pmap.c revision 106567
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 106567 2002-11-07 18:33:55Z alc $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154struct pmaplist allpmaps;
155
156vm_offset_t avail_start;	/* PA of first available physical page */
157vm_offset_t avail_end;		/* PA of last available physical page */
158vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
159vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
160static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
161static int pgeflag;		/* PG_G or-in */
162static int pseflag;		/* PG_PS or-in */
163
164static vm_object_t kptobj;
165
166static int nkpt;
167vm_offset_t kernel_vm_end;
168extern u_int32_t KERNend;
169
170/*
171 * Data for the pv entry allocation mechanism
172 */
173static uma_zone_t pvzone;
174static struct vm_object pvzone_obj;
175static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
176static int pmap_pagedaemon_waken = 0;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2, CADDR3;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static void	pmap_remove_all(vm_page_t m);
207static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
208				      vm_page_t m, vm_page_t mpte);
209static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
210static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
211static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
212					vm_offset_t va);
213static boolean_t pmap_testbit(vm_page_t m, int bit);
214static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
215		vm_page_t mpte, vm_page_t m);
216
217static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
218
219static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
220static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
221static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
222static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
223static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
224static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
225static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
226
227static pd_entry_t pdir4mb;
228
229/*
230 *	Routine:	pmap_pte
231 *	Function:
232 *		Extract the page table entry associated
233 *		with the given map/virtual_address pair.
234 */
235
236PMAP_INLINE pt_entry_t *
237pmap_pte(pmap, va)
238	register pmap_t pmap;
239	vm_offset_t va;
240{
241	pd_entry_t *pdeaddr;
242
243	if (pmap) {
244		pdeaddr = pmap_pde(pmap, va);
245		if (*pdeaddr & PG_PS)
246			return pdeaddr;
247		if (*pdeaddr) {
248			return get_ptbase(pmap) + i386_btop(va);
249		}
250	}
251	return (0);
252}
253
254/*
255 * Move the kernel virtual free pointer to the next
256 * 4MB.  This is used to help improve performance
257 * by using a large (4MB) page for much of the kernel
258 * (.text, .data, .bss)
259 */
260static vm_offset_t
261pmap_kmem_choose(vm_offset_t addr)
262{
263	vm_offset_t newaddr = addr;
264
265#ifndef DISABLE_PSE
266	if (cpu_feature & CPUID_PSE)
267		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
268#endif
269	return newaddr;
270}
271
272/*
273 *	Bootstrap the system enough to run with virtual memory.
274 *
275 *	On the i386 this is called after mapping has already been enabled
276 *	and just syncs the pmap module with what has already been done.
277 *	[We can't call it easily with mapping off since the kernel is not
278 *	mapped with PA == VA, hence we would have to relocate every address
279 *	from the linked base (virtual) address "KERNBASE" to the actual
280 *	(physical) address starting relative to 0]
281 */
282void
283pmap_bootstrap(firstaddr, loadaddr)
284	vm_offset_t firstaddr;
285	vm_offset_t loadaddr;
286{
287	vm_offset_t va;
288	pt_entry_t *pte;
289	int i;
290
291	avail_start = firstaddr;
292
293	/*
294	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
295	 * large. It should instead be correctly calculated in locore.s and
296	 * not based on 'first' (which is a physical address, not a virtual
297	 * address, for the start of unused physical memory). The kernel
298	 * page tables are NOT double mapped and thus should not be included
299	 * in this calculation.
300	 */
301	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
302	virtual_avail = pmap_kmem_choose(virtual_avail);
303
304	virtual_end = VM_MAX_KERNEL_ADDRESS;
305
306	/*
307	 * Initialize protection array.
308	 */
309	i386_protection_init();
310
311	/*
312	 * Initialize the kernel pmap (which is statically allocated).
313	 */
314	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
315	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
316	TAILQ_INIT(&kernel_pmap->pm_pvlist);
317	LIST_INIT(&allpmaps);
318	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
319	nkpt = NKPT;
320
321	/*
322	 * Reserve some special page table entries/VA space for temporary
323	 * mapping of pages.
324	 */
325#define	SYSMAP(c, p, v, n)	\
326	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
327
328	va = virtual_avail;
329	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
330
331	/*
332	 * CMAP1/CMAP2 are used for zeroing and copying pages.
333	 * CMAP3 is used for the idle process page zeroing.
334	 */
335	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
336	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
337	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
338
339	/*
340	 * Crashdump maps.
341	 */
342	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
343
344	/*
345	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
346	 * XXX ptmmap is not used.
347	 */
348	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
349
350	/*
351	 * msgbufp is used to map the system message buffer.
352	 * XXX msgbufmap is not used.
353	 */
354	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
355	       atop(round_page(MSGBUF_SIZE)))
356
357	/*
358	 * ptemap is used for pmap_pte_quick
359	 */
360	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
361
362	virtual_avail = va;
363
364	*CMAP1 = *CMAP2 = 0;
365	for (i = 0; i < NKPT; i++)
366		PTD[i] = 0;
367
368	pgeflag = 0;
369#ifndef DISABLE_PG_G
370	if (cpu_feature & CPUID_PGE)
371		pgeflag = PG_G;
372#endif
373
374/*
375 * Initialize the 4MB page size flag
376 */
377	pseflag = 0;
378/*
379 * The 4MB page version of the initial
380 * kernel page mapping.
381 */
382	pdir4mb = 0;
383
384#ifndef DISABLE_PSE
385	if (cpu_feature & CPUID_PSE) {
386		pd_entry_t ptditmp;
387		/*
388		 * Note that we have enabled PSE mode
389		 */
390		pseflag = PG_PS;
391		ptditmp = *(PTmap + i386_btop(KERNBASE));
392		ptditmp &= ~(NBPDR - 1);
393		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
394		pdir4mb = ptditmp;
395	}
396#endif
397#ifndef SMP
398	/*
399	 * Turn on PGE/PSE.  SMP does this later on since the
400	 * 4K page tables are required for AP boot (for now).
401	 * XXX fixme.
402	 */
403	pmap_set_opt();
404#endif
405#ifdef SMP
406	if (cpu_apic_address == 0)
407		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
408
409	/* local apic is mapped on last page */
410	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
411	    (cpu_apic_address & PG_FRAME));
412#endif
413	invltlb();
414}
415
416/*
417 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
418 * BSP will run this after all the AP's have started up.
419 */
420void
421pmap_set_opt(void)
422{
423	pt_entry_t *pte;
424	vm_offset_t va, endva;
425
426	if (pgeflag && (cpu_feature & CPUID_PGE)) {
427		load_cr4(rcr4() | CR4_PGE);
428		invltlb();		/* Insurance */
429	}
430#ifndef DISABLE_PSE
431	if (pseflag && (cpu_feature & CPUID_PSE)) {
432		load_cr4(rcr4() | CR4_PSE);
433		invltlb();		/* Insurance */
434	}
435#endif
436	if (PCPU_GET(cpuid) == 0) {
437#ifndef DISABLE_PSE
438		if (pdir4mb) {
439			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
440			invltlb();	/* Insurance */
441		}
442#endif
443		if (pgeflag) {
444			/* Turn on PG_G for text, data, bss pages. */
445			va = (vm_offset_t)btext;
446#ifndef DISABLE_PSE
447			if (pseflag && (cpu_feature & CPUID_PSE)) {
448				if (va < KERNBASE + (1 << PDRSHIFT))
449					va = KERNBASE + (1 << PDRSHIFT);
450			}
451#endif
452			endva = KERNBASE + KERNend;
453			while (va < endva) {
454				pte = vtopte(va);
455				if (*pte)
456					*pte |= pgeflag;
457				va += PAGE_SIZE;
458			}
459			invltlb();	/* Insurance */
460		}
461		/*
462		 * We do not need to broadcast the invltlb here, because
463		 * each AP does it the moment it is released from the boot
464		 * lock.  See ap_init().
465		 */
466	}
467}
468
469static void *
470pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
471{
472	*flags = UMA_SLAB_PRIV;
473	return (void *)kmem_alloc(kernel_map, bytes);
474}
475
476/*
477 *	Initialize the pmap module.
478 *	Called by vm_init, to initialize any structures that the pmap
479 *	system needs to map virtual memory.
480 *	pmap_init has been enhanced to support in a fairly consistant
481 *	way, discontiguous physical memory.
482 */
483void
484pmap_init(phys_start, phys_end)
485	vm_offset_t phys_start, phys_end;
486{
487	int i;
488	int initial_pvs;
489
490	/*
491	 * object for kernel page table pages
492	 */
493	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
494
495	/*
496	 * Allocate memory for random pmap data structures.  Includes the
497	 * pv_head_table.
498	 */
499
500	for(i = 0; i < vm_page_array_size; i++) {
501		vm_page_t m;
502
503		m = &vm_page_array[i];
504		TAILQ_INIT(&m->md.pv_list);
505		m->md.pv_list_count = 0;
506	}
507
508	/*
509	 * init the pv free list
510	 */
511	initial_pvs = vm_page_array_size;
512	if (initial_pvs < MINPV)
513		initial_pvs = MINPV;
514	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
515	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
516	uma_zone_set_allocf(pvzone, pmap_allocf);
517	uma_prealloc(pvzone, initial_pvs);
518
519	/*
520	 * Now it is safe to enable pv_table recording.
521	 */
522	pmap_initialized = TRUE;
523}
524
525/*
526 * Initialize the address space (zone) for the pv_entries.  Set a
527 * high water mark so that the system can recover from excessive
528 * numbers of pv entries.
529 */
530void
531pmap_init2()
532{
533	int shpgperproc = PMAP_SHPGPERPROC;
534
535	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
536	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
537	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
538	pv_entry_high_water = 9 * (pv_entry_max / 10);
539	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
540}
541
542
543/***************************************************
544 * Low level helper routines.....
545 ***************************************************/
546
547#if defined(PMAP_DIAGNOSTIC)
548
549/*
550 * This code checks for non-writeable/modified pages.
551 * This should be an invalid condition.
552 */
553static int
554pmap_nw_modified(pt_entry_t ptea)
555{
556	int pte;
557
558	pte = (int) ptea;
559
560	if ((pte & (PG_M|PG_RW)) == PG_M)
561		return 1;
562	else
563		return 0;
564}
565#endif
566
567
568/*
569 * this routine defines the region(s) of memory that should
570 * not be tested for the modified bit.
571 */
572static PMAP_INLINE int
573pmap_track_modified(vm_offset_t va)
574{
575	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
576		return 1;
577	else
578		return 0;
579}
580
581#ifdef I386_CPU
582/*
583 * i386 only has "invalidate everything" and no SMP to worry about.
584 */
585PMAP_INLINE void
586pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
587{
588
589	if (pmap == kernel_pmap || pmap->pm_active)
590		invltlb();
591}
592
593PMAP_INLINE void
594pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
595{
596
597	if (pmap == kernel_pmap || pmap->pm_active)
598		invltlb();
599}
600
601PMAP_INLINE void
602pmap_invalidate_all(pmap_t pmap)
603{
604
605	if (pmap == kernel_pmap || pmap->pm_active)
606		invltlb();
607}
608#else /* !I386_CPU */
609#ifdef SMP
610/*
611 * For SMP, these functions have to use the IPI mechanism for coherence.
612 */
613void
614pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
615{
616	u_int cpumask;
617	u_int other_cpus;
618
619	critical_enter();
620	/*
621	 * We need to disable interrupt preemption but MUST NOT have
622	 * interrupts disabled here.
