pmap.c revision 100912
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 100912 2002-07-30 06:45:39Z alc $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154struct pmaplist allpmaps;
155
156vm_offset_t avail_start;	/* PA of first available physical page */
157vm_offset_t avail_end;		/* PA of last available physical page */
158vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
159vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
160static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
161static int pgeflag;		/* PG_G or-in */
162static int pseflag;		/* PG_PS or-in */
163
164static vm_object_t kptobj;
165
166static int nkpt;
167vm_offset_t kernel_vm_end;
168extern u_int32_t KERNend;
169
170/*
171 * Data for the pv entry allocation mechanism
172 */
173static uma_zone_t pvzone;
174static struct vm_object pvzone_obj;
175static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
176static int pmap_pagedaemon_waken = 0;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2, CADDR3;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static void	pmap_remove_all(vm_page_t m);
207static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
208				      vm_page_t m, vm_page_t mpte);
209static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
210static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
211static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
212					vm_offset_t va);
213static boolean_t pmap_testbit(vm_page_t m, int bit);
214static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
215		vm_page_t mpte, vm_page_t m);
216
217static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
218
219static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
220static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
221static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
222static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
223static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
224static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
225static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
226
227static pd_entry_t pdir4mb;
228
229/*
230 *	Routine:	pmap_pte
231 *	Function:
232 *		Extract the page table entry associated
233 *		with the given map/virtual_address pair.
234 */
235
236PMAP_INLINE pt_entry_t *
237pmap_pte(pmap, va)
238	register pmap_t pmap;
239	vm_offset_t va;
240{
241	pd_entry_t *pdeaddr;
242
243	if (pmap) {
244		pdeaddr = pmap_pde(pmap, va);
245		if (*pdeaddr & PG_PS)
246			return pdeaddr;
247		if (*pdeaddr) {
248			return get_ptbase(pmap) + i386_btop(va);
249		}
250	}
251	return (0);
252}
253
254/*
255 * Move the kernel virtual free pointer to the next
256 * 4MB.  This is used to help improve performance
257 * by using a large (4MB) page for much of the kernel
258 * (.text, .data, .bss)
259 */
260static vm_offset_t
261pmap_kmem_choose(vm_offset_t addr)
262{
263	vm_offset_t newaddr = addr;
264
265#ifndef DISABLE_PSE
266	if (cpu_feature & CPUID_PSE)
267		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
268#endif
269	return newaddr;
270}
271
272/*
273 *	Bootstrap the system enough to run with virtual memory.
274 *
275 *	On the i386 this is called after mapping has already been enabled
276 *	and just syncs the pmap module with what has already been done.
277 *	[We can't call it easily with mapping off since the kernel is not
278 *	mapped with PA == VA, hence we would have to relocate every address
279 *	from the linked base (virtual) address "KERNBASE" to the actual
280 *	(physical) address starting relative to 0]
281 */
282void
283pmap_bootstrap(firstaddr, loadaddr)
284	vm_offset_t firstaddr;
285	vm_offset_t loadaddr;
286{
287	vm_offset_t va;
288	pt_entry_t *pte;
289	int i;
290
291	avail_start = firstaddr;
292
293	/*
294	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
295	 * large. It should instead be correctly calculated in locore.s and
296	 * not based on 'first' (which is a physical address, not a virtual
297	 * address, for the start of unused physical memory). The kernel
298	 * page tables are NOT double mapped and thus should not be included
299	 * in this calculation.
300	 */
301	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
302	virtual_avail = pmap_kmem_choose(virtual_avail);
303
304	virtual_end = VM_MAX_KERNEL_ADDRESS;
305
306	/*
307	 * Initialize protection array.
308	 */
309	i386_protection_init();
310
311	/*
312	 * Initialize the kernel pmap (which is statically allocated).
313	 */
314	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
315	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
316	TAILQ_INIT(&kernel_pmap->pm_pvlist);
317	LIST_INIT(&allpmaps);
318	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
319	nkpt = NKPT;
320
321	/*
322	 * Reserve some special page table entries/VA space for temporary
323	 * mapping of pages.
324	 */
325#define	SYSMAP(c, p, v, n)	\
326	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
327
328	va = virtual_avail;
329	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
330
331	/*
332	 * CMAP1/CMAP2 are used for zeroing and copying pages.
333	 * CMAP3 is used for the idle process page zeroing.
334	 */
335	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
336	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
337	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
338
339	/*
340	 * Crashdump maps.
341	 */
342	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
343
344	/*
345	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
346	 * XXX ptmmap is not used.
347	 */
348	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
349
350	/*
351	 * msgbufp is used to map the system message buffer.
352	 * XXX msgbufmap is not used.
353	 */
354	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
355	       atop(round_page(MSGBUF_SIZE)))
356
357	/*
358	 * ptemap is used for pmap_pte_quick
359	 */
360	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
361
362	virtual_avail = va;
363
364	*CMAP1 = *CMAP2 = 0;
365	for (i = 0; i < NKPT; i++)
366		PTD[i] = 0;
367
368	pgeflag = 0;
369#ifndef DISABLE_PG_G
370	if (cpu_feature & CPUID_PGE)
371		pgeflag = PG_G;
372#endif
373
374/*
375 * Initialize the 4MB page size flag
376 */
377	pseflag = 0;
378/*
379 * The 4MB page version of the initial
380 * kernel page mapping.
381 */
382	pdir4mb = 0;
383
384#ifndef DISABLE_PSE
385	if (cpu_feature & CPUID_PSE) {
386		pd_entry_t ptditmp;
387		/*
388		 * Note that we have enabled PSE mode
389		 */
390		pseflag = PG_PS;
391		ptditmp = *(PTmap + i386_btop(KERNBASE));
392		ptditmp &= ~(NBPDR - 1);
393		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
394		pdir4mb = ptditmp;
395	}
396#endif
397#ifndef SMP
398	/*
399	 * Turn on PGE/PSE.  SMP does this later on since the
400	 * 4K page tables are required for AP boot (for now).
401	 * XXX fixme.
402	 */
403	pmap_set_opt();
404#endif
405#ifdef SMP
406	if (cpu_apic_address == 0)
407		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
408
409	/* local apic is mapped on last page */
410	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
411	    (cpu_apic_address & PG_FRAME));
412#endif
413	invltlb();
414}
415
416/*
417 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
418 * BSP will run this after all the AP's have started up.
419 */
420void
421pmap_set_opt(void)
422{
423	pt_entry_t *pte;
424	vm_offset_t va, endva;
425
426	if (pgeflag && (cpu_feature & CPUID_PGE)) {
427		load_cr4(rcr4() | CR4_PGE);
428		invltlb();		/* Insurance */
429	}
430#ifndef DISABLE_PSE
431	if (pseflag && (cpu_feature & CPUID_PSE)) {
432		load_cr4(rcr4() | CR4_PSE);
433		invltlb();		/* Insurance */
434	}
435#endif
436	if (PCPU_GET(cpuid) == 0) {
437#ifndef DISABLE_PSE
438		if (pdir4mb) {
439			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
440			invltlb();	/* Insurance */
441		}
442#endif
443		if (pgeflag) {
444			/* Turn on PG_G for text, data, bss pages. */
445			va = (vm_offset_t)btext;
446#ifndef DISABLE_PSE
447			if (pseflag && (cpu_feature & CPUID_PSE)) {
448				if (va < KERNBASE + (1 << PDRSHIFT))
449					va = KERNBASE + (1 << PDRSHIFT);
450			}
451#endif
452			endva = KERNBASE + KERNend;
453			while (va < endva) {
454				pte = vtopte(va);
455				if (*pte)
456					*pte |= pgeflag;
457				va += PAGE_SIZE;
458			}
459			invltlb();	/* Insurance */
460		}
461		/*
462		 * We do not need to broadcast the invltlb here, because
463		 * each AP does it the moment it is released from the boot
464		 * lock.  See ap_init().
465		 */
466	}
467}
468
469void *
470pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
471{
472	*flags = UMA_SLAB_PRIV;
473	return (void *)kmem_alloc(kernel_map, bytes);
474}
475
476/*
477 *	Initialize the pmap module.
478 *	Called by vm_init, to initialize any structures that the pmap
479 *	system needs to map virtual memory.
480 *	pmap_init has been enhanced to support in a fairly consistant
481 *	way, discontiguous physical memory.
482 */
483void
484pmap_init(phys_start, phys_end)
485	vm_offset_t phys_start, phys_end;
486{
487	int i;
488	int initial_pvs;
489
490	/*
491	 * object for kernel page table pages
492	 */
493	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
494
495	/*
496	 * Allocate memory for random pmap data structures.  Includes the
497	 * pv_head_table.
