pmap.c revision 101254
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 101254 2002-08-03 06:42:30Z alc $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154struct pmaplist allpmaps;
155
156vm_offset_t avail_start;	/* PA of first available physical page */
157vm_offset_t avail_end;		/* PA of last available physical page */
158vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
159vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
160static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
161static int pgeflag;		/* PG_G or-in */
162static int pseflag;		/* PG_PS or-in */
163
164static vm_object_t kptobj;
165
166static int nkpt;
167vm_offset_t kernel_vm_end;
168extern u_int32_t KERNend;
169
170/*
171 * Data for the pv entry allocation mechanism
172 */
173static uma_zone_t pvzone;
174static struct vm_object pvzone_obj;
175static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
176static int pmap_pagedaemon_waken = 0;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2, CADDR3;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static void	pmap_remove_all(vm_page_t m);
207static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
208				      vm_page_t m, vm_page_t mpte);
209static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
210static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
211static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
212					vm_offset_t va);
213static boolean_t pmap_testbit(vm_page_t m, int bit);
214static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
215		vm_page_t mpte, vm_page_t m);
216
217static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
218
219static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
220static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
221static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
222static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
223static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
224static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
225static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
226
227static pd_entry_t pdir4mb;
228
229/*
230 *	Routine:	pmap_pte
231 *	Function:
232 *		Extract the page table entry associated
233 *		with the given map/virtual_address pair.
234 */
235
236PMAP_INLINE pt_entry_t *
237pmap_pte(pmap, va)
238	register pmap_t pmap;
239	vm_offset_t va;
240{
241	pd_entry_t *pdeaddr;
242
243	if (pmap) {
244		pdeaddr = pmap_pde(pmap, va);
245		if (*pdeaddr & PG_PS)
246			return pdeaddr;
247		if (*pdeaddr) {
248			return get_ptbase(pmap) + i386_btop(va);
249		}
250	}
251	return (0);
252}
253
254/*
255 * Move the kernel virtual free pointer to the next
256 * 4MB.  This is used to help improve performance
257 * by using a large (4MB) page for much of the kernel
258 * (.text, .data, .bss)
259 */
260static vm_offset_t
261pmap_kmem_choose(vm_offset_t addr)
262{
263	vm_offset_t newaddr = addr;
264
265#ifndef DISABLE_PSE
266	if (cpu_feature & CPUID_PSE)
267		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
268#endif
269	return newaddr;
270}
271
272/*
273 *	Bootstrap the system enough to run with virtual memory.
274 *
275 *	On the i386 this is called after mapping has already been enabled
276 *	and just syncs the pmap module with what has already been done.
277 *	[We can't call it easily with mapping off since the kernel is not
278 *	mapped with PA == VA, hence we would have to relocate every address
279 *	from the linked base (virtual) address "KERNBASE" to the actual
280 *	(physical) address starting relative to 0]
281 */
282void
283pmap_bootstrap(firstaddr, loadaddr)
284	vm_offset_t firstaddr;
285	vm_offset_t loadaddr;
286{
287	vm_offset_t va;
288	pt_entry_t *pte;
289	int i;
290
291	avail_start = firstaddr;
292
293	/*
294	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
295	 * large. It should instead be correctly calculated in locore.s and
296	 * not based on 'first' (which is a physical address, not a virtual
297	 * address, for the start of unused physical memory). The kernel
298	 * page tables are NOT double mapped and thus should not be included
299	 * in this calculation.
300	 */
301	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
302	virtual_avail = pmap_kmem_choose(virtual_avail);
303
304	virtual_end = VM_MAX_KERNEL_ADDRESS;
305
306	/*
307	 * Initialize protection array.
308	 */
309	i386_protection_init();
310
311	/*
312	 * Initialize the kernel pmap (which is statically allocated).
313	 */
314	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
315	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
316	TAILQ_INIT(&kernel_pmap->pm_pvlist);
317	LIST_INIT(&allpmaps);
318	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
319	nkpt = NKPT;
320
321	/*
322	 * Reserve some special page table entries/VA space for temporary
323	 * mapping of pages.
324	 */
325#define	SYSMAP(c, p, v, n)	\
326	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
327
328	va = virtual_avail;
329	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
330
331	/*
332	 * CMAP1/CMAP2 are used for zeroing and copying pages.
333	 * CMAP3 is used for the idle process page zeroing.
334	 */
335	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
336	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
337	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
338
339	/*
340	 * Crashdump maps.
341	 */
342	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
343
344	/*
345	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
346	 * XXX ptmmap is not used.
347	 */
348	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
349
350	/*
351	 * msgbufp is used to map the system message buffer.
352	 * XXX msgbufmap is not used.
353	 */
354	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
355	       atop(round_page(MSGBUF_SIZE)))
356
357	/*
358	 * ptemap is used for pmap_pte_quick
359	 */
360	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
361
362	virtual_avail = va;
363
364	*CMAP1 = *CMAP2 = 0;
365	for (i = 0; i < NKPT; i++)
366		PTD[i] = 0;
367
368	pgeflag = 0;
369#ifndef DISABLE_PG_G
370	if (cpu_feature & CPUID_PGE)
371		pgeflag = PG_G;
372#endif
373
374/*
375 * Initialize the 4MB page size flag
376 */
377	pseflag = 0;
378/*
379 * The 4MB page version of the initial
380 * kernel page mapping.
381 */
382	pdir4mb = 0;
383
384#ifndef DISABLE_PSE
385	if (cpu_feature & CPUID_PSE) {
386		pd_entry_t ptditmp;
387		/*
388		 * Note that we have enabled PSE mode
389		 */
390		pseflag = PG_PS;
391		ptditmp = *(PTmap + i386_btop(KERNBASE));
392		ptditmp &= ~(NBPDR - 1);
393		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
394		pdir4mb = ptditmp;
395	}
396#endif
397#ifndef SMP
398	/*
399	 * Turn on PGE/PSE.  SMP does this later on since the
400	 * 4K page tables are required for AP boot (for now).
401	 * XXX fixme.
402	 */
403	pmap_set_opt();
404#endif
405#ifdef SMP
406	if (cpu_apic_address == 0)
407		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
408
409	/* local apic is mapped on last page */
410	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
411	    (cpu_apic_address & PG_FRAME));
412#endif
413	invltlb();
414}
415
416/*
417 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
418 * BSP will run this after all the AP's have started up.
419 */
420void
421pmap_set_opt(void)
422{
423	pt_entry_t *pte;
424	vm_offset_t va, endva;
425
426	if (pgeflag && (cpu_feature & CPUID_PGE)) {
427		load_cr4(rcr4() | CR4_PGE);
428		invltlb();		/* Insurance */
429	}
430#ifndef DISABLE_PSE
431	if (pseflag && (cpu_feature & CPUID_PSE)) {
432		load_cr4(rcr4() | CR4_PSE);
433		invltlb();		/* Insurance */
434	}
435#endif
436	if (PCPU_GET(cpuid) == 0) {
437#ifndef DISABLE_PSE
438		if (pdir4mb) {
439			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
440			invltlb();	/* Insurance */
441		}
442#endif
443		if (pgeflag) {
444			/* Turn on PG_G for text, data, bss pages. */
445			va = (vm_offset_t)btext;
446#ifndef DISABLE_PSE
447			if (pseflag && (cpu_feature & CPUID_PSE)) {
448				if (va < KERNBASE + (1 << PDRSHIFT))
449					va = KERNBASE + (1 << PDRSHIFT);
450			}
451#endif
452			endva = KERNBASE + KERNend;
453			while (va < endva) {
454				pte = vtopte(va);
455				if (*pte)
456					*pte |= pgeflag;
457				va += PAGE_SIZE;
458			}
459			invltlb();	/* Insurance */
460		}
461		/*
462		 * We do not need to broadcast the invltlb here, because
463		 * each AP does it the moment it is released from the boot
464		 * lock.  See ap_init().
465		 */
466	}
467}
468
469void *
470pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
471{
472	*flags = UMA_SLAB_PRIV;
473	return (void *)kmem_alloc(kernel_map, bytes);
474}
475
476/*
477 *	Initialize the pmap module.
478 *	Called by vm_init, to initialize any structures that the pmap
479 *	system needs to map virtual memory.
480 *	pmap_init has been enhanced to support in a fairly consistant
481 *	way, discontiguous physical memory.
482 */
483void
484pmap_init(phys_start, phys_end)
485	vm_offset_t phys_start, phys_end;
486{
487	int i;
488	int initial_pvs;
489
490	/*
491	 * object for kernel page table pages
492	 */
493	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
494
495	/*
496	 * Allocate memory for random pmap data structures.  Includes the
497	 * pv_head_table.
498	 */
499
500	for(i = 0; i < vm_page_array_size; i++) {
501		vm_page_t m;
502
503		m = &vm_page_array[i];
504		TAILQ_INIT(&m->md.pv_list);
505		m->md.pv_list_count = 0;
506	}
507
508	/*
509	 * init the pv free list
510	 */
511	initial_pvs = vm_page_array_size;
512	if (initial_pvs < MINPV)
513		initial_pvs = MINPV;
514	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
515	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
516	uma_zone_set_allocf(pvzone, pmap_allocf);
517	uma_prealloc(pvzone, initial_pvs);
518
519	/*
520	 * Now it is safe to enable pv_table recording.
521	 */
522	pmap_initialized = TRUE;
523}
524
525/*
526 * Initialize the address space (zone) for the pv_entries.  Set a
527 * high water mark so that the system can recover from excessive
528 * numbers of pv entries.
529 */
530void
531pmap_init2()
532{
533	int shpgperproc = PMAP_SHPGPERPROC;
534
535	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
536	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
537	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
538	pv_entry_high_water = 9 * (pv_entry_max / 10);
539	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
540}
541
542
543/***************************************************
544 * Low level helper routines.....
545 ***************************************************/
546
547#if defined(PMAP_DIAGNOSTIC)
548
549/*
550 * This code checks for non-writeable/modified pages.
551 * This should be an invalid condition.
552 */
553static int
554pmap_nw_modified(pt_entry_t ptea)
555{
556	int pte;
557
558	pte = (int) ptea;
559
560	if ((pte & (PG_M|PG_RW)) == PG_M)
561		return 1;
562	else
563		return 0;
564}
565#endif
566
567
568/*
569 * this routine defines the region(s) of memory that should
570 * not be tested for the modified bit.
571 */
572static PMAP_INLINE int
573pmap_track_modified(vm_offset_t va)
574{
575	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
576		return 1;
577	else
578		return 0;
579}
580
581#ifdef I386_CPU
582/*
583 * i386 only has "invalidate everything" and no SMP to worry about.
584 */
585PMAP_INLINE void
586pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
587{
588
589	if (pmap == kernel_pmap || pmap->pm_active)
590		invltlb();
591}
592
593PMAP_INLINE void
594pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
595{
596
597	if (pmap == kernel_pmap || pmap->pm_active)
598		invltlb();
599}
600
601PMAP_INLINE void
602pmap_invalidate_all(pmap_t pmap)
603{
604
605	if (pmap == kernel_pmap || pmap->pm_active)
606		invltlb();
607}
608#else /* !I386_CPU */
609#ifdef SMP
610/*
611 * For SMP, these functions have to use the IPI mechanism for coherence.
612 */
613void
614pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
615{
616	u_int cpumask;
617	u_int other_cpus;
618
619	critical_enter();
620	/*
621	 * We need to disable interrupt preemption but MUST NOT have
622	 * interrupts disabled here.