623	 * XXX we may need to hold schedlock to get a coherent pm_active
624	 */
625	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
626		invlpg(va);
627		smp_invlpg(va);
628	} else {
629		cpumask = PCPU_GET(cpumask);
630		other_cpus = PCPU_GET(other_cpus);
631		if (pmap->pm_active & cpumask)
632			invlpg(va);
633		if (pmap->pm_active & other_cpus)
634			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
635	}
636	critical_exit();
637}
638
639void
640pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
641{
642	u_int cpumask;
643	u_int other_cpus;
644	vm_offset_t addr;
645
646	critical_enter();
647	/*
648	 * We need to disable interrupt preemption but MUST NOT have
649	 * interrupts disabled here.
650	 * XXX we may need to hold schedlock to get a coherent pm_active
651	 */
652	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
653		for (addr = sva; addr < eva; addr += PAGE_SIZE)
654			invlpg(addr);
655		smp_invlpg_range(sva, eva);
656	} else {
657		cpumask = PCPU_GET(cpumask);
658		other_cpus = PCPU_GET(other_cpus);
659		if (pmap->pm_active & cpumask)
660			for (addr = sva; addr < eva; addr += PAGE_SIZE)
661				invlpg(addr);
662		if (pmap->pm_active & other_cpus)
663			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
664			    sva, eva);
665	}
666	critical_exit();
667}
668
669void
670pmap_invalidate_all(pmap_t pmap)
671{
672	u_int cpumask;
673	u_int other_cpus;
674
675#ifdef SWTCH_OPTIM_STATS
676	tlb_flush_count++;
677#endif
678	critical_enter();
679	/*
680	 * We need to disable interrupt preemption but MUST NOT have
681	 * interrupts disabled here.
682	 * XXX we may need to hold schedlock to get a coherent pm_active
683	 */
684	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
685		invltlb();
686		smp_invltlb();
687	} else {
688		cpumask = PCPU_GET(cpumask);
689		other_cpus = PCPU_GET(other_cpus);
690		if (pmap->pm_active & cpumask)
691			invltlb();
692		if (pmap->pm_active & other_cpus)
693			smp_masked_invltlb(pmap->pm_active & other_cpus);
694	}
695	critical_exit();
696}
697#else /* !SMP */
698/*
699 * Normal, non-SMP, 486+ invalidation functions.
700 * We inline these within pmap.c for speed.
701 */
702PMAP_INLINE void
703pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
704{
705
706	if (pmap == kernel_pmap || pmap->pm_active)
707		invlpg(va);
708}
709
710PMAP_INLINE void
711pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
712{
713	vm_offset_t addr;
714
715	if (pmap == kernel_pmap || pmap->pm_active)
716		for (addr = sva; addr < eva; addr += PAGE_SIZE)
717			invlpg(addr);
718}
719
720PMAP_INLINE void
721pmap_invalidate_all(pmap_t pmap)
722{
723
724	if (pmap == kernel_pmap || pmap->pm_active)
725		invltlb();
726}
727#endif /* !SMP */
728#endif /* !I386_CPU */
729
730/*
731 * Return an address which is the base of the Virtual mapping of
732 * all the PTEs for the given pmap. Note this doesn't say that
733 * all the PTEs will be present or that the pages there are valid.
734 * The PTEs are made available by the recursive mapping trick.
735 * It will map in the alternate PTE space if needed.
736 */
737static pt_entry_t *
738get_ptbase(pmap)
739	pmap_t pmap;
740{
741	pd_entry_t frame;
742
743	/* are we current address space or kernel? */
744	if (pmap == kernel_pmap)
745		return PTmap;
746	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
747	if (frame == (PTDpde & PG_FRAME))
748		return PTmap;
749	/* otherwise, we are alternate address space */
750	if (frame != (APTDpde & PG_FRAME)) {
751		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
752		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
753	}
754	return APTmap;
755}
756
757/*
758 * Super fast pmap_pte routine best used when scanning
759 * the pv lists.  This eliminates many coarse-grained
760 * invltlb calls.  Note that many of the pv list
761 * scans are across different pmaps.  It is very wasteful
762 * to do an entire invltlb for checking a single mapping.
763 */
764
765static pt_entry_t *
766pmap_pte_quick(pmap, va)
767	register pmap_t pmap;
768	vm_offset_t va;
769{
770	pd_entry_t pde, newpf;
771	pde = pmap->pm_pdir[va >> PDRSHIFT];
772	if (pde != 0) {
773		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
774		unsigned index = i386_btop(va);
775		/* are we current address space or kernel? */
776		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
777			return PTmap + index;
778		newpf = pde & PG_FRAME;
779		if (((*PMAP1) & PG_FRAME) != newpf) {
780			*PMAP1 = newpf | PG_RW | PG_V;
781			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
782		}
783		return PADDR1 + (index & (NPTEPG - 1));
784	}
785	return (0);
786}
787
788/*
789 *	Routine:	pmap_extract
790 *	Function:
791 *		Extract the physical page address associated
792 *		with the given map/virtual_address pair.
793 */
794vm_offset_t
795pmap_extract(pmap, va)
796	register pmap_t pmap;
797	vm_offset_t va;
798{
799	vm_offset_t rtval;	/* XXX FIXME */
800	vm_offset_t pdirindex;
801
802	if (pmap == 0)
803		return 0;
804	pdirindex = va >> PDRSHIFT;
805	rtval = pmap->pm_pdir[pdirindex];
806	if (rtval != 0) {
807		pt_entry_t *pte;
808		if ((rtval & PG_PS) != 0) {
809			rtval &= ~(NBPDR - 1);
810			rtval |= va & (NBPDR - 1);
811			return rtval;
812		}
813		pte = get_ptbase(pmap) + i386_btop(va);
814		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
815		return rtval;
816	}
817	return 0;
818
819}
820
821/***************************************************
822 * Low level mapping routines.....
823 ***************************************************/
824
825/*
826 * Add a wired page to the kva.
827 * Note: not SMP coherent.
828 */
829PMAP_INLINE void
830pmap_kenter(vm_offset_t va, vm_offset_t pa)
831{
832	pt_entry_t *pte;
833
834	pte = vtopte(va);
835	*pte = pa | PG_RW | PG_V | pgeflag;
836}
837
838/*
839 * Remove a page from the kernel pagetables.
840 * Note: not SMP coherent.
841 */
842PMAP_INLINE void
843pmap_kremove(vm_offset_t va)
844{
845	pt_entry_t *pte;
846
847	pte = vtopte(va);
848	*pte = 0;
849}
850
851/*
852 *	Used to map a range of physical addresses into kernel
853 *	virtual address space.
854 *
855 *	The value passed in '*virt' is a suggested virtual address for
856 *	the mapping. Architectures which can support a direct-mapped
857 *	physical to virtual region can return the appropriate address
858 *	within that region, leaving '*virt' unchanged. Other
859 *	architectures should map the pages starting at '*virt' and
860 *	update '*virt' with the first usable address after the mapped
861 *	region.
862 */
863vm_offset_t
864pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
865{
866	vm_offset_t va, sva;
867
868	va = sva = *virt;
869	while (start < end) {
870		pmap_kenter(va, start);
871		va += PAGE_SIZE;
872		start += PAGE_SIZE;
873	}
874	pmap_invalidate_range(kernel_pmap, sva, va);
875	*virt = va;
876	return (sva);
877}
878
879
880/*
881 * Add a list of wired pages to the kva
882 * this routine is only used for temporary
883 * kernel mappings that do not need to have
884 * page modification or references recorded.
885 * Note that old mappings are simply written
886 * over.  The page *must* be wired.
887 * Note: SMP coherent.  Uses a ranged shootdown IPI.
888 */
889void
890pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
891{
892	vm_offset_t va;
893
894	va = sva;
895	while (count-- > 0) {
896		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
897		va += PAGE_SIZE;
898		m++;
899	}
900	pmap_invalidate_range(kernel_pmap, sva, va);
901}
902
903/*
904 * This routine tears out page mappings from the
905 * kernel -- it is meant only for temporary mappings.
906 * Note: SMP coherent.  Uses a ranged shootdown IPI.
907 */
908void
909pmap_qremove(vm_offset_t sva, int count)
910{
911	vm_offset_t va;
912
913	va = sva;
914	while (count-- > 0) {
915		pmap_kremove(va);
916		va += PAGE_SIZE;
917	}
918	pmap_invalidate_range(kernel_pmap, sva, va);
919}
920
921static vm_page_t
922pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
923{
924	vm_page_t m;
925
926retry:
927	m = vm_page_lookup(object, pindex);
928	if (m != NULL) {
929		vm_page_lock_queues();
930		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
931			goto retry;
932		vm_page_unlock_queues();
933	}
934	return m;
935}
936
937#ifndef KSTACK_MAX_PAGES
938#define KSTACK_MAX_PAGES 32
939#endif
940
941/*
942 * Create the kernel stack (including pcb for i386) for a new thread.
943 * This routine directly affects the fork perf for a process and
944 * create performance for a thread.
945 */
946void
947pmap_new_thread(struct thread *td, int pages)
948{
949	int i;
950	vm_page_t ma[KSTACK_MAX_PAGES];
951	vm_object_t ksobj;
952	vm_page_t m;
953	vm_offset_t ks;
954
955	/* Bounds check */
956	if (pages <= 1)
957		pages = KSTACK_PAGES;
958	else if (pages > KSTACK_MAX_PAGES)
959		pages = KSTACK_MAX_PAGES;
960
961	/*
962	 * allocate object for the kstack
963	 */
964	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
965	td->td_kstack_obj = ksobj;
966
967	/* get a kernel virtual address for the kstack for this thread */
968#ifdef KSTACK_GUARD
969	ks = kmem_alloc_nofault(kernel_map, (pages + 1) * PAGE_SIZE);
970	if (ks == 0)
971		panic("pmap_new_thread: kstack allocation failed");
972	if (*vtopte(ks) != 0)
973		pmap_qremove(ks, 1);
974	ks += PAGE_SIZE;
975	td->td_kstack = ks;
976#else
977	/* get a kernel virtual address for the kstack for this thread */
978	ks = kmem_alloc_nofault(kernel_map, pages * PAGE_SIZE);
979	if (ks == 0)
980		panic("pmap_new_thread: kstack allocation failed");
981	td->td_kstack = ks;
982#endif
983	/*
984	 * Knowing the number of pages allocated is useful when you
985	 * want to deallocate them.
986	 */
987	td->td_kstack_pages = pages;
988
989	/*
990	 * For the length of the stack, link in a real page of ram for each
991	 * page of stack.
992	 */
993	for (i = 0; i < pages; i++) {
994		/*
995		 * Get a kernel stack page
996		 */
997		m = vm_page_grab(ksobj, i,
998		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
999		ma[i] = m;
1000
1001		vm_page_wakeup(m);
1002		vm_page_flag_clear(m, PG_ZERO);
1003		m->valid = VM_PAGE_BITS_ALL;
1004	}
1005	pmap_qenter(ks, ma, pages);
1006}
1007
1008/*
1009 * Dispose the kernel stack for a thread that has exited.
1010 * This routine directly impacts the exit perf of a process and thread.
1011 */
1012void
1013pmap_dispose_thread(td)
1014	struct thread *td;
1015{
1016	int i;
1017	int pages;
1018	vm_object_t ksobj;
1019	vm_offset_t ks;
1020	vm_page_t m;
1021
1022	pages = td->td_kstack_pages;
1023	ksobj = td->td_kstack_obj;
1024	ks = td->td_kstack;
1025	pmap_qremove(ks, pages);
1026	for (i = 0; i < pages; i++) {
1027		m = vm_page_lookup(ksobj, i);
1028		if (m == NULL)
1029			panic("pmap_dispose_thread: kstack already missing?");
1030		vm_page_lock_queues();
1031		vm_page_busy(m);
1032		vm_page_unwire(m, 0);
1033		vm_page_free(m);
1034		vm_page_unlock_queues();
1035	}
1036	/*
1037	 * Free the space that this stack was mapped to in the kernel
1038	 * address map.