498	 */
499
500	for(i = 0; i < vm_page_array_size; i++) {
501		vm_page_t m;
502
503		m = &vm_page_array[i];
504		TAILQ_INIT(&m->md.pv_list);
505		m->md.pv_list_count = 0;
506	}
507
508	/*
509	 * init the pv free list
510	 */
511	initial_pvs = vm_page_array_size;
512	if (initial_pvs < MINPV)
513		initial_pvs = MINPV;
514	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
515	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
516	uma_zone_set_allocf(pvzone, pmap_allocf);
517	uma_prealloc(pvzone, initial_pvs);
518
519	/*
520	 * Now it is safe to enable pv_table recording.
521	 */
522	pmap_initialized = TRUE;
523}
524
525/*
526 * Initialize the address space (zone) for the pv_entries.  Set a
527 * high water mark so that the system can recover from excessive
528 * numbers of pv entries.
529 */
530void
531pmap_init2()
532{
533	int shpgperproc = PMAP_SHPGPERPROC;
534
535	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
536	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
537	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
538	pv_entry_high_water = 9 * (pv_entry_max / 10);
539	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
540}
541
542
543/***************************************************
544 * Low level helper routines.....
545 ***************************************************/
546
547#if defined(PMAP_DIAGNOSTIC)
548
549/*
550 * This code checks for non-writeable/modified pages.
551 * This should be an invalid condition.
552 */
553static int
554pmap_nw_modified(pt_entry_t ptea)
555{
556	int pte;
557
558	pte = (int) ptea;
559
560	if ((pte & (PG_M|PG_RW)) == PG_M)
561		return 1;
562	else
563		return 0;
564}
565#endif
566
567
568/*
569 * this routine defines the region(s) of memory that should
570 * not be tested for the modified bit.
571 */
572static PMAP_INLINE int
573pmap_track_modified(vm_offset_t va)
574{
575	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
576		return 1;
577	else
578		return 0;
579}
580
581#ifdef I386_CPU
582/*
583 * i386 only has "invalidate everything" and no SMP to worry about.
584 */
585PMAP_INLINE void
586pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
587{
588
589	if (pmap == kernel_pmap || pmap->pm_active)
590		invltlb();
591}
592
593PMAP_INLINE void
594pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
595{
596
597	if (pmap == kernel_pmap || pmap->pm_active)
598		invltlb();
599}
600
601PMAP_INLINE void
602pmap_invalidate_all(pmap_t pmap)
603{
604
605	if (pmap == kernel_pmap || pmap->pm_active)
606		invltlb();
607}
608#else /* !I386_CPU */
609#ifdef SMP
610/*
611 * For SMP, these functions have to use the IPI mechanism for coherence.
612 */
613void
614pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
615{
616	u_int cpumask;
617	u_int other_cpus;
618
619	critical_enter();
620	/*
621	 * We need to disable interrupt preemption but MUST NOT have
622	 * interrupts disabled here.
623	 * XXX we may need to hold schedlock to get a coherent pm_active
624	 */
625	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
626		invlpg(va);
627		smp_invlpg(va);
628	} else {
629		cpumask = PCPU_GET(cpumask);
630		other_cpus = PCPU_GET(other_cpus);
631		if (pmap->pm_active & cpumask)
632			invlpg(va);
633		if (pmap->pm_active & other_cpus)
634			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
635	}
636	critical_exit();
637}
638
639void
640pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
641{
642	u_int cpumask;
643	u_int other_cpus;
644	vm_offset_t addr;
645
646	critical_enter();
647	/*
648	 * We need to disable interrupt preemption but MUST NOT have
649	 * interrupts disabled here.
650	 * XXX we may need to hold schedlock to get a coherent pm_active
651	 */
652	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
653		for (addr = sva; addr < eva; addr += PAGE_SIZE)
654			invlpg(addr);
655		smp_invlpg_range(sva, eva);
656	} else {
657		cpumask = PCPU_GET(cpumask);
658		other_cpus = PCPU_GET(other_cpus);
659		if (pmap->pm_active & cpumask)
660			for (addr = sva; addr < eva; addr += PAGE_SIZE)
661				invlpg(addr);
662		if (pmap->pm_active & other_cpus)
663			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
664			    sva, eva);
665	}
666	critical_exit();
667}
668
669void
670pmap_invalidate_all(pmap_t pmap)
671{
672	u_int cpumask;
673	u_int other_cpus;
674
675#ifdef SWTCH_OPTIM_STATS
676	tlb_flush_count++;
677#endif
678	critical_enter();
679	/*
680	 * We need to disable interrupt preemption but MUST NOT have
681	 * interrupts disabled here.
682	 * XXX we may need to hold schedlock to get a coherent pm_active
683	 */
684	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
685		invltlb();
686		smp_invltlb();
687	} else {
688		cpumask = PCPU_GET(cpumask);
689		other_cpus = PCPU_GET(other_cpus);
690		if (pmap->pm_active & cpumask)
691			invltlb();
692		if (pmap->pm_active & other_cpus)
693			smp_masked_invltlb(pmap->pm_active & other_cpus);
694	}
695	critical_exit();
696}
697#else /* !SMP */
698/*
699 * Normal, non-SMP, 486+ invalidation functions.
700 * We inline these within pmap.c for speed.
701 */
702PMAP_INLINE void
703pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
704{
705
706	if (pmap == kernel_pmap || pmap->pm_active)
707		invlpg(va);
708}
709
710PMAP_INLINE void
711pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
712{
713	vm_offset_t addr;
714
715	if (pmap == kernel_pmap || pmap->pm_active)
716		for (addr = sva; addr < eva; addr += PAGE_SIZE)
717			invlpg(addr);
718}
719
720PMAP_INLINE void
721pmap_invalidate_all(pmap_t pmap)
722{
723
724	if (pmap == kernel_pmap || pmap->pm_active)
725		invltlb();
726}
727#endif /* !SMP */
728#endif /* !I386_CPU */
729
730/*
731 * Return an address which is the base of the Virtual mapping of
732 * all the PTEs for the given pmap. Note this doesn't say that
733 * all the PTEs will be present or that the pages there are valid.
734 * The PTEs are made available by the recursive mapping trick.
735 * It will map in the alternate PTE space if needed.
736 */
737static pt_entry_t *
738get_ptbase(pmap)
739	pmap_t pmap;
740{
741	pd_entry_t frame;
742
743	/* are we current address space or kernel? */
744	if (pmap == kernel_pmap)
745		return PTmap;
746	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
747	if (frame == (PTDpde & PG_FRAME))
748		return PTmap;
749	/* otherwise, we are alternate address space */
750	if (frame != (APTDpde & PG_FRAME)) {
751		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
752		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
753	}
754	return APTmap;
755}
756
757/*
758 * Super fast pmap_pte routine best used when scanning
759 * the pv lists.  This eliminates many coarse-grained
760 * invltlb calls.  Note that many of the pv list
761 * scans are across different pmaps.  It is very wasteful
762 * to do an entire invltlb for checking a single mapping.
763 */
764
765static pt_entry_t *
766pmap_pte_quick(pmap, va)
767	register pmap_t pmap;
768	vm_offset_t va;
769{
770	pd_entry_t pde, newpf;
771	pde = pmap->pm_pdir[va >> PDRSHIFT];
772	if (pde != 0) {
773		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
774		unsigned index = i386_btop(va);
775		/* are we current address space or kernel? */
776		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
777			return PTmap + index;
778		newpf = pde & PG_FRAME;
779		if (((*PMAP1) & PG_FRAME) != newpf) {
780			*PMAP1 = newpf | PG_RW | PG_V;
781			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
782		}
783		return PADDR1 + (index & (NPTEPG - 1));
784	}
785	return (0);
786}
787
788/*
789 *	Routine:	pmap_extract
790 *	Function:
791 *		Extract the physical page address associated
792 *		with the given map/virtual_address pair.
793 */
794vm_offset_t
795pmap_extract(pmap, va)
796	register pmap_t pmap;
797	vm_offset_t va;
798{
799	vm_offset_t rtval;	/* XXX FIXME */
800	vm_offset_t pdirindex;
801
802	if (pmap == 0)
803		return 0;
804	pdirindex = va >> PDRSHIFT;
805	rtval = pmap->pm_pdir[pdirindex];
806	if (rtval != 0) {
807		pt_entry_t *pte;
808		if ((rtval & PG_PS) != 0) {
809			rtval &= ~(NBPDR - 1);
810			rtval |= va & (NBPDR - 1);
811			return rtval;
812		}
813		pte = get_ptbase(pmap) + i386_btop(va);
814		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
815		return rtval;
816	}
817	return 0;
818
819}
820
821/***************************************************
822 * Low level mapping routines.....