623	 * XXX we may need to hold schedlock to get a coherent pm_active
624	 */
625	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
626		invlpg(va);
627		smp_invlpg(va);
628	} else {
629		cpumask = PCPU_GET(cpumask);
630		other_cpus = PCPU_GET(other_cpus);
631		if (pmap->pm_active & cpumask)
632			invlpg(va);
633		if (pmap->pm_active & other_cpus)
634			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
635	}
636	critical_exit();
637}
638
639void
640pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
641{
642	u_int cpumask;
643	u_int other_cpus;
644	vm_offset_t addr;
645
646	critical_enter();
647	/*
648	 * We need to disable interrupt preemption but MUST NOT have
649	 * interrupts disabled here.
650	 * XXX we may need to hold schedlock to get a coherent pm_active
651	 */
652	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
653		for (addr = sva; addr < eva; addr += PAGE_SIZE)
654			invlpg(addr);
655		smp_invlpg_range(sva, eva);
656	} else {
657		cpumask = PCPU_GET(cpumask);
658		other_cpus = PCPU_GET(other_cpus);
659		if (pmap->pm_active & cpumask)
660			for (addr = sva; addr < eva; addr += PAGE_SIZE)
661				invlpg(addr);
662		if (pmap->pm_active & other_cpus)
663			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
664			    sva, eva);
665	}
666	critical_exit();
667}
668
669void
670pmap_invalidate_all(pmap_t pmap)
671{
672	u_int cpumask;
673	u_int other_cpus;
674
675#ifdef SWTCH_OPTIM_STATS
676	tlb_flush_count++;
677#endif
678	critical_enter();
679	/*
680	 * We need to disable interrupt preemption but MUST NOT have
681	 * interrupts disabled here.
682	 * XXX we may need to hold schedlock to get a coherent pm_active
683	 */
684	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
685		invltlb();
686		smp_invltlb();
687	} else {
688		cpumask = PCPU_GET(cpumask);
689		other_cpus = PCPU_GET(other_cpus);
690		if (pmap->pm_active & cpumask)
691			invltlb();
692		if (pmap->pm_active & other_cpus)
693			smp_masked_invltlb(pmap->pm_active & other_cpus);
694	}
695	critical_exit();
696}
697#else /* !SMP */
698/*
699 * Normal, non-SMP, 486+ invalidation functions.
700 * We inline these within pmap.c for speed.
701 */
702PMAP_INLINE void
703pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
704{
705
706	if (pmap == kernel_pmap || pmap->pm_active)
707		invlpg(va);
708}
709
710PMAP_INLINE void
711pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
712{
713	vm_offset_t addr;
714
715	if (pmap == kernel_pmap || pmap->pm_active)
716		for (addr = sva; addr < eva; addr += PAGE_SIZE)
717			invlpg(addr);
718}
719
720PMAP_INLINE void
721pmap_invalidate_all(pmap_t pmap)
722{
723
724	if (pmap == kernel_pmap || pmap->pm_active)
725		invltlb();
726}
727#endif /* !SMP */
728#endif /* !I386_CPU */
729
730/*
731 * Return an address which is the base of the Virtual mapping of
732 * all the PTEs for the given pmap. Note this doesn't say that
733 * all the PTEs will be present or that the pages there are valid.
734 * The PTEs are made available by the recursive mapping trick.
735 * It will map in the alternate PTE space if needed.
736 */
737static pt_entry_t *
738get_ptbase(pmap)
739	pmap_t pmap;
740{
741	pd_entry_t frame;
742
743	/* are we current address space or kernel? */
744	if (pmap == kernel_pmap)
745		return PTmap;
746	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
747	if (frame == (PTDpde & PG_FRAME))
748		return PTmap;
749	/* otherwise, we are alternate address space */
750	if (frame != (APTDpde & PG_FRAME)) {
751		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
752		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
753	}
754	return APTmap;
755}
756
757/*
758 * Super fast pmap_pte routine best used when scanning
759 * the pv lists.  This eliminates many coarse-grained
760 * invltlb calls.  Note that many of the pv list
761 * scans are across different pmaps.  It is very wasteful
762 * to do an entire invltlb for checking a single mapping.
763 */
764
765static pt_entry_t *
766pmap_pte_quick(pmap, va)
767	register pmap_t pmap;
768	vm_offset_t va;
769{
770	pd_entry_t pde, newpf;
771	pde = pmap->pm_pdir[va >> PDRSHIFT];
772	if (pde != 0) {
773		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
774		unsigned index = i386_btop(va);
775		/* are we current address space or kernel? */
776		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
777			return PTmap + index;
778		newpf = pde & PG_FRAME;
779		if (((*PMAP1) & PG_FRAME) != newpf) {
780			*PMAP1 = newpf | PG_RW | PG_V;
781			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
782		}
783		return PADDR1 + (index & (NPTEPG - 1));
784	}
785	return (0);
786}
787
788/*
789 *	Routine:	pmap_extract
790 *	Function:
791 *		Extract the physical page address associated
792 *		with the given map/virtual_address pair.
793 */
794vm_offset_t
795pmap_extract(pmap, va)
796	register pmap_t pmap;
797	vm_offset_t va;
798{
799	vm_offset_t rtval;	/* XXX FIXME */
800	vm_offset_t pdirindex;
801
802	if (pmap == 0)
803		return 0;
804	pdirindex = va >> PDRSHIFT;
805	rtval = pmap->pm_pdir[pdirindex];
806	if (rtval != 0) {
807		pt_entry_t *pte;
808		if ((rtval & PG_PS) != 0) {
809			rtval &= ~(NBPDR - 1);
810			rtval |= va & (NBPDR - 1);
811			return rtval;
812		}
813		pte = get_ptbase(pmap) + i386_btop(va);
814		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
815		return rtval;
816	}
817	return 0;
818
819}
820
821/***************************************************
822 * Low level mapping routines.....
823 ***************************************************/
824
825/*
826 * Add a wired page to the kva.
827 * Note: not SMP coherent.
828 */
829PMAP_INLINE void
830pmap_kenter(vm_offset_t va, vm_offset_t pa)
831{
832	pt_entry_t *pte;
833
834	pte = vtopte(va);
835	*pte = pa | PG_RW | PG_V | pgeflag;
836}
837
838/*
839 * Remove a page from the kernel pagetables.
840 * Note: not SMP coherent.
841 */
842PMAP_INLINE void
843pmap_kremove(vm_offset_t va)
844{
845	pt_entry_t *pte;
846
847	pte = vtopte(va);
848	*pte = 0;
849}
850
851/*
852 *	Used to map a range of physical addresses into kernel
853 *	virtual address space.
854 *
855 *	The value passed in '*virt' is a suggested virtual address for
856 *	the mapping. Architectures which can support a direct-mapped
857 *	physical to virtual region can return the appropriate address
858 *	within that region, leaving '*virt' unchanged. Other
859 *	architectures should map the pages starting at '*virt' and
860 *	update '*virt' with the first usable address after the mapped
861 *	region.
862 */
863vm_offset_t
864pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
865{
866	vm_offset_t va, sva;
867
868	va = sva = *virt;
869	while (start < end) {
870		pmap_kenter(va, start);
871		va += PAGE_SIZE;
872		start += PAGE_SIZE;
873	}
874	pmap_invalidate_range(kernel_pmap, sva, va);
875	*virt = va;
876	return (sva);
877}
878
879
880/*
881 * Add a list of wired pages to the kva
882 * this routine is only used for temporary
883 * kernel mappings that do not need to have
884 * page modification or references recorded.
885 * Note that old mappings are simply written
886 * over.  The page *must* be wired.
887 * Note: SMP coherent.  Uses a ranged shootdown IPI.
888 */
889void
890pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
891{
892	vm_offset_t va;
893
894	va = sva;
895	while (count-- > 0) {
896		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
897		va += PAGE_SIZE;
898		m++;
899	}
900	pmap_invalidate_range(kernel_pmap, sva, va);
901}
902
903/*
904 * This routine tears out page mappings from the
905 * kernel -- it is meant only for temporary mappings.
906 * Note: SMP coherent.  Uses a ranged shootdown IPI.
907 */
908void
909pmap_qremove(vm_offset_t sva, int count)
910{
911	vm_offset_t va;
912
913	va = sva;
914	while (count-- > 0) {
915		pmap_kremove(va);
916		va += PAGE_SIZE;
917	}
918	pmap_invalidate_range(kernel_pmap, sva, va);
919}
920
921static vm_page_t
922pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
923{
924	vm_page_t m;
925
926retry:
927	m = vm_page_lookup(object, pindex);
928	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
929		goto retry;
930	return m;
931}
932
933/*
934 * Create the kernel stack (including pcb for i386) for a new thread.
935 * This routine directly affects the fork perf for a process and
936 * create performance for a thread.
937 */
938void
939pmap_new_thread(struct thread *td)
940{
941	int i;
942	vm_page_t ma[KSTACK_PAGES];
943	vm_object_t ksobj;
944	vm_page_t m;
945	vm_offset_t ks;
946
947	/*
948	 * allocate object for the kstack
949	 */
950	ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
951	td->td_kstack_obj = ksobj;
952
953	/* get a kernel virtual address for the kstack for this thread */
954#ifdef KSTACK_GUARD
955	ks = kmem_alloc_nofault(kernel_map, (KSTACK_PAGES + 1) * PAGE_SIZE);
956	if (ks == 0)
957		panic("pmap_new_thread: kstack allocation failed");
958	if (*vtopte(ks) != 0)
959		pmap_qremove(ks, 1);
960	ks += PAGE_SIZE;
961	td->td_kstack = ks;
962#else
963	/* get a kernel virtual address for the kstack for this thread */
964	ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
965	if (ks == 0)
966		panic("pmap_new_thread: kstack allocation failed");
967	td->td_kstack = ks;
968#endif
969	/*
970	 * For the length of the stack, link in a real page of ram for each
971	 * page of stack.
972	 */
973	for (i = 0; i < KSTACK_PAGES; i++) {
974		/*
975		 * Get a kernel stack page
976		 */
977		m = vm_page_grab(ksobj, i,
978		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
979		ma[i] = m;
980
981		vm_page_wakeup(m);
982		vm_page_flag_clear(m, PG_ZERO);
983		m->valid = VM_PAGE_BITS_ALL;
984	}
985	pmap_qenter(ks, ma, KSTACK_PAGES);
986}
987
988/*
989 * Dispose the kernel stack for a thread that has exited.
990 * This routine directly impacts the exit perf of a process and thread.
991 */
992void
993pmap_dispose_thread(td)
994	struct thread *td;
995{
996	int i;
997	vm_object_t ksobj;
998	vm_offset_t ks;
999	vm_page_t m;
1000
1001	ksobj = td->td_kstack_obj;
1002	ks = td->td_kstack;
1003	pmap_qremove(ks, KSTACK_PAGES);
1004	for (i = 0; i < KSTACK_PAGES; i++) {
1005		m = vm_page_lookup(ksobj, i);
1006		if (m == NULL)
1007			panic("pmap_dispose_thread: kstack already missing?");
1008		vm_page_lock_queues();
1009		vm_page_busy(m);
1010		vm_page_unwire(m, 0);
1011		vm_page_free(m);
1012		vm_page_unlock_queues();
1013	}
1014	/*
1015	 * Free the space that this stack was mapped to in the kernel
1016	 * address map.
1017	 */
1018#ifdef KSTACK_GUARD
1019	kmem_free(kernel_map, ks - PAGE_SIZE, (KSTACK_PAGES + 1) * PAGE_SIZE);
1020#else
1021	kmem_free(kernel_map, ks, KSTACK_PAGES * PAGE_SIZE);
1022#endif
1023	vm_object_deallocate(ksobj);
1024}
1025
1026/*
1027 * Allow the Kernel stack for a thread to be prejudicially paged out.