1039	 */
1040#ifdef KSTACK_GUARD
1041	kmem_free(kernel_map, ks - PAGE_SIZE, (pages + 1) * PAGE_SIZE);
1042#else
1043	kmem_free(kernel_map, ks, pages * PAGE_SIZE);
1044#endif
1045	vm_object_deallocate(ksobj);
1046}
1047
1048/*
1049 * Set up a variable sized alternate kstack.  Though it may look MI, it may
1050 * need to be different on certain arches like ia64.
1051 */
1052void
1053pmap_new_altkstack(struct thread *td, int pages)
1054{
1055	/* shuffle the original stack */
1056	td->td_altkstack_obj = td->td_kstack_obj;
1057	td->td_altkstack = td->td_kstack;
1058	td->td_altkstack_pages = td->td_kstack_pages;
1059
1060	pmap_new_thread(td, pages);
1061}
1062
1063void
1064pmap_dispose_altkstack(td)
1065	struct thread *td;
1066{
1067	pmap_dispose_thread(td);
1068
1069	/* restore the original kstack */
1070	td->td_kstack = td->td_altkstack;
1071	td->td_kstack_obj = td->td_altkstack_obj;
1072	td->td_kstack_pages = td->td_altkstack_pages;
1073	td->td_altkstack = 0;
1074	td->td_altkstack_obj = NULL;
1075	td->td_altkstack_pages = 0;
1076}
1077
1078/*
1079 * Allow the Kernel stack for a thread to be prejudicially paged out.
1080 */
1081void
1082pmap_swapout_thread(td)
1083	struct thread *td;
1084{
1085	int i;
1086	int pages;
1087	vm_object_t ksobj;
1088	vm_offset_t ks;
1089	vm_page_t m;
1090
1091	pages = td->td_kstack_pages;
1092	ksobj = td->td_kstack_obj;
1093	ks = td->td_kstack;
1094	pmap_qremove(ks, pages);
1095	for (i = 0; i < pages; i++) {
1096		m = vm_page_lookup(ksobj, i);
1097		if (m == NULL)
1098			panic("pmap_swapout_thread: kstack already missing?");
1099		vm_page_lock_queues();
1100		vm_page_dirty(m);
1101		vm_page_unwire(m, 0);
1102		vm_page_unlock_queues();
1103	}
1104}
1105
1106/*
1107 * Bring the kernel stack for a specified thread back in.
1108 */
1109void
1110pmap_swapin_thread(td)
1111	struct thread *td;
1112{
1113	int i, rv;
1114	int pages;
1115	vm_page_t ma[KSTACK_MAX_PAGES];
1116	vm_object_t ksobj;
1117	vm_offset_t ks;
1118	vm_page_t m;
1119
1120	pages = td->td_kstack_pages;
1121	ksobj = td->td_kstack_obj;
1122	ks = td->td_kstack;
1123	for (i = 0; i < pages; i++) {
1124		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1125		if (m->valid != VM_PAGE_BITS_ALL) {
1126			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1127			if (rv != VM_PAGER_OK)
1128				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1129			m = vm_page_lookup(ksobj, i);
1130			m->valid = VM_PAGE_BITS_ALL;
1131		}
1132		ma[i] = m;
1133		vm_page_lock_queues();
1134		vm_page_wire(m);
1135		vm_page_wakeup(m);
1136		vm_page_unlock_queues();
1137	}
1138	pmap_qenter(ks, ma, pages);
1139}
1140
1141/***************************************************
1142 * Page table page management routines.....
1143 ***************************************************/
1144
1145/*
1146 * This routine unholds page table pages, and if the hold count
1147 * drops to zero, then it decrements the wire count.
1148 */
1149static int
1150_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1151{
1152
1153	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1154		;
1155
1156	if (m->hold_count == 0) {
1157		vm_offset_t pteva;
1158		/*
1159		 * unmap the page table page
1160		 */
1161		pmap->pm_pdir[m->pindex] = 0;
1162		--pmap->pm_stats.resident_count;
1163		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1164		    (PTDpde & PG_FRAME)) {
1165			/*
1166			 * Do a invltlb to make the invalidated mapping
1167			 * take effect immediately.
1168			 */
1169			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1170			pmap_invalidate_page(pmap, pteva);
1171		}
1172
1173		if (pmap->pm_ptphint == m)
1174			pmap->pm_ptphint = NULL;
1175
1176		/*
1177		 * If the page is finally unwired, simply free it.
1178		 */
1179		--m->wire_count;
1180		if (m->wire_count == 0) {
1181			vm_page_busy(m);
1182			vm_page_free_zero(m);
1183			--cnt.v_wire_count;
1184		}
1185		return 1;
1186	}
1187	return 0;
1188}
1189
1190static PMAP_INLINE int
1191pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1192{
1193	vm_page_unhold(m);
1194	if (m->hold_count == 0)
1195		return _pmap_unwire_pte_hold(pmap, m);
1196	else
1197		return 0;
1198}
1199
1200/*
1201 * After removing a page table entry, this routine is used to
1202 * conditionally free the page, and manage the hold/wire counts.
1203 */
1204static int
1205pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1206{
1207	unsigned ptepindex;
1208	if (va >= VM_MAXUSER_ADDRESS)
1209		return 0;
1210
1211	if (mpte == NULL) {
1212		ptepindex = (va >> PDRSHIFT);
1213		if (pmap->pm_ptphint &&
1214			(pmap->pm_ptphint->pindex == ptepindex)) {
1215			mpte = pmap->pm_ptphint;
1216		} else {
1217			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1218			pmap->pm_ptphint = mpte;
1219		}
1220	}
1221
1222	return pmap_unwire_pte_hold(pmap, mpte);
1223}
1224
1225void
1226pmap_pinit0(pmap)
1227	struct pmap *pmap;
1228{
1229	pmap->pm_pdir =
1230		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1231	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1232#ifndef I386_CPU
1233	invlpg((vm_offset_t)pmap->pm_pdir);
1234#else
1235	invltlb();
1236#endif
1237	pmap->pm_ptphint = NULL;
1238	pmap->pm_active = 0;
1239	TAILQ_INIT(&pmap->pm_pvlist);
1240	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1241	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1242}
1243
1244/*
1245 * Initialize a preallocated and zeroed pmap structure,
1246 * such as one in a vmspace structure.
1247 */
1248void
1249pmap_pinit(pmap)
1250	register struct pmap *pmap;
1251{
1252	vm_page_t ptdpg;
1253
1254	/*
1255	 * No need to allocate page table space yet but we do need a valid
1256	 * page directory table.
1257	 */
1258	if (pmap->pm_pdir == NULL)
1259		pmap->pm_pdir =
1260			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1261
1262	/*
1263	 * allocate object for the ptes
1264	 */
1265	if (pmap->pm_pteobj == NULL)
1266		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1267
1268	/*
1269	 * allocate the page directory page
1270	 */
1271	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1272	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1273	vm_page_flag_clear(ptdpg, PG_BUSY);
1274	ptdpg->valid = VM_PAGE_BITS_ALL;
1275
1276	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1277	if ((ptdpg->flags & PG_ZERO) == 0)
1278		bzero(pmap->pm_pdir, PAGE_SIZE);
1279
1280	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1281	/* Wire in kernel global address entries. */
1282	/* XXX copies current process, does not fill in MPPTDI */
1283	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1284#ifdef SMP
1285	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1286#endif
1287
1288	/* install self-referential address mapping entry */
1289	pmap->pm_pdir[PTDPTDI] =
1290		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1291
1292	pmap->pm_active = 0;
1293	pmap->pm_ptphint = NULL;
1294	TAILQ_INIT(&pmap->pm_pvlist);
1295	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1296}
1297
1298/*
1299 * Wire in kernel global address entries.  To avoid a race condition
1300 * between pmap initialization and pmap_growkernel, this procedure
1301 * should be called after the vmspace is attached to the process
1302 * but before this pmap is activated.
1303 */
1304void
1305pmap_pinit2(pmap)
1306	struct pmap *pmap;
1307{
1308	/* XXX: Remove this stub when no longer called */
1309}
1310
1311static int
1312pmap_release_free_page(pmap_t pmap, vm_page_t p)
1313{
1314	pd_entry_t *pde = pmap->pm_pdir;
1315
1316	/*
1317	 * This code optimizes the case of freeing non-busy
1318	 * page-table pages.  Those pages are zero now, and
1319	 * might as well be placed directly into the zero queue.
1320	 */
1321	vm_page_lock_queues();
1322	if (vm_page_sleep_if_busy(p, FALSE, "pmaprl"))
1323		return (0);
1324	vm_page_busy(p);
1325
1326	/*
1327	 * Remove the page table page from the processes address space.
1328	 */
1329	pde[p->pindex] = 0;
1330	pmap->pm_stats.resident_count--;
1331
1332	if (p->hold_count)  {
1333		panic("pmap_release: freeing held page table page");
1334	}
1335	/*
1336	 * Page directory pages need to have the kernel
1337	 * stuff cleared, so they can go into the zero queue also.
1338	 */
1339	if (p->pindex == PTDPTDI) {
1340		bzero(pde + KPTDI, nkpt * PTESIZE);
1341#ifdef SMP
1342		pde[MPPTDI] = 0;
1343#endif
1344		pde[APTDPTDI] = 0;
1345		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1346	}
1347
1348	if (pmap->pm_ptphint == p)
1349		pmap->pm_ptphint = NULL;
1350
1351	p->wire_count--;
1352	cnt.v_wire_count--;
1353	vm_page_free_zero(p);
1354	vm_page_unlock_queues();
1355	return 1;
1356}
1357
1358/*
1359 * this routine is called if the page table page is not
1360 * mapped correctly.
1361 */
1362static vm_page_t
1363_pmap_allocpte(pmap, ptepindex)
1364	pmap_t	pmap;
1365	unsigned ptepindex;
1366{
1367	vm_offset_t pteva, ptepa;	/* XXXPA */
1368	vm_page_t m;
1369
1370	/*
1371	 * Find or fabricate a new pagetable page
1372	 */
1373	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1374	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1375
1376	KASSERT(m->queue == PQ_NONE,
1377		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1378
1379	/*
1380	 * Increment the hold count for the page table page
1381	 * (denoting a new mapping.)
1382	 */
1383	m->hold_count++;
1384
1385	/*
1386	 * Map the pagetable page into the process address space, if
1387	 * it isn't already there.
1388	 */
1389
1390	pmap->pm_stats.resident_count++;
1391
1392	ptepa = VM_PAGE_TO_PHYS(m);
1393	pmap->pm_pdir[ptepindex] =
1394		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1395
1396	/*
1397	 * Set the page table hint
1398	 */
1399	pmap->pm_ptphint = m;
1400
1401	/*
1402	 * Try to use the new mapping, but if we cannot, then
1403	 * do it with the routine that maps the page explicitly.
1404	 */
1405	if ((m->flags & PG_ZERO) == 0) {
1406		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1407		    (PTDpde & PG_FRAME)) {
1408			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1409			bzero((caddr_t) pteva, PAGE_SIZE);
1410		} else {
1411			pmap_zero_page(m);
1412		}
1413	}
1414
1415	m->valid = VM_PAGE_BITS_ALL;
1416	vm_page_flag_clear(m, PG_ZERO);
1417	vm_page_wakeup(m);
1418
1419	return m;
1420}
1421
1422static vm_page_t
1423pmap_allocpte(pmap_t pmap, vm_offset_t va)
1424{
1425	unsigned ptepindex;
1426	pd_entry_t ptepa;
1427	vm_page_t m;
1428
1429	/*
1430	 * Calculate pagetable page index
1431	 */
1432	ptepindex = va >> PDRSHIFT;
1433
1434	/*
1435	 * Get the page directory entry
1436	 */
1437	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1438
1439	/*
1440	 * This supports switching from a 4MB page to a
1441	 * normal 4K page.