823 ***************************************************/
824
825/*
826 * Add a wired page to the kva.
827 * Note: not SMP coherent.
828 */
829PMAP_INLINE void
830pmap_kenter(vm_offset_t va, vm_offset_t pa)
831{
832	pt_entry_t *pte;
833
834	pte = vtopte(va);
835	*pte = pa | PG_RW | PG_V | pgeflag;
836}
837
838/*
839 * Remove a page from the kernel pagetables.
840 * Note: not SMP coherent.
841 */
842PMAP_INLINE void
843pmap_kremove(vm_offset_t va)
844{
845	pt_entry_t *pte;
846
847	pte = vtopte(va);
848	*pte = 0;
849}
850
851/*
852 *	Used to map a range of physical addresses into kernel
853 *	virtual address space.
854 *
855 *	The value passed in '*virt' is a suggested virtual address for
856 *	the mapping. Architectures which can support a direct-mapped
857 *	physical to virtual region can return the appropriate address
858 *	within that region, leaving '*virt' unchanged. Other
859 *	architectures should map the pages starting at '*virt' and
860 *	update '*virt' with the first usable address after the mapped
861 *	region.
862 */
863vm_offset_t
864pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
865{
866	vm_offset_t va, sva;
867
868	va = sva = *virt;
869	while (start < end) {
870		pmap_kenter(va, start);
871		va += PAGE_SIZE;
872		start += PAGE_SIZE;
873	}
874	pmap_invalidate_range(kernel_pmap, sva, va);
875	*virt = va;
876	return (sva);
877}
878
879
880/*
881 * Add a list of wired pages to the kva
882 * this routine is only used for temporary
883 * kernel mappings that do not need to have
884 * page modification or references recorded.
885 * Note that old mappings are simply written
886 * over.  The page *must* be wired.
887 * Note: SMP coherent.  Uses a ranged shootdown IPI.
888 */
889void
890pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
891{
892	vm_offset_t va;
893
894	va = sva;
895	while (count-- > 0) {
896		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
897		va += PAGE_SIZE;
898		m++;
899	}
900	pmap_invalidate_range(kernel_pmap, sva, va);
901}
902
903/*
904 * This routine tears out page mappings from the
905 * kernel -- it is meant only for temporary mappings.
906 * Note: SMP coherent.  Uses a ranged shootdown IPI.
907 */
908void
909pmap_qremove(vm_offset_t sva, int count)
910{
911	vm_offset_t va;
912
913	va = sva;
914	while (count-- > 0) {
915		pmap_kremove(va);
916		va += PAGE_SIZE;
917	}
918	pmap_invalidate_range(kernel_pmap, sva, va);
919}
920
921static vm_page_t
922pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
923{
924	vm_page_t m;
925
926retry:
927	m = vm_page_lookup(object, pindex);
928	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
929		goto retry;
930	return m;
931}
932
933/*
934 * Create the kernel stack (including pcb for i386) for a new thread.
935 * This routine directly affects the fork perf for a process and
936 * create performance for a thread.
937 */
938void
939pmap_new_thread(struct thread *td)
940{
941	int i;
942	vm_page_t ma[KSTACK_PAGES];
943	vm_object_t ksobj;
944	vm_page_t m;
945	vm_offset_t ks;
946
947	/*
948	 * allocate object for the kstack
949	 */
950	ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
951	td->td_kstack_obj = ksobj;
952
953	/* get a kernel virtual address for the kstack for this thread */
954#ifdef KSTACK_GUARD
955	ks = kmem_alloc_nofault(kernel_map, (KSTACK_PAGES + 1) * PAGE_SIZE);
956	if (ks == 0)
957		panic("pmap_new_thread: kstack allocation failed");
958	if (*vtopte(ks) != 0)
959		pmap_qremove(ks, 1);
960	ks += PAGE_SIZE;
961	td->td_kstack = ks;
962#else
963	/* get a kernel virtual address for the kstack for this thread */
964	ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
965	if (ks == 0)
966		panic("pmap_new_thread: kstack allocation failed");
967	td->td_kstack = ks;
968#endif
969	/*
970	 * For the length of the stack, link in a real page of ram for each
971	 * page of stack.
972	 */
973	for (i = 0; i < KSTACK_PAGES; i++) {
974		/*
975		 * Get a kernel stack page
976		 */
977		m = vm_page_grab(ksobj, i,
978		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
979		ma[i] = m;
980
981		vm_page_wakeup(m);
982		vm_page_flag_clear(m, PG_ZERO);
983		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
984		m->valid = VM_PAGE_BITS_ALL;
985	}
986	pmap_qenter(ks, ma, KSTACK_PAGES);
987}
988
989/*
990 * Dispose the kernel stack for a thread that has exited.
991 * This routine directly impacts the exit perf of a process and thread.
992 */
993void
994pmap_dispose_thread(td)
995	struct thread *td;
996{
997	int i;
998	vm_object_t ksobj;
999	vm_offset_t ks;
1000	vm_page_t m;
1001
1002	ksobj = td->td_kstack_obj;
1003	ks = td->td_kstack;
1004	pmap_qremove(ks, KSTACK_PAGES);
1005	for (i = 0; i < KSTACK_PAGES; i++) {
1006		m = vm_page_lookup(ksobj, i);
1007		if (m == NULL)
1008			panic("pmap_dispose_thread: kstack already missing?");
1009		vm_page_lock_queues();
1010		vm_page_busy(m);
1011		vm_page_unwire(m, 0);
1012		vm_page_free(m);
1013		vm_page_unlock_queues();
1014	}
1015	/*
1016	 * Free the space that this stack was mapped to in the kernel
1017	 * address map.
1018	 */
1019#ifdef KSTACK_GUARD
1020	kmem_free(kernel_map, ks - PAGE_SIZE, (KSTACK_PAGES + 1) * PAGE_SIZE);
1021#else
1022	kmem_free(kernel_map, ks, KSTACK_PAGES * PAGE_SIZE);
1023#endif
1024	vm_object_deallocate(ksobj);
1025}
1026
1027/*
1028 * Allow the Kernel stack for a thread to be prejudicially paged out.
1029 */
1030void
1031pmap_swapout_thread(td)
1032	struct thread *td;
1033{
1034	int i;
1035	vm_object_t ksobj;
1036	vm_offset_t ks;
1037	vm_page_t m;
1038
1039	ksobj = td->td_kstack_obj;
1040	ks = td->td_kstack;
1041	pmap_qremove(ks, KSTACK_PAGES);
1042	for (i = 0; i < KSTACK_PAGES; i++) {
1043		m = vm_page_lookup(ksobj, i);
1044		if (m == NULL)
1045			panic("pmap_swapout_thread: kstack already missing?");
1046		vm_page_lock_queues();
1047		vm_page_dirty(m);
1048		vm_page_unwire(m, 0);
1049		vm_page_unlock_queues();
1050	}
1051}
1052
1053/*
1054 * Bring the kernel stack for a specified thread back in.
1055 */
1056void
1057pmap_swapin_thread(td)
1058	struct thread *td;
1059{
1060	int i, rv;
1061	vm_page_t ma[KSTACK_PAGES];
1062	vm_object_t ksobj;
1063	vm_offset_t ks;
1064	vm_page_t m;
1065
1066	ksobj = td->td_kstack_obj;
1067	ks = td->td_kstack;
1068	for (i = 0; i < KSTACK_PAGES; i++) {
1069		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1070		if (m->valid != VM_PAGE_BITS_ALL) {
1071			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1072			if (rv != VM_PAGER_OK)
1073				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1074			m = vm_page_lookup(ksobj, i);
1075			m->valid = VM_PAGE_BITS_ALL;
1076		}
1077		ma[i] = m;
1078		vm_page_lock_queues();
1079		vm_page_wire(m);
1080		vm_page_wakeup(m);
1081		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1082		vm_page_unlock_queues();
1083	}
1084	pmap_qenter(ks, ma, KSTACK_PAGES);
1085}
1086
1087/***************************************************
1088 * Page table page management routines.....
1089 ***************************************************/
1090
1091/*
1092 * This routine unholds page table pages, and if the hold count
1093 * drops to zero, then it decrements the wire count.