1028 */
1029void
1030pmap_swapout_thread(td)
1031	struct thread *td;
1032{
1033	int i;
1034	vm_object_t ksobj;
1035	vm_offset_t ks;
1036	vm_page_t m;
1037
1038	ksobj = td->td_kstack_obj;
1039	ks = td->td_kstack;
1040	pmap_qremove(ks, KSTACK_PAGES);
1041	for (i = 0; i < KSTACK_PAGES; i++) {
1042		m = vm_page_lookup(ksobj, i);
1043		if (m == NULL)
1044			panic("pmap_swapout_thread: kstack already missing?");
1045		vm_page_lock_queues();
1046		vm_page_dirty(m);
1047		vm_page_unwire(m, 0);
1048		vm_page_unlock_queues();
1049	}
1050}
1051
1052/*
1053 * Bring the kernel stack for a specified thread back in.
1054 */
1055void
1056pmap_swapin_thread(td)
1057	struct thread *td;
1058{
1059	int i, rv;
1060	vm_page_t ma[KSTACK_PAGES];
1061	vm_object_t ksobj;
1062	vm_offset_t ks;
1063	vm_page_t m;
1064
1065	ksobj = td->td_kstack_obj;
1066	ks = td->td_kstack;
1067	for (i = 0; i < KSTACK_PAGES; i++) {
1068		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1069		if (m->valid != VM_PAGE_BITS_ALL) {
1070			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1071			if (rv != VM_PAGER_OK)
1072				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1073			m = vm_page_lookup(ksobj, i);
1074			m->valid = VM_PAGE_BITS_ALL;
1075		}
1076		ma[i] = m;
1077		vm_page_lock_queues();
1078		vm_page_wire(m);
1079		vm_page_wakeup(m);
1080		vm_page_unlock_queues();
1081	}
1082	pmap_qenter(ks, ma, KSTACK_PAGES);
1083}
1084
1085/***************************************************
1086 * Page table page management routines.....
1087 ***************************************************/
1088
1089/*
1090 * This routine unholds page table pages, and if the hold count
1091 * drops to zero, then it decrements the wire count.
1092 */
1093static int
1094_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1095{
1096
1097	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1098		;
1099
1100	if (m->hold_count == 0) {
1101		vm_offset_t pteva;
1102		/*
1103		 * unmap the page table page
1104		 */
1105		pmap->pm_pdir[m->pindex] = 0;
1106		--pmap->pm_stats.resident_count;
1107		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1108		    (PTDpde & PG_FRAME)) {
1109			/*
1110			 * Do a invltlb to make the invalidated mapping
1111			 * take effect immediately.
1112			 */
1113			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1114			pmap_invalidate_page(pmap, pteva);
1115		}
1116
1117		if (pmap->pm_ptphint == m)
1118			pmap->pm_ptphint = NULL;
1119
1120		/*
1121		 * If the page is finally unwired, simply free it.
1122		 */
1123		--m->wire_count;
1124		if (m->wire_count == 0) {
1125
1126			vm_page_flash(m);
1127			vm_page_busy(m);
1128			vm_page_free_zero(m);
1129			--cnt.v_wire_count;
1130		}
1131		return 1;
1132	}
1133	return 0;
1134}
1135
1136static PMAP_INLINE int
1137pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1138{
1139	vm_page_unhold(m);
1140	if (m->hold_count == 0)
1141		return _pmap_unwire_pte_hold(pmap, m);
1142	else
1143		return 0;
1144}
1145
1146/*
1147 * After removing a page table entry, this routine is used to
1148 * conditionally free the page, and manage the hold/wire counts.
1149 */
1150static int
1151pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1152{
1153	unsigned ptepindex;
1154	if (va >= VM_MAXUSER_ADDRESS)
1155		return 0;
1156
1157	if (mpte == NULL) {
1158		ptepindex = (va >> PDRSHIFT);
1159		if (pmap->pm_ptphint &&
1160			(pmap->pm_ptphint->pindex == ptepindex)) {
1161			mpte = pmap->pm_ptphint;
1162		} else {
1163			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1164			pmap->pm_ptphint = mpte;
1165		}
1166	}
1167
1168	return pmap_unwire_pte_hold(pmap, mpte);
1169}
1170
1171void
1172pmap_pinit0(pmap)
1173	struct pmap *pmap;
1174{
1175	pmap->pm_pdir =
1176		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1177	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1178#ifndef I386_CPU
1179	invlpg((vm_offset_t)pmap->pm_pdir);
1180#else
1181	invltlb();
1182#endif
1183	pmap->pm_ptphint = NULL;
1184	pmap->pm_active = 0;
1185	TAILQ_INIT(&pmap->pm_pvlist);
1186	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1187	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1188}
1189
1190/*
1191 * Initialize a preallocated and zeroed pmap structure,
1192 * such as one in a vmspace structure.
1193 */
1194void
1195pmap_pinit(pmap)
1196	register struct pmap *pmap;
1197{
1198	vm_page_t ptdpg;
1199
1200	/*
1201	 * No need to allocate page table space yet but we do need a valid
1202	 * page directory table.
1203	 */
1204	if (pmap->pm_pdir == NULL)
1205		pmap->pm_pdir =
1206			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1207
1208	/*
1209	 * allocate object for the ptes
1210	 */
1211	if (pmap->pm_pteobj == NULL)
1212		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1213
1214	/*
1215	 * allocate the page directory page
1216	 */
1217	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1218			VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
1219	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1220	ptdpg->valid = VM_PAGE_BITS_ALL;
1221
1222	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1223	if ((ptdpg->flags & PG_ZERO) == 0)
1224		bzero(pmap->pm_pdir, PAGE_SIZE);
1225
1226	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1227	/* Wire in kernel global address entries. */
1228	/* XXX copies current process, does not fill in MPPTDI */
1229	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1230#ifdef SMP
1231	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1232#endif
1233
1234	/* install self-referential address mapping entry */
1235	pmap->pm_pdir[PTDPTDI] =
1236		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1237
1238	pmap->pm_active = 0;
1239	pmap->pm_ptphint = NULL;
1240	TAILQ_INIT(&pmap->pm_pvlist);
1241	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1242}
1243
1244/*
1245 * Wire in kernel global address entries.  To avoid a race condition
1246 * between pmap initialization and pmap_growkernel, this procedure
1247 * should be called after the vmspace is attached to the process
1248 * but before this pmap is activated.
1249 */
1250void
1251pmap_pinit2(pmap)
1252	struct pmap *pmap;
1253{
1254	/* XXX: Remove this stub when no longer called */
1255}
1256
1257static int
1258pmap_release_free_page(pmap_t pmap, vm_page_t p)
1259{
1260	pd_entry_t *pde = pmap->pm_pdir;
1261	/*
1262	 * This code optimizes the case of freeing non-busy
1263	 * page-table pages.  Those pages are zero now, and
1264	 * might as well be placed directly into the zero queue.
1265	 */
1266	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1267		return 0;
1268
1269	vm_page_lock_queues();
1270	vm_page_busy(p);
1271
1272	/*
1273	 * Remove the page table page from the processes address space.
1274	 */
1275	pde[p->pindex] = 0;
1276	pmap->pm_stats.resident_count--;
1277
1278	if (p->hold_count)  {
1279		panic("pmap_release: freeing held page table page");
1280	}
1281	/*
1282	 * Page directory pages need to have the kernel
1283	 * stuff cleared, so they can go into the zero queue also.
1284	 */
1285	if (p->pindex == PTDPTDI) {
1286		bzero(pde + KPTDI, nkpt * PTESIZE);
1287#ifdef SMP
1288		pde[MPPTDI] = 0;
1289#endif
1290		pde[APTDPTDI] = 0;
1291		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1292	}
1293
1294	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1295		pmap->pm_ptphint = NULL;
1296
1297	p->wire_count--;
1298	cnt.v_wire_count--;
1299	vm_page_free_zero(p);
1300	vm_page_unlock_queues();
1301	return 1;
1302}
1303
1304/*
1305 * this routine is called if the page table page is not
1306 * mapped correctly.
1307 */
1308static vm_page_t
1309_pmap_allocpte(pmap, ptepindex)
1310	pmap_t	pmap;
1311	unsigned ptepindex;
1312{
1313	vm_offset_t pteva, ptepa;	/* XXXPA */
1314	vm_page_t m;
1315
1316	/*
1317	 * Find or fabricate a new pagetable page
1318	 */
1319	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1320			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1321
1322	KASSERT(m->queue == PQ_NONE,
1323		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1324
1325	if (m->wire_count == 0)
1326		cnt.v_wire_count++;
1327	m->wire_count++;
1328
1329	/*
1330	 * Increment the hold count for the page table page
1331	 * (denoting a new mapping.)
1332	 */
1333	m->hold_count++;
1334
1335	/*
1336	 * Map the pagetable page into the process address space, if
1337	 * it isn't already there.
1338	 */
1339
1340	pmap->pm_stats.resident_count++;
1341
1342	ptepa = VM_PAGE_TO_PHYS(m);
1343	pmap->pm_pdir[ptepindex] =
1344		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1345
1346	/*
1347	 * Set the page table hint
1348	 */
1349	pmap->pm_ptphint = m;
1350
1351	/*
1352	 * Try to use the new mapping, but if we cannot, then
1353	 * do it with the routine that maps the page explicitly.
1354	 */
1355	if ((m->flags & PG_ZERO) == 0) {
1356		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1357		    (PTDpde & PG_FRAME)) {
1358			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1359			bzero((caddr_t) pteva, PAGE_SIZE);
1360		} else {
1361			pmap_zero_page(m);
1362		}
1363	}
1364
1365	m->valid = VM_PAGE_BITS_ALL;
1366	vm_page_flag_clear(m, PG_ZERO);
1367	vm_page_wakeup(m);
1368
1369	return m;
1370}
1371
1372static vm_page_t
1373pmap_allocpte(pmap_t pmap, vm_offset_t va)
1374{
1375	unsigned ptepindex;
1376	pd_entry_t ptepa;
1377	vm_page_t m;
1378
1379	/*
1380	 * Calculate pagetable page index
1381	 */
1382	ptepindex = va >> PDRSHIFT;
1383
1384	/*
1385	 * Get the page directory entry
1386	 */
1387	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1388
1389	/*
1390	 * This supports switching from a 4MB page to a
1391	 * normal 4K page.
1392	 */
1393	if (ptepa & PG_PS) {
1394		pmap->pm_pdir[ptepindex] = 0;
1395		ptepa = 0;
1396		pmap_invalidate_all(kernel_pmap);
1397	}
1398
1399	/*
1400	 * If the page table page is mapped, we just increment the
1401	 * hold count, and activate it.
1402	 */
1403	if (ptepa) {
1404		/*
1405		 * In order to get the page table page, try the
1406		 * hint first.
1407		 */
1408		if (pmap->pm_ptphint &&
1409			(pmap->pm_ptphint->pindex == ptepindex)) {
1410			m = pmap->pm_ptphint;
1411		} else {
1412			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1413			pmap->pm_ptphint = m;
1414		}
1415		m->hold_count++;
1416		return m;
1417	}
1418	/*
1419	 * Here if the pte page isn't mapped, or if it has been deallocated.
1420	 */
1421	return _pmap_allocpte(pmap, ptepindex);
1422}
1423
1424
1425/***************************************************
1426* Pmap allocation/deallocation routines.
1427 ***************************************************/
1428
1429/*
1430 * Release any resources held by the given physical map.
1431 * Called when a pmap initialized by pmap_pinit is being released.
1432 * Should only be called if the map contains no valid mappings.
