;
1083{
1084	int i;
1085	int pages;
1086	vm_object_t ksobj;
1087	vm_offset_t ks;
1088	vm_page_t m;
1089
1090	pages = td->td_kstack_pages;
1091	ksobj = td->td_kstack_obj;
1092	ks = td->td_kstack;
1093	pmap_qremove(ks, pages);
1094	for (i = 0; i < pages; i++) {
1095		m = vm_page_lookup(ksobj, i);
1096		if (m == NULL)
1097			panic("pmap_swapout_thread: kstack already missing?");
1098		vm_page_lock_queues();
1099		vm_page_dirty(m);
1100		vm_page_unwire(m, 0);
1101		vm_page_unlock_queues();
1102	}
1103}
1104
1105/*
1106 * Bring the kernel stack for a specified thread back in.
1107 */
1108void
1109pmap_swapin_thread(td)
1110	struct thread *td;
1111{
1112	int i, rv;
1113	int pages;
1114	vm_page_t ma[KSTACK_MAX_PAGES];
1115	vm_object_t ksobj;
1116	vm_offset_t ks;
1117	vm_page_t m;
1118
1119	pages = td->td_kstack_pages;
1120	ksobj = td->td_kstack_obj;
1121	ks = td->td_kstack;
1122	for (i = 0; i < pages; i++) {
1123		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1124		if (m->valid != VM_PAGE_BITS_ALL) {
1125			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1126			if (rv != VM_PAGER_OK)
1127				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1128			m = vm_page_lookup(ksobj, i);
1129			m->valid = VM_PAGE_BITS_ALL;
1130		}
1131		ma[i] = m;
1132		vm_page_lock_queues();
1133		vm_page_wire(m);
1134		vm_page_wakeup(m);
1135		vm_page_unlock_queues();
1136	}
1137	pmap_qenter(ks, ma, pages);
1138}
1139
1140/***************************************************
1141 * Page table page management routines.....
1142 ***************************************************/
1143
1144/*
1145 * This routine unholds page table pages, and if the hold count
1146 * drops to zero, then it decrements the wire count.
1147 */
1148static int
1149_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1150{
1151
1152	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1153		;
1154
1155	if (m->hold_count == 0) {
1156		vm_offset_t pteva;
1157		/*
1158		 * unmap the page table page
1159		 */
1160		pmap->pm_pdir[m->pindex] = 0;
1161		--pmap->pm_stats.resident_count;
1162		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1163		    (PTDpde & PG_FRAME)) {
1164			/*
1165			 * Do a invltlb to make the invalidated mapping
1166			 * take effect immediately.
1167			 */
1168			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1169			pmap_invalidate_page(pmap, pteva);
1170		}
1171
1172		if (pmap->pm_ptphint == m)
1173			pmap->pm_ptphint = NULL;
1174
1175		/*
1176		 * If the page is finally unwired, simply free it.
1177		 */
1178		--m->wire_count;
1179		if (m->wire_count == 0) {
1180			vm_page_busy(m);
1181			vm_page_free_zero(m);
1182			--cnt.v_wire_count;
1183		}
1184		return 1;
1185	}
1186	return 0;
1187}
1188
1189static PMAP_INLINE int
1190pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1191{
1192	vm_page_unhold(m);
1193	if (m->hold_count == 0)
1194		return _pmap_unwire_pte_hold(pmap, m);
1195	else
1196		return 0;
1197}
1198
1199/*
1200 * After removing a page table entry, this routine is used to
1201 * conditionally free the page, and manage the hold/wire counts.
1202 */
1203static int
1204pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1205{
1206	unsigned ptepindex;
1207	if (va >= VM_MAXUSER_ADDRESS)
1208		return 0;
1209
1210	if (mpte == NULL) {
1211		ptepindex = (va >> PDRSHIFT);
1212		if (pmap->pm_ptphint &&
1213			(pmap->pm_ptphint->pindex == ptepindex)) {
1214			mpte = pmap->pm_ptphint;
1215		} else {
1216			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1217			pmap->pm_ptphint = mpte;
1218		}
1219	}
1220
1221	return pmap_unwire_pte_hold(pmap, mpte);
1222}
1223
1224void
1225pmap_pinit0(pmap)
1226	struct pmap *pmap;
1227{
1228	pmap->pm_pdir =
1229		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1230	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1231#ifndef I386_CPU
1232	invlpg((vm_offset_t)pmap->pm_pdir);
1233#else
1234	invltlb();
1235#endif
1236	pmap->pm_ptphint = NULL;
1237	pmap->pm_active = 0;
1238	TAILQ_INIT(&pmap->pm_pvlist);
1239	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1240	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1241}
1242
1243/*
1244 * Initialize a preallocated and zeroed pmap structure,
1245 * such as one in a vmspace structure.
1246 */
1247void
1248pmap_pinit(pmap)
1249	register struct pmap *pmap;
1250{
1251	vm_page_t ptdpg;
1252
1253	/*
1254	 * No need to allocate page table space yet but we do need a valid
1255	 * page directory table.
1256	 */
1257	if (pmap->pm_pdir == NULL)
1258		pmap->pm_pdir =
1259			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1260
1261	/*
1262	 * allocate object for the ptes
1263	 */
1264	if (pmap->pm_pteobj == NULL)
1265		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1266
1267	/*
1268	 * allocate the page directory page
1269	 */
1270	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1271	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1272	vm_page_flag_clear(ptdpg, PG_BUSY);
1273	ptdpg->valid = VM_PAGE_BITS_ALL;
1274
1275	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1276	if ((ptdpg->flags & PG_ZERO) == 0)
1277		bzero(pmap->pm_pdir, PAGE_SIZE);
1278
1279	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1280	/* Wire in kernel global address entries. */
1281	/* XXX copies current process, does not fill in MPPTDI */
1282	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1283#ifdef SMP
1284	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1285#endif
1286
1287	/* install self-referential address mapping entry */
1288	pmap->pm_pdir[PTDPTDI] =
1289		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1290
1291	pmap->pm_active = 0;
1292	pmap->pm_ptphint = NULL;
1293	TAILQ_INIT(&pmap->pm_pvlist);
1294	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1295}
1296
1297/*
1298 * Wire in kernel global address entries.  To avoid a race condition
1299 * between pmap initialization and pmap_growkernel, this procedure
1300 * should be called after the vmspace is attached to the process
1301 * but before this pmap is activated.
1302 */
1303void
1304pmap_pinit2(pmap)
1305	struct pmap *pmap;
1306{
1307	/* XXX: Remove this stub when no longer called */
1308}
1309
1310static int
1311pmap_release_free_page(pmap_t pmap, vm_page_t p)
1312{
1313	pd_entry_t *pde = pmap->pm_pdir;
1314
1315	/*
1316	 * This code optimizes the case of freeing non-busy
1317	 * page-table pages.  Those pages are zero now, and
1318	 * might as well be placed directly into the zero queue.
1319	 */
1320	vm_page_lock_queues();
1321	if (vm_page_sleep_if_busy(p, FALSE, "pmaprl"))
1322		return (0);
1323	vm_page_busy(p);
1324
1325	/*
1326	 * Remove the page table page from the processes address space.
1327	 */
1328	pde[p->pindex] = 0;
1329	pmap->pm_stats.resident_count--;
1330
1331	if (p->hold_count)  {
1332		panic("pmap_release: freeing held page table page");
1333	}
1334	/*
1335	 * Page directory pages need to have the kernel
1336	 * stuff cleared, so they can go into the zero queue also.
1337	 */
1338	if (p->pindex == PTDPTDI) {
1339		bzero(pde + KPTDI, nkpt * PTESIZE);
1340#ifdef SMP
1341		pde[MPPTDI] = 0;
1342#endif
1343		pde[APTDPTDI] = 0;
1344		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1345	}
1346
1347	if (pmap->pm_ptphint == p)
1348		pmap->pm_ptphint = NULL;
1349
1350	p->wire_count--;
1351	cnt.v_wire_count--;
1352	vm_page_free_zero(p);
1353	vm_page_unlock_queues();
1354	return 1;
1355}
1356
1357/*
1358 * this routine is called if the page table page is not
1359 * mapped correctly.
1360 */
1361static vm_page_t
1362_pmap_allocpte(pmap, ptepindex)
1363	pmap_t	pmap;
1364	unsigned ptepindex;
1365{
1366	vm_offset_t pteva, ptepa;	/* XXXPA */
1367	vm_page_t m;
1368
1369	/*
1370	 * Find or fabricate a new pagetable page
1371	 */
1372	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1373	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1374
1375	KASSERT(m->queue == PQ_NONE,
1376		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1377
1378	/*
1379	 * Increment the hold count for the page table page
1380	 * (denoting a new mapping.)