1094 */
1095static int
1096_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1097{
1098
1099	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1100		;
1101
1102	if (m->hold_count == 0) {
1103		vm_offset_t pteva;
1104		/*
1105		 * unmap the page table page
1106		 */
1107		pmap->pm_pdir[m->pindex] = 0;
1108		--pmap->pm_stats.resident_count;
1109		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1110		    (PTDpde & PG_FRAME)) {
1111			/*
1112			 * Do a invltlb to make the invalidated mapping
1113			 * take effect immediately.
1114			 */
1115			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1116			pmap_invalidate_page(pmap, pteva);
1117		}
1118
1119		if (pmap->pm_ptphint == m)
1120			pmap->pm_ptphint = NULL;
1121
1122		/*
1123		 * If the page is finally unwired, simply free it.
1124		 */
1125		--m->wire_count;
1126		if (m->wire_count == 0) {
1127
1128			vm_page_flash(m);
1129			vm_page_busy(m);
1130			vm_page_free_zero(m);
1131			--cnt.v_wire_count;
1132		}
1133		return 1;
1134	}
1135	return 0;
1136}
1137
1138static PMAP_INLINE int
1139pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1140{
1141	vm_page_unhold(m);
1142	if (m->hold_count == 0)
1143		return _pmap_unwire_pte_hold(pmap, m);
1144	else
1145		return 0;
1146}
1147
1148/*
1149 * After removing a page table entry, this routine is used to
1150 * conditionally free the page, and manage the hold/wire counts.
1151 */
1152static int
1153pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1154{
1155	unsigned ptepindex;
1156	if (va >= VM_MAXUSER_ADDRESS)
1157		return 0;
1158
1159	if (mpte == NULL) {
1160		ptepindex = (va >> PDRSHIFT);
1161		if (pmap->pm_ptphint &&
1162			(pmap->pm_ptphint->pindex == ptepindex)) {
1163			mpte = pmap->pm_ptphint;
1164		} else {
1165			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1166			pmap->pm_ptphint = mpte;
1167		}
1168	}
1169
1170	return pmap_unwire_pte_hold(pmap, mpte);
1171}
1172
1173void
1174pmap_pinit0(pmap)
1175	struct pmap *pmap;
1176{
1177	pmap->pm_pdir =
1178		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1179	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1180#ifndef I386_CPU
1181	invlpg((vm_offset_t)pmap->pm_pdir);
1182#else
1183	invltlb();
1184#endif
1185	pmap->pm_ptphint = NULL;
1186	pmap->pm_active = 0;
1187	TAILQ_INIT(&pmap->pm_pvlist);
1188	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1189	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1190}
1191
1192/*
1193 * Initialize a preallocated and zeroed pmap structure,
1194 * such as one in a vmspace structure.
1195 */
1196void
1197pmap_pinit(pmap)
1198	register struct pmap *pmap;
1199{
1200	vm_page_t ptdpg;
1201
1202	/*
1203	 * No need to allocate page table space yet but we do need a valid
1204	 * page directory table.
1205	 */
1206	if (pmap->pm_pdir == NULL)
1207		pmap->pm_pdir =
1208			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1209
1210	/*
1211	 * allocate object for the ptes
1212	 */
1213	if (pmap->pm_pteobj == NULL)
1214		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1215
1216	/*
1217	 * allocate the page directory page
1218	 */
1219	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1220			VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
1221	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1222	ptdpg->valid = VM_PAGE_BITS_ALL;
1223
1224	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1225	if ((ptdpg->flags & PG_ZERO) == 0)
1226		bzero(pmap->pm_pdir, PAGE_SIZE);
1227
1228	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1229	/* Wire in kernel global address entries. */
1230	/* XXX copies current process, does not fill in MPPTDI */
1231	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1232#ifdef SMP
1233	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1234#endif
1235
1236	/* install self-referential address mapping entry */
1237	pmap->pm_pdir[PTDPTDI] =
1238		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1239
1240	pmap->pm_active = 0;
1241	pmap->pm_ptphint = NULL;
1242	TAILQ_INIT(&pmap->pm_pvlist);
1243	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1244}
1245
1246/*
1247 * Wire in kernel global address entries.  To avoid a race condition
1248 * between pmap initialization and pmap_growkernel, this procedure
1249 * should be called after the vmspace is attached to the process
1250 * but before this pmap is activated.
1251 */
1252void
1253pmap_pinit2(pmap)
1254	struct pmap *pmap;
1255{
1256	/* XXX: Remove this stub when no longer called */
1257}
1258
1259static int
1260pmap_release_free_page(pmap_t pmap, vm_page_t p)
1261{
1262	pd_entry_t *pde = pmap->pm_pdir;
1263	/*
1264	 * This code optimizes the case of freeing non-busy
1265	 * page-table pages.  Those pages are zero now, and
1266	 * might as well be placed directly into the zero queue.
1267	 */
1268	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1269		return 0;
1270
1271	vm_page_lock_queues();
1272	vm_page_busy(p);
1273
1274	/*
1275	 * Remove the page table page from the processes address space.
1276	 */
1277	pde[p->pindex] = 0;
1278	pmap->pm_stats.resident_count--;
1279
1280	if (p->hold_count)  {
1281		panic("pmap_release: freeing held page table page");
1282	}
1283	/*
1284	 * Page directory pages need to have the kernel
1285	 * stuff cleared, so they can go into the zero queue also.
1286	 */
1287	if (p->pindex == PTDPTDI) {
1288		bzero(pde + KPTDI, nkpt * PTESIZE);
1289#ifdef SMP
1290		pde[MPPTDI] = 0;
1291#endif
1292		pde[APTDPTDI] = 0;
1293		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1294	}
1295
1296	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1297		pmap->pm_ptphint = NULL;
1298
1299	p->wire_count--;
1300	cnt.v_wire_count--;
1301	vm_page_free_zero(p);
1302	vm_page_unlock_queues();
1303	return 1;
1304}
1305
1306/*
1307 * this routine is called if the page table page is not
1308 * mapped correctly.
1309 */
1310static vm_page_t
1311_pmap_allocpte(pmap, ptepindex)
1312	pmap_t	pmap;
1313	unsigned ptepindex;
1314{
1315	vm_offset_t pteva, ptepa;	/* XXXPA */
1316	vm_page_t m;
1317
1318	/*
1319	 * Find or fabricate a new pagetable page
1320	 */
1321	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1322			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1323
1324	KASSERT(m->queue == PQ_NONE,
1325		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1326
1327	if (m->wire_count == 0)
1328		cnt.v_wire_count++;
1329	m->wire_count++;
1330
1331	/*
1332	 * Increment the hold count for the page table page
1333	 * (denoting a new mapping.)
1334	 */
1335	m->hold_count++;
1336
1337	/*
1338	 * Map the pagetable page into the process address space, if
1339	 * it isn't already there.
1340	 */
1341
1342	pmap->pm_stats.resident_count++;
1343
1344	ptepa = VM_PAGE_TO_PHYS(m);
1345	pmap->pm_pdir[ptepindex] =
1346		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1347
1348	/*
1349	 * Set the page table hint
1350	 */
1351	pmap->pm_ptphint = m;
1352
1353	/*
1354	 * Try to use the new mapping, but if we cannot, then
1355	 * do it with the routine that maps the page explicitly.
1356	 */
1357	if ((m->flags & PG_ZERO) == 0) {
1358		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1359		    (PTDpde & PG_FRAME)) {
1360			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1361			bzero((caddr_t) pteva, PAGE_SIZE);
1362		} else {
1363			pmap_zero_page(m);
1364		}
1365	}
1366
1367	m->valid = VM_PAGE_BITS_ALL;
1368	vm_page_flag_clear(m, PG_ZERO);
1369	vm_page_flag_set(m, PG_MAPPED);
1370	vm_page_wakeup(m);
1371
1372	return m;
1373}
1374
1375static vm_page_t
1376pmap_allocpte(pmap_t pmap, vm_offset_t va)
1377{
1378	unsigned ptepindex;
1379	pd_entry_t ptepa;
1380	vm_page_t m;
1381
1382	/*
1383	 * Calculate pagetable page index
1384	 */
1385	ptepindex = va >> PDRSHIFT;
1386
1387	/*
1388	 * Get the page directory entry
1389	 */
1390	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1391
1392	/*
1393	 * This supports switching from a 4MB page to a
1394	 * normal 4K page.