1433 */
1434void
1435pmap_release(pmap_t pmap)
1436{
1437	vm_page_t p,n,ptdpg;
1438	vm_object_t object = pmap->pm_pteobj;
1439	int curgeneration;
1440
1441#if defined(DIAGNOSTIC)
1442	if (object->ref_count != 1)
1443		panic("pmap_release: pteobj reference count != 1");
1444#endif
1445
1446	ptdpg = NULL;
1447	LIST_REMOVE(pmap, pm_list);
1448retry:
1449	curgeneration = object->generation;
1450	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1451		n = TAILQ_NEXT(p, listq);
1452		if (p->pindex == PTDPTDI) {
1453			ptdpg = p;
1454			continue;
1455		}
1456		while (1) {
1457			if (!pmap_release_free_page(pmap, p) &&
1458				(object->generation != curgeneration))
1459				goto retry;
1460		}
1461	}
1462
1463	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1464		goto retry;
1465}
1466
1467static int
1468kvm_size(SYSCTL_HANDLER_ARGS)
1469{
1470	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1471
1472	return sysctl_handle_long(oidp, &ksize, 0, req);
1473}
1474SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1475    0, 0, kvm_size, "IU", "Size of KVM");
1476
1477static int
1478kvm_free(SYSCTL_HANDLER_ARGS)
1479{
1480	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1481
1482	return sysctl_handle_long(oidp, &kfree, 0, req);
1483}
1484SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1485    0, 0, kvm_free, "IU", "Amount of KVM free");
1486
1487/*
1488 * grow the number of kernel page table entries, if needed
1489 */
1490void
1491pmap_growkernel(vm_offset_t addr)
1492{
1493	struct pmap *pmap;
1494	int s;
1495	vm_offset_t ptppaddr;
1496	vm_page_t nkpg;
1497	pd_entry_t newpdir;
1498
1499	s = splhigh();
1500	if (kernel_vm_end == 0) {
1501		kernel_vm_end = KERNBASE;
1502		nkpt = 0;
1503		while (pdir_pde(PTD, kernel_vm_end)) {
1504			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1505			nkpt++;
1506		}
1507	}
1508	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1509	while (kernel_vm_end < addr) {
1510		if (pdir_pde(PTD, kernel_vm_end)) {
1511			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1512			continue;
1513		}
1514
1515		/*
1516		 * This index is bogus, but out of the way
1517		 */
1518		nkpg = vm_page_alloc(kptobj, nkpt,
1519				     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1520		if (!nkpg)
1521			panic("pmap_growkernel: no memory to grow kernel");
1522
1523		nkpt++;
1524
1525		pmap_zero_page(nkpg);
1526		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1527		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1528		pdir_pde(PTD, kernel_vm_end) = newpdir;
1529
1530		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1531			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1532		}
1533		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1534	}
1535	splx(s);
1536}
1537
1538
1539/***************************************************
1540 * page management routines.
1541 ***************************************************/
1542
1543/*
1544 * free the pv_entry back to the free list
1545 */
1546static PMAP_INLINE void
1547free_pv_entry(pv_entry_t pv)
1548{
1549	pv_entry_count--;
1550	uma_zfree(pvzone, pv);
1551}
1552
1553/*
1554 * get a new pv_entry, allocating a block from the system
1555 * when needed.
1556 * the memory allocation is performed bypassing the malloc code
1557 * because of the possibility of allocations at interrupt time.
1558 */
1559static pv_entry_t
1560get_pv_entry(void)
1561{
1562	pv_entry_count++;
1563	if (pv_entry_high_water &&
1564		(pv_entry_count > pv_entry_high_water) &&
1565		(pmap_pagedaemon_waken == 0)) {
1566		pmap_pagedaemon_waken = 1;
1567		wakeup (&vm_pages_needed);
1568	}
1569	return uma_zalloc(pvzone, M_NOWAIT);
1570}
1571
1572/*
1573 * This routine is very drastic, but can save the system
1574 * in a pinch.
1575 */
1576void
1577pmap_collect()
1578{
1579	int i;
1580	vm_page_t m;
1581	static int warningdone = 0;
1582
1583	if (pmap_pagedaemon_waken == 0)
1584		return;
1585
1586	if (warningdone < 5) {
1587		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1588		warningdone++;
1589	}
1590
1591	for(i = 0; i < vm_page_array_size; i++) {
1592		m = &vm_page_array[i];
1593		if (m->wire_count || m->hold_count || m->busy ||
1594		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1595			continue;
1596		pmap_remove_all(m);
1597	}
1598	pmap_pagedaemon_waken = 0;
1599}
1600
1601
1602/*
1603 * If it is the first entry on the list, it is actually
1604 * in the header and we must copy the following entry up
1605 * to the header.  Otherwise we must search the list for
1606 * the entry.  In either case we free the now unused entry.
1607 */
1608
1609static int
1610pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1611{
1612	pv_entry_t pv;
1613	int rtval;
1614	int s;
1615
1616	s = splvm();
1617	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1618		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1619			if (pmap == pv->pv_pmap && va == pv->pv_va)
1620				break;
1621		}
1622	} else {
1623		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1624			if (va == pv->pv_va)
1625				break;
1626		}
1627	}
1628
1629	rtval = 0;
1630	if (pv) {
1631		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1632		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1633		m->md.pv_list_count--;
1634		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1635			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1636
1637		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1638		free_pv_entry(pv);
1639	}
1640
1641	splx(s);
1642	return rtval;
1643}
1644
1645/*
1646 * Create a pv entry for page at pa for
1647 * (pmap, va).
1648 */
1649static void
1650pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1651{
1652
1653	int s;
1654	pv_entry_t pv;
1655
1656	s = splvm();
1657	pv = get_pv_entry();
1658	pv->pv_va = va;
1659	pv->pv_pmap = pmap;
1660	pv->pv_ptem = mpte;
1661
1662	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1663	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1664	m->md.pv_list_count++;
1665
1666	splx(s);
1667}
1668
1669/*
1670 * pmap_remove_pte: do the things to unmap a page in a process
1671 */
1672static int
1673pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1674{
1675	pt_entry_t oldpte;
1676	vm_page_t m;
1677
1678	oldpte = atomic_readandclear_int(ptq);
1679	if (oldpte & PG_W)
1680		pmap->pm_stats.wired_count -= 1;
1681	/*
1682	 * Machines that don't support invlpg, also don't support
1683	 * PG_G.
1684	 */
1685	if (oldpte & PG_G)
1686		pmap_invalidate_page(kernel_pmap, va);
1687	pmap->pm_stats.resident_count -= 1;
1688	if (oldpte & PG_MANAGED) {
1689		m = PHYS_TO_VM_PAGE(oldpte);
1690		if (oldpte & PG_M) {
1691#if defined(PMAP_DIAGNOSTIC)
1692			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1693				printf(
1694	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1695				    va, oldpte);
1696			}
1697#endif
1698			if (pmap_track_modified(va))
1699				vm_page_dirty(m);
1700		}
1701		if (oldpte & PG_A)
1702			vm_page_flag_set(m, PG_REFERENCED);
1703		return pmap_remove_entry(pmap, m, va);
1704	} else {
1705		return pmap_unuse_pt(pmap, va, NULL);
1706	}
1707
1708	return 0;
1709}
1710
1711/*
1712 * Remove a single page from a process address space
1713 */
1714static void
1715pmap_remove_page(pmap_t pmap, vm_offset_t va)
1716{
1717	register pt_entry_t *ptq;
1718
1719	/*
1720	 * if there is no pte for this address, just skip it!!!
1721	 */
1722	if (*pmap_pde(pmap, va) == 0) {
1723		return;
1724	}
1725
1726	/*
1727	 * get a local va for mappings for this pmap.
1728	 */
1729	ptq = get_ptbase(pmap) + i386_btop(va);
1730	if (*ptq) {
1731		(void) pmap_remove_pte(pmap, ptq, va);
1732		pmap_invalidate_page(pmap, va);
1733	}
1734	return;
1735}
1736
1737/*
1738 *	Remove the given range of addresses from the specified map.
1739 *
1740 *	It is assumed that the start and end are properly
1741 *	rounded to the page size.
1742 */
1743void
1744pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1745{
1746	register pt_entry_t *ptbase;
1747	vm_offset_t pdnxt;
1748	pd_entry_t ptpaddr;
1749	vm_offset_t sindex, eindex;
1750	int anyvalid;
1751
1752	if (pmap == NULL)
1753		return;
1754
1755	if (pmap->pm_stats.resident_count == 0)
1756		return;
1757
1758	/*
1759	 * special handling of removing one page.  a very
1760	 * common operation and easy to short circuit some
1761	 * code.
1762	 */
1763	if ((sva + PAGE_SIZE == eva) &&
1764	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1765		pmap_remove_page(pmap, sva);
1766		return;
1767	}
1768
1769	anyvalid = 0;
1770
1771	/*
1772	 * Get a local virtual address for the mappings that are being
1773	 * worked with.
1774	 */
1775	ptbase = get_ptbase(pmap);
1776
1777	sindex = i386_btop(sva);
1778	eindex = i386_btop(eva);
1779
1780	for (; sindex < eindex; sindex = pdnxt) {
1781		unsigned pdirindex;
1782
1783		/*
1784		 * Calculate index for next page table.
1785		 */
1786		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1787		if (pmap->pm_stats.resident_count == 0)
1788			break;
1789
1790		pdirindex = sindex / NPDEPG;
1791		ptpaddr = pmap->pm_pdir[pdirindex];
1792		if ((ptpaddr & PG_PS) != 0) {
1793			pmap->pm_pdir[pdirindex] = 0;
1794			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1795			anyvalid++;
1796			continue;
1797		}
1798
1799		/*
1800		 * Weed out invalid mappings. Note: we assume that the page
1801		 * directory table is always allocated, and in kernel virtual.
1802		 */
1803		if (ptpaddr == 0)
1804			continue;
1805
1806		/*
1807		 * Limit our scan to either the end of the va represented
1808		 * by the current page table page, or to the end of the
1809		 * range being removed.
1810		 */
1811		if (pdnxt > eindex) {
1812			pdnxt = eindex;
1813		}
1814
1815		for (; sindex != pdnxt; sindex++) {
1816			vm_offset_t va;
1817			if (ptbase[sindex] == 0) {
1818				continue;
1819			}
1820			va = i386_ptob(sindex);
1821
1822			anyvalid++;
1823			if (pmap_remove_pte(pmap,
1824				ptbase + sindex, va))
1825				break;
1826		}
1827	}
1828
1829	if (anyvalid)
1830		pmap_invalidate_all(pmap);
1831}
1832
1833/*
1834 *	Routine:	pmap_remove_all
1835 *	Function:
1836 *		Removes this physical page from
1837 *		all physical maps in which it resides.
1838 *		Reflects back modify bits to the pager.
1839 *
1840 *	Notes:
1841 *		Original versions of this routine were very
1842 *		inefficient because they iteratively called
1843 *		pmap_remove (slow...)
1844 */
1845
1846static void
1847pmap_remove_all(vm_page_t m)
1848{
1849	register pv_entry_t pv;
1850	pt_entry_t *pte, tpte;
1851	int s;
1852
1853#if defined(PMAP_DIAGNOSTIC)
1854	/*
1855	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1856	 * pages!
1857	 */
1858	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1859		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1860	}
1861#endif
1862
1863	s = splvm();
1864	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1865		pv->pv_pmap->pm_stats.resident_count--;
1866
1867		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1868
1869		tpte = atomic_readandclear_int(pte);
1870		if (tpte & PG_W)
1871			pv->pv_pmap->pm_stats.wired_count--;
1872
1873		if (tpte & PG_A)
1874			vm_page_flag_set(m, PG_REFERENCED);
1875
1876		/*
1877		 * Update the vm_page_t clean and reference bits.