1381	 */
1382	m->hold_count++;
1383
1384	/*
1385	 * Map the pagetable page into the process address space, if
1386	 * it isn't already there.
1387	 */
1388
1389	pmap->pm_stats.resident_count++;
1390
1391	ptepa = VM_PAGE_TO_PHYS(m);
1392	pmap->pm_pdir[ptepindex] =
1393		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1394
1395	/*
1396	 * Set the page table hint
1397	 */
1398	pmap->pm_ptphint = m;
1399
1400	/*
1401	 * Try to use the new mapping, but if we cannot, then
1402	 * do it with the routine that maps the page explicitly.
1403	 */
1404	if ((m->flags & PG_ZERO) == 0) {
1405		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1406		    (PTDpde & PG_FRAME)) {
1407			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1408			bzero((caddr_t) pteva, PAGE_SIZE);
1409		} else {
1410			pmap_zero_page(m);
1411		}
1412	}
1413
1414	m->valid = VM_PAGE_BITS_ALL;
1415	vm_page_flag_clear(m, PG_ZERO);
1416	vm_page_wakeup(m);
1417
1418	return m;
1419}
1420
1421static vm_page_t
1422pmap_allocpte(pmap_t pmap, vm_offset_t va)
1423{
1424	unsigned ptepindex;
1425	pd_entry_t ptepa;
1426	vm_page_t m;
1427
1428	/*
1429	 * Calculate pagetable page index
1430	 */
1431	ptepindex = va >> PDRSHIFT;
1432
1433	/*
1434	 * Get the page directory entry
1435	 */
1436	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1437
1438	/*
1439	 * This supports switching from a 4MB page to a
1440	 * normal 4K page.
1441	 */
1442	if (ptepa & PG_PS) {
1443		pmap->pm_pdir[ptepindex] = 0;
1444		ptepa = 0;
1445		pmap_invalidate_all(kernel_pmap);
1446	}
1447
1448	/*
1449	 * If the page table page is mapped, we just increment the
1450	 * hold count, and activate it.
1451	 */
1452	if (ptepa) {
1453		/*
1454		 * In order to get the page table page, try the
1455		 * hint first.
1456		 */
1457		if (pmap->pm_ptphint &&
1458			(pmap->pm_ptphint->pindex == ptepindex)) {
1459			m = pmap->pm_ptphint;
1460		} else {
1461			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1462			pmap->pm_ptphint = m;
1463		}
1464		m->hold_count++;
1465		return m;
1466	}
1467	/*
1468	 * Here if the pte page isn't mapped, or if it has been deallocated.
1469	 */
1470	return _pmap_allocpte(pmap, ptepindex);
1471}
1472
1473
1474/***************************************************
1475* Pmap allocation/deallocation routines.
1476 ***************************************************/
1477
1478/*
1479 * Release any resources held by the given physical map.
1480 * Called when a pmap initialized by pmap_pinit is being released.
1481 * Should only be called if the map contains no valid mappings.
1482 */
1483void
1484pmap_release(pmap_t pmap)
1485{
1486	vm_page_t p,n,ptdpg;
1487	vm_object_t object = pmap->pm_pteobj;
1488	int curgeneration;
1489
1490#if defined(DIAGNOSTIC)
1491	if (object->ref_count != 1)
1492		panic("pmap_release: pteobj reference count != 1");
1493#endif
1494
1495	ptdpg = NULL;
1496	LIST_REMOVE(pmap, pm_list);
1497retry:
1498	curgeneration = object->generation;
1499	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1500		n = TAILQ_NEXT(p, listq);
1501		if (p->pindex == PTDPTDI) {
1502			ptdpg = p;
1503			continue;
1504		}
1505		while (1) {
1506			if (!pmap_release_free_page(pmap, p) &&
1507				(object->generation != curgeneration))
1508				goto retry;
1509		}
1510	}
1511
1512	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1513		goto retry;
1514}
1515
1516static int
1517kvm_size(SYSCTL_HANDLER_ARGS)
1518{
1519	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1520
1521	return sysctl_handle_long(oidp, &ksize, 0, req);
1522}
1523SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1524    0, 0, kvm_size, "IU", "Size of KVM");
1525
1526static int
1527kvm_free(SYSCTL_HANDLER_ARGS)
1528{
1529	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1530
1531	return sysctl_handle_long(oidp, &kfree, 0, req);
1532}
1533SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1534    0, 0, kvm_free, "IU", "Amount of KVM free");
1535
1536/*
1537 * grow the number of kernel page table entries, if needed
1538 */
1539void
1540pmap_growkernel(vm_offset_t addr)
1541{
1542	struct pmap *pmap;
1543	int s;
1544	vm_offset_t ptppaddr;
1545	vm_page_t nkpg;
1546	pd_entry_t newpdir;
1547
1548	s = splhigh();
1549	if (kernel_vm_end == 0) {
1550		kernel_vm_end = KERNBASE;
1551		nkpt = 0;
1552		while (pdir_pde(PTD, kernel_vm_end)) {
1553			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1554			nkpt++;
1555		}
1556	}
1557	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1558	while (kernel_vm_end < addr) {
1559		if (pdir_pde(PTD, kernel_vm_end)) {
1560			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1561			continue;
1562		}
1563
1564		/*
1565		 * This index is bogus, but out of the way
1566		 */
1567		nkpg = vm_page_alloc(kptobj, nkpt,
1568				     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1569		if (!nkpg)
1570			panic("pmap_growkernel: no memory to grow kernel");
1571
1572		nkpt++;
1573
1574		pmap_zero_page(nkpg);
1575		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1576		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1577		pdir_pde(PTD, kernel_vm_end) = newpdir;
1578
1579		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1580			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1581		}
1582		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1583	}
1584	splx(s);
1585}
1586
1587
1588/***************************************************
1589 * page management routines.
1590 ***************************************************/
1591
1592/*
1593 * free the pv_entry back to the free list
1594 */
1595static PMAP_INLINE void
1596free_pv_entry(pv_entry_t pv)
1597{
1598	pv_entry_count--;
1599	uma_zfree(pvzone, pv);
1600}
1601
1602/*
1603 * get a new pv_entry, allocating a block from the system
1604 * when needed.
1605 * the memory allocation is performed bypassing the malloc code
1606 * because of the possibility of allocations at interrupt time.
1607 */
1608static pv_entry_t
1609get_pv_entry(void)
1610{
1611	pv_entry_count++;
1612	if (pv_entry_high_water &&
1613		(pv_entry_count > pv_entry_high_water) &&
1614		(pmap_pagedaemon_waken == 0)) {
1615		pmap_pagedaemon_waken = 1;
1616		wakeup (&vm_pages_needed);
1617	}
1618	return uma_zalloc(pvzone, M_NOWAIT);
1619}
1620
1621/*
1622 * This routine is very drastic, but can save the system
1623 * in a pinch.
1624 */
1625void
1626pmap_collect()
1627{
1628	int i;
1629	vm_page_t m;
1630	static int warningdone = 0;
1631
1632	if (pmap_pagedaemon_waken == 0)
1633		return;
1634
1635	if (warningdone < 5) {
1636		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1637		warningdone++;
1638	}
1639
1640	for(i = 0; i < vm_page_array_size; i++) {
1641		m = &vm_page_array[i];
1642		if (m->wire_count || m->hold_count || m->busy ||
1643		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1644			continue;
1645		pmap_remove_all(m);
1646	}
1647	pmap_pagedaemon_waken = 0;
1648}
1649
1650
1651/*
1652 * If it is the first entry on the list, it is actually
1653 * in the header and we must copy the following entry up
1654 * to the header.  Otherwise we must search the list for
1655 * the entry.  In either case we free the now unused entry.
1656 */
1657
1658static int
1659pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1660{
1661	pv_entry_t pv;
1662	int rtval;
1663	int s;
1664
1665	s = splvm();
1666	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1667		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1668			if (pmap == pv->pv_pmap && va == pv->pv_va)
1669				break;
1670		}
1671	} else {
1672		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1673			if (va == pv->pv_va)
1674				break;
1675		}
1676	}
1677
1678	rtval = 0;
1679	if (pv) {
1680		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1681		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1682		m->md.pv_list_count--;
1683		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1684			vm_page_flag_clear(m, PG_WRITEABLE);
1685
1686		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1687		free_pv_entry(pv);
1688	}
1689
1690	splx(s);
1691	return rtval;
1692}
1693
1694/*
1695 * Create a pv entry for page at pa for
1696 * (pmap, va).