1395	 */
1396	if (ptepa & PG_PS) {
1397		pmap->pm_pdir[ptepindex] = 0;
1398		ptepa = 0;
1399		pmap_invalidate_all(kernel_pmap);
1400	}
1401
1402	/*
1403	 * If the page table page is mapped, we just increment the
1404	 * hold count, and activate it.
1405	 */
1406	if (ptepa) {
1407		/*
1408		 * In order to get the page table page, try the
1409		 * hint first.
1410		 */
1411		if (pmap->pm_ptphint &&
1412			(pmap->pm_ptphint->pindex == ptepindex)) {
1413			m = pmap->pm_ptphint;
1414		} else {
1415			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1416			pmap->pm_ptphint = m;
1417		}
1418		m->hold_count++;
1419		return m;
1420	}
1421	/*
1422	 * Here if the pte page isn't mapped, or if it has been deallocated.
1423	 */
1424	return _pmap_allocpte(pmap, ptepindex);
1425}
1426
1427
1428/***************************************************
1429* Pmap allocation/deallocation routines.
1430 ***************************************************/
1431
1432/*
1433 * Release any resources held by the given physical map.
1434 * Called when a pmap initialized by pmap_pinit is being released.
1435 * Should only be called if the map contains no valid mappings.
1436 */
1437void
1438pmap_release(pmap_t pmap)
1439{
1440	vm_page_t p,n,ptdpg;
1441	vm_object_t object = pmap->pm_pteobj;
1442	int curgeneration;
1443
1444#if defined(DIAGNOSTIC)
1445	if (object->ref_count != 1)
1446		panic("pmap_release: pteobj reference count != 1");
1447#endif
1448
1449	ptdpg = NULL;
1450	LIST_REMOVE(pmap, pm_list);
1451retry:
1452	curgeneration = object->generation;
1453	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1454		n = TAILQ_NEXT(p, listq);
1455		if (p->pindex == PTDPTDI) {
1456			ptdpg = p;
1457			continue;
1458		}
1459		while (1) {
1460			if (!pmap_release_free_page(pmap, p) &&
1461				(object->generation != curgeneration))
1462				goto retry;
1463		}
1464	}
1465
1466	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1467		goto retry;
1468}
1469
1470static int
1471kvm_size(SYSCTL_HANDLER_ARGS)
1472{
1473	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1474
1475	return sysctl_handle_long(oidp, &ksize, 0, req);
1476}
1477SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1478    0, 0, kvm_size, "IU", "Size of KVM");
1479
1480static int
1481kvm_free(SYSCTL_HANDLER_ARGS)
1482{
1483	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1484
1485	return sysctl_handle_long(oidp, &kfree, 0, req);
1486}
1487SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1488    0, 0, kvm_free, "IU", "Amount of KVM free");
1489
1490/*
1491 * grow the number of kernel page table entries, if needed
1492 */
1493void
1494pmap_growkernel(vm_offset_t addr)
1495{
1496	struct pmap *pmap;
1497	int s;
1498	vm_offset_t ptppaddr;
1499	vm_page_t nkpg;
1500	pd_entry_t newpdir;
1501
1502	s = splhigh();
1503	if (kernel_vm_end == 0) {
1504		kernel_vm_end = KERNBASE;
1505		nkpt = 0;
1506		while (pdir_pde(PTD, kernel_vm_end)) {
1507			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1508			nkpt++;
1509		}
1510	}
1511	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1512	while (kernel_vm_end < addr) {
1513		if (pdir_pde(PTD, kernel_vm_end)) {
1514			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1515			continue;
1516		}
1517
1518		/*
1519		 * This index is bogus, but out of the way
1520		 */
1521		nkpg = vm_page_alloc(kptobj, nkpt,
1522				     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1523		if (!nkpg)
1524			panic("pmap_growkernel: no memory to grow kernel");
1525
1526		nkpt++;
1527
1528		pmap_zero_page(nkpg);
1529		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1530		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1531		pdir_pde(PTD, kernel_vm_end) = newpdir;
1532
1533		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1534			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1535		}
1536		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1537	}
1538	splx(s);
1539}
1540
1541
1542/***************************************************
1543 * page management routines.
1544 ***************************************************/
1545
1546/*
1547 * free the pv_entry back to the free list
1548 */
1549static PMAP_INLINE void
1550free_pv_entry(pv_entry_t pv)
1551{
1552	pv_entry_count--;
1553	uma_zfree(pvzone, pv);
1554}
1555
1556/*
1557 * get a new pv_entry, allocating a block from the system
1558 * when needed.
1559 * the memory allocation is performed bypassing the malloc code
1560 * because of the possibility of allocations at interrupt time.
1561 */
1562static pv_entry_t
1563get_pv_entry(void)
1564{
1565	pv_entry_count++;
1566	if (pv_entry_high_water &&
1567		(pv_entry_count > pv_entry_high_water) &&
1568		(pmap_pagedaemon_waken == 0)) {
1569		pmap_pagedaemon_waken = 1;
1570		wakeup (&vm_pages_needed);
1571	}
1572	return uma_zalloc(pvzone, M_NOWAIT);
1573}
1574
1575/*
1576 * This routine is very drastic, but can save the system
1577 * in a pinch.
1578 */
1579void
1580pmap_collect()
1581{
1582	int i;
1583	vm_page_t m;
1584	static int warningdone = 0;
1585
1586	if (pmap_pagedaemon_waken == 0)
1587		return;
1588
1589	if (warningdone < 5) {
1590		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1591		warningdone++;
1592	}
1593
1594	for(i = 0; i < vm_page_array_size; i++) {
1595		m = &vm_page_array[i];
1596		if (m->wire_count || m->hold_count || m->busy ||
1597		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1598			continue;
1599		pmap_remove_all(m);
1600	}
1601	pmap_pagedaemon_waken = 0;
1602}
1603
1604
1605/*
1606 * If it is the first entry on the list, it is actually
1607 * in the header and we must copy the following entry up
1608 * to the header.  Otherwise we must search the list for
1609 * the entry.  In either case we free the now unused entry.
1610 */
1611
1612static int
1613pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1614{
1615	pv_entry_t pv;
1616	int rtval;
1617	int s;
1618
1619	s = splvm();
1620	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1621		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1622			if (pmap == pv->pv_pmap && va == pv->pv_va)
1623				break;
1624		}
1625	} else {
1626		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1627			if (va == pv->pv_va)
1628				break;
1629		}
1630	}
1631
1632	rtval = 0;
1633	if (pv) {
1634		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1635		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1636		m->md.pv_list_count--;
1637		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1638			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1639
1640		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1641		free_pv_entry(pv);
1642	}
1643
1644	splx(s);
1645	return rtval;
1646}
1647
1648/*
1649 * Create a pv entry for page at pa for
1650 * (pmap, va).
1651 */
1652static void
1653pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1654{
1655
1656	int s;
1657	pv_entry_t pv;
1658
1659	s = splvm();
1660	pv = get_pv_entry();
1661	pv->pv_va = va;
1662	pv->pv_pmap = pmap;
1663	pv->pv_ptem = mpte;
1664
1665	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1666	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1667	m->md.pv_list_count++;
1668
1669	splx(s);
1670}
1671
1672/*
1673 * pmap_remove_pte: do the things to unmap a page in a process
1674 */
1675static int
1676pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1677{
1678	pt_entry_t oldpte;
1679	vm_page_t m;
1680
1681	oldpte = atomic_readandclear_int(ptq);
1682	if (oldpte & PG_W)
1683		pmap->pm_stats.wired_count -= 1;
1684	/*
1685	 * Machines that don't support invlpg, also don't support
1686	 * PG_G.
1687	 */
1688	if (oldpte & PG_G)
1689		pmap_invalidate_page(kernel_pmap, va);
1690	pmap->pm_stats.resident_count -= 1;
1691	if (oldpte & PG_MANAGED) {
1692		m = PHYS_TO_VM_PAGE(oldpte);
1693		if (oldpte & PG_M) {
1694#if defined(PMAP_DIAGNOSTIC)
1695			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1696				printf(
1697	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1698				    va, oldpte);
1699			}
1700#endif
1701			if (pmap_track_modified(va))
1702				vm_page_dirty(m);
1703		}
1704		if (oldpte & PG_A)
1705			vm_page_flag_set(m, PG_REFERENCED);
1706		return pmap_remove_entry(pmap, m, va);
1707	} else {
1708		return pmap_unuse_pt(pmap, va, NULL);
1709	}
1710
1711	return 0;
1712}
1713
1714/*
1715 * Remove a single page from a process address space
1716 */
1717static void
1718pmap_remove_page(pmap_t pmap, vm_offset_t va)
1719{
1720	register pt_entry_t *ptq;
1721
1722	/*
1723	 * if there is no pte for this address, just skip it!!!