1878		 */
1879		if (tpte & PG_M) {
1880#if defined(PMAP_DIAGNOSTIC)
1881			if (pmap_nw_modified((pt_entry_t) tpte)) {
1882				printf(
1883	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1884				    pv->pv_va, tpte);
1885			}
1886#endif
1887			if (pmap_track_modified(pv->pv_va))
1888				vm_page_dirty(m);
1889		}
1890		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1891
1892		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1893		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1894		m->md.pv_list_count--;
1895		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1896		free_pv_entry(pv);
1897	}
1898
1899	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1900
1901	splx(s);
1902}
1903
1904/*
1905 *	Set the physical protection on the
1906 *	specified range of this map as requested.
1907 */
1908void
1909pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1910{
1911	register pt_entry_t *ptbase;
1912	vm_offset_t pdnxt;
1913	pd_entry_t ptpaddr;
1914	vm_offset_t sindex, eindex;
1915	int anychanged;
1916
1917	if (pmap == NULL)
1918		return;
1919
1920	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1921		pmap_remove(pmap, sva, eva);
1922		return;
1923	}
1924
1925	if (prot & VM_PROT_WRITE)
1926		return;
1927
1928	anychanged = 0;
1929
1930	ptbase = get_ptbase(pmap);
1931
1932	sindex = i386_btop(sva);
1933	eindex = i386_btop(eva);
1934
1935	for (; sindex < eindex; sindex = pdnxt) {
1936
1937		unsigned pdirindex;
1938
1939		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1940
1941		pdirindex = sindex / NPDEPG;
1942		ptpaddr = pmap->pm_pdir[pdirindex];
1943		if ((ptpaddr & PG_PS) != 0) {
1944			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1945			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1946			anychanged++;
1947			continue;
1948		}
1949
1950		/*
1951		 * Weed out invalid mappings. Note: we assume that the page
1952		 * directory table is always allocated, and in kernel virtual.
1953		 */
1954		if (ptpaddr == 0)
1955			continue;
1956
1957		if (pdnxt > eindex) {
1958			pdnxt = eindex;
1959		}
1960
1961		for (; sindex != pdnxt; sindex++) {
1962
1963			pt_entry_t pbits;
1964			vm_page_t m;
1965
1966			pbits = ptbase[sindex];
1967
1968			if (pbits & PG_MANAGED) {
1969				m = NULL;
1970				if (pbits & PG_A) {
1971					m = PHYS_TO_VM_PAGE(pbits);
1972					vm_page_flag_set(m, PG_REFERENCED);
1973					pbits &= ~PG_A;
1974				}
1975				if (pbits & PG_M) {
1976					if (pmap_track_modified(i386_ptob(sindex))) {
1977						if (m == NULL)
1978							m = PHYS_TO_VM_PAGE(pbits);
1979						vm_page_dirty(m);
1980						pbits &= ~PG_M;
1981					}
1982				}
1983			}
1984
1985			pbits &= ~PG_RW;
1986
1987			if (pbits != ptbase[sindex]) {
1988				ptbase[sindex] = pbits;
1989				anychanged = 1;
1990			}
1991		}
1992	}
1993	if (anychanged)
1994		pmap_invalidate_all(pmap);
1995}
1996
1997/*
1998 *	Insert the given physical page (p) at
1999 *	the specified virtual address (v) in the
2000 *	target physical map with the protection requested.
2001 *
2002 *	If specified, the page will be wired down, meaning
2003 *	that the related pte can not be reclaimed.
2004 *
2005 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2006 *	or lose information.  That is, this routine must actually
2007 *	insert this page into the given map NOW.
2008 */
2009void
2010pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2011	   boolean_t wired)
2012{
2013	vm_offset_t pa;
2014	register pt_entry_t *pte;
2015	vm_offset_t opa;
2016	pt_entry_t origpte, newpte;
2017	vm_page_t mpte;
2018
2019	if (pmap == NULL)
2020		return;
2021
2022	va &= PG_FRAME;
2023#ifdef PMAP_DIAGNOSTIC
2024	if (va > VM_MAX_KERNEL_ADDRESS)
2025		panic("pmap_enter: toobig");
2026	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2027		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2028#endif
2029
2030	mpte = NULL;
2031	/*
2032	 * In the case that a page table page is not
2033	 * resident, we are creating it here.
2034	 */
2035	if (va < VM_MAXUSER_ADDRESS) {
2036		mpte = pmap_allocpte(pmap, va);
2037	}
2038#if 0 && defined(PMAP_DIAGNOSTIC)
2039	else {
2040		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2041		origpte = *pdeaddr;
2042		if ((origpte & PG_V) == 0) {
2043			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2044				pmap->pm_pdir[PTDPTDI], origpte, va);
2045		}
2046	}
2047#endif
2048
2049	pte = pmap_pte(pmap, va);
2050
2051	/*
2052	 * Page Directory table entry not valid, we need a new PT page
2053	 */
2054	if (pte == NULL) {
2055		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2056			(void *)pmap->pm_pdir[PTDPTDI], va);
2057	}
2058
2059	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2060	origpte = *(vm_offset_t *)pte;
2061	opa = origpte & PG_FRAME;
2062
2063	if (origpte & PG_PS)
2064		panic("pmap_enter: attempted pmap_enter on 4MB page");
2065
2066	/*
2067	 * Mapping has not changed, must be protection or wiring change.
2068	 */
2069	if (origpte && (opa == pa)) {
2070		/*
2071		 * Wiring change, just update stats. We don't worry about
2072		 * wiring PT pages as they remain resident as long as there
2073		 * are valid mappings in them. Hence, if a user page is wired,
2074		 * the PT page will be also.
2075		 */
2076		if (wired && ((origpte & PG_W) == 0))
2077			pmap->pm_stats.wired_count++;
2078		else if (!wired && (origpte & PG_W))
2079			pmap->pm_stats.wired_count--;
2080
2081#if defined(PMAP_DIAGNOSTIC)
2082		if (pmap_nw_modified((pt_entry_t) origpte)) {
2083			printf(
2084	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2085			    va, origpte);
2086		}
2087#endif
2088
2089		/*
2090		 * Remove extra pte reference
2091		 */
2092		if (mpte)
2093			mpte->hold_count--;
2094
2095		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2096			if ((origpte & PG_RW) == 0) {
2097				*pte |= PG_RW;
2098				pmap_invalidate_page(pmap, va);
2099			}
2100			return;
2101		}
2102
2103		/*
2104		 * We might be turning off write access to the page,
2105		 * so we go ahead and sense modify status.
2106		 */
2107		if (origpte & PG_MANAGED) {
2108			if ((origpte & PG_M) && pmap_track_modified(va)) {
2109				vm_page_t om;
2110				om = PHYS_TO_VM_PAGE(opa);
2111				vm_page_dirty(om);
2112			}
2113			pa |= PG_MANAGED;
2114		}
2115		goto validate;
2116	}
2117	/*
2118	 * Mapping has changed, invalidate old range and fall through to
2119	 * handle validating new mapping.
2120	 */
2121	if (opa) {
2122		int err;
2123		err = pmap_remove_pte(pmap, pte, va);
2124		if (err)
2125			panic("pmap_enter: pte vanished, va: 0x%x", va);
2126	}
2127
2128	/*
2129	 * Enter on the PV list if part of our managed memory. Note that we
2130	 * raise IPL while manipulating pv_table since pmap_enter can be
2131	 * called at interrupt time.
2132	 */
2133	if (pmap_initialized &&
2134	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2135		pmap_insert_entry(pmap, va, mpte, m);
2136		pa |= PG_MANAGED;
2137	}
2138
2139	/*
2140	 * Increment counters
2141	 */
2142	pmap->pm_stats.resident_count++;
2143	if (wired)
2144		pmap->pm_stats.wired_count++;
2145
2146validate:
2147	/*
2148	 * Now validate mapping with desired protection/wiring.
2149	 */
2150	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2151
2152	if (wired)
2153		newpte |= PG_W;
2154	if (va < VM_MAXUSER_ADDRESS)
2155		newpte |= PG_U;
2156	if (pmap == kernel_pmap)
2157		newpte |= pgeflag;
2158
2159	/*
2160	 * if the mapping or permission bits are different, we need
2161	 * to update the pte.
2162	 */
2163	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2164		*pte = newpte | PG_A;
2165		/*if (origpte)*/ {
2166			pmap_invalidate_page(pmap, va);
2167		}
2168	}
2169}
2170
2171/*
2172 * this code makes some *MAJOR* assumptions:
2173 * 1. Current pmap & pmap exists.
2174 * 2. Not wired.
2175 * 3. Read access.
2176 * 4. No page table pages.
2177 * 5. Tlbflush is deferred to calling procedure.
2178 * 6. Page IS managed.
2179 * but is *MUCH* faster than pmap_enter...
2180 */
2181
2182static vm_page_t
2183pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2184{
2185	pt_entry_t *pte;
2186	vm_offset_t pa;
2187
2188	/*
2189	 * In the case that a page table page is not
2190	 * resident, we are creating it here.
2191	 */
2192	if (va < VM_MAXUSER_ADDRESS) {
2193		unsigned ptepindex;
2194		pd_entry_t ptepa;
2195
2196		/*
2197		 * Calculate pagetable page index
2198		 */
2199		ptepindex = va >> PDRSHIFT;
2200		if (mpte && (mpte->pindex == ptepindex)) {
2201			mpte->hold_count++;
2202		} else {
2203retry:
2204			/*
2205			 * Get the page directory entry
2206			 */
2207			ptepa = pmap->pm_pdir[ptepindex];
2208
2209			/*
2210			 * If the page table page is mapped, we just increment
2211			 * the hold count, and activate it.
2212			 */
2213			if (ptepa) {
2214				if (ptepa & PG_PS)
2215					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2216				if (pmap->pm_ptphint &&
2217					(pmap->pm_ptphint->pindex == ptepindex)) {
2218					mpte = pmap->pm_ptphint;
2219				} else {
2220					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2221					pmap->pm_ptphint = mpte;
2222				}
2223				if (mpte == NULL)
2224					goto retry;
2225				mpte->hold_count++;
2226			} else {
2227				mpte = _pmap_allocpte(pmap, ptepindex);
2228			}
2229		}
2230	} else {
2231		mpte = NULL;
2232	}
2233
2234	/*
2235	 * This call to vtopte makes the assumption that we are
2236	 * entering the page into the current pmap.  In order to support
2237	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2238	 * But that isn't as quick as vtopte.
2239	 */
2240	pte = vtopte(va);
2241	if (*pte) {
2242		if (mpte)
2243			pmap_unwire_pte_hold(pmap, mpte);
2244		return 0;
2245	}
2246
2247	/*
2248	 * Enter on the PV list if part of our managed memory. Note that we
2249	 * raise IPL while manipulating pv_table since pmap_enter can be
2250	 * called at interrupt time.
2251	 */
2252	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2253		pmap_insert_entry(pmap, va, mpte, m);
2254
2255	/*
2256	 * Increment counters
2257	 */
2258	pmap->pm_stats.resident_count++;
2259
2260	pa = VM_PAGE_TO_PHYS(m);
2261
2262	/*
2263	 * Now validate mapping with RO protection
2264	 */
2265	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2266		*pte = pa | PG_V | PG_U;
2267	else
2268		*pte = pa | PG_V | PG_U | PG_MANAGED;
2269
2270	return mpte;
2271}
2272
2273/*
2274 * Make a temporary mapping for a physical address.  This is only intended
2275 * to be used for panic dumps.