1442	 */
1443	if (ptepa & PG_PS) {
1444		pmap->pm_pdir[ptepindex] = 0;
1445		ptepa = 0;
1446		pmap_invalidate_all(kernel_pmap);
1447	}
1448
1449	/*
1450	 * If the page table page is mapped, we just increment the
1451	 * hold count, and activate it.
1452	 */
1453	if (ptepa) {
1454		/*
1455		 * In order to get the page table page, try the
1456		 * hint first.
1457		 */
1458		if (pmap->pm_ptphint &&
1459			(pmap->pm_ptphint->pindex == ptepindex)) {
1460			m = pmap->pm_ptphint;
1461		} else {
1462			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1463			pmap->pm_ptphint = m;
1464		}
1465		m->hold_count++;
1466		return m;
1467	}
1468	/*
1469	 * Here if the pte page isn't mapped, or if it has been deallocated.
1470	 */
1471	return _pmap_allocpte(pmap, ptepindex);
1472}
1473
1474
1475/***************************************************
1476* Pmap allocation/deallocation routines.
1477 ***************************************************/
1478
1479/*
1480 * Release any resources held by the given physical map.
1481 * Called when a pmap initialized by pmap_pinit is being released.
1482 * Should only be called if the map contains no valid mappings.
1483 */
1484void
1485pmap_release(pmap_t pmap)
1486{
1487	vm_page_t p,n,ptdpg;
1488	vm_object_t object = pmap->pm_pteobj;
1489	int curgeneration;
1490
1491#if defined(DIAGNOSTIC)
1492	if (object->ref_count != 1)
1493		panic("pmap_release: pteobj reference count != 1");
1494#endif
1495
1496	ptdpg = NULL;
1497	LIST_REMOVE(pmap, pm_list);
1498retry:
1499	curgeneration = object->generation;
1500	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1501		n = TAILQ_NEXT(p, listq);
1502		if (p->pindex == PTDPTDI) {
1503			ptdpg = p;
1504			continue;
1505		}
1506		while (1) {
1507			if (!pmap_release_free_page(pmap, p) &&
1508				(object->generation != curgeneration))
1509				goto retry;
1510		}
1511	}
1512
1513	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1514		goto retry;
1515}
1516
1517static int
1518kvm_size(SYSCTL_HANDLER_ARGS)
1519{
1520	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1521
1522	return sysctl_handle_long(oidp, &ksize, 0, req);
1523}
1524SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1525    0, 0, kvm_size, "IU", "Size of KVM");
1526
1527static int
1528kvm_free(SYSCTL_HANDLER_ARGS)
1529{
1530	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1531
1532	return sysctl_handle_long(oidp, &kfree, 0, req);
1533}
1534SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1535    0, 0, kvm_free, "IU", "Amount of KVM free");
1536
1537/*
1538 * grow the number of kernel page table entries, if needed
1539 */
1540void
1541pmap_growkernel(vm_offset_t addr)
1542{
1543	struct pmap *pmap;
1544	int s;
1545	vm_offset_t ptppaddr;
1546	vm_page_t nkpg;
1547	pd_entry_t newpdir;
1548
1549	s = splhigh();
1550	if (kernel_vm_end == 0) {
1551		kernel_vm_end = KERNBASE;
1552		nkpt = 0;
1553		while (pdir_pde(PTD, kernel_vm_end)) {
1554			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1555			nkpt++;
1556		}
1557	}
1558	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1559	while (kernel_vm_end < addr) {
1560		if (pdir_pde(PTD, kernel_vm_end)) {
1561			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1562			continue;
1563		}
1564
1565		/*
1566		 * This index is bogus, but out of the way
1567		 */
1568		nkpg = vm_page_alloc(kptobj, nkpt,
1569				     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1570		if (!nkpg)
1571			panic("pmap_growkernel: no memory to grow kernel");
1572
1573		nkpt++;
1574
1575		pmap_zero_page(nkpg);
1576		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1577		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1578		pdir_pde(PTD, kernel_vm_end) = newpdir;
1579
1580		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1581			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1582		}
1583		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1584	}
1585	splx(s);
1586}
1587
1588
1589/***************************************************
1590 * page management routines.
1591 ***************************************************/
1592
1593/*
1594 * free the pv_entry back to the free list
1595 */
1596static PMAP_INLINE void
1597free_pv_entry(pv_entry_t pv)
1598{
1599	pv_entry_count--;
1600	uma_zfree(pvzone, pv);
1601}
1602
1603/*
1604 * get a new pv_entry, allocating a block from the system
1605 * when needed.
1606 * the memory allocation is performed bypassing the malloc code
1607 * because of the possibility of allocations at interrupt time.
1608 */
1609static pv_entry_t
1610get_pv_entry(void)
1611{
1612	pv_entry_count++;
1613	if (pv_entry_high_water &&
1614		(pv_entry_count > pv_entry_high_water) &&
1615		(pmap_pagedaemon_waken == 0)) {
1616		pmap_pagedaemon_waken = 1;
1617		wakeup (&vm_pages_needed);
1618	}
1619	return uma_zalloc(pvzone, M_NOWAIT);
1620}
1621
1622/*
1623 * This routine is very drastic, but can save the system
1624 * in a pinch.
1625 */
1626void
1627pmap_collect()
1628{
1629	int i;
1630	vm_page_t m;
1631	static int warningdone = 0;
1632
1633	if (pmap_pagedaemon_waken == 0)
1634		return;
1635
1636	if (warningdone < 5) {
1637		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1638		warningdone++;
1639	}
1640
1641	for(i = 0; i < vm_page_array_size; i++) {
1642		m = &vm_page_array[i];
1643		if (m->wire_count || m->hold_count || m->busy ||
1644		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1645			continue;
1646		pmap_remove_all(m);
1647	}
1648	pmap_pagedaemon_waken = 0;
1649}
1650
1651
1652/*
1653 * If it is the first entry on the list, it is actually
1654 * in the header and we must copy the following entry up
1655 * to the header.  Otherwise we must search the list for
1656 * the entry.  In either case we free the now unused entry.
1657 */
1658
1659static int
1660pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1661{
1662	pv_entry_t pv;
1663	int rtval;
1664	int s;
1665
1666	s = splvm();
1667	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1668		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1669			if (pmap == pv->pv_pmap && va == pv->pv_va)
1670				break;
1671		}
1672	} else {
1673		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1674			if (va == pv->pv_va)
1675				break;
1676		}
1677	}
1678
1679	rtval = 0;
1680	if (pv) {
1681		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1682		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1683		m->md.pv_list_count--;
1684		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1685			vm_page_flag_clear(m, PG_WRITEABLE);
1686
1687		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1688		free_pv_entry(pv);
1689	}
1690
1691	splx(s);
1692	return rtval;
1693}
1694
1695/*
1696 * Create a pv entry for page at pa for
1697 * (pmap, va).
1698 */
1699static void
1700pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1701{
1702
1703	int s;
1704	pv_entry_t pv;
1705
1706	s = splvm();
1707	pv = get_pv_entry();
1708	pv->pv_va = va;
1709	pv->pv_pmap = pmap;
1710	pv->pv_ptem = mpte;
1711
1712	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1713	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1714	m->md.pv_list_count++;
1715
1716	splx(s);
1717}
1718
1719/*
1720 * pmap_remove_pte: do the things to unmap a page in a process
1721 */
1722static int
1723pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1724{
1725	pt_entry_t oldpte;
1726	vm_page_t m;
1727
1728	oldpte = atomic_readandclear_int(ptq);
1729	if (oldpte & PG_W)
1730		pmap->pm_stats.wired_count -= 1;
1731	/*
1732	 * Machines that don't support invlpg, also don't support
1733	 * PG_G.
1734	 */
1735	if (oldpte & PG_G)
1736		pmap_invalidate_page(kernel_pmap, va);
1737	pmap->pm_stats.resident_count -= 1;
1738	if (oldpte & PG_MANAGED) {
1739		m = PHYS_TO_VM_PAGE(oldpte);
1740		if (oldpte & PG_M) {
1741#if defined(PMAP_DIAGNOSTIC)
1742			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1743				printf(
1744	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1745				    va, oldpte);
1746			}
1747#endif
1748			if (pmap_track_modified(va))
1749				vm_page_dirty(m);
1750		}
1751		if (oldpte & PG_A)
1752			vm_page_flag_set(m, PG_REFERENCED);
1753		return pmap_remove_entry(pmap, m, va);
1754	} else {
1755		return pmap_unuse_pt(pmap, va, NULL);
1756	}
1757
1758	return 0;
1759}
1760
1761/*
1762 * Remove a single page from a process address space
1763 */
1764static void
1765pmap_remove_page(pmap_t pmap, vm_offset_t va)
1766{
1767	register pt_entry_t *ptq;
1768
1769	/*
1770	 * if there is no pte for this address, just skip it!!!
1771	 */
1772	if (*pmap_pde(pmap, va) == 0) {
1773		return;
1774	}
1775
1776	/*
1777	 * get a local va for mappings for this pmap.
1778	 */
1779	ptq = get_ptbase(pmap) + i386_btop(va);
1780	if (*ptq) {
1781		(void) pmap_remove_pte(pmap, ptq, va);
1782		pmap_invalidate_page(pmap, va);
1783	}
1784	return;
1785}
1786
1787/*
1788 *	Remove the given range of addresses from the specified map.
1789 *
1790 *	It is assumed that the start and end are properly
1791 *	rounded to the page size.
1792 */
1793void
1794pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1795{
1796	register pt_entry_t *ptbase;
1797	vm_offset_t pdnxt;
1798	pd_entry_t ptpaddr;
1799	vm_offset_t sindex, eindex;
1800	int anyvalid;
1801
1802	if (pmap == NULL)
1803		return;
1804
1805	if (pmap->pm_stats.resident_count == 0)
1806		return;
1807
1808	/*
1809	 * special handling of removing one page.  a very
1810	 * common operation and easy to short circuit some
1811	 * code.
1812	 */
1813	if ((sva + PAGE_SIZE == eva) &&
1814	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1815		pmap_remove_page(pmap, sva);
1816		return;
1817	}
1818
1819	anyvalid = 0;
1820
1821	/*
1822	 * Get a local virtual address for the mappings that are being
1823	 * worked with.
1824	 */
1825	ptbase = get_ptbase(pmap);
1826
1827	sindex = i386_btop(sva);
1828	eindex = i386_btop(eva);
1829
1830	for (; sindex < eindex; sindex = pdnxt) {
1831		unsigned pdirindex;
1832
1833		/*
1834		 * Calculate index for next page table.
1835		 */
1836		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1837		if (pmap->pm_stats.resident_count == 0)
1838			break;
1839
1840		pdirindex = sindex / NPDEPG;
1841		ptpaddr = pmap->pm_pdir[pdirindex];
1842		if ((ptpaddr & PG_PS) != 0) {
1843			pmap->pm_pdir[pdirindex] = 0;
1844			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1845			anyvalid++;
1846			continue;
1847		}
1848
1849		/*
1850		 * Weed out invalid mappings. Note: we assume that the page
1851		 * directory table is always allocated, and in kernel virtual.
1852		 */
1853		if (ptpaddr == 0)
1854			continue;
1855
1856		/*
1857		 * Limit our scan to either the end of the va represented
1858		 * by the current page table page, or to the end of the
1859		 * range being removed.