1724	 */
1725	if (*pmap_pde(pmap, va) == 0) {
1726		return;
1727	}
1728
1729	/*
1730	 * get a local va for mappings for this pmap.
1731	 */
1732	ptq = get_ptbase(pmap) + i386_btop(va);
1733	if (*ptq) {
1734		(void) pmap_remove_pte(pmap, ptq, va);
1735		pmap_invalidate_page(pmap, va);
1736	}
1737	return;
1738}
1739
1740/*
1741 *	Remove the given range of addresses from the specified map.
1742 *
1743 *	It is assumed that the start and end are properly
1744 *	rounded to the page size.
1745 */
1746void
1747pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1748{
1749	register pt_entry_t *ptbase;
1750	vm_offset_t pdnxt;
1751	pd_entry_t ptpaddr;
1752	vm_offset_t sindex, eindex;
1753	int anyvalid;
1754
1755	if (pmap == NULL)
1756		return;
1757
1758	if (pmap->pm_stats.resident_count == 0)
1759		return;
1760
1761	/*
1762	 * special handling of removing one page.  a very
1763	 * common operation and easy to short circuit some
1764	 * code.
1765	 */
1766	if ((sva + PAGE_SIZE == eva) &&
1767	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1768		pmap_remove_page(pmap, sva);
1769		return;
1770	}
1771
1772	anyvalid = 0;
1773
1774	/*
1775	 * Get a local virtual address for the mappings that are being
1776	 * worked with.
1777	 */
1778	ptbase = get_ptbase(pmap);
1779
1780	sindex = i386_btop(sva);
1781	eindex = i386_btop(eva);
1782
1783	for (; sindex < eindex; sindex = pdnxt) {
1784		unsigned pdirindex;
1785
1786		/*
1787		 * Calculate index for next page table.
1788		 */
1789		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1790		if (pmap->pm_stats.resident_count == 0)
1791			break;
1792
1793		pdirindex = sindex / NPDEPG;
1794		ptpaddr = pmap->pm_pdir[pdirindex];
1795		if ((ptpaddr & PG_PS) != 0) {
1796			pmap->pm_pdir[pdirindex] = 0;
1797			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1798			anyvalid++;
1799			continue;
1800		}
1801
1802		/*
1803		 * Weed out invalid mappings. Note: we assume that the page
1804		 * directory table is always allocated, and in kernel virtual.
1805		 */
1806		if (ptpaddr == 0)
1807			continue;
1808
1809		/*
1810		 * Limit our scan to either the end of the va represented
1811		 * by the current page table page, or to the end of the
1812		 * range being removed.
1813		 */
1814		if (pdnxt > eindex) {
1815			pdnxt = eindex;
1816		}
1817
1818		for (; sindex != pdnxt; sindex++) {
1819			vm_offset_t va;
1820			if (ptbase[sindex] == 0) {
1821				continue;
1822			}
1823			va = i386_ptob(sindex);
1824
1825			anyvalid++;
1826			if (pmap_remove_pte(pmap,
1827				ptbase + sindex, va))
1828				break;
1829		}
1830	}
1831
1832	if (anyvalid)
1833		pmap_invalidate_all(pmap);
1834}
1835
1836/*
1837 *	Routine:	pmap_remove_all
1838 *	Function:
1839 *		Removes this physical page from
1840 *		all physical maps in which it resides.
1841 *		Reflects back modify bits to the pager.
1842 *
1843 *	Notes:
1844 *		Original versions of this routine were very
1845 *		inefficient because they iteratively called
1846 *		pmap_remove (slow...)
1847 */
1848
1849static void
1850pmap_remove_all(vm_page_t m)
1851{
1852	register pv_entry_t pv;
1853	pt_entry_t *pte, tpte;
1854	int s;
1855
1856#if defined(PMAP_DIAGNOSTIC)
1857	/*
1858	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1859	 * pages!
1860	 */
1861	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1862		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1863	}
1864#endif
1865
1866	s = splvm();
1867	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1868		pv->pv_pmap->pm_stats.resident_count--;
1869
1870		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1871
1872		tpte = atomic_readandclear_int(pte);
1873		if (tpte & PG_W)
1874			pv->pv_pmap->pm_stats.wired_count--;
1875
1876		if (tpte & PG_A)
1877			vm_page_flag_set(m, PG_REFERENCED);
1878
1879		/*
1880		 * Update the vm_page_t clean and reference bits.
1881		 */
1882		if (tpte & PG_M) {
1883#if defined(PMAP_DIAGNOSTIC)
1884			if (pmap_nw_modified((pt_entry_t) tpte)) {
1885				printf(
1886	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1887				    pv->pv_va, tpte);
1888			}
1889#endif
1890			if (pmap_track_modified(pv->pv_va))
1891				vm_page_dirty(m);
1892		}
1893		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1894
1895		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1896		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1897		m->md.pv_list_count--;
1898		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1899		free_pv_entry(pv);
1900	}
1901
1902	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1903
1904	splx(s);
1905}
1906
1907/*
1908 *	Set the physical protection on the
1909 *	specified range of this map as requested.
1910 */
1911void
1912pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1913{
1914	register pt_entry_t *ptbase;
1915	vm_offset_t pdnxt;
1916	pd_entry_t ptpaddr;
1917	vm_offset_t sindex, eindex;
1918	int anychanged;
1919
1920	if (pmap == NULL)
1921		return;
1922
1923	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1924		pmap_remove(pmap, sva, eva);
1925		return;
1926	}
1927
1928	if (prot & VM_PROT_WRITE)
1929		return;
1930
1931	anychanged = 0;
1932
1933	ptbase = get_ptbase(pmap);
1934
1935	sindex = i386_btop(sva);
1936	eindex = i386_btop(eva);
1937
1938	for (; sindex < eindex; sindex = pdnxt) {
1939
1940		unsigned pdirindex;
1941
1942		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1943
1944		pdirindex = sindex / NPDEPG;
1945		ptpaddr = pmap->pm_pdir[pdirindex];
1946		if ((ptpaddr & PG_PS) != 0) {
1947			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1948			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1949			anychanged++;
1950			continue;
1951		}
1952
1953		/*
1954		 * Weed out invalid mappings. Note: we assume that the page
1955		 * directory table is always allocated, and in kernel virtual.
1956		 */
1957		if (ptpaddr == 0)
1958			continue;
1959
1960		if (pdnxt > eindex) {
1961			pdnxt = eindex;
1962		}
1963
1964		for (; sindex != pdnxt; sindex++) {
1965
1966			pt_entry_t pbits;
1967			vm_page_t m;
1968
1969			pbits = ptbase[sindex];
1970
1971			if (pbits & PG_MANAGED) {
1972				m = NULL;
1973				if (pbits & PG_A) {
1974					m = PHYS_TO_VM_PAGE(pbits);
1975					vm_page_flag_set(m, PG_REFERENCED);
1976					pbits &= ~PG_A;
1977				}
1978				if (pbits & PG_M) {
1979					if (pmap_track_modified(i386_ptob(sindex))) {
1980						if (m == NULL)
1981							m = PHYS_TO_VM_PAGE(pbits);
1982						vm_page_dirty(m);
1983						pbits &= ~PG_M;
1984					}
1985				}
1986			}
1987
1988			pbits &= ~PG_RW;
1989
1990			if (pbits != ptbase[sindex]) {
1991				ptbase[sindex] = pbits;
1992				anychanged = 1;
1993			}
1994		}
1995	}
1996	if (anychanged)
1997		pmap_invalidate_all(pmap);
1998}
1999
2000/*
2001 *	Insert the given physical page (p) at
2002 *	the specified virtual address (v) in the
2003 *	target physical map with the protection requested.
2004 *
2005 *	If specified, the page will be wired down, meaning
2006 *	that the related pte can not be reclaimed.
2007 *
2008 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2009 *	or lose information.  That is, this routine must actually
2010 *	insert this page into the given map NOW.
2011 */
2012void
2013pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2014	   boolean_t wired)
2015{
2016	vm_offset_t pa;
2017	register pt_entry_t *pte;
2018	vm_offset_t opa;
2019	pt_entry_t origpte, newpte;
2020	vm_page_t mpte;
2021
2022	if (pmap == NULL)
2023		return;
2024
2025	va &= PG_FRAME;
2026#ifdef PMAP_DIAGNOSTIC
2027	if (va > VM_MAX_KERNEL_ADDRESS)
2028		panic("pmap_enter: toobig");
2029	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2030		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2031#endif
2032
2033	mpte = NULL;
2034	/*
2035	 * In the case that a page table page is not
2036	 * resident, we are creating it here.