1697 */
1698static void
1699pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1700{
1701
1702	int s;
1703	pv_entry_t pv;
1704
1705	s = splvm();
1706	pv = get_pv_entry();
1707	pv->pv_va = va;
1708	pv->pv_pmap = pmap;
1709	pv->pv_ptem = mpte;
1710
1711	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1712	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1713	m->md.pv_list_count++;
1714
1715	splx(s);
1716}
1717
1718/*
1719 * pmap_remove_pte: do the things to unmap a page in a process
1720 */
1721static int
1722pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1723{
1724	pt_entry_t oldpte;
1725	vm_page_t m;
1726
1727	oldpte = atomic_readandclear_int(ptq);
1728	if (oldpte & PG_W)
1729		pmap->pm_stats.wired_count -= 1;
1730	/*
1731	 * Machines that don't support invlpg, also don't support
1732	 * PG_G.
1733	 */
1734	if (oldpte & PG_G)
1735		pmap_invalidate_page(kernel_pmap, va);
1736	pmap->pm_stats.resident_count -= 1;
1737	if (oldpte & PG_MANAGED) {
1738		m = PHYS_TO_VM_PAGE(oldpte);
1739		if (oldpte & PG_M) {
1740#if defined(PMAP_DIAGNOSTIC)
1741			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1742				printf(
1743	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1744				    va, oldpte);
1745			}
1746#endif
1747			if (pmap_track_modified(va))
1748				vm_page_dirty(m);
1749		}
1750		if (oldpte & PG_A)
1751			vm_page_flag_set(m, PG_REFERENCED);
1752		return pmap_remove_entry(pmap, m, va);
1753	} else {
1754		return pmap_unuse_pt(pmap, va, NULL);
1755	}
1756
1757	return 0;
1758}
1759
1760/*
1761 * Remove a single page from a process address space
1762 */
1763static void
1764pmap_remove_page(pmap_t pmap, vm_offset_t va)
1765{
1766	register pt_entry_t *ptq;
1767
1768	/*
1769	 * if there is no pte for this address, just skip it!!!
1770	 */
1771	if (*pmap_pde(pmap, va) == 0) {
1772		return;
1773	}
1774
1775	/*
1776	 * get a local va for mappings for this pmap.
1777	 */
1778	ptq = get_ptbase(pmap) + i386_btop(va);
1779	if (*ptq) {
1780		(void) pmap_remove_pte(pmap, ptq, va);
1781		pmap_invalidate_page(pmap, va);
1782	}
1783	return;
1784}
1785
1786/*
1787 *	Remove the given range of addresses from the specified map.
1788 *
1789 *	It is assumed that the start and end are properly
1790 *	rounded to the page size.
1791 */
1792void
1793pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1794{
1795	register pt_entry_t *ptbase;
1796	vm_offset_t pdnxt;
1797	pd_entry_t ptpaddr;
1798	vm_offset_t sindex, eindex;
1799	int anyvalid;
1800
1801	if (pmap == NULL)
1802		return;
1803
1804	if (pmap->pm_stats.resident_count == 0)
1805		return;
1806
1807	/*
1808	 * special handling of removing one page.  a very
1809	 * common operation and easy to short circuit some
1810	 * code.
1811	 */
1812	if ((sva + PAGE_SIZE == eva) &&
1813	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1814		pmap_remove_page(pmap, sva);
1815		return;
1816	}
1817
1818	anyvalid = 0;
1819
1820	/*
1821	 * Get a local virtual address for the mappings that are being
1822	 * worked with.
1823	 */
1824	ptbase = get_ptbase(pmap);
1825
1826	sindex = i386_btop(sva);
1827	eindex = i386_btop(eva);
1828
1829	for (; sindex < eindex; sindex = pdnxt) {
1830		unsigned pdirindex;
1831
1832		/*
1833		 * Calculate index for next page table.
1834		 */
1835		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1836		if (pmap->pm_stats.resident_count == 0)
1837			break;
1838
1839		pdirindex = sindex / NPDEPG;
1840		ptpaddr = pmap->pm_pdir[pdirindex];
1841		if ((ptpaddr & PG_PS) != 0) {
1842			pmap->pm_pdir[pdirindex] = 0;
1843			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1844			anyvalid++;
1845			continue;
1846		}
1847
1848		/*
1849		 * Weed out invalid mappings. Note: we assume that the page
1850		 * directory table is always allocated, and in kernel virtual.
1851		 */
1852		if (ptpaddr == 0)
1853			continue;
1854
1855		/*
1856		 * Limit our scan to either the end of the va represented
1857		 * by the current page table page, or to the end of the
1858		 * range being removed.
1859		 */
1860		if (pdnxt > eindex) {
1861			pdnxt = eindex;
1862		}
1863
1864		for (; sindex != pdnxt; sindex++) {
1865			vm_offset_t va;
1866			if (ptbase[sindex] == 0) {
1867				continue;
1868			}
1869			va = i386_ptob(sindex);
1870
1871			anyvalid++;
1872			if (pmap_remove_pte(pmap,
1873				ptbase + sindex, va))
1874				break;
1875		}
1876	}
1877
1878	if (anyvalid)
1879		pmap_invalidate_all(pmap);
1880}
1881
1882/*
1883 *	Routine:	pmap_remove_all
1884 *	Function:
1885 *		Removes this physical page from
1886 *		all physical maps in which it resides.
1887 *		Reflects back modify bits to the pager.
1888 *
1889 *	Notes:
1890 *		Original versions of this routine were very
1891 *		inefficient because they iteratively called
1892 *		pmap_remove (slow...)
1893 */
1894
1895void
1896pmap_remove_all(vm_page_t m)
1897{
1898	register pv_entry_t pv;
1899	pt_entry_t *pte, tpte;
1900	int s;
1901
1902#if defined(PMAP_DIAGNOSTIC)
1903	/*
1904	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1905	 * pages!
1906	 */
1907	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1908		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1909	}
1910#endif
1911
1912	s = splvm();
1913	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1914		pv->pv_pmap->pm_stats.resident_count--;
1915
1916		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1917
1918		tpte = atomic_readandclear_int(pte);
1919		if (tpte & PG_W)
1920			pv->pv_pmap->pm_stats.wired_count--;
1921
1922		if (tpte & PG_A)
1923			vm_page_flag_set(m, PG_REFERENCED);
1924
1925		/*
1926		 * Update the vm_page_t clean and reference bits.
1927		 */
1928		if (tpte & PG_M) {
1929#if defined(PMAP_DIAGNOSTIC)
1930			if (pmap_nw_modified((pt_entry_t) tpte)) {
1931				printf(
1932	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1933				    pv->pv_va, tpte);
1934			}
1935#endif
1936			if (pmap_track_modified(pv->pv_va))
1937				vm_page_dirty(m);
1938		}
1939		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1940
1941		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1942		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1943		m->md.pv_list_count--;
1944		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1945		free_pv_entry(pv);
1946	}
1947
1948	vm_page_flag_clear(m, PG_WRITEABLE);
1949
1950	splx(s);
1951}
1952
1953/*
1954 *	Set the physical protection on the
1955 *	specified range of this map as requested.
1956 */
1957void
1958pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1959{
1960	register pt_entry_t *ptbase;
1961	vm_offset_t pdnxt;
1962	pd_entry_t ptpaddr;
1963	vm_offset_t sindex, eindex;
1964	int anychanged;
1965
1966	if (pmap == NULL)
1967		return;
1968
1969	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1970		pmap_remove(pmap, sva, eva);
1971		return;
1972	}
1973
1974	if (prot & VM_PROT_WRITE)
1975		return;
1976
1977	anychanged = 0;
1978
1979	ptbase = get_ptbase(pmap);
1980
1981	sindex = i386_btop(sva);
1982	eindex = i386_btop(eva);
1983
1984	for (; sindex < eindex; sindex = pdnxt) {
1985
1986		unsigned pdirindex;
1987
1988		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1989
1990		pdirindex = sindex / NPDEPG;
1991		ptpaddr = pmap->pm_pdir[pdirindex];
1992		if ((ptpaddr & PG_PS) != 0) {
1993			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1994			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1995			anychanged++;
1996			continue;
1997		}
1998
1999		/*
2000		 * Weed out invalid mappings. Note: we assume that the page
2001		 * directory table is always allocated, and in kernel virtual.