1860		 */
1861		if (pdnxt > eindex) {
1862			pdnxt = eindex;
1863		}
1864
1865		for (; sindex != pdnxt; sindex++) {
1866			vm_offset_t va;
1867			if (ptbase[sindex] == 0) {
1868				continue;
1869			}
1870			va = i386_ptob(sindex);
1871
1872			anyvalid++;
1873			if (pmap_remove_pte(pmap,
1874				ptbase + sindex, va))
1875				break;
1876		}
1877	}
1878
1879	if (anyvalid)
1880		pmap_invalidate_all(pmap);
1881}
1882
1883/*
1884 *	Routine:	pmap_remove_all
1885 *	Function:
1886 *		Removes this physical page from
1887 *		all physical maps in which it resides.
1888 *		Reflects back modify bits to the pager.
1889 *
1890 *	Notes:
1891 *		Original versions of this routine were very
1892 *		inefficient because they iteratively called
1893 *		pmap_remove (slow...)
1894 */
1895
1896static void
1897pmap_remove_all(vm_page_t m)
1898{
1899	register pv_entry_t pv;
1900	pt_entry_t *pte, tpte;
1901	int s;
1902
1903#if defined(PMAP_DIAGNOSTIC)
1904	/*
1905	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1906	 * pages!
1907	 */
1908	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1909		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1910	}
1911#endif
1912
1913	s = splvm();
1914	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1915		pv->pv_pmap->pm_stats.resident_count--;
1916
1917		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1918
1919		tpte = atomic_readandclear_int(pte);
1920		if (tpte & PG_W)
1921			pv->pv_pmap->pm_stats.wired_count--;
1922
1923		if (tpte & PG_A)
1924			vm_page_flag_set(m, PG_REFERENCED);
1925
1926		/*
1927		 * Update the vm_page_t clean and reference bits.
1928		 */
1929		if (tpte & PG_M) {
1930#if defined(PMAP_DIAGNOSTIC)
1931			if (pmap_nw_modified((pt_entry_t) tpte)) {
1932				printf(
1933	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1934				    pv->pv_va, tpte);
1935			}
1936#endif
1937			if (pmap_track_modified(pv->pv_va))
1938				vm_page_dirty(m);
1939		}
1940		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1941
1942		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1943		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1944		m->md.pv_list_count--;
1945		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1946		free_pv_entry(pv);
1947	}
1948
1949	vm_page_flag_clear(m, PG_WRITEABLE);
1950
1951	splx(s);
1952}
1953
1954/*
1955 *	Set the physical protection on the
1956 *	specified range of this map as requested.
1957 */
1958void
1959pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1960{
1961	register pt_entry_t *ptbase;
1962	vm_offset_t pdnxt;
1963	pd_entry_t ptpaddr;
1964	vm_offset_t sindex, eindex;
1965	int anychanged;
1966
1967	if (pmap == NULL)
1968		return;
1969
1970	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1971		pmap_remove(pmap, sva, eva);
1972		return;
1973	}
1974
1975	if (prot & VM_PROT_WRITE)
1976		return;
1977
1978	anychanged = 0;
1979
1980	ptbase = get_ptbase(pmap);
1981
1982	sindex = i386_btop(sva);
1983	eindex = i386_btop(eva);
1984
1985	for (; sindex < eindex; sindex = pdnxt) {
1986
1987		unsigned pdirindex;
1988
1989		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1990
1991		pdirindex = sindex / NPDEPG;
1992		ptpaddr = pmap->pm_pdir[pdirindex];
1993		if ((ptpaddr & PG_PS) != 0) {
1994			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1995			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1996			anychanged++;
1997			continue;
1998		}
1999
2000		/*
2001		 * Weed out invalid mappings. Note: we assume that the page
2002		 * directory table is always allocated, and in kernel virtual.
2003		 */
2004		if (ptpaddr == 0)
2005			continue;
2006
2007		if (pdnxt > eindex) {
2008			pdnxt = eindex;
2009		}
2010
2011		for (; sindex != pdnxt; sindex++) {
2012
2013			pt_entry_t pbits;
2014			vm_page_t m;
2015
2016			pbits = ptbase[sindex];
2017
2018			if (pbits & PG_MANAGED) {
2019				m = NULL;
2020				if (pbits & PG_A) {
2021					m = PHYS_TO_VM_PAGE(pbits);
2022					vm_page_flag_set(m, PG_REFERENCED);
2023					pbits &= ~PG_A;
2024				}
2025				if (pbits & PG_M) {
2026					if (pmap_track_modified(i386_ptob(sindex))) {
2027						if (m == NULL)
2028							m = PHYS_TO_VM_PAGE(pbits);
2029						vm_page_dirty(m);
2030						pbits &= ~PG_M;
2031					}
2032				}
2033			}
2034
2035			pbits &= ~PG_RW;
2036
2037			if (pbits != ptbase[sindex]) {
2038				ptbase[sindex] = pbits;
2039				anychanged = 1;
2040			}
2041		}
2042	}
2043	if (anychanged)
2044		pmap_invalidate_all(pmap);
2045}
2046
2047/*
2048 *	Insert the given physical page (p) at
2049 *	the specified virtual address (v) in the
2050 *	target physical map with the protection requested.
2051 *
2052 *	If specified, the page will be wired down, meaning
2053 *	that the related pte can not be reclaimed.
2054 *
2055 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2056 *	or lose information.  That is, this routine must actually
2057 *	insert this page into the given map NOW.
2058 */
2059void
2060pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2061	   boolean_t wired)
2062{
2063	vm_offset_t pa;
2064	register pt_entry_t *pte;
2065	vm_offset_t opa;
2066	pt_entry_t origpte, newpte;
2067	vm_page_t mpte;
2068
2069	if (pmap == NULL)
2070		return;
2071
2072	va &= PG_FRAME;
2073#ifdef PMAP_DIAGNOSTIC
2074	if (va > VM_MAX_KERNEL_ADDRESS)
2075		panic("pmap_enter: toobig");
2076	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2077		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2078#endif
2079
2080	mpte = NULL;
2081	/*
2082	 * In the case that a page table page is not
2083	 * resident, we are creating it here.
2084	 */
2085	if (va < VM_MAXUSER_ADDRESS) {
2086		mpte = pmap_allocpte(pmap, va);
2087	}
2088#if 0 && defined(PMAP_DIAGNOSTIC)
2089	else {
2090		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2091		origpte = *pdeaddr;
2092		if ((origpte & PG_V) == 0) {
2093			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2094				pmap->pm_pdir[PTDPTDI], origpte, va);
2095		}
2096	}
2097#endif
2098
2099	pte = pmap_pte(pmap, va);
2100
2101	/*
2102	 * Page Directory table entry not valid, we need a new PT page
2103	 */
2104	if (pte == NULL) {
2105		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2106			(void *)pmap->pm_pdir[PTDPTDI], va);
2107	}
2108
2109	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2110	origpte = *(vm_offset_t *)pte;
2111	opa = origpte & PG_FRAME;
2112
2113	if (origpte & PG_PS)
2114		panic("pmap_enter: attempted pmap_enter on 4MB page");
2115
2116	/*
2117	 * Mapping has not changed, must be protection or wiring change.
2118	 */
2119	if (origpte && (opa == pa)) {
2120		/*
2121		 * Wiring change, just update stats. We don't worry about
2122		 * wiring PT pages as they remain resident as long as there
2123		 * are valid mappings in them. Hence, if a user page is wired,
2124		 * the PT page will be also.
2125		 */
2126		if (wired && ((origpte & PG_W) == 0))
2127			pmap->pm_stats.wired_count++;
2128		else if (!wired && (origpte & PG_W))
2129			pmap->pm_stats.wired_count--;
2130
2131#if defined(PMAP_DIAGNOSTIC)
2132		if (pmap_nw_modified((pt_entry_t) origpte)) {
2133			printf(
2134	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2135			    va, origpte);
2136		}
2137#endif
2138
2139		/*
2140		 * Remove extra pte reference
2141		 */
2142		if (mpte)
2143			mpte->hold_count--;
2144
2145		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2146			if ((origpte & PG_RW) == 0) {
2147				*pte |= PG_RW;
2148				pmap_invalidate_page(pmap, va);
2149			}
2150			return;
2151		}
2152
2153		/*
2154		 * We might be turning off write access to the page,
2155		 * so we go ahead and sense modify status.
2156		 */
2157		if (origpte & PG_MANAGED) {
2158			if ((origpte & PG_M) && pmap_track_modified(va)) {
2159				vm_page_t om;
2160				om = PHYS_TO_VM_PAGE(opa);
2161				vm_page_dirty(om);
2162			}
2163			pa |= PG_MANAGED;
2164		}
2165		goto validate;
2166	}
2167	/*
2168	 * Mapping has changed, invalidate old range and fall through to
2169	 * handle validating new mapping.
2170	 */
2171	if (opa) {
2172		int err;
2173		err = pmap_remove_pte(pmap, pte, va);
2174		if (err)
2175			panic("pmap_enter: pte vanished, va: 0x%x", va);
2176	}
2177
2178	/*
2179	 * Enter on the PV list if part of our managed memory. Note that we
2180	 * raise IPL while manipulating pv_table since pmap_enter can be
2181	 * called at interrupt time.
2182	 */
2183	if (pmap_initialized &&
2184	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2185		pmap_insert_entry(pmap, va, mpte, m);
2186		pa |= PG_MANAGED;
2187	}
2188
2189	/*
2190	 * Increment counters
2191	 */
2192	pmap->pm_stats.resident_count++;
2193	if (wired)
2194		pmap->pm_stats.wired_count++;
2195
2196validate:
2197	/*
2198	 * Now validate mapping with desired protection/wiring.
2199	 */
2200	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2201
2202	if (wired)
2203		newpte |= PG_W;
2204	if (va < VM_MAXUSER_ADDRESS)
2205		newpte |= PG_U;
2206	if (pmap == kernel_pmap)
2207		newpte |= pgeflag;
2208
2209	/*
2210	 * if the mapping or permission bits are different, we need
2211	 * to update the pte.
2212	 */
2213	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2214		*pte = newpte | PG_A;
2215		/*if (origpte)*/ {
2216			pmap_invalidate_page(pmap, va);
2217		}
2218	}
2219}
2220
2221/*
2222 * this code makes some *MAJOR* assumptions:
2223 * 1. Current pmap & pmap exists.
2224 * 2. Not wired.
2225 * 3. Read access.
2226 * 4. No page table pages.
2227 * 5. Tlbflush is deferred to calling procedure.
2228 * 6. Page IS managed.
2229 * but is *MUCH* faster than pmap_enter...
2230 */
2231
2232static vm_page_t
2233pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2234{
2235	pt_entry_t *pte;
2236	vm_offset_t pa;
2237
2238	/*
2239	 * In the case that a page table page is not
2240	 * resident, we are creating it here.
2241	 */
2242	if (va < VM_MAXUSER_ADDRESS) {
2243		unsigned ptepindex;
2244		pd_entry_t ptepa;
2245
2246		/*
2247		 * Calculate pagetable page index
2248		 */
2249		ptepindex = va >> PDRSHIFT;
2250		if (mpte && (mpte->pindex == ptepindex)) {
2251			mpte->hold_count++;
2252		} else {
2253retry:
2254			/*
2255			 * Get the page directory entry
2256			 */
2257			ptepa = pmap->pm_pdir[ptepindex];
2258
2259			/*
2260			 * If the page table page is mapped, we just increment
2261			 * the hold count, and activate it.