2037	 */
2038	if (va < VM_MAXUSER_ADDRESS) {
2039		mpte = pmap_allocpte(pmap, va);
2040	}
2041#if 0 && defined(PMAP_DIAGNOSTIC)
2042	else {
2043		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2044		origpte = *pdeaddr;
2045		if ((origpte & PG_V) == 0) {
2046			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2047				pmap->pm_pdir[PTDPTDI], origpte, va);
2048		}
2049	}
2050#endif
2051
2052	pte = pmap_pte(pmap, va);
2053
2054	/*
2055	 * Page Directory table entry not valid, we need a new PT page
2056	 */
2057	if (pte == NULL) {
2058		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2059			(void *)pmap->pm_pdir[PTDPTDI], va);
2060	}
2061
2062	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2063	origpte = *(vm_offset_t *)pte;
2064	opa = origpte & PG_FRAME;
2065
2066	if (origpte & PG_PS)
2067		panic("pmap_enter: attempted pmap_enter on 4MB page");
2068
2069	/*
2070	 * Mapping has not changed, must be protection or wiring change.
2071	 */
2072	if (origpte && (opa == pa)) {
2073		/*
2074		 * Wiring change, just update stats. We don't worry about
2075		 * wiring PT pages as they remain resident as long as there
2076		 * are valid mappings in them. Hence, if a user page is wired,
2077		 * the PT page will be also.
2078		 */
2079		if (wired && ((origpte & PG_W) == 0))
2080			pmap->pm_stats.wired_count++;
2081		else if (!wired && (origpte & PG_W))
2082			pmap->pm_stats.wired_count--;
2083
2084#if defined(PMAP_DIAGNOSTIC)
2085		if (pmap_nw_modified((pt_entry_t) origpte)) {
2086			printf(
2087	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2088			    va, origpte);
2089		}
2090#endif
2091
2092		/*
2093		 * Remove extra pte reference
2094		 */
2095		if (mpte)
2096			mpte->hold_count--;
2097
2098		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2099			if ((origpte & PG_RW) == 0) {
2100				*pte |= PG_RW;
2101				pmap_invalidate_page(pmap, va);
2102			}
2103			return;
2104		}
2105
2106		/*
2107		 * We might be turning off write access to the page,
2108		 * so we go ahead and sense modify status.
2109		 */
2110		if (origpte & PG_MANAGED) {
2111			if ((origpte & PG_M) && pmap_track_modified(va)) {
2112				vm_page_t om;
2113				om = PHYS_TO_VM_PAGE(opa);
2114				vm_page_dirty(om);
2115			}
2116			pa |= PG_MANAGED;
2117		}
2118		goto validate;
2119	}
2120	/*
2121	 * Mapping has changed, invalidate old range and fall through to
2122	 * handle validating new mapping.
2123	 */
2124	if (opa) {
2125		int err;
2126		err = pmap_remove_pte(pmap, pte, va);
2127		if (err)
2128			panic("pmap_enter: pte vanished, va: 0x%x", va);
2129	}
2130
2131	/*
2132	 * Enter on the PV list if part of our managed memory. Note that we
2133	 * raise IPL while manipulating pv_table since pmap_enter can be
2134	 * called at interrupt time.
2135	 */
2136	if (pmap_initialized &&
2137	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2138		pmap_insert_entry(pmap, va, mpte, m);
2139		pa |= PG_MANAGED;
2140	}
2141
2142	/*
2143	 * Increment counters
2144	 */
2145	pmap->pm_stats.resident_count++;
2146	if (wired)
2147		pmap->pm_stats.wired_count++;
2148
2149validate:
2150	/*
2151	 * Now validate mapping with desired protection/wiring.
2152	 */
2153	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2154
2155	if (wired)
2156		newpte |= PG_W;
2157	if (va < VM_MAXUSER_ADDRESS)
2158		newpte |= PG_U;
2159	if (pmap == kernel_pmap)
2160		newpte |= pgeflag;
2161
2162	/*
2163	 * if the mapping or permission bits are different, we need
2164	 * to update the pte.
2165	 */
2166	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2167		*pte = newpte | PG_A;
2168		/*if (origpte)*/ {
2169			pmap_invalidate_page(pmap, va);
2170		}
2171	}
2172}
2173
2174/*
2175 * this code makes some *MAJOR* assumptions:
2176 * 1. Current pmap & pmap exists.
2177 * 2. Not wired.
2178 * 3. Read access.
2179 * 4. No page table pages.
2180 * 5. Tlbflush is deferred to calling procedure.
2181 * 6. Page IS managed.
2182 * but is *MUCH* faster than pmap_enter...
2183 */
2184
2185static vm_page_t
2186pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2187{
2188	pt_entry_t *pte;
2189	vm_offset_t pa;
2190
2191	/*
2192	 * In the case that a page table page is not
2193	 * resident, we are creating it here.
2194	 */
2195	if (va < VM_MAXUSER_ADDRESS) {
2196		unsigned ptepindex;
2197		pd_entry_t ptepa;
2198
2199		/*
2200		 * Calculate pagetable page index
2201		 */
2202		ptepindex = va >> PDRSHIFT;
2203		if (mpte && (mpte->pindex == ptepindex)) {
2204			mpte->hold_count++;
2205		} else {
2206retry:
2207			/*
2208			 * Get the page directory entry
2209			 */
2210			ptepa = pmap->pm_pdir[ptepindex];
2211
2212			/*
2213			 * If the page table page is mapped, we just increment
2214			 * the hold count, and activate it.
2215			 */
2216			if (ptepa) {
2217				if (ptepa & PG_PS)
2218					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2219				if (pmap->pm_ptphint &&
2220					(pmap->pm_ptphint->pindex == ptepindex)) {
2221					mpte = pmap->pm_ptphint;
2222				} else {
2223					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2224					pmap->pm_ptphint = mpte;
2225				}
2226				if (mpte == NULL)
2227					goto retry;
2228				mpte->hold_count++;
2229			} else {
2230				mpte = _pmap_allocpte(pmap, ptepindex);
2231			}
2232		}
2233	} else {
2234		mpte = NULL;
2235	}
2236
2237	/*
2238	 * This call to vtopte makes the assumption that we are
2239	 * entering the page into the current pmap.  In order to support
2240	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2241	 * But that isn't as quick as vtopte.
2242	 */
2243	pte = vtopte(va);
2244	if (*pte) {
2245		if (mpte)
2246			pmap_unwire_pte_hold(pmap, mpte);
2247		return 0;
2248	}
2249
2250	/*
2251	 * Enter on the PV list if part of our managed memory. Note that we
2252	 * raise IPL while manipulating pv_table since pmap_enter can be
2253	 * called at interrupt time.
2254	 */
2255	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2256		pmap_insert_entry(pmap, va, mpte, m);
2257
2258	/*
2259	 * Increment counters
2260	 */
2261	pmap->pm_stats.resident_count++;
2262
2263	pa = VM_PAGE_TO_PHYS(m);
2264
2265	/*
2266	 * Now validate mapping with RO protection
2267	 */
2268	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2269		*pte = pa | PG_V | PG_U;
2270	else
2271		*pte = pa | PG_V | PG_U | PG_MANAGED;
2272
2273	return mpte;
2274}
2275
2276/*
2277 * Make a temporary mapping for a physical address.  This is only intended
2278 * to be used for panic dumps.
2279 */
2280void *
2281pmap_kenter_temporary(vm_offset_t pa, int i)
2282{
2283	vm_offset_t va;
2284
2285	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2286	pmap_kenter(va, pa);
2287#ifndef I386_CPU
2288	invlpg(va);
2289#else
2290	invltlb();
2291#endif
2292	return ((void *)crashdumpmap);
2293}
2294
2295#define MAX_INIT_PT (96)
2296/*
2297 * pmap_object_init_pt preloads the ptes for a given object
2298 * into the specified pmap.  This eliminates the blast of soft
2299 * faults on process startup and immediately after an mmap.
2300 */
2301void
2302pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2303		    vm_object_t object, vm_pindex_t pindex,
2304		    vm_size_t size, int limit)
2305{
2306	vm_offset_t tmpidx;
2307	int psize;
2308	vm_page_t p, mpte;
2309	int objpgs;
2310
2311	if (pmap == NULL || object == NULL)
2312		return;
2313
2314	/*
2315	 * This code maps large physical mmap regions into the
2316	 * processor address space.  Note that some shortcuts
2317	 * are taken, but the code works.