2276 */
2277void *
2278pmap_kenter_temporary(vm_offset_t pa, int i)
2279{
2280	vm_offset_t va;
2281
2282	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2283	pmap_kenter(va, pa);
2284#ifndef I386_CPU
2285	invlpg(va);
2286#else
2287	invltlb();
2288#endif
2289	return ((void *)crashdumpmap);
2290}
2291
2292#define MAX_INIT_PT (96)
2293/*
2294 * pmap_object_init_pt preloads the ptes for a given object
2295 * into the specified pmap.  This eliminates the blast of soft
2296 * faults on process startup and immediately after an mmap.
2297 */
2298void
2299pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2300		    vm_object_t object, vm_pindex_t pindex,
2301		    vm_size_t size, int limit)
2302{
2303	vm_offset_t tmpidx;
2304	int psize;
2305	vm_page_t p, mpte;
2306	int objpgs;
2307
2308	if (pmap == NULL || object == NULL)
2309		return;
2310
2311	/*
2312	 * This code maps large physical mmap regions into the
2313	 * processor address space.  Note that some shortcuts
2314	 * are taken, but the code works.
2315	 */
2316	if (pseflag && (object->type == OBJT_DEVICE) &&
2317	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2318		int i;
2319		vm_page_t m[1];
2320		unsigned int ptepindex;
2321		int npdes;
2322		pd_entry_t ptepa;
2323
2324		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2325			return;
2326
2327retry:
2328		p = vm_page_lookup(object, pindex);
2329		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2330			goto retry;
2331
2332		if (p == NULL) {
2333			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2334			if (p == NULL)
2335				return;
2336			m[0] = p;
2337
2338			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2339				vm_page_lock_queues();
2340				vm_page_free(p);
2341				vm_page_unlock_queues();
2342				return;
2343			}
2344
2345			p = vm_page_lookup(object, pindex);
2346			vm_page_wakeup(p);
2347		}
2348
2349		ptepa = VM_PAGE_TO_PHYS(p);
2350		if (ptepa & (NBPDR - 1)) {
2351			return;
2352		}
2353
2354		p->valid = VM_PAGE_BITS_ALL;
2355
2356		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2357		npdes = size >> PDRSHIFT;
2358		for(i = 0; i < npdes; i++) {
2359			pmap->pm_pdir[ptepindex] =
2360			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2361			ptepa += NBPDR;
2362			ptepindex += 1;
2363		}
2364		vm_page_flag_set(p, PG_MAPPED);
2365		pmap_invalidate_all(kernel_pmap);
2366		return;
2367	}
2368
2369	psize = i386_btop(size);
2370
2371	if ((object->type != OBJT_VNODE) ||
2372	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2373	     (object->resident_page_count > MAX_INIT_PT))) {
2374		return;
2375	}
2376
2377	if (psize + pindex > object->size) {
2378		if (object->size < pindex)
2379			return;
2380		psize = object->size - pindex;
2381	}
2382
2383	mpte = NULL;
2384	/*
2385	 * if we are processing a major portion of the object, then scan the
2386	 * entire thing.
2387	 */
2388	if (psize > (object->resident_page_count >> 2)) {
2389		objpgs = psize;
2390
2391		for (p = TAILQ_FIRST(&object->memq);
2392		    ((objpgs > 0) && (p != NULL));
2393		    p = TAILQ_NEXT(p, listq)) {
2394
2395			if (p->pindex < pindex || p->pindex - pindex >= psize) {
2396				continue;
2397			}
2398			tmpidx = p->pindex - pindex;
2399			/*
2400			 * don't allow an madvise to blow away our really
2401			 * free pages allocating pv entries.
2402			 */
2403			if ((limit & MAP_PREFAULT_MADVISE) &&
2404			    cnt.v_free_count < cnt.v_free_reserved) {
2405				break;
2406			}
2407			vm_page_lock_queues();
2408			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2409				(p->busy == 0) &&
2410			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2411				if ((p->queue - p->pc) == PQ_CACHE)
2412					vm_page_deactivate(p);
2413				vm_page_busy(p);
2414				vm_page_unlock_queues();
2415				mpte = pmap_enter_quick(pmap,
2416					addr + i386_ptob(tmpidx), p, mpte);
2417				vm_page_lock_queues();
2418				vm_page_flag_set(p, PG_MAPPED);
2419				vm_page_wakeup(p);
2420			}
2421			vm_page_unlock_queues();
2422			objpgs -= 1;
2423		}
2424	} else {
2425		/*
2426		 * else lookup the pages one-by-one.
2427		 */
2428		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2429			/*
2430			 * don't allow an madvise to blow away our really
2431			 * free pages allocating pv entries.
2432			 */
2433			if ((limit & MAP_PREFAULT_MADVISE) &&
2434			    cnt.v_free_count < cnt.v_free_reserved) {
2435				break;
2436			}
2437			p = vm_page_lookup(object, tmpidx + pindex);
2438			if (p == NULL)
2439				continue;
2440			vm_page_lock_queues();
2441			if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2442				(p->busy == 0) &&
2443			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2444				if ((p->queue - p->pc) == PQ_CACHE)
2445					vm_page_deactivate(p);
2446				vm_page_busy(p);
2447				vm_page_unlock_queues();
2448				mpte = pmap_enter_quick(pmap,
2449					addr + i386_ptob(tmpidx), p, mpte);
2450				vm_page_lock_queues();
2451				vm_page_flag_set(p, PG_MAPPED);
2452				vm_page_wakeup(p);
2453			}
2454			vm_page_unlock_queues();
2455		}
2456	}
2457	return;
2458}
2459
2460/*
2461 * pmap_prefault provides a quick way of clustering
2462 * pagefaults into a processes address space.  It is a "cousin"
2463 * of pmap_object_init_pt, except it runs at page fault time instead
2464 * of mmap time.
2465 */
2466#define PFBAK 4
2467#define PFFOR 4
2468#define PAGEORDER_SIZE (PFBAK+PFFOR)
2469
2470static int pmap_prefault_pageorder[] = {
2471	-PAGE_SIZE, PAGE_SIZE,
2472	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2473	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2474	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2475};
2476
2477void
2478pmap_prefault(pmap, addra, entry)
2479	pmap_t pmap;
2480	vm_offset_t addra;
2481	vm_map_entry_t entry;
2482{
2483	int i;
2484	vm_offset_t starta;
2485	vm_offset_t addr;
2486	vm_pindex_t pindex;
2487	vm_page_t m, mpte;
2488	vm_object_t object;
2489
2490	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2491		return;
2492
2493	object = entry->object.vm_object;
2494
2495	starta = addra - PFBAK * PAGE_SIZE;
2496	if (starta < entry->start) {
2497		starta = entry->start;
2498	} else if (starta > addra) {
2499		starta = 0;
2500	}
2501
2502	mpte = NULL;
2503	for (i = 0; i < PAGEORDER_SIZE; i++) {
2504		vm_object_t lobject;
2505		pt_entry_t *pte;
2506
2507		addr = addra + pmap_prefault_pageorder[i];
2508		if (addr > addra + (PFFOR * PAGE_SIZE))
2509			addr = 0;
2510
2511		if (addr < starta || addr >= entry->end)
2512			continue;
2513
2514		if ((*pmap_pde(pmap, addr)) == NULL)
2515			continue;
2516
2517		pte = vtopte(addr);
2518		if (*pte)
2519			continue;
2520
2521		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2522		lobject = object;
2523		for (m = vm_page_lookup(lobject, pindex);
2524		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2525		    lobject = lobject->backing_object) {
2526			if (lobject->backing_object_offset & PAGE_MASK)
2527				break;
2528			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2529			m = vm_page_lookup(lobject->backing_object, pindex);
2530		}
2531
2532		/*
2533		 * give-up when a page is not in memory
2534		 */
2535		if (m == NULL)
2536			break;
2537		vm_page_lock_queues();
2538		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2539			(m->busy == 0) &&
2540		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2541
2542			if ((m->queue - m->pc) == PQ_CACHE) {
2543				vm_page_deactivate(m);
2544			}
2545			vm_page_busy(m);
2546			vm_page_unlock_queues();
2547			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2548			vm_page_lock_queues();
2549			vm_page_flag_set(m, PG_MAPPED);
2550			vm_page_wakeup(m);
2551		}
2552		vm_page_unlock_queues();
2553	}
2554}
2555
2556/*
2557 *	Routine:	pmap_change_wiring
2558 *	Function:	Change the wiring attribute for a map/virtual-address
2559 *			pair.
2560 *	In/out conditions:
2561 *			The mapping must already exist in the pmap.
2562 */
2563void
2564pmap_change_wiring(pmap, va, wired)
2565	register pmap_t pmap;
2566	vm_offset_t va;
2567	boolean_t wired;
2568{
2569	register pt_entry_t *pte;
2570
2571	if (pmap == NULL)
2572		return;
2573
2574	pte = pmap_pte(pmap, va);
2575
2576	if (wired && !pmap_pte_w(pte))
2577		pmap->pm_stats.wired_count++;
2578	else if (!wired && pmap_pte_w(pte))
2579		pmap->pm_stats.wired_count--;
2580
2581	/*
2582	 * Wiring is not a hardware characteristic so there is no need to
2583	 * invalidate TLB.
2584	 */
2585	pmap_pte_set_w(pte, wired);
2586}
2587
2588
2589
2590/*
2591 *	Copy the range specified by src_addr/len
2592 *	from the source map to the range dst_addr/len
2593 *	in the destination map.
2594 *
2595 *	This routine is only advisory and need not do anything.
2596 */
2597
2598void
2599pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2600	  vm_offset_t src_addr)
2601{
2602	vm_offset_t addr;
2603	vm_offset_t end_addr = src_addr + len;
2604	vm_offset_t pdnxt;
2605	pd_entry_t src_frame, dst_frame;
2606	vm_page_t m;
2607
2608	if (dst_addr != src_addr)
2609		return;
2610
2611	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2612	if (src_frame != (PTDpde & PG_FRAME))
2613		return;
2614
2615	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2616	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2617		pt_entry_t *src_pte, *dst_pte;
2618		vm_page_t dstmpte, srcmpte;
2619		pd_entry_t srcptepaddr;
2620		unsigned ptepindex;
2621
2622		if (addr >= UPT_MIN_ADDRESS)
2623			panic("pmap_copy: invalid to pmap_copy page tables\n");
2624
2625		/*
2626		 * Don't let optional prefaulting of pages make us go
2627		 * way below the low water mark of free pages or way
2628		 * above high water mark of used pv entries.
2629		 */
2630		if (cnt.v_free_count < cnt.v_free_reserved ||
2631		    pv_entry_count > pv_entry_high_water)
2632			break;
2633
2634		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2635		ptepindex = addr >> PDRSHIFT;
2636
2637		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2638		if (srcptepaddr == 0)
2639			continue;
2640
2641		if (srcptepaddr & PG_PS) {
2642			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2643				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2644				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2645			}
2646			continue;
2647		}
2648
2649		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2650		if ((srcmpte == NULL) ||
2651		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2652			continue;
2653
2654		if (pdnxt > end_addr)
2655			pdnxt = end_addr;
2656
2657		/*
2658		 * Have to recheck this before every avtopte() call below
2659		 * in case we have blocked and something else used APTDpde.
2660		 */
2661		if (dst_frame != (APTDpde & PG_FRAME)) {
2662			APTDpde = dst_frame | PG_RW | PG_V;
2663			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2664		}
2665		src_pte = vtopte(addr);
2666		dst_pte = avtopte(addr);
2667		while (addr < pdnxt) {
2668			pt_entry_t ptetemp;
2669			ptetemp = *src_pte;
2670			/*
2671			 * we only virtual copy managed pages
2672			 */
2673			if ((ptetemp & PG_MANAGED) != 0) {
2674				/*
2675				 * We have to check after allocpte for the
2676				 * pte still being around...  allocpte can
2677				 * block.