2262			 */
2263			if (ptepa) {
2264				if (ptepa & PG_PS)
2265					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2266				if (pmap->pm_ptphint &&
2267					(pmap->pm_ptphint->pindex == ptepindex)) {
2268					mpte = pmap->pm_ptphint;
2269				} else {
2270					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2271					pmap->pm_ptphint = mpte;
2272				}
2273				if (mpte == NULL)
2274					goto retry;
2275				mpte->hold_count++;
2276			} else {
2277				mpte = _pmap_allocpte(pmap, ptepindex);
2278			}
2279		}
2280	} else {
2281		mpte = NULL;
2282	}
2283
2284	/*
2285	 * This call to vtopte makes the assumption that we are
2286	 * entering the page into the current pmap.  In order to support
2287	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2288	 * But that isn't as quick as vtopte.
2289	 */
2290	pte = vtopte(va);
2291	if (*pte) {
2292		if (mpte)
2293			pmap_unwire_pte_hold(pmap, mpte);
2294		return 0;
2295	}
2296
2297	/*
2298	 * Enter on the PV list if part of our managed memory. Note that we
2299	 * raise IPL while manipulating pv_table since pmap_enter can be
2300	 * called at interrupt time.
2301	 */
2302	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2303		pmap_insert_entry(pmap, va, mpte, m);
2304
2305	/*
2306	 * Increment counters
2307	 */
2308	pmap->pm_stats.resident_count++;
2309
2310	pa = VM_PAGE_TO_PHYS(m);
2311
2312	/*
2313	 * Now validate mapping with RO protection
2314	 */
2315	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2316		*pte = pa | PG_V | PG_U;
2317	else
2318		*pte = pa | PG_V | PG_U | PG_MANAGED;
2319
2320	return mpte;
2321}
2322
2323/*
2324 * Make a temporary mapping for a physical address.  This is only intended
2325 * to be used for panic dumps.
2326 */
2327void *
2328pmap_kenter_temporary(vm_offset_t pa, int i)
2329{
2330	vm_offset_t va;
2331
2332	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2333	pmap_kenter(va, pa);
2334#ifndef I386_CPU
2335	invlpg(va);
2336#else
2337	invltlb();
2338#endif
2339	return ((void *)crashdumpmap);
2340}
2341
2342#define MAX_INIT_PT (96)
2343/*
2344 * pmap_object_init_pt preloads the ptes for a given object
2345 * into the specified pmap.  This eliminates the blast of soft
2346 * faults on process startup and immediately after an mmap.
2347 */
2348void
2349pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2350		    vm_object_t object, vm_pindex_t pindex,
2351		    vm_size_t size, int limit)
2352{
2353	vm_offset_t tmpidx;
2354	int psize;
2355	vm_page_t p, mpte;
2356
2357	if (pmap == NULL || object == NULL)
2358		return;
2359
2360	/*
2361	 * This code maps large physical mmap regions into the
2362	 * processor address space.  Note that some shortcuts
2363	 * are taken, but the code works.
2364	 */
2365	if (pseflag && (object->type == OBJT_DEVICE) &&
2366	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2367		int i;
2368		vm_page_t m[1];
2369		unsigned int ptepindex;
2370		int npdes;
2371		pd_entry_t ptepa;
2372
2373		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2374			return;
2375
2376retry:
2377		p = vm_page_lookup(object, pindex);
2378		if (p != NULL) {
2379			vm_page_lock_queues();
2380			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2381				goto retry;
2382			vm_page_unlock_queues();
2383		} else {
2384			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2385			if (p == NULL)
2386				return;
2387			m[0] = p;
2388
2389			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2390				vm_page_lock_queues();
2391				vm_page_free(p);
2392				vm_page_unlock_queues();
2393				return;
2394			}
2395
2396			p = vm_page_lookup(object, pindex);
2397			vm_page_wakeup(p);
2398		}
2399
2400		ptepa = VM_PAGE_TO_PHYS(p);
2401		if (ptepa & (NBPDR - 1)) {
2402			return;
2403		}
2404
2405		p->valid = VM_PAGE_BITS_ALL;
2406
2407		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2408		npdes = size >> PDRSHIFT;
2409		for(i = 0; i < npdes; i++) {
2410			pmap->pm_pdir[ptepindex] =
2411			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2412			ptepa += NBPDR;
2413			ptepindex += 1;
2414		}
2415		pmap_invalidate_all(kernel_pmap);
2416		return;
2417	}
2418
2419	psize = i386_btop(size);
2420
2421	if ((object->type != OBJT_VNODE) ||
2422	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2423	     (object->resident_page_count > MAX_INIT_PT))) {
2424		return;
2425	}
2426
2427	if (psize + pindex > object->size) {
2428		if (object->size < pindex)
2429			return;
2430		psize = object->size - pindex;
2431	}
2432
2433	mpte = NULL;
2434
2435	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
2436		if (p->pindex < pindex) {
2437			p = vm_page_splay(pindex, object->root);
2438			if ((object->root = p)->pindex < pindex)
2439				p = TAILQ_NEXT(p, listq);
2440		}
2441	}
2442	/*
2443	 * Assert: the variable p is either (1) the page with the
2444	 * least pindex greater than or equal to the parameter pindex
2445	 * or (2) NULL.
2446	 */
2447	for (;
2448	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2449	     p = TAILQ_NEXT(p, listq)) {
2450		/*
2451		 * don't allow an madvise to blow away our really
2452		 * free pages allocating pv entries.
2453		 */
2454		if ((limit & MAP_PREFAULT_MADVISE) &&
2455		    cnt.v_free_count < cnt.v_free_reserved) {
2456			break;
2457		}
2458		vm_page_lock_queues();
2459		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2460		    (p->busy == 0) &&
2461		    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2462			if ((p->queue - p->pc) == PQ_CACHE)
2463				vm_page_deactivate(p);
2464			vm_page_busy(p);
2465			vm_page_unlock_queues();
2466			mpte = pmap_enter_quick(pmap,
2467				addr + i386_ptob(tmpidx), p, mpte);
2468			vm_page_lock_queues();
2469			vm_page_wakeup(p);
2470		}
2471		vm_page_unlock_queues();
2472	}
2473	return;
2474}
2475
2476/*
2477 * pmap_prefault provides a quick way of clustering
2478 * pagefaults into a processes address space.  It is a "cousin"
2479 * of pmap_object_init_pt, except it runs at page fault time instead
2480 * of mmap time.
2481 */
2482#define PFBAK 4
2483#define PFFOR 4
2484#define PAGEORDER_SIZE (PFBAK+PFFOR)
2485
2486static int pmap_prefault_pageorder[] = {
2487	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
2488	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2489	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
2490	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2491};
2492
2493void
2494pmap_prefault(pmap, addra, entry)
2495	pmap_t pmap;
2496	vm_offset_t addra;
2497	vm_map_entry_t entry;
2498{
2499	int i;
2500	vm_offset_t starta;
2501	vm_offset_t addr;
2502	vm_pindex_t pindex;
2503	vm_page_t m, mpte;
2504	vm_object_t object;
2505
2506	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2507		return;
2508
2509	object = entry->object.vm_object;
2510
2511	starta = addra - PFBAK * PAGE_SIZE;
2512	if (starta < entry->start) {
2513		starta = entry->start;
2514	} else if (starta > addra) {
2515		starta = 0;
2516	}
2517
2518	mpte = NULL;
2519	for (i = 0; i < PAGEORDER_SIZE; i++) {
2520		vm_object_t lobject;
2521		pt_entry_t *pte;
2522
2523		addr = addra + pmap_prefault_pageorder[i];
2524		if (addr > addra + (PFFOR * PAGE_SIZE))
2525			addr = 0;
2526
2527		if (addr < starta || addr >= entry->end)
2528			continue;
2529
2530		if ((*pmap_pde(pmap, addr)) == 0)
2531			continue;
2532
2533		pte = vtopte(addr);
2534		if (*pte)
2535			continue;
2536
2537		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2538		lobject = object;
2539		for (m = vm_page_lookup(lobject, pindex);
2540		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2541		    lobject = lobject->backing_object) {
2542			if (lobject->backing_object_offset & PAGE_MASK)
2543				break;
2544			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2545			m = vm_page_lookup(lobject->backing_object, pindex);
2546		}
2547
2548		/*
2549		 * give-up when a page is not in memory
2550		 */
2551		if (m == NULL)
2552			break;
2553		vm_page_lock_queues();
2554		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2555			(m->busy == 0) &&
2556		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2557
2558			if ((m->queue - m->pc) == PQ_CACHE) {
2559				vm_page_deactivate(m);
2560			}
2561			vm_page_busy(m);
2562			vm_page_unlock_queues();
2563			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2564			vm_page_lock_queues();
2565			vm_page_wakeup(m);
2566		}
2567		vm_page_unlock_queues();
2568	}
2569}
2570
2571/*
2572 *	Routine:	pmap_change_wiring
2573 *	Function:	Change the wiring attribute for a map/virtual-address
2574 *			pair.
2575 *	In/out conditions:
2576 *			The mapping must already exist in the pmap.
2577 */
2578void
2579pmap_change_wiring(pmap, va, wired)
2580	register pmap_t pmap;
2581	vm_offset_t va;
2582	boolean_t wired;
2583{
2584	register pt_entry_t *pte;
2585
2586	if (pmap == NULL)
2587		return;
2588
2589	pte = pmap_pte(pmap, va);
2590
2591	if (wired && !pmap_pte_w(pte))
2592		pmap->pm_stats.wired_count++;
2593	else if (!wired && pmap_pte_w(pte))
2594		pmap->pm_stats.wired_count--;
2595
2596	/*
2597	 * Wiring is not a hardware characteristic so there is no need to
2598	 * invalidate TLB.
2599	 */
2600	pmap_pte_set_w(pte, wired);
2601}
2602
2603
2604
2605/*
2606 *	Copy the range specified by src_addr/len
2607 *	from the source map to the range dst_addr/len
2608 *	in the destination map.
2609 *
2610 *	This routine is only advisory and need not do anything.
2611 */
2612
2613void
2614pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2615	  vm_offset_t src_addr)
2616{
2617	vm_offset_t addr;
2618	vm_offset_t end_addr = src_addr + len;
2619	vm_offset_t pdnxt;
2620	pd_entry_t src_frame, dst_frame;
2621	vm_page_t m;
2622
2623	if (dst_addr != src_addr)
2624		return;
2625
2626	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2627	if (src_frame != (PTDpde & PG_FRAME))
2628		return;
2629
2630	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2631	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2632		pt_entry_t *src_pte, *dst_pte;
2633		vm_page_t dstmpte, srcmpte;
2634		pd_entry_t srcptepaddr;
2635		unsigned ptepindex;
2636
2637		if (addr >= UPT_MIN_ADDRESS)
2638			panic("pmap_copy: invalid to pmap_copy page tables\n");
2639
2640		/*
2641		 * Don't let optional prefaulting of pages make us go
2642		 * way below the low water mark of free pages or way
2643		 * above high water mark of used pv entries.
2644		 */
2645		if (cnt.v_free_count < cnt.v_free_reserved ||
2646		    pv_entry_count > pv_entry_high_water)
2647			break;
2648
2649		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2650		ptepindex = addr >> PDRSHIFT;
2651
2652		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2653		if (srcptepaddr == 0)
2654			continue;
2655
2656		if (srcptepaddr & PG_PS) {
2657			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2658				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2659				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2660			}
2661			continue;
2662		}
2663
2664		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2665		if ((srcmpte == NULL) ||
2666		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2667			continue;
2668
2669		if (pdnxt > end_addr)
2670			pdnxt = end_addr;
2671
2672		/*
2673		 * Have to recheck this before every avtopte() call below
2674		 * in case we have blocked and something else used APTDpde.