2002		 */
2003		if (ptpaddr == 0)
2004			continue;
2005
2006		if (pdnxt > eindex) {
2007			pdnxt = eindex;
2008		}
2009
2010		for (; sindex != pdnxt; sindex++) {
2011
2012			pt_entry_t pbits;
2013			vm_page_t m;
2014
2015			pbits = ptbase[sindex];
2016
2017			if (pbits & PG_MANAGED) {
2018				m = NULL;
2019				if (pbits & PG_A) {
2020					m = PHYS_TO_VM_PAGE(pbits);
2021					vm_page_flag_set(m, PG_REFERENCED);
2022					pbits &= ~PG_A;
2023				}
2024				if (pbits & PG_M) {
2025					if (pmap_track_modified(i386_ptob(sindex))) {
2026						if (m == NULL)
2027							m = PHYS_TO_VM_PAGE(pbits);
2028						vm_page_dirty(m);
2029						pbits &= ~PG_M;
2030					}
2031				}
2032			}
2033
2034			pbits &= ~PG_RW;
2035
2036			if (pbits != ptbase[sindex]) {
2037				ptbase[sindex] = pbits;
2038				anychanged = 1;
2039			}
2040		}
2041	}
2042	if (anychanged)
2043		pmap_invalidate_all(pmap);
2044}
2045
2046/*
2047 *	Insert the given physical page (p) at
2048 *	the specified virtual address (v) in the
2049 *	target physical map with the protection requested.
2050 *
2051 *	If specified, the page will be wired down, meaning
2052 *	that the related pte can not be reclaimed.
2053 *
2054 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2055 *	or lose information.  That is, this routine must actually
2056 *	insert this page into the given map NOW.
2057 */
2058void
2059pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2060	   boolean_t wired)
2061{
2062	vm_offset_t pa;
2063	register pt_entry_t *pte;
2064	vm_offset_t opa;
2065	pt_entry_t origpte, newpte;
2066	vm_page_t mpte;
2067
2068	if (pmap == NULL)
2069		return;
2070
2071	va &= PG_FRAME;
2072#ifdef PMAP_DIAGNOSTIC
2073	if (va > VM_MAX_KERNEL_ADDRESS)
2074		panic("pmap_enter: toobig");
2075	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2076		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2077#endif
2078
2079	mpte = NULL;
2080	/*
2081	 * In the case that a page table page is not
2082	 * resident, we are creating it here.
2083	 */
2084	if (va < VM_MAXUSER_ADDRESS) {
2085		mpte = pmap_allocpte(pmap, va);
2086	}
2087#if 0 && defined(PMAP_DIAGNOSTIC)
2088	else {
2089		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2090		origpte = *pdeaddr;
2091		if ((origpte & PG_V) == 0) {
2092			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2093				pmap->pm_pdir[PTDPTDI], origpte, va);
2094		}
2095	}
2096#endif
2097
2098	pte = pmap_pte(pmap, va);
2099
2100	/*
2101	 * Page Directory table entry not valid, we need a new PT page
2102	 */
2103	if (pte == NULL) {
2104		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2105			(void *)pmap->pm_pdir[PTDPTDI], va);
2106	}
2107
2108	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2109	origpte = *(vm_offset_t *)pte;
2110	opa = origpte & PG_FRAME;
2111
2112	if (origpte & PG_PS)
2113		panic("pmap_enter: attempted pmap_enter on 4MB page");
2114
2115	/*
2116	 * Mapping has not changed, must be protection or wiring change.
2117	 */
2118	if (origpte && (opa == pa)) {
2119		/*
2120		 * Wiring change, just update stats. We don't worry about
2121		 * wiring PT pages as they remain resident as long as there
2122		 * are valid mappings in them. Hence, if a user page is wired,
2123		 * the PT page will be also.
2124		 */
2125		if (wired && ((origpte & PG_W) == 0))
2126			pmap->pm_stats.wired_count++;
2127		else if (!wired && (origpte & PG_W))
2128			pmap->pm_stats.wired_count--;
2129
2130#if defined(PMAP_DIAGNOSTIC)
2131		if (pmap_nw_modified((pt_entry_t) origpte)) {
2132			printf(
2133	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2134			    va, origpte);
2135		}
2136#endif
2137
2138		/*
2139		 * Remove extra pte reference
2140		 */
2141		if (mpte)
2142			mpte->hold_count--;
2143
2144		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2145			if ((origpte & PG_RW) == 0) {
2146				*pte |= PG_RW;
2147				pmap_invalidate_page(pmap, va);
2148			}
2149			return;
2150		}
2151
2152		/*
2153		 * We might be turning off write access to the page,
2154		 * so we go ahead and sense modify status.
2155		 */
2156		if (origpte & PG_MANAGED) {
2157			if ((origpte & PG_M) && pmap_track_modified(va)) {
2158				vm_page_t om;
2159				om = PHYS_TO_VM_PAGE(opa);
2160				vm_page_dirty(om);
2161			}
2162			pa |= PG_MANAGED;
2163		}
2164		goto validate;
2165	}
2166	/*
2167	 * Mapping has changed, invalidate old range and fall through to
2168	 * handle validating new mapping.
2169	 */
2170	if (opa) {
2171		int err;
2172		err = pmap_remove_pte(pmap, pte, va);
2173		if (err)
2174			panic("pmap_enter: pte vanished, va: 0x%x", va);
2175	}
2176
2177	/*
2178	 * Enter on the PV list if part of our managed memory. Note that we
2179	 * raise IPL while manipulating pv_table since pmap_enter can be
2180	 * called at interrupt time.
2181	 */
2182	if (pmap_initialized &&
2183	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2184		pmap_insert_entry(pmap, va, mpte, m);
2185		pa |= PG_MANAGED;
2186	}
2187
2188	/*
2189	 * Increment counters
2190	 */
2191	pmap->pm_stats.resident_count++;
2192	if (wired)
2193		pmap->pm_stats.wired_count++;
2194
2195validate:
2196	/*
2197	 * Now validate mapping with desired protection/wiring.
2198	 */
2199	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2200
2201	if (wired)
2202		newpte |= PG_W;
2203	if (va < VM_MAXUSER_ADDRESS)
2204		newpte |= PG_U;
2205	if (pmap == kernel_pmap)
2206		newpte |= pgeflag;
2207
2208	/*
2209	 * if the mapping or permission bits are different, we need
2210	 * to update the pte.
2211	 */
2212	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2213		*pte = newpte | PG_A;
2214		/*if (origpte)*/ {
2215			pmap_invalidate_page(pmap, va);
2216		}
2217	}
2218}
2219
2220/*
2221 * this code makes some *MAJOR* assumptions:
2222 * 1. Current pmap & pmap exists.
2223 * 2. Not wired.
2224 * 3. Read access.
2225 * 4. No page table pages.
2226 * 5. Tlbflush is deferred to calling procedure.
2227 * 6. Page IS managed.
2228 * but is *MUCH* faster than pmap_enter...
2229 */
2230
2231static vm_page_t
2232pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2233{
2234	pt_entry_t *pte;
2235	vm_offset_t pa;
2236
2237	/*
2238	 * In the case that a page table page is not
2239	 * resident, we are creating it here.
2240	 */
2241	if (va < VM_MAXUSER_ADDRESS) {
2242		unsigned ptepindex;
2243		pd_entry_t ptepa;
2244
2245		/*
2246		 * Calculate pagetable page index
2247		 */
2248		ptepindex = va >> PDRSHIFT;
2249		if (mpte && (mpte->pindex == ptepindex)) {
2250			mpte->hold_count++;
2251		} else {
2252retry:
2253			/*
2254			 * Get the page directory entry
2255			 */
2256			ptepa = pmap->pm_pdir[ptepindex];
2257
2258			/*
2259			 * If the page table page is mapped, we just increment
2260			 * the hold count, and activate it.
2261			 */
2262			if (ptepa) {
2263				if (ptepa & PG_PS)
2264					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2265				if (pmap->pm_ptphint &&
2266					(pmap->pm_ptphint->pindex == ptepindex)) {
2267					mpte = pmap->pm_ptphint;
2268				} else {
2269					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2270					pmap->pm_ptphint = mpte;
2271				}
2272				if (mpte == NULL)
2273					goto retry;
2274				mpte->hold_count++;
2275			} else {
2276				mpte = _pmap_allocpte(pmap, ptepindex);
2277			}
2278		}
2279	} else {
2280		mpte = NULL;
2281	}
2282
2283	/*
2284	 * This call to vtopte makes the assumption that we are
2285	 * entering the page into the current pmap.  In order to support
2286	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2287	 * But that isn't as quick as vtopte.
2288	 */
2289	pte = vtopte(va);
2290	if (*pte) {
2291		if (mpte)
2292			pmap_unwire_pte_hold(pmap, mpte);
2293		return 0;
2294	}
2295
2296	/*
2297	 * Enter on the PV list if part of our managed memory. Note that we
2298	 * raise IPL while manipulating pv_table since pmap_enter can be
2299	 * called at interrupt time.