2678				 */
2679				dstmpte = pmap_allocpte(dst_pmap, addr);
2680				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2681					/*
2682					 * Clear the modified and
2683					 * accessed (referenced) bits
2684					 * during the copy.
2685					 */
2686					m = PHYS_TO_VM_PAGE(ptetemp);
2687					*dst_pte = ptetemp & ~(PG_M | PG_A);
2688					dst_pmap->pm_stats.resident_count++;
2689					pmap_insert_entry(dst_pmap, addr,
2690						dstmpte, m);
2691	 			} else {
2692					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2693				}
2694				if (dstmpte->hold_count >= srcmpte->hold_count)
2695					break;
2696			}
2697			addr += PAGE_SIZE;
2698			src_pte++;
2699			dst_pte++;
2700		}
2701	}
2702}
2703
2704#ifdef SMP
2705
2706/*
2707 *	pmap_zpi_switchin*()
2708 *
2709 *	These functions allow us to avoid doing IPIs alltogether in certain
2710 *	temporary page-mapping situations (page zeroing).  Instead to deal
2711 *	with being preempted and moved onto a different cpu we invalidate
2712 *	the page when the scheduler switches us in.  This does not occur
2713 *	very often so we remain relatively optimal with very little effort.
2714 */
2715static void
2716pmap_zpi_switchin12(void)
2717{
2718	invlpg((u_int)CADDR1);
2719	invlpg((u_int)CADDR2);
2720}
2721
2722static void
2723pmap_zpi_switchin2(void)
2724{
2725	invlpg((u_int)CADDR2);
2726}
2727
2728static void
2729pmap_zpi_switchin3(void)
2730{
2731	invlpg((u_int)CADDR3);
2732}
2733
2734#endif
2735
2736/*
2737 *	pmap_zero_page zeros the specified hardware page by mapping
2738 *	the page into KVM and using bzero to clear its contents.
2739 */
2740void
2741pmap_zero_page(vm_page_t m)
2742{
2743	vm_offset_t phys;
2744
2745	phys = VM_PAGE_TO_PHYS(m);
2746	if (*CMAP2)
2747		panic("pmap_zero_page: CMAP2 busy");
2748	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2749#ifdef I386_CPU
2750	invltlb();
2751#else
2752#ifdef SMP
2753	curthread->td_switchin = pmap_zpi_switchin2;
2754#endif
2755	invlpg((u_int)CADDR2);
2756#endif
2757#if defined(I686_CPU)
2758	if (cpu_class == CPUCLASS_686)
2759		i686_pagezero(CADDR2);
2760	else
2761#endif
2762		bzero(CADDR2, PAGE_SIZE);
2763#ifdef SMP
2764	curthread->td_switchin = NULL;
2765#endif
2766	*CMAP2 = 0;
2767}
2768
2769/*
2770 *	pmap_zero_page_area zeros the specified hardware page by mapping
2771 *	the page into KVM and using bzero to clear its contents.
2772 *
2773 *	off and size may not cover an area beyond a single hardware page.
2774 */
2775void
2776pmap_zero_page_area(vm_page_t m, int off, int size)
2777{
2778	vm_offset_t phys;
2779
2780	phys = VM_PAGE_TO_PHYS(m);
2781	if (*CMAP2)
2782		panic("pmap_zero_page: CMAP2 busy");
2783	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2784#ifdef I386_CPU
2785	invltlb();
2786#else
2787#ifdef SMP
2788	curthread->td_switchin = pmap_zpi_switchin2;
2789#endif
2790	invlpg((u_int)CADDR2);
2791#endif
2792#if defined(I686_CPU)
2793	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2794		i686_pagezero(CADDR2);
2795	else
2796#endif
2797		bzero((char *)CADDR2 + off, size);
2798#ifdef SMP
2799	curthread->td_switchin = NULL;
2800#endif
2801	*CMAP2 = 0;
2802}
2803
2804/*
2805 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2806 *	the page into KVM and using bzero to clear its contents.  This
2807 *	is intended to be called from the vm_pagezero process only and
2808 *	outside of Giant.
2809 */
2810void
2811pmap_zero_page_idle(vm_page_t m)
2812{
2813	vm_offset_t phys;
2814
2815	phys = VM_PAGE_TO_PHYS(m);
2816	if (*CMAP3)
2817		panic("pmap_zero_page: CMAP3 busy");
2818	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2819#ifdef I386_CPU
2820	invltlb();
2821#else
2822#ifdef SMP
2823	curthread->td_switchin = pmap_zpi_switchin3;
2824#endif
2825	invlpg((u_int)CADDR3);
2826#endif
2827#if defined(I686_CPU)
2828	if (cpu_class == CPUCLASS_686)
2829		i686_pagezero(CADDR3);
2830	else
2831#endif
2832		bzero(CADDR3, PAGE_SIZE);
2833#ifdef SMP
2834	curthread->td_switchin = NULL;
2835#endif
2836	*CMAP3 = 0;
2837}
2838
2839/*
2840 *	pmap_copy_page copies the specified (machine independent)
2841 *	page by mapping the page into virtual memory and using
2842 *	bcopy to copy the page, one machine dependent page at a
2843 *	time.
2844 */
2845void
2846pmap_copy_page(vm_page_t src, vm_page_t dst)
2847{
2848
2849	if (*CMAP1)
2850		panic("pmap_copy_page: CMAP1 busy");
2851	if (*CMAP2)
2852		panic("pmap_copy_page: CMAP2 busy");
2853	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2854	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2855#ifdef I386_CPU
2856	invltlb();
2857#else
2858#ifdef SMP
2859	curthread->td_switchin = pmap_zpi_switchin12;
2860#endif
2861	invlpg((u_int)CADDR1);
2862	invlpg((u_int)CADDR2);
2863#endif
2864	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2865#ifdef SMP
2866	curthread->td_switchin = NULL;
2867#endif
2868	*CMAP1 = 0;
2869	*CMAP2 = 0;
2870}
2871
2872
2873/*
2874 *	Routine:	pmap_pageable
2875 *	Function:
2876 *		Make the specified pages (by pmap, offset)
2877 *		pageable (or not) as requested.
2878 *
2879 *		A page which is not pageable may not take
2880 *		a fault; therefore, its page table entry
2881 *		must remain valid for the duration.
2882 *
2883 *		This routine is merely advisory; pmap_enter
2884 *		will specify that these pages are to be wired
2885 *		down (or not) as appropriate.
2886 */
2887void
2888pmap_pageable(pmap, sva, eva, pageable)
2889	pmap_t pmap;
2890	vm_offset_t sva, eva;
2891	boolean_t pageable;
2892{
2893}
2894
2895/*
2896 * Returns true if the pmap's pv is one of the first
2897 * 16 pvs linked to from this page.  This count may
2898 * be changed upwards or downwards in the future; it
2899 * is only necessary that true be returned for a small
2900 * subset of pmaps for proper page aging.
2901 */
2902boolean_t
2903pmap_page_exists_quick(pmap, m)
2904	pmap_t pmap;
2905	vm_page_t m;
2906{
2907	pv_entry_t pv;
2908	int loops = 0;
2909	int s;
2910
2911	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2912		return FALSE;
2913
2914	s = splvm();
2915
2916	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2917		if (pv->pv_pmap == pmap) {
2918			splx(s);
2919			return TRUE;
2920		}
2921		loops++;
2922		if (loops >= 16)
2923			break;
2924	}
2925	splx(s);
2926	return (FALSE);
2927}
2928
2929#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2930/*
2931 * Remove all pages from specified address space
2932 * this aids process exit speeds.  Also, this code
2933 * is special cased for current process only, but
2934 * can have the more generic (and slightly slower)
2935 * mode enabled.  This is much faster than pmap_remove
2936 * in the case of running down an entire address space.
2937 */
2938void
2939pmap_remove_pages(pmap, sva, eva)
2940	pmap_t pmap;
2941	vm_offset_t sva, eva;
2942{
2943	pt_entry_t *pte, tpte;
2944	vm_page_t m;
2945	pv_entry_t pv, npv;
2946	int s;
2947
2948#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2949	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2950		printf("warning: pmap_remove_pages called with non-current pmap\n");
2951		return;
2952	}
2953#endif
2954
2955	s = splvm();
2956	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2957
2958		if (pv->pv_va >= eva || pv->pv_va < sva) {
2959			npv = TAILQ_NEXT(pv, pv_plist);
2960			continue;
2961		}
2962
2963#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2964		pte = vtopte(pv->pv_va);
2965#else
2966		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2967#endif
2968		tpte = *pte;
2969
2970		if (tpte == 0) {
2971			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2972							pte, pv->pv_va);
2973			panic("bad pte");
2974		}
2975
2976/*
2977 * We cannot remove wired pages from a process' mapping at this time
2978 */
2979		if (tpte & PG_W) {
2980			npv = TAILQ_NEXT(pv, pv_plist);
2981			continue;
2982		}
2983
2984		m = PHYS_TO_VM_PAGE(tpte);
2985		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2986		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2987		    m, m->phys_addr, tpte));
2988
2989		KASSERT(m < &vm_page_array[vm_page_array_size],
2990			("pmap_remove_pages: bad tpte %x", tpte));
2991
2992		pv->pv_pmap->pm_stats.resident_count--;
2993
2994		*pte = 0;
2995
2996		/*
2997		 * Update the vm_page_t clean and reference bits.
2998		 */
2999		if (tpte & PG_M) {
3000			vm_page_dirty(m);
3001		}
3002
3003		npv = TAILQ_NEXT(pv, pv_plist);
3004		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3005
3006		m->md.pv_list_count--;
3007		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3008		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3009			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3010		}
3011
3012		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3013		free_pv_entry(pv);
3014	}
3015	splx(s);
3016	pmap_invalidate_all(pmap);
3017}
3018
3019/*
3020 * pmap_testbit tests bits in pte's
3021 * note that the testbit/changebit routines are inline,
3022 * and a lot of things compile-time evaluate.
3023 */
3024static boolean_t
3025pmap_testbit(m, bit)
3026	vm_page_t m;
3027	int bit;
3028{
3029	pv_entry_t pv;
3030	pt_entry_t *pte;
3031	int s;
3032
3033	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3034		return FALSE;
3035
3036	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3037		return FALSE;
3038
3039	s = splvm();
3040
3041	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3042		/*
3043		 * if the bit being tested is the modified bit, then
3044		 * mark clean_map and ptes as never
3045		 * modified.
3046		 */
3047		if (bit & (PG_A|PG_M)) {
3048			if (!pmap_track_modified(pv->pv_va))
3049				continue;
3050		}
3051
3052#if defined(PMAP_DIAGNOSTIC)
3053		if (!pv->pv_pmap) {
3054			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3055			continue;
3056		}
3057#endif
3058		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3059		if (*pte & bit) {
3060			splx(s);
3061			return TRUE;
3062		}
3063	}
3064	splx(s);
3065	return (FALSE);
3066}
3067
3068/*
3069 * this routine is used to modify bits in ptes
3070 */
3071static __inline void
3072pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3073{
3074	register pv_entry_t pv;
3075	register pt_entry_t *pte;
3076	int s;
3077
3078	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3079		return;
3080
3081	s = splvm();
3082
3083	/*
3084	 * Loop over all current mappings setting/clearing as appropos If
3085	 * setting RO do we need to clear the VAC?