2675		 */
2676		if (dst_frame != (APTDpde & PG_FRAME)) {
2677			APTDpde = dst_frame | PG_RW | PG_V;
2678			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2679		}
2680		src_pte = vtopte(addr);
2681		dst_pte = avtopte(addr);
2682		while (addr < pdnxt) {
2683			pt_entry_t ptetemp;
2684			ptetemp = *src_pte;
2685			/*
2686			 * we only virtual copy managed pages
2687			 */
2688			if ((ptetemp & PG_MANAGED) != 0) {
2689				/*
2690				 * We have to check after allocpte for the
2691				 * pte still being around...  allocpte can
2692				 * block.
2693				 */
2694				dstmpte = pmap_allocpte(dst_pmap, addr);
2695				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2696					/*
2697					 * Clear the modified and
2698					 * accessed (referenced) bits
2699					 * during the copy.
2700					 */
2701					m = PHYS_TO_VM_PAGE(ptetemp);
2702					*dst_pte = ptetemp & ~(PG_M | PG_A);
2703					dst_pmap->pm_stats.resident_count++;
2704					pmap_insert_entry(dst_pmap, addr,
2705						dstmpte, m);
2706	 			} else {
2707					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2708				}
2709				if (dstmpte->hold_count >= srcmpte->hold_count)
2710					break;
2711			}
2712			addr += PAGE_SIZE;
2713			src_pte++;
2714			dst_pte++;
2715		}
2716	}
2717}
2718
2719#ifdef SMP
2720
2721/*
2722 *	pmap_zpi_switchin*()
2723 *
2724 *	These functions allow us to avoid doing IPIs alltogether in certain
2725 *	temporary page-mapping situations (page zeroing).  Instead to deal
2726 *	with being preempted and moved onto a different cpu we invalidate
2727 *	the page when the scheduler switches us in.  This does not occur
2728 *	very often so we remain relatively optimal with very little effort.
2729 */
2730static void
2731pmap_zpi_switchin12(void)
2732{
2733	invlpg((u_int)CADDR1);
2734	invlpg((u_int)CADDR2);
2735}
2736
2737static void
2738pmap_zpi_switchin2(void)
2739{
2740	invlpg((u_int)CADDR2);
2741}
2742
2743static void
2744pmap_zpi_switchin3(void)
2745{
2746	invlpg((u_int)CADDR3);
2747}
2748
2749#endif
2750
2751/*
2752 *	pmap_zero_page zeros the specified hardware page by mapping
2753 *	the page into KVM and using bzero to clear its contents.
2754 */
2755void
2756pmap_zero_page(vm_page_t m)
2757{
2758	vm_offset_t phys;
2759
2760	phys = VM_PAGE_TO_PHYS(m);
2761	if (*CMAP2)
2762		panic("pmap_zero_page: CMAP2 busy");
2763	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2764#ifdef I386_CPU
2765	invltlb();
2766#else
2767#ifdef SMP
2768	curthread->td_switchin = pmap_zpi_switchin2;
2769#endif
2770	invlpg((u_int)CADDR2);
2771#endif
2772#if defined(I686_CPU)
2773	if (cpu_class == CPUCLASS_686)
2774		i686_pagezero(CADDR2);
2775	else
2776#endif
2777		bzero(CADDR2, PAGE_SIZE);
2778#ifdef SMP
2779	curthread->td_switchin = NULL;
2780#endif
2781	*CMAP2 = 0;
2782}
2783
2784/*
2785 *	pmap_zero_page_area zeros the specified hardware page by mapping
2786 *	the page into KVM and using bzero to clear its contents.
2787 *
2788 *	off and size may not cover an area beyond a single hardware page.
2789 */
2790void
2791pmap_zero_page_area(vm_page_t m, int off, int size)
2792{
2793	vm_offset_t phys;
2794
2795	phys = VM_PAGE_TO_PHYS(m);
2796	if (*CMAP2)
2797		panic("pmap_zero_page: CMAP2 busy");
2798	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2799#ifdef I386_CPU
2800	invltlb();
2801#else
2802#ifdef SMP
2803	curthread->td_switchin = pmap_zpi_switchin2;
2804#endif
2805	invlpg((u_int)CADDR2);
2806#endif
2807#if defined(I686_CPU)
2808	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2809		i686_pagezero(CADDR2);
2810	else
2811#endif
2812		bzero((char *)CADDR2 + off, size);
2813#ifdef SMP
2814	curthread->td_switchin = NULL;
2815#endif
2816	*CMAP2 = 0;
2817}
2818
2819/*
2820 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2821 *	the page into KVM and using bzero to clear its contents.  This
2822 *	is intended to be called from the vm_pagezero process only and
2823 *	outside of Giant.
2824 */
2825void
2826pmap_zero_page_idle(vm_page_t m)
2827{
2828	vm_offset_t phys;
2829
2830	phys = VM_PAGE_TO_PHYS(m);
2831	if (*CMAP3)
2832		panic("pmap_zero_page: CMAP3 busy");
2833	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2834#ifdef I386_CPU
2835	invltlb();
2836#else
2837#ifdef SMP
2838	curthread->td_switchin = pmap_zpi_switchin3;
2839#endif
2840	invlpg((u_int)CADDR3);
2841#endif
2842#if defined(I686_CPU)
2843	if (cpu_class == CPUCLASS_686)
2844		i686_pagezero(CADDR3);
2845	else
2846#endif
2847		bzero(CADDR3, PAGE_SIZE);
2848#ifdef SMP
2849	curthread->td_switchin = NULL;
2850#endif
2851	*CMAP3 = 0;
2852}
2853
2854/*
2855 *	pmap_copy_page copies the specified (machine independent)
2856 *	page by mapping the page into virtual memory and using
2857 *	bcopy to copy the page, one machine dependent page at a
2858 *	time.
2859 */
2860void
2861pmap_copy_page(vm_page_t src, vm_page_t dst)
2862{
2863
2864	if (*CMAP1)
2865		panic("pmap_copy_page: CMAP1 busy");
2866	if (*CMAP2)
2867		panic("pmap_copy_page: CMAP2 busy");
2868	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2869	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2870#ifdef I386_CPU
2871	invltlb();
2872#else
2873#ifdef SMP
2874	curthread->td_switchin = pmap_zpi_switchin12;
2875#endif
2876	invlpg((u_int)CADDR1);
2877	invlpg((u_int)CADDR2);
2878#endif
2879	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2880#ifdef SMP
2881	curthread->td_switchin = NULL;
2882#endif
2883	*CMAP1 = 0;
2884	*CMAP2 = 0;
2885}
2886
2887/*
2888 * Returns true if the pmap's pv is one of the first
2889 * 16 pvs linked to from this page.  This count may
2890 * be changed upwards or downwards in the future; it
2891 * is only necessary that true be returned for a small
2892 * subset of pmaps for proper page aging.
2893 */
2894boolean_t
2895pmap_page_exists_quick(pmap, m)
2896	pmap_t pmap;
2897	vm_page_t m;
2898{
2899	pv_entry_t pv;
2900	int loops = 0;
2901	int s;
2902
2903	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2904		return FALSE;
2905
2906	s = splvm();
2907
2908	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2909		if (pv->pv_pmap == pmap) {
2910			splx(s);
2911			return TRUE;
2912		}
2913		loops++;
2914		if (loops >= 16)
2915			break;
2916	}
2917	splx(s);
2918	return (FALSE);
2919}
2920
2921#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2922/*
2923 * Remove all pages from specified address space
2924 * this aids process exit speeds.  Also, this code
2925 * is special cased for current process only, but
2926 * can have the more generic (and slightly slower)
2927 * mode enabled.  This is much faster than pmap_remove
2928 * in the case of running down an entire address space.
2929 */
2930void
2931pmap_remove_pages(pmap, sva, eva)
2932	pmap_t pmap;
2933	vm_offset_t sva, eva;
2934{
2935	pt_entry_t *pte, tpte;
2936	vm_page_t m;
2937	pv_entry_t pv, npv;
2938	int s;
2939
2940#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2941	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2942		printf("warning: pmap_remove_pages called with non-current pmap\n");
2943		return;
2944	}
2945#endif
2946
2947	s = splvm();
2948	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2949
2950		if (pv->pv_va >= eva || pv->pv_va < sva) {
2951			npv = TAILQ_NEXT(pv, pv_plist);
2952			continue;
2953		}
2954
2955#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2956		pte = vtopte(pv->pv_va);
2957#else
2958		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2959#endif
2960		tpte = *pte;
2961
2962		if (tpte == 0) {
2963			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2964							pte, pv->pv_va);
2965			panic("bad pte");
2966		}
2967
2968/*
2969 * We cannot remove wired pages from a process' mapping at this time
2970 */
2971		if (tpte & PG_W) {
2972			npv = TAILQ_NEXT(pv, pv_plist);
2973			continue;
2974		}
2975
2976		m = PHYS_TO_VM_PAGE(tpte);
2977		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2978		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2979		    m, m->phys_addr, tpte));
2980
2981		KASSERT(m < &vm_page_array[vm_page_array_size],
2982			("pmap_remove_pages: bad tpte %x", tpte));
2983
2984		pv->pv_pmap->pm_stats.resident_count--;
2985
2986		*pte = 0;
2987
2988		/*
2989		 * Update the vm_page_t clean and reference bits.
2990		 */
2991		if (tpte & PG_M) {
2992			vm_page_dirty(m);
2993		}
2994
2995		npv = TAILQ_NEXT(pv, pv_plist);
2996		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2997
2998		m->md.pv_list_count--;
2999		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3000		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3001			vm_page_flag_clear(m, PG_WRITEABLE);
3002		}
3003
3004		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3005		free_pv_entry(pv);
3006	}
3007	splx(s);
3008	pmap_invalidate_all(pmap);
3009}
3010
3011/*
3012 * pmap_testbit tests bits in pte's
3013 * note that the testbit/changebit routines are inline,
3014 * and a lot of things compile-time evaluate.
3015 */
3016static boolean_t
3017pmap_testbit(m, bit)
3018	vm_page_t m;
3019	int bit;
3020{
3021	pv_entry_t pv;
3022	pt_entry_t *pte;
3023	int s;
3024
3025	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3026		return FALSE;
3027
3028	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3029		return FALSE;
3030
3031	s = splvm();
3032
3033	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3034		/*
3035		 * if the bit being tested is the modified bit, then
3036		 * mark clean_map and ptes as never
3037		 * modified.
3038		 */
3039		if (bit & (PG_A|PG_M)) {
3040			if (!pmap_track_modified(pv->pv_va))
3041				continue;
3042		}
3043
3044#if defined(PMAP_DIAGNOSTIC)
3045		if (!pv->pv_pmap) {
3046			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3047			continue;
3048		}
3049#endif
3050		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3051		if (*pte & bit) {
3052			splx(s);
3053			return TRUE;
3054		}
3055	}
3056	splx(s);
3057	return (FALSE);
3058}
3059
3060/*
3061 * this routine is used to modify bits in ptes
3062 */
3063static __inline void
3064pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3065{
3066	register pv_entry_t pv;
3067	register pt_entry_t *pte;
3068	int s;
3069
3070	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3071		return;
3072
3073	s = splvm();
3074
3075	/*
3076	 * Loop over all current mappings setting/clearing as appropos If
3077	 * setting RO do we need to clear the VAC?