2300	 */
2301	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2302		pmap_insert_entry(pmap, va, mpte, m);
2303
2304	/*
2305	 * Increment counters
2306	 */
2307	pmap->pm_stats.resident_count++;
2308
2309	pa = VM_PAGE_TO_PHYS(m);
2310
2311	/*
2312	 * Now validate mapping with RO protection
2313	 */
2314	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2315		*pte = pa | PG_V | PG_U;
2316	else
2317		*pte = pa | PG_V | PG_U | PG_MANAGED;
2318
2319	return mpte;
2320}
2321
2322/*
2323 * Make a temporary mapping for a physical address.  This is only intended
2324 * to be used for panic dumps.
2325 */
2326void *
2327pmap_kenter_temporary(vm_offset_t pa, int i)
2328{
2329	vm_offset_t va;
2330
2331	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2332	pmap_kenter(va, pa);
2333#ifndef I386_CPU
2334	invlpg(va);
2335#else
2336	invltlb();
2337#endif
2338	return ((void *)crashdumpmap);
2339}
2340
2341#define MAX_INIT_PT (96)
2342/*
2343 * pmap_object_init_pt preloads the ptes for a given object
2344 * into the specified pmap.  This eliminates the blast of soft
2345 * faults on process startup and immediately after an mmap.
2346 */
2347void
2348pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2349		    vm_object_t object, vm_pindex_t pindex,
2350		    vm_size_t size, int limit)
2351{
2352	vm_offset_t tmpidx;
2353	int psize;
2354	vm_page_t p, mpte;
2355
2356	if (pmap == NULL || object == NULL)
2357		return;
2358
2359	/*
2360	 * This code maps large physical mmap regions into the
2361	 * processor address space.  Note that some shortcuts
2362	 * are taken, but the code works.
2363	 */
2364	if (pseflag && (object->type == OBJT_DEVICE) &&
2365	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2366		int i;
2367		vm_page_t m[1];
2368		unsigned int ptepindex;
2369		int npdes;
2370		pd_entry_t ptepa;
2371
2372		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2373			return;
2374
2375retry:
2376		p = vm_page_lookup(object, pindex);
2377		if (p != NULL) {
2378			vm_page_lock_queues();
2379			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2380				goto retry;
2381			vm_page_unlock_queues();
2382		} else {
2383			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2384			if (p == NULL)
2385				return;
2386			m[0] = p;
2387
2388			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2389				vm_page_lock_queues();
2390				vm_page_free(p);
2391				vm_page_unlock_queues();
2392				return;
2393			}
2394
2395			p = vm_page_lookup(object, pindex);
2396			vm_page_wakeup(p);
2397		}
2398
2399		ptepa = VM_PAGE_TO_PHYS(p);
2400		if (ptepa & (NBPDR - 1)) {
2401			return;
2402		}
2403
2404		p->valid = VM_PAGE_BITS_ALL;
2405
2406		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2407		npdes = size >> PDRSHIFT;
2408		for(i = 0; i < npdes; i++) {
2409			pmap->pm_pdir[ptepindex] =
2410			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2411			ptepa += NBPDR;
2412			ptepindex += 1;
2413		}
2414		pmap_invalidate_all(kernel_pmap);
2415		return;
2416	}
2417
2418	psize = i386_btop(size);
2419
2420	if ((object->type != OBJT_VNODE) ||
2421	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2422	     (object->resident_page_count > MAX_INIT_PT))) {
2423		return;
2424	}
2425
2426	if (psize + pindex > object->size) {
2427		if (object->size < pindex)
2428			return;
2429		psize = object->size - pindex;
2430	}
2431
2432	mpte = NULL;
2433
2434	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
2435		if (p->pindex < pindex) {
2436			p = vm_page_splay(pindex, object->root);
2437			if ((object->root = p)->pindex < pindex)
2438				p = TAILQ_NEXT(p, listq);
2439		}
2440	}
2441	/*
2442	 * Assert: the variable p is either (1) the page with the
2443	 * least pindex greater than or equal to the parameter pindex
2444	 * or (2) NULL.
2445	 */
2446	for (;
2447	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2448	     p = TAILQ_NEXT(p, listq)) {
2449		/*
2450		 * don't allow an madvise to blow away our really
2451		 * free pages allocating pv entries.
2452		 */
2453		if ((limit & MAP_PREFAULT_MADVISE) &&
2454		    cnt.v_free_count < cnt.v_free_reserved) {
2455			break;
2456		}
2457		vm_page_lock_queues();
2458		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2459		    (p->busy == 0) &&
2460		    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2461			if ((p->queue - p->pc) == PQ_CACHE)
2462				vm_page_deactivate(p);
2463			vm_page_busy(p);
2464			vm_page_unlock_queues();
2465			mpte = pmap_enter_quick(pmap,
2466				addr + i386_ptob(tmpidx), p, mpte);
2467			vm_page_lock_queues();
2468			vm_page_wakeup(p);
2469		}
2470		vm_page_unlock_queues();
2471	}
2472	return;
2473}
2474
2475/*
2476 * pmap_prefault provides a quick way of clustering
2477 * pagefaults into a processes address space.  It is a "cousin"
2478 * of pmap_object_init_pt, except it runs at page fault time instead
2479 * of mmap time.
2480 */
2481#define PFBAK 4
2482#define PFFOR 4
2483#define PAGEORDER_SIZE (PFBAK+PFFOR)
2484
2485static int pmap_prefault_pageorder[] = {
2486	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2487	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2488	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2489	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2490};
2491
2492void
2493pmap_prefault(pmap, addra, entry)
2494	pmap_t pmap;
2495	vm_offset_t addra;
2496	vm_map_entry_t entry;
2497{
2498	int i;
2499	vm_offset_t starta;
2500	vm_offset_t addr;
2501	vm_pindex_t pindex;
2502	vm_page_t m, mpte;
2503	vm_object_t object;
2504
2505	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2506		return;
2507
2508	object = entry->object.vm_object;
2509
2510	starta = addra - PFBAK * PAGE_SIZE;
2511	if (starta < entry->start) {
2512		starta = entry->start;
2513	} else if (starta > addra) {
2514		starta = 0;
2515	}
2516
2517	mpte = NULL;
2518	for (i = 0; i < PAGEORDER_SIZE; i++) {
2519		vm_object_t lobject;
2520		pt_entry_t *pte;
2521
2522		addr = addra + pmap_prefault_pageorder[i];
2523		if (addr > addra + (PFFOR * PAGE_SIZE))
2524			addr = 0;
2525
2526		if (addr < starta || addr >= entry->end)
2527			continue;
2528
2529		if ((*pmap_pde(pmap, addr)) == 0)
2530			continue;
2531
2532		pte = vtopte(addr);
2533		if (*pte)
2534			continue;
2535
2536		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2537		lobject = object;
2538		for (m = vm_page_lookup(lobject, pindex);
2539		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2540		    lobject = lobject->backing_object) {
2541			if (lobject->backing_object_offset & PAGE_MASK)
2542				break;
2543			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2544			m = vm_page_lookup(lobject->backing_object, pindex);
2545		}
2546
2547		/*
2548		 * give-up when a page is not in memory
2549		 */
2550		if (m == NULL)
2551			break;
2552		vm_page_lock_queues();
2553		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2554			(m->busy == 0) &&
2555		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2556
2557			if ((m->queue - m->pc) == PQ_CACHE) {
2558				vm_page_deactivate(m);
2559			}
2560			vm_page_busy(m);
2561			vm_page_unlock_queues();
2562			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2563			vm_page_lock_queues();
2564			vm_page_wakeup(m);
2565		}
2566		vm_page_unlock_queues();
2567	}
2568}
2569
2570/*
2571 *	Routine:	pmap_change_wiring
2572 *	Function:	Change the wiring attribute for a map/virtual-address
2573 *			pair.
2574 *	In/out conditions:
2575 *			The mapping must already exist in the pmap.
2576 */
2577void
2578pmap_change_wiring(pmap, va, wired)
2579	register pmap_t pmap;
2580	vm_offset_t va;
2581	boolean_t wired;
2582{
2583	register pt_entry_t *pte;
2584
2585	if (pmap == NULL)
2586		return;
2587
2588	pte = pmap_pte(pmap, va);
2589
2590	if (wired && !pmap_pte_w(pte))
2591		pmap->pm_stats.wired_count++;
2592	else if (!wired && pmap_pte_w(pte))
2593		pmap->pm_stats.wired_count--;
2594
2595	/*
2596	 * Wiring is not a hardware characteristic so there is no need to
2597	 * invalidate TLB.