3086	 */
3087	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3088		/*
3089		 * don't write protect pager mappings
3090		 */
3091		if (!setem && (bit == PG_RW)) {
3092			if (!pmap_track_modified(pv->pv_va))
3093				continue;
3094		}
3095
3096#if defined(PMAP_DIAGNOSTIC)
3097		if (!pv->pv_pmap) {
3098			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3099			continue;
3100		}
3101#endif
3102
3103		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3104
3105		if (setem) {
3106			*pte |= bit;
3107			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3108		} else {
3109			pt_entry_t pbits = *pte;
3110			if (pbits & bit) {
3111				if (bit == PG_RW) {
3112					if (pbits & PG_M) {
3113						vm_page_dirty(m);
3114					}
3115					*pte = pbits & ~(PG_M|PG_RW);
3116				} else {
3117					*pte = pbits & ~bit;
3118				}
3119				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3120			}
3121		}
3122	}
3123	splx(s);
3124}
3125
3126/*
3127 *      pmap_page_protect:
3128 *
3129 *      Lower the permission for all mappings to a given page.
3130 */
3131void
3132pmap_page_protect(vm_page_t m, vm_prot_t prot)
3133{
3134	if ((prot & VM_PROT_WRITE) == 0) {
3135		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3136			pmap_changebit(m, PG_RW, FALSE);
3137		} else {
3138			pmap_remove_all(m);
3139		}
3140	}
3141}
3142
3143vm_offset_t
3144pmap_phys_address(ppn)
3145	int ppn;
3146{
3147	return (i386_ptob(ppn));
3148}
3149
3150/*
3151 *	pmap_ts_referenced:
3152 *
3153 *	Return a count of reference bits for a page, clearing those bits.
3154 *	It is not necessary for every reference bit to be cleared, but it
3155 *	is necessary that 0 only be returned when there are truly no
3156 *	reference bits set.
3157 *
3158 *	XXX: The exact number of bits to check and clear is a matter that
3159 *	should be tested and standardized at some point in the future for
3160 *	optimal aging of shared pages.
3161 */
3162int
3163pmap_ts_referenced(vm_page_t m)
3164{
3165	register pv_entry_t pv, pvf, pvn;
3166	pt_entry_t *pte;
3167	int s;
3168	int rtval = 0;
3169
3170	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3171		return (rtval);
3172
3173	s = splvm();
3174
3175	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3176
3177		pvf = pv;
3178
3179		do {
3180			pvn = TAILQ_NEXT(pv, pv_list);
3181
3182			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3183
3184			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3185
3186			if (!pmap_track_modified(pv->pv_va))
3187				continue;
3188
3189			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3190
3191			if (pte && (*pte & PG_A)) {
3192				*pte &= ~PG_A;
3193
3194				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3195
3196				rtval++;
3197				if (rtval > 4) {
3198					break;
3199				}
3200			}
3201		} while ((pv = pvn) != NULL && pv != pvf);
3202	}
3203	splx(s);
3204
3205	return (rtval);
3206}
3207
3208/*
3209 *	pmap_is_modified:
3210 *
3211 *	Return whether or not the specified physical page was modified
3212 *	in any physical maps.
3213 */
3214boolean_t
3215pmap_is_modified(vm_page_t m)
3216{
3217	return pmap_testbit(m, PG_M);
3218}
3219
3220/*
3221 *	Clear the modify bits on the specified physical page.
3222 */
3223void
3224pmap_clear_modify(vm_page_t m)
3225{
3226	pmap_changebit(m, PG_M, FALSE);
3227}
3228
3229/*
3230 *	pmap_clear_reference:
3231 *
3232 *	Clear the reference bit on the specified physical page.
3233 */
3234void
3235pmap_clear_reference(vm_page_t m)
3236{
3237	pmap_changebit(m, PG_A, FALSE);
3238}
3239
3240/*
3241 * Miscellaneous support routines follow
3242 */
3243
3244static void
3245i386_protection_init()
3246{
3247	register int *kp, prot;
3248
3249	kp = protection_codes;
3250	for (prot = 0; prot < 8; prot++) {
3251		switch (prot) {
3252		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3253			/*
3254			 * Read access is also 0. There isn't any execute bit,
3255			 * so just make it readable.
3256			 */
3257		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3258		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3259		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3260			*kp++ = 0;
3261			break;
3262		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3263		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3264		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3265		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3266			*kp++ = PG_RW;
3267			break;
3268		}
3269	}
3270}
3271
3272/*
3273 * Map a set of physical memory pages into the kernel virtual
3274 * address space. Return a pointer to where it is mapped. This
3275 * routine is intended to be used for mapping device memory,
3276 * NOT real memory.
3277 */
3278void *
3279pmap_mapdev(pa, size)
3280	vm_offset_t pa;
3281	vm_size_t size;
3282{
3283	vm_offset_t va, tmpva, offset;
3284
3285	offset = pa & PAGE_MASK;
3286	size = round_page(offset + size);
3287	pa = trunc_page(pa);
3288
3289	/* We have a 1MB direct mapped region at KERNBASE */
3290	if (pa < 0x00100000 && pa + size <= 0x00100000)
3291		return (void *)(pa + KERNBASE);
3292
3293	GIANT_REQUIRED;
3294	va = kmem_alloc_pageable(kernel_map, size);
3295	if (!va)
3296		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3297
3298	for (tmpva = va; size > 0; ) {
3299		pmap_kenter(tmpva, pa);
3300		size -= PAGE_SIZE;
3301		tmpva += PAGE_SIZE;
3302		pa += PAGE_SIZE;
3303	}
3304	pmap_invalidate_range(kernel_pmap, va, tmpva);
3305	return (void *)(va + offset);
3306}
3307
3308void
3309pmap_unmapdev(va, size)
3310	vm_offset_t va;
3311	vm_size_t size;
3312{
3313	vm_offset_t base, offset, tmpva;
3314	pt_entry_t *pte;
3315
3316	base = va & PG_FRAME;
3317	offset = va & PAGE_MASK;
3318	size = round_page(offset + size);
3319	if (base >= KERNBASE && va + size <= KERNBASE + 0x00100000)
3320		return;		/* direct mapped */
3321	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3322		pte = vtopte(tmpva);
3323		*pte = 0;
3324	}
3325	pmap_invalidate_range(kernel_pmap, va, tmpva);
3326	kmem_free(kernel_map, base, size);
3327}
3328
3329/*
3330 * perform the pmap work for mincore
3331 */
3332int
3333pmap_mincore(pmap, addr)
3334	pmap_t pmap;
3335	vm_offset_t addr;
3336{
3337	pt_entry_t *ptep, pte;
3338	vm_page_t m;
3339	int val = 0;
3340
3341	ptep = pmap_pte(pmap, addr);
3342	if (ptep == 0) {
3343		return 0;
3344	}
3345
3346	if ((pte = *ptep) != 0) {
3347		vm_offset_t pa;
3348
3349		val = MINCORE_INCORE;
3350		if ((pte & PG_MANAGED) == 0)
3351			return val;
3352
3353		pa = pte & PG_FRAME;
3354
3355		m = PHYS_TO_VM_PAGE(pa);
3356
3357		/*
3358		 * Modified by us
3359		 */
3360		if (pte & PG_M)
3361			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3362		/*
3363		 * Modified by someone
3364		 */
3365		else if (m->dirty || pmap_is_modified(m))
3366			val |= MINCORE_MODIFIED_OTHER;
3367		/*
3368		 * Referenced by us
3369		 */
3370		if (pte & PG_A)
3371			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3372
3373		/*
3374		 * Referenced by someone
3375		 */
3376		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3377			val |= MINCORE_REFERENCED_OTHER;
3378			vm_page_flag_set(m, PG_REFERENCED);
3379		}
3380	}
3381	return val;
3382}
3383
3384void
3385pmap_activate(struct thread *td)
3386{
3387	struct proc *p = td->td_proc;
3388	pmap_t	pmap;
3389	u_int32_t  cr3;
3390
3391	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3392#if defined(SMP)
3393	pmap->pm_active |= PCPU_GET(cpumask);
3394#else
3395	pmap->pm_active |= 1;
3396#endif
3397	cr3 = vtophys(pmap->pm_pdir);
3398	/* XXXKSE this is wrong.
3399	 * pmap_activate is for the current thread on the current cpu
3400	 */
3401	if (p->p_flag & P_KSES) {
3402		/* Make sure all other cr3 entries are updated. */
3403		/* what if they are running?  XXXKSE (maybe abort them) */
3404		FOREACH_THREAD_IN_PROC(p, td) {
3405			td->td_pcb->pcb_cr3 = cr3;
3406		}
3407	} else {
3408		td->td_pcb->pcb_cr3 = cr3;
3409	}
3410	load_cr3(cr3);
3411#ifdef SWTCH_OPTIM_STATS
3412	tlb_flush_count++;
3413#endif
3414}
3415
3416vm_offset_t
3417pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3418{
3419
3420	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3421		return addr;
3422	}
3423
3424	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3425	return addr;
3426}
3427
3428
3429#if defined(PMAP_DEBUG)
3430pmap_pid_dump(int pid)
3431{
3432	pmap_t pmap;
3433	struct proc *p;
3434	int npte = 0;
3435	int index;
3436
3437	sx_slock(&allproc_lock);
3438	LIST_FOREACH(p, &allproc, p_list) {
3439		if (p->p_pid != pid)
3440			continue;
3441
3442		if (p->p_vmspace) {
3443			int i,j;
3444			index = 0;
3445			pmap = vmspace_pmap(p->p_vmspace);
3446			for (i = 0; i < NPDEPG; i++) {
3447				pd_entry_t *pde;
3448				pt_entry_t *pte;
3449				vm_offset_t base = i << PDRSHIFT;
3450
3451				pde = &pmap->pm_pdir[i];
3452				if (pde && pmap_pde_v(pde)) {
3453					for (j = 0; j < NPTEPG; j++) {
3454						vm_offset_t va = base + (j << PAGE_SHIFT);
3455						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3456							if (index) {
3457								index = 0;
3458								printf("\n");
3459							}
3460							sx_sunlock(&allproc_lock);
3461							return npte;
3462						}
3463						pte = pmap_pte_quick(pmap, va);
3464						if (pte && pmap_pte_v(pte)) {
3465							pt_entry_t pa;
3466							vm_page_t m;
3467							pa = *pte;
3468							m = PHYS_TO_VM_PAGE(pa);
3469							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3470								va, pa, m->hold_count, m->wire_count, m->flags);
3471							npte++;
3472							index++;
3473							if (index >= 2) {
3474								index = 0;
3475								printf("\n");
3476							} else {
3477								printf(" ");
3478							}
3479						}
3480					}
3481				}
3482			}
3483		}
3484	}
3485	sx_sunlock(&allproc_lock);
3486	return npte;
3487}
3488#endif
3489
3490#if defined(DEBUG)
3491
3492static void	pads(pmap_t pm);
3493void		pmap_pvdump(vm_offset_t pa);
3494
3495/* print address space of pmap*/
3496static void
3497pads(pm)
3498	pmap_t pm;
3499{
3500	int i, j;
3501	vm_offset_t va;
3502	pt_entry_t *ptep;
3503
3504	if (pm == kernel_pmap)
3505		return;
3506	for (i = 0; i < NPDEPG; i++)
3507		if (pm->pm_pdir[i])
3508			for (j = 0; j < NPTEPG; j++) {
3509				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3510				if (pm == kernel_pmap && va < KERNBASE)
3511					continue;
3512				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3513					continue;
3514				ptep = pmap_pte_quick(pm, va);
3515				if (pmap_pte_v(ptep))
3516					printf("%x:%x ", va, *ptep);
3517			};
3518
3519}
3520
3521void
3522pmap_pvdump(pa)
3523	vm_offset_t pa;
3524{
3525	pv_entry_t pv;
3526	vm_page_t m;
3527
3528	printf("pa %x", pa);
3529	m = PHYS_TO_VM_PAGE(pa);
3530	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3531		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3532		pads(pv->pv_pmap);
3533	}
3534	printf(" ");
3535}
3536#endif
3537