3078	 */
3079	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3080		/*
3081		 * don't write protect pager mappings
3082		 */
3083		if (!setem && (bit == PG_RW)) {
3084			if (!pmap_track_modified(pv->pv_va))
3085				continue;
3086		}
3087
3088#if defined(PMAP_DIAGNOSTIC)
3089		if (!pv->pv_pmap) {
3090			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3091			continue;
3092		}
3093#endif
3094
3095		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3096
3097		if (setem) {
3098			*pte |= bit;
3099			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3100		} else {
3101			pt_entry_t pbits = *pte;
3102			if (pbits & bit) {
3103				if (bit == PG_RW) {
3104					if (pbits & PG_M) {
3105						vm_page_dirty(m);
3106					}
3107					*pte = pbits & ~(PG_M|PG_RW);
3108				} else {
3109					*pte = pbits & ~bit;
3110				}
3111				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3112			}
3113		}
3114	}
3115	splx(s);
3116}
3117
3118/*
3119 *      pmap_page_protect:
3120 *
3121 *      Lower the permission for all mappings to a given page.
3122 */
3123void
3124pmap_page_protect(vm_page_t m, vm_prot_t prot)
3125{
3126	if ((prot & VM_PROT_WRITE) == 0) {
3127		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3128			pmap_changebit(m, PG_RW, FALSE);
3129		} else {
3130			pmap_remove_all(m);
3131		}
3132	}
3133}
3134
3135vm_offset_t
3136pmap_phys_address(ppn)
3137	int ppn;
3138{
3139	return (i386_ptob(ppn));
3140}
3141
3142/*
3143 *	pmap_ts_referenced:
3144 *
3145 *	Return a count of reference bits for a page, clearing those bits.
3146 *	It is not necessary for every reference bit to be cleared, but it
3147 *	is necessary that 0 only be returned when there are truly no
3148 *	reference bits set.
3149 *
3150 *	XXX: The exact number of bits to check and clear is a matter that
3151 *	should be tested and standardized at some point in the future for
3152 *	optimal aging of shared pages.
3153 */
3154int
3155pmap_ts_referenced(vm_page_t m)
3156{
3157	register pv_entry_t pv, pvf, pvn;
3158	pt_entry_t *pte;
3159	int s;
3160	int rtval = 0;
3161
3162	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3163		return (rtval);
3164
3165	s = splvm();
3166
3167	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3168
3169		pvf = pv;
3170
3171		do {
3172			pvn = TAILQ_NEXT(pv, pv_list);
3173
3174			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3175
3176			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3177
3178			if (!pmap_track_modified(pv->pv_va))
3179				continue;
3180
3181			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3182
3183			if (pte && (*pte & PG_A)) {
3184				*pte &= ~PG_A;
3185
3186				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3187
3188				rtval++;
3189				if (rtval > 4) {
3190					break;
3191				}
3192			}
3193		} while ((pv = pvn) != NULL && pv != pvf);
3194	}
3195	splx(s);
3196
3197	return (rtval);
3198}
3199
3200/*
3201 *	pmap_is_modified:
3202 *
3203 *	Return whether or not the specified physical page was modified
3204 *	in any physical maps.
3205 */
3206boolean_t
3207pmap_is_modified(vm_page_t m)
3208{
3209	return pmap_testbit(m, PG_M);
3210}
3211
3212/*
3213 *	Clear the modify bits on the specified physical page.
3214 */
3215void
3216pmap_clear_modify(vm_page_t m)
3217{
3218	pmap_changebit(m, PG_M, FALSE);
3219}
3220
3221/*
3222 *	pmap_clear_reference:
3223 *
3224 *	Clear the reference bit on the specified physical page.
3225 */
3226void
3227pmap_clear_reference(vm_page_t m)
3228{
3229	pmap_changebit(m, PG_A, FALSE);
3230}
3231
3232/*
3233 * Miscellaneous support routines follow
3234 */
3235
3236static void
3237i386_protection_init()
3238{
3239	register int *kp, prot;
3240
3241	kp = protection_codes;
3242	for (prot = 0; prot < 8; prot++) {
3243		switch (prot) {
3244		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3245			/*
3246			 * Read access is also 0. There isn't any execute bit,
3247			 * so just make it readable.
3248			 */
3249		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3250		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3251		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3252			*kp++ = 0;
3253			break;
3254		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3255		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3256		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3257		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3258			*kp++ = PG_RW;
3259			break;
3260		}
3261	}
3262}
3263
3264/*
3265 * Map a set of physical memory pages into the kernel virtual
3266 * address space. Return a pointer to where it is mapped. This
3267 * routine is intended to be used for mapping device memory,
3268 * NOT real memory.
3269 */
3270void *
3271pmap_mapdev(pa, size)
3272	vm_offset_t pa;
3273	vm_size_t size;
3274{
3275	vm_offset_t va, tmpva, offset;
3276	pt_entry_t *pte;
3277
3278	offset = pa & PAGE_MASK;
3279	size = roundup(offset + size, PAGE_SIZE);
3280
3281	GIANT_REQUIRED;
3282
3283	va = kmem_alloc_pageable(kernel_map, size);
3284	if (!va)
3285		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3286
3287	pa = pa & PG_FRAME;
3288	for (tmpva = va; size > 0; ) {
3289		pte = vtopte(tmpva);
3290		*pte = pa | PG_RW | PG_V | pgeflag;
3291		size -= PAGE_SIZE;
3292		tmpva += PAGE_SIZE;
3293		pa += PAGE_SIZE;
3294	}
3295	pmap_invalidate_range(kernel_pmap, va, tmpva);
3296	return ((void *)(va + offset));
3297}
3298
3299void
3300pmap_unmapdev(va, size)
3301	vm_offset_t va;
3302	vm_size_t size;
3303{
3304	vm_offset_t base, offset, tmpva;
3305	pt_entry_t *pte;
3306
3307	base = va & PG_FRAME;
3308	offset = va & PAGE_MASK;
3309	size = roundup(offset + size, PAGE_SIZE);
3310	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3311		pte = vtopte(tmpva);
3312		*pte = 0;
3313	}
3314	pmap_invalidate_range(kernel_pmap, va, tmpva);
3315	kmem_free(kernel_map, base, size);
3316}
3317
3318/*
3319 * perform the pmap work for mincore
3320 */
3321int
3322pmap_mincore(pmap, addr)
3323	pmap_t pmap;
3324	vm_offset_t addr;
3325{
3326	pt_entry_t *ptep, pte;
3327	vm_page_t m;
3328	int val = 0;
3329
3330	ptep = pmap_pte(pmap, addr);
3331	if (ptep == 0) {
3332		return 0;
3333	}
3334
3335	if ((pte = *ptep) != 0) {
3336		vm_offset_t pa;
3337
3338		val = MINCORE_INCORE;
3339		if ((pte & PG_MANAGED) == 0)
3340			return val;
3341
3342		pa = pte & PG_FRAME;
3343
3344		m = PHYS_TO_VM_PAGE(pa);
3345
3346		/*
3347		 * Modified by us
3348		 */
3349		if (pte & PG_M)
3350			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3351		/*
3352		 * Modified by someone
3353		 */
3354		else if (m->dirty || pmap_is_modified(m))
3355			val |= MINCORE_MODIFIED_OTHER;
3356		/*
3357		 * Referenced by us
3358		 */
3359		if (pte & PG_A)
3360			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3361
3362		/*
3363		 * Referenced by someone
3364		 */
3365		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3366			val |= MINCORE_REFERENCED_OTHER;
3367			vm_page_flag_set(m, PG_REFERENCED);
3368		}
3369	}
3370	return val;
3371}
3372
3373void
3374pmap_activate(struct thread *td)
3375{
3376	struct proc *p = td->td_proc;
3377	pmap_t	pmap;
3378	u_int32_t  cr3;
3379
3380	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3381#if defined(SMP)
3382	pmap->pm_active |= PCPU_GET(cpumask);
3383#else
3384	pmap->pm_active |= 1;
3385#endif
3386	cr3 = vtophys(pmap->pm_pdir);
3387	/* XXXKSE this is wrong.
3388	 * pmap_activate is for the current thread on the current cpu
3389	 */
3390	if (p->p_flag & P_KSES) {
3391		/* Make sure all other cr3 entries are updated. */
3392		/* what if they are running?  XXXKSE (maybe abort them) */
3393		FOREACH_THREAD_IN_PROC(p, td) {
3394			td->td_pcb->pcb_cr3 = cr3;
3395		}
3396	} else {
3397		td->td_pcb->pcb_cr3 = cr3;
3398	}
3399	load_cr3(cr3);
3400#ifdef SWTCH_OPTIM_STATS
3401	tlb_flush_count++;
3402#endif
3403}
3404
3405vm_offset_t
3406pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3407{
3408
3409	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3410		return addr;
3411	}
3412
3413	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3414	return addr;
3415}
3416
3417
3418#if defined(PMAP_DEBUG)
3419pmap_pid_dump(int pid)
3420{
3421	pmap_t pmap;
3422	struct proc *p;
3423	int npte = 0;
3424	int index;
3425
3426	sx_slock(&allproc_lock);
3427	LIST_FOREACH(p, &allproc, p_list) {
3428		if (p->p_pid != pid)
3429			continue;
3430
3431		if (p->p_vmspace) {
3432			int i,j;
3433			index = 0;
3434			pmap = vmspace_pmap(p->p_vmspace);
3435			for (i = 0; i < NPDEPG; i++) {
3436				pd_entry_t *pde;
3437				pt_entry_t *pte;
3438				vm_offset_t base = i << PDRSHIFT;
3439
3440				pde = &pmap->pm_pdir[i];
3441				if (pde && pmap_pde_v(pde)) {
3442					for (j = 0; j < NPTEPG; j++) {
3443						vm_offset_t va = base + (j << PAGE_SHIFT);
3444						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3445							if (index) {
3446								index = 0;
3447								printf("\n");
3448							}
3449							sx_sunlock(&allproc_lock);
3450							return npte;
3451						}
3452						pte = pmap_pte_quick(pmap, va);
3453						if (pte && pmap_pte_v(pte)) {
3454							pt_entry_t pa;
3455							vm_page_t m;
3456							pa = *pte;
3457							m = PHYS_TO_VM_PAGE(pa);
3458							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3459								va, pa, m->hold_count, m->wire_count, m->flags);
3460							npte++;
3461							index++;
3462							if (index >= 2) {
3463								index = 0;
3464								printf("\n");
3465							} else {
3466								printf(" ");
3467							}
3468						}
3469					}
3470				}
3471			}
3472		}
3473	}
3474	sx_sunlock(&allproc_lock);
3475	return npte;
3476}
3477#endif
3478
3479#if defined(DEBUG)
3480
3481static void	pads(pmap_t pm);
3482void		pmap_pvdump(vm_offset_t pa);
3483
3484/* print address space of pmap*/
3485static void
3486pads(pm)
3487	pmap_t pm;
3488{
3489	int i, j;
3490	vm_offset_t va;
3491	pt_entry_t *ptep;
3492
3493	if (pm == kernel_pmap)
3494		return;
3495	for (i = 0; i < NPDEPG; i++)
3496		if (pm->pm_pdir[i])
3497			for (j = 0; j < NPTEPG; j++) {
3498				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3499				if (pm == kernel_pmap && va < KERNBASE)
3500					continue;
3501				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3502					continue;
3503				ptep = pmap_pte_quick(pm, va);
3504				if (pmap_pte_v(ptep))
3505					printf("%x:%x ", va, *ptep);
3506			};
3507
3508}
3509
3510void
3511pmap_pvdump(pa)
3512	vm_offset_t pa;
3513{
3514	pv_entry_t pv;
3515	vm_page_t m;
3516
3517	printf("pa %x", pa);
3518	m = PHYS_TO_VM_PAGE(pa);
3519	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3520		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3521		pads(pv->pv_pmap);
3522	}
3523	printf(" ");
3524}
3525#endif
3526