2598	 */
2599	pmap_pte_set_w(pte, wired);
2600}
2601
2602
2603
2604/*
2605 *	Copy the range specified by src_addr/len
2606 *	from the source map to the range dst_addr/len
2607 *	in the destination map.
2608 *
2609 *	This routine is only advisory and need not do anything.
2610 */
2611
2612void
2613pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2614	  vm_offset_t src_addr)
2615{
2616	vm_offset_t addr;
2617	vm_offset_t end_addr = src_addr + len;
2618	vm_offset_t pdnxt;
2619	pd_entry_t src_frame, dst_frame;
2620	vm_page_t m;
2621
2622	if (dst_addr != src_addr)
2623		return;
2624
2625	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2626	if (src_frame != (PTDpde & PG_FRAME))
2627		return;
2628
2629	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2630	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2631		pt_entry_t *src_pte, *dst_pte;
2632		vm_page_t dstmpte, srcmpte;
2633		pd_entry_t srcptepaddr;
2634		unsigned ptepindex;
2635
2636		if (addr >= UPT_MIN_ADDRESS)
2637			panic("pmap_copy: invalid to pmap_copy page tables\n");
2638
2639		/*
2640		 * Don't let optional prefaulting of pages make us go
2641		 * way below the low water mark of free pages or way
2642		 * above high water mark of used pv entries.
2643		 */
2644		if (cnt.v_free_count < cnt.v_free_reserved ||
2645		    pv_entry_count > pv_entry_high_water)
2646			break;
2647
2648		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2649		ptepindex = addr >> PDRSHIFT;
2650
2651		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2652		if (srcptepaddr == 0)
2653			continue;
2654
2655		if (srcptepaddr & PG_PS) {
2656			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2657				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2658				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2659			}
2660			continue;
2661		}
2662
2663		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2664		if ((srcmpte == NULL) ||
2665		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2666			continue;
2667
2668		if (pdnxt > end_addr)
2669			pdnxt = end_addr;
2670
2671		/*
2672		 * Have to recheck this before every avtopte() call below
2673		 * in case we have blocked and something else used APTDpde.
2674		 */
2675		if (dst_frame != (APTDpde & PG_FRAME)) {
2676			APTDpde = dst_frame | PG_RW | PG_V;
2677			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2678		}
2679		src_pte = vtopte(addr);
2680		dst_pte = avtopte(addr);
2681		while (addr < pdnxt) {
2682			pt_entry_t ptetemp;
2683			ptetemp = *src_pte;
2684			/*
2685			 * we only virtual copy managed pages
2686			 */
2687			if ((ptetemp & PG_MANAGED) != 0) {
2688				/*
2689				 * We have to check after allocpte for the
2690				 * pte still being around...  allocpte can
2691				 * block.
2692				 */
2693				dstmpte = pmap_allocpte(dst_pmap, addr);
2694				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2695					/*
2696					 * Clear the modified and
2697					 * accessed (referenced) bits
2698					 * during the copy.
2699					 */
2700					m = PHYS_TO_VM_PAGE(ptetemp);
2701					*dst_pte = ptetemp & ~(PG_M | PG_A);
2702					dst_pmap->pm_stats.resident_count++;
2703					pmap_insert_entry(dst_pmap, addr,
2704						dstmpte, m);
2705	 			} else {
2706					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2707				}
2708				if (dstmpte->hold_count >= srcmpte->hold_count)
2709					break;
2710			}
2711			addr += PAGE_SIZE;
2712			src_pte++;
2713			dst_pte++;
2714		}
2715	}
2716}
2717
2718#ifdef SMP
2719
2720/*
2721 *	pmap_zpi_switchin*()
2722 *
2723 *	These functions allow us to avoid doing IPIs alltogether in certain
2724 *	temporary page-mapping situations (page zeroing).  Instead to deal
2725 *	with being preempted and moved onto a different cpu we invalidate
2726 *	the page when the scheduler switches us in.  This does not occur
2727 *	very often so we remain relatively optimal with very little effort.
2728 */
2729static void
2730pmap_zpi_switchin12(void)
2731{
2732	invlpg((u_int)CADDR1);
2733	invlpg((u_int)CADDR2);
2734}
2735
2736static void
2737pmap_zpi_switchin2(void)
2738{
2739	invlpg((u_int)CADDR2);
2740}
2741
2742static void
2743pmap_zpi_switchin3(void)
2744{
2745	invlpg((u_int)CADDR3);
2746}
2747
2748#endif
2749
2750/*
2751 *	pmap_zero_page zeros the specified hardware page by mapping
2752 *	the page into KVM and using bzero to clear its contents.
2753 */
2754void
2755pmap_zero_page(vm_page_t m)
2756{
2757	vm_offset_t phys;
2758
2759	phys = VM_PAGE_TO_PHYS(m);
2760	if (*CMAP2)
2761		panic("pmap_zero_page: CMAP2 busy");
2762	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2763#ifdef I386_CPU
2764	invltlb();
2765#else
2766#ifdef SMP
2767	curthread->td_switchin = pmap_zpi_switchin2;
2768#endif
2769	invlpg((u_int)CADDR2);
2770#endif
2771#if defined(I686_CPU)
2772	if (cpu_class == CPUCLASS_686)
2773		i686_pagezero(CADDR2);
2774	else
2775#endif
2776		bzero(CADDR2, PAGE_SIZE);
2777#ifdef SMP
2778	curthread->td_switchin = NULL;
2779#endif
2780	*CMAP2 = 0;
2781}
2782
2783/*
2784 *	pmap_zero_page_area zeros the specified hardware page by mapping
2785 *	the page into KVM and using bzero to clear its contents.
2786 *
2787 *	off and size may not cover an area beyond a single hardware page.
2788 */
2789void
2790pmap_zero_page_area(vm_page_t m, int off, int size)
2791{
2792	vm_offset_t phys;
2793
2794	phys = VM_PAGE_TO_PHYS(m);
2795	if (*CMAP2)
2796		panic("pmap_zero_page: CMAP2 busy");
2797	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2798#ifdef I386_CPU
2799	invltlb();
2800#else
2801#ifdef SMP
2802	curthread->td_switchin = pmap_zpi_switchin2;
2803#endif
2804	invlpg((u_int)CADDR2);
2805#endif
2806#if defined(I686_CPU)
2807	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2808		i686_pagezero(CADDR2);
2809	else
2810#endif
2811		bzero((char *)CADDR2 + off, size);
2812#ifdef SMP
2813	curthread->td_switchin = NULL;
2814#endif
2815	*CMAP2 = 0;
2816}
2817
2818/*
2819 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2820 *	the page into KVM and using bzero to clear its contents.  This
2821 *	is intended to be called from the vm_pagezero process only and
2822 *	outside of Giant.
2823 */
2824void
2825pmap_zero_page_idle(vm_page_t m)
2826{
2827	vm_offset_t phys;
2828
2829	phys = VM_PAGE_TO_PHYS(m);
2830	if (*CMAP3)
2831		panic("pmap_zero_page: CMAP3 busy");
2832	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2833#ifdef I386_CPU
2834	invltlb();
2835#else
2836#ifdef SMP
2837	curthread->td_switchin = pmap_zpi_switchin3;
2838#endif
2839	invlpg((u_int)CADDR3);
2840#endif
2841#if defined(I686_CPU)
2842	if (cpu_class == CPUCLASS_686)
2843		i686_pagezero(CADDR3);
2844	else
2845#endif
2846		bzero(CADDR3, PAGE_SIZE);
2847#ifdef SMP
2848	curthread->td_switchin = NULL;
2849#endif
2850	*CMAP3 = 0;
2851}
2852
2853/*
2854 *	pmap_copy_page copies the specified (machine independent)
2855 *	page by mapping the page into virtual memory and using
2856 *	bcopy to copy the page, one machine dependent page at a
2857 *	time.
2858 */
2859void
2860pmap_copy_page(vm_page_t src, vm_page_t dst)
2861{
2862
2863	if (*CMAP1)
2864		panic("pmap_copy_page: CMAP1 busy");
2865	if (*CMAP2)
2866		panic("pmap_copy_page: CMAP2 busy");
2867	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2868	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2869#ifdef I386_CPU
2870	invltlb();
2871#else
2872#ifdef SMP
2873	curthread->td_switchin = pmap_zpi_switchin12;
2874#endif
2875	invlpg((u_int)CADDR1);
2876	invlpg((u_int)CADDR2);
2877#endif
2878	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2879#ifdef SMP
2880	curthread->td_switchin = NULL;
2881#endif
2882	*CMAP1 = 0;
2883	*CMAP2 = 0;
2884}
2885
2886/*
2887 * Returns true if the pmap's pv is one of the first
2888 * 16 pvs linked to from this page.  This count may
2889 * be changed upwards or downwards in the future; it
2890 * is only necessary that true be returned for a small
2891 * subset of pmaps for proper page aging.
2892 */
2893boolean_t
2894pmap_page_exists_quick(pmap, m)
2895	pmap_t pmap;
2896	vm_page_t m;
2897{
2898	pv_entry_t pv;
2899	int loops = 0;
2900	int s;
2901
2902	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2903		return FALSE;
2904
2905	s = splvm();
2906
2907	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2908		if (pv->pv_pmap == pmap) {
2909			splx(s);
2910			return TRUE;
2911		}
2912		loops++;
2913		if (loops >= 16)
2914			break;
2915	}
2916	splx(s);
2917	return (FALSE);
2918}
2919
2920#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2921/*
2922 * Remove all pages from specified address space
2923 * this aids process exit speeds.  Also, this code
2924 * is special cased for current process only, but
2925 * can have the more generic (and slightly slower)
2926 * mode enabled.  This is much faster than pmap_remove
2927 * in the case of running down an entire address space.
2928 */
2929void
2930pmap_remove_pages(pmap, sva, eva)
2931	pmap_t pmap;
2932	vm_offset_t sva, eva;
2933{
2934	pt_entry_t *pte, tpte;
2935	vm_page_t m;
2936	pv_entry_t pv, npv;
2937	int s;
2938
2939#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2940	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2941		printf("warning: pmap_remove_pages called with non-current pmap\n");
2942		return;
2943	}
2944#endif
2945
2946	s = splvm();
2947	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2948
2949		if (pv->pv_va >= eva || pv->pv_va < sva) {
2950			npv = TAILQ_NEXT(pv, pv_plist);
2951			continue;
2952		}
2953
2954#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2955		pte = vtopte(pv->pv_va);
2956#else
2957		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2958#endif
2959		tpte = *pte;
2960
2961		if (tpte == 0) {
2962			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2963							pte, pv->pv_va);
2964			panic("bad pte");
2965		}
2966
2967/*
2968 * We cannot remove wired pages from a process' mapping at this time
2969 */
2970		if (tpte & PG_W) {
2971			npv = TAILQ_NEXT(pv, pv_plist);
2972			continue;
2973		}
2974
2975		m = PHYS_TO_VM_PAGE(tpte);
2976		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2977		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2978		    m, m->phys_addr, tpte));
2979
2980		KASSERT(m < &vm_page_array[vm_page_array_size],
2981			("pmap_remove_pages: bad tpte %x", tpte));
2982
2983		pv->pv_pmap->pm_stats.resident_count--;
2984
2985		*pte = 0;
2986
2987		/*
2988		 * Update the vm_page_t clean and reference bits.
2989		 */
2990		if (tpte & PG_M) {
2991			vm_page_dirty(m);
2992		}
2993
2994		npv = TAILQ_NEXT(pv, pv_plist);
2995		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2996
2997		m->md.pv_list_count--;
2998		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2999		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3000			vm_page_flag_clear(m, PG_WRITEABLE);
3001		}
3002
3003		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3004		free_pv_entry(pv);
3005	}
3006	splx(s);
3007	pmap_invalidate_all(pmap);
3008}
3009
3010/*
3011 * pmap_testbit tests bits in pte's
3012 * note that the testbit/changebit routines are inline,
3013 * and a lot of things compile-time evaluate.
3014 */
3015static boolean_t
3016pmap_testbit(m, bit)
3017	vm_page_t m;
3018	int bit;
3019{
3020	pv_entry_t pv;
3021	pt_entry_t *pte;
3022	int s;
3023
3024	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3025		return FALSE;
3026
3027	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3028		return FALSE;
3029
3030	s = splvm();
3031
3032	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3033		/*
3034		 * if the bit being tested is the modified bit, then
3035		 * mark clean_map and ptes as never
3036		 * modified.
3037		 */
3038		if (bit & (PG_A|PG_M)) {
3039			if (!pmap_track_modified(pv->pv_va))
3040				continue;
3041		}
3042
3043#if defined(PMAP_DIAGNOSTIC)
3044		if (!pv->pv_pmap) {
3045			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3046			continue;
3047		}
3048#endif
3049		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3050		if (*pte & bit) {
3051			splx(s);
3052			return TRUE;
3053		}
3054	}
3055	splx(s);
3056	return (FALSE);
3057}
3058
3059/*
3060 * this routine is used to modify bits in ptes
3061 */
3062static __inline void
3063pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3064{
3065	register pv_entry_t pv;
3066	register pt_entry_t *pte;
3067	int s;
3068
3069	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
3070	    (!setem && bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
3071		return;
3072
3073	s = splvm();
3074
3075	/*
3076	 * Loop over all current mappings setting/clearing as appropos If
3077	 * setting RO do we need to clear the VAC?
3078	 */
3079	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3080		/*
3081		 * don't write protect pager mappings
3082		 */
3083		if (!setem && (bit == PG_RW)) {
3084			if (!pmap_track_modified(pv->pv_va))
3085				continue;
3086		}
3087
3088#if defined(PMAP_DIAGNOSTIC)
3089		if (!pv->pv_pmap) {
3090			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3091			continue;
3092		}
3093#endif
3094
3095		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3096
3097		if (setem) {
3098			*pte |= bit;
3099			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3100		} else {
3101			pt_entry_t pbits = *pte;
3102			if (pbits & bit) {
3103				if (bit == PG_RW) {
3104					if (pbits & PG_M) {
3105						vm_page_dirty(m);
3106					}
3107					*pte = pbits & ~(PG_M|PG_RW);
3108				} else {
3109					*pte = pbits & ~bit;
3110				}
3111				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3112			}
3113		}
3114	}
3115	if (!setem && bit == PG_RW)
3116		vm_page_flag_clear(m, PG_WRITEABLE);
3117	splx(s);
3118}
3119
3120/*
3121 *      pmap_page_protect:
3122 *
3123 *      Lower the permission for all mappings to a given page.
3124 */
3125void
3126pmap_page_protect(vm_page_t m, vm_prot_t prot)
3127{
3128	if ((prot & VM_PROT_WRITE) == 0) {
3129		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3130			pmap_changebit(m, PG_RW, FALSE);
3131		} else {
3132			pmap_remove_all(m);
3133		}
3134	}
3135}
3136
3137vm_offset_t
3138pmap_phys_address(ppn)
3139	int ppn;
3140{
3141	return (i386_ptob(ppn));
3142}
3143
3144/*
3145 *	pmap_ts_referenced:
3146 *
3147 *	Return a count of reference bits for a page, clearing those bits.
3148 *	It is not necessary for every reference bit to be cleared, but it
3149 *	is necessary that 0 only be returned when there are truly no
3150 *	reference bits set.
3151 *
3152 *	XXX: The exact number of bits to check and clear is a matter that
3153 *	should be tested and standardized at some point in the future for
3154 *	optimal aging of shared pages.
3155 */
3156int
3157pmap_ts_referenced(vm_page_t m)
3158{
3159	register pv_entry_t pv, pvf, pvn;
3160	pt_entry_t *pte;
3161	int s;
3162	int rtval = 0;
3163
3164	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3165		return (rtval);
3166
3167	s = splvm();
3168
3169	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3170
3171		pvf = pv;
3172
3173		do {
3174			pvn = TAILQ_NEXT(pv, pv_list);
3175
3176			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3177
3178			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3179
3180			if (!pmap_track_modified(pv->pv_va))
3181				continue;
3182
3183			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3184
3185			if (pte && (*pte & PG_A)) {
3186				*pte &= ~PG_A;
3187
3188				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3189
3190				rtval++;
3191				if (rtval > 4) {
3192					break;
3193				}
3194			}
3195		} while ((pv = pvn) != NULL && pv != pvf);
3196	}
3197	splx(s);
3198
3199	return (rtval);
3200}
3201
3202/*
3203 *	pmap_is_modified:
3204 *
3205 *	Return whether or not the specified physical page was modified
3206 *	in any physical maps.
3207 */
3208boolean_t
3209pmap_is_modified(vm_page_t m)
3210{
3211	return pmap_testbit(m, PG_M);
3212}
3213
3214/*
3215 *	Clear the modify bits on the specified physical page.
3216 */
3217void
3218pmap_clear_modify(vm_page_t m)
3219{
3220	pmap_changebit(m, PG_M, FALSE);
3221}
3222
3223/*
3224 *	pmap_clear_reference:
3225 *
3226 *	Clear the reference bit on the specified physical page.
3227 */
3228void
3229pmap_clear_reference(vm_page_t m)
3230{
3231	pmap_changebit(m, PG_A, FALSE);
3232}
3233
3234/*
3235 * Miscellaneous support routines follow
3236 */
3237
3238static void
3239i386_protection_init()
3240{
3241	register int *kp, prot;
3242
3243	kp = protection_codes;
3244	for (prot = 0; prot < 8; prot++) {
3245		switch (prot) {
3246		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3247			/*
3248			 * Read access is also 0. There isn't any execute bit,
3249			 * so just make it readable.
3250			 */
3251		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3252		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3253		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3254			*kp++ = 0;
3255			break;
3256		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3257		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3258		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3259		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3260			*kp++ = PG_RW;
3261			break;
3262		}
3263	}
3264}
3265
3266/*
3267 * Map a set of physical memory pages into the kernel virtual
3268 * address space. Return a pointer to where it is mapped. This
3269 * routine is intended to be used for mapping device memory,
3270 * NOT real memory.
3271 */
3272void *
3273pmap_mapdev(pa, size)
3274	vm_offset_t pa;
3275	vm_size_t size;
3276{
3277	vm_offset_t va, tmpva, offset;
3278	pt_entry_t *pte;
3279
3280	offset = pa & PAGE_MASK;
3281	size = roundup(offset + size, PAGE_SIZE);
3282
3283	GIANT_REQUIRED;
3284
3285	va = kmem_alloc_pageable(kernel_map, size);
3286	if (!va)
3287		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3288
3289	pa = pa & PG_FRAME;
3290	for (tmpva = va; size > 0; ) {
3291		pte = vtopte(tmpva);
3292		*pte = pa | PG_RW | PG_V | pgeflag;
3293		size -= PAGE_SIZE;
3294		tmpva += PAGE_SIZE;
3295		pa += PAGE_SIZE;
3296	}
3297	pmap_invalidate_range(kernel_pmap, va, tmpva);
3298	return ((void *)(va + offset));
3299}
3300
3301void
3302pmap_unmapdev(va, size)
3303	vm_offset_t va;
3304	vm_size_t size;
3305{
3306	vm_offset_t base, offset, tmpva;
3307	pt_entry_t *pte;
3308
3309	base = va & PG_FRAME;
3310	offset = va & PAGE_MASK;
3311	size = roundup(offset + size, PAGE_SIZE);
3312	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3313		pte = vtopte(tmpva);
3314		*pte = 0;
3315	}
3316	pmap_invalidate_range(kernel_pmap, va, tmpva);
3317	kmem_free(kernel_map, base, size);
3318}
3319
3320/*
3321 * perform the pmap work for mincore
3322 */
3323int
3324pmap_mincore(pmap, addr)
3325	pmap_t pmap;
3326	vm_offset_t addr;
3327{
3328	pt_entry_t *ptep, pte;
3329	vm_page_t m;
3330	int val = 0;
3331
3332	ptep = pmap_pte(pmap, addr);
3333	if (ptep == 0) {
3334		return 0;
3335	}
3336
3337	if ((pte = *ptep) != 0) {
3338		vm_offset_t pa;
3339
3340		val = MINCORE_INCORE;
3341		if ((pte & PG_MANAGED) == 0)
3342			return val;
3343
3344		pa = pte & PG_FRAME;
3345
3346		m = PHYS_TO_VM_PAGE(pa);
3347
3348		/*
3349		 * Modified by us
3350		 */
3351		if (pte & PG_M)
3352			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3353		/*
3354		 * Modified by someone
3355		 */
3356		else if (m->dirty || pmap_is_modified(m))
3357			val |= MINCORE_MODIFIED_OTHER;
3358		/*
3359		 * Referenced by us
3360		 */
3361		if (pte & PG_A)
3362			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3363
3364		/*
3365		 * Referenced by someone
3366		 */
3367		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3368			val |= MINCORE_REFERENCED_OTHER;
3369			vm_page_flag_set(m, PG_REFERENCED);
3370		}
3371	}
3372	return val;
3373}
3374
3375void
3376pmap_activate(struct thread *td)
3377{
3378	struct proc *p = td->td_proc;
3379	pmap_t	pmap;
3380	u_int32_t  cr3;
3381
3382	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3383#if defined(SMP)
3384	pmap->pm_active |= PCPU_GET(cpumask);
3385#else
3386	pmap->pm_active |= 1;
3387#endif
3388	cr3 = vtophys(pmap->pm_pdir);
3389	/* XXXKSE this is wrong.
3390	 * pmap_activate is for the current thread on the current cpu
3391	 */
3392	if (p->p_flag & P_KSES) {
3393		/* Make sure all other cr3 entries are updated. */
3394		/* what if they are running?  XXXKSE (maybe abort them) */
3395		FOREACH_THREAD_IN_PROC(p, td) {
3396			td->td_pcb->pcb_cr3 = cr3;
3397		}
3398	} else {
3399		td->td_pcb->pcb_cr3 = cr3;
3400	}
3401	load_cr3(cr3);
3402#ifdef SWTCH_OPTIM_STATS
3403	tlb_flush_count++;
3404#endif
3405}
3406
3407vm_offset_t
3408pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3409{
3410
3411	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3412		return addr;
3413	}
3414
3415	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3416	return addr;
3417}
3418
3419
3420#if defined(PMAP_DEBUG)
3421pmap_pid_dump(int pid)
3422{
3423	pmap_t pmap;
3424	struct proc *p;
3425	int npte = 0;
3426	int index;
3427
3428	sx_slock(&allproc_lock);
3429	LIST_FOREACH(p, &allproc, p_list) {
3430		if (p->p_pid != pid)
3431			continue;
3432
3433		if (p->p_vmspace) {
3434			int i,j;
3435			index = 0;
3436			pmap = vmspace_pmap(p->p_vmspace);
3437			for (i = 0; i < NPDEPG; i++) {
3438				pd_entry_t *pde;
3439				pt_entry_t *pte;
3440				vm_offset_t base = i << PDRSHIFT;
3441
3442				pde = &pmap->pm_pdir[i];
3443				if (pde && pmap_pde_v(pde)) {
3444					for (j = 0; j < NPTEPG; j++) {
3445						vm_offset_t va = base + (j << PAGE_SHIFT);
3446						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3447							if (index) {
3448								index = 0;
3449								printf("\n");
3450							}
3451							sx_sunlock(&allproc_lock);
3452							return npte;
3453						}
3454						pte = pmap_pte_quick(pmap, va);
3455						if (pte && pmap_pte_v(pte)) {
3456							pt_entry_t pa;
3457							vm_page_t m;
3458							pa = *pte;
3459							m = PHYS_TO_VM_PAGE(pa);
3460							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3461								va, pa, m->hold_count, m->wire_count, m->flags);
3462							npte++;
3463							index++;
3464							if (index >= 2) {
3465								index = 0;
3466								printf("\n");
3467							} else {
3468								printf(" ");
3469							}
3470						}
3471					}
3472				}
3473			}
3474		}
3475	}
3476	sx_sunlock(&allproc_lock);
3477	return npte;
3478}
3479#endif
3480
3481#if defined(DEBUG)
3482
3483static void	pads(pmap_t pm);
3484void		pmap_pvdump(vm_offset_t pa);
3485
3486/* print address space of pmap*/
3487static void
3488pads(pm)
3489	pmap_t pm;
3490{
3491	int i, j;
3492	vm_offset_t va;
3493	pt_entry_t *ptep;
3494
3495	if (pm == kernel_pmap)
3496		return;
3497	for (i = 0; i < NPDEPG; i++)
3498		if (pm->pm_pdir[i])
3499			for (j = 0; j < NPTEPG; j++) {
3500				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3501				if (pm == kernel_pmap && va < KERNBASE)
3502					continue;
3503				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3504					continue;
3505				ptep = pmap_pte_quick(pm, va);
3506				if (pmap_pte_v(ptep))
3507					printf("%x:%x ", va, *ptep);
3508			};
3509
3510}
3511
3512void
3513pmap_pvdump(pa)
3514	vm_offset_t pa;
3515{
3516	pv_entry_t pv;
3517	vm_page_t m;
3518
3519	printf("pa %x", pa);
3520	m = PHYS_TO_VM_PAGE(pa);
3521	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3522		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3523		pads(pv->pv_pmap);
3524	}
3525	printf(" ");
3526}
3527#endif
3528