2318	 */
2319	if (pseflag && (object->type == OBJT_DEVICE) &&
2320	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2321		int i;
2322		vm_page_t m[1];
2323		unsigned int ptepindex;
2324		int npdes;
2325		pd_entry_t ptepa;
2326
2327		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2328			return;
2329
2330retry:
2331		p = vm_page_lookup(object, pindex);
2332		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2333			goto retry;
2334
2335		if (p == NULL) {
2336			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2337			if (p == NULL)
2338				return;
2339			m[0] = p;
2340
2341			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2342				vm_page_lock_queues();
2343				vm_page_free(p);
2344				vm_page_unlock_queues();
2345				return;
2346			}
2347
2348			p = vm_page_lookup(object, pindex);
2349			vm_page_wakeup(p);
2350		}
2351
2352		ptepa = VM_PAGE_TO_PHYS(p);
2353		if (ptepa & (NBPDR - 1)) {
2354			return;
2355		}
2356
2357		p->valid = VM_PAGE_BITS_ALL;
2358
2359		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2360		npdes = size >> PDRSHIFT;
2361		for(i = 0; i < npdes; i++) {
2362			pmap->pm_pdir[ptepindex] =
2363			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2364			ptepa += NBPDR;
2365			ptepindex += 1;
2366		}
2367		vm_page_flag_set(p, PG_MAPPED);
2368		pmap_invalidate_all(kernel_pmap);
2369		return;
2370	}
2371
2372	psize = i386_btop(size);
2373
2374	if ((object->type != OBJT_VNODE) ||
2375	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2376	     (object->resident_page_count > MAX_INIT_PT))) {
2377		return;
2378	}
2379
2380	if (psize + pindex > object->size) {
2381		if (object->size < pindex)
2382			return;
2383		psize = object->size - pindex;
2384	}
2385
2386	mpte = NULL;
2387	/*
2388	 * if we are processing a major portion of the object, then scan the
2389	 * entire thing.
2390	 */
2391	if (psize > (object->resident_page_count >> 2)) {
2392		objpgs = psize;
2393
2394		for (p = TAILQ_FIRST(&object->memq);
2395		    ((objpgs > 0) && (p != NULL));
2396		    p = TAILQ_NEXT(p, listq)) {
2397
2398			if (p->pindex < pindex || p->pindex - pindex >= psize) {
2399				continue;
2400			}
2401			tmpidx = p->pindex - pindex;
2402			/*
2403			 * don't allow an madvise to blow away our really
2404			 * free pages allocating pv entries.
2405			 */
2406			if ((limit & MAP_PREFAULT_MADVISE) &&
2407			    cnt.v_free_count < cnt.v_free_reserved) {
2408				break;
2409			}
2410			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2411				(p->busy == 0) &&
2412			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2413				if ((p->queue - p->pc) == PQ_CACHE)
2414					vm_page_deactivate(p);
2415				vm_page_busy(p);
2416				mpte = pmap_enter_quick(pmap,
2417					addr + i386_ptob(tmpidx), p, mpte);
2418				vm_page_flag_set(p, PG_MAPPED);
2419				vm_page_wakeup(p);
2420			}
2421			objpgs -= 1;
2422		}
2423	} else {
2424		/*
2425		 * else lookup the pages one-by-one.
2426		 */
2427		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2428			/*
2429			 * don't allow an madvise to blow away our really
2430			 * free pages allocating pv entries.
2431			 */
2432			if ((limit & MAP_PREFAULT_MADVISE) &&
2433			    cnt.v_free_count < cnt.v_free_reserved) {
2434				break;
2435			}
2436			p = vm_page_lookup(object, tmpidx + pindex);
2437			if (p &&
2438			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2439				(p->busy == 0) &&
2440			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2441				if ((p->queue - p->pc) == PQ_CACHE)
2442					vm_page_deactivate(p);
2443				vm_page_busy(p);
2444				mpte = pmap_enter_quick(pmap,
2445					addr + i386_ptob(tmpidx), p, mpte);
2446				vm_page_flag_set(p, PG_MAPPED);
2447				vm_page_wakeup(p);
2448			}
2449		}
2450	}
2451	return;
2452}
2453
2454/*
2455 * pmap_prefault provides a quick way of clustering
2456 * pagefaults into a processes address space.  It is a "cousin"
2457 * of pmap_object_init_pt, except it runs at page fault time instead
2458 * of mmap time.
2459 */
2460#define PFBAK 4
2461#define PFFOR 4
2462#define PAGEORDER_SIZE (PFBAK+PFFOR)
2463
2464static int pmap_prefault_pageorder[] = {
2465	-PAGE_SIZE, PAGE_SIZE,
2466	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2467	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2468	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2469};
2470
2471void
2472pmap_prefault(pmap, addra, entry)
2473	pmap_t pmap;
2474	vm_offset_t addra;
2475	vm_map_entry_t entry;
2476{
2477	int i;
2478	vm_offset_t starta;
2479	vm_offset_t addr;
2480	vm_pindex_t pindex;
2481	vm_page_t m, mpte;
2482	vm_object_t object;
2483
2484	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2485		return;
2486
2487	object = entry->object.vm_object;
2488
2489	starta = addra - PFBAK * PAGE_SIZE;
2490	if (starta < entry->start) {
2491		starta = entry->start;
2492	} else if (starta > addra) {
2493		starta = 0;
2494	}
2495
2496	mpte = NULL;
2497	for (i = 0; i < PAGEORDER_SIZE; i++) {
2498		vm_object_t lobject;
2499		pt_entry_t *pte;
2500
2501		addr = addra + pmap_prefault_pageorder[i];
2502		if (addr > addra + (PFFOR * PAGE_SIZE))
2503			addr = 0;
2504
2505		if (addr < starta || addr >= entry->end)
2506			continue;
2507
2508		if ((*pmap_pde(pmap, addr)) == NULL)
2509			continue;
2510
2511		pte = vtopte(addr);
2512		if (*pte)
2513			continue;
2514
2515		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2516		lobject = object;
2517		for (m = vm_page_lookup(lobject, pindex);
2518		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2519		    lobject = lobject->backing_object) {
2520			if (lobject->backing_object_offset & PAGE_MASK)
2521				break;
2522			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2523			m = vm_page_lookup(lobject->backing_object, pindex);
2524		}
2525
2526		/*
2527		 * give-up when a page is not in memory
2528		 */
2529		if (m == NULL)
2530			break;
2531
2532		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2533			(m->busy == 0) &&
2534		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2535
2536			if ((m->queue - m->pc) == PQ_CACHE) {
2537				vm_page_deactivate(m);
2538			}
2539			vm_page_busy(m);
2540			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2541			vm_page_flag_set(m, PG_MAPPED);
2542			vm_page_wakeup(m);
2543		}
2544	}
2545}
2546
2547/*
2548 *	Routine:	pmap_change_wiring
2549 *	Function:	Change the wiring attribute for a map/virtual-address
2550 *			pair.
2551 *	In/out conditions:
2552 *			The mapping must already exist in the pmap.
2553 */
2554void
2555pmap_change_wiring(pmap, va, wired)
2556	register pmap_t pmap;
2557	vm_offset_t va;
2558	boolean_t wired;
2559{
2560	register pt_entry_t *pte;
2561
2562	if (pmap == NULL)
2563		return;
2564
2565	pte = pmap_pte(pmap, va);
2566
2567	if (wired && !pmap_pte_w(pte))
2568		pmap->pm_stats.wired_count++;
2569	else if (!wired && pmap_pte_w(pte))
2570		pmap->pm_stats.wired_count--;
2571
2572	/*
2573	 * Wiring is not a hardware characteristic so there is no need to
2574	 * invalidate TLB.
2575	 */
2576	pmap_pte_set_w(pte, wired);
2577}
2578
2579
2580
2581/*
2582 *	Copy the range specified by src_addr/len
2583 *	from the source map to the range dst_addr/len
2584 *	in the destination map.
2585 *
2586 *	This routine is only advisory and need not do anything.
2587 */
2588
2589void
2590pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2591	  vm_offset_t src_addr)
2592{
2593	vm_offset_t addr;
2594	vm_offset_t end_addr = src_addr + len;
2595	vm_offset_t pdnxt;
2596	pd_entry_t src_frame, dst_frame;
2597	vm_page_t m;
2598
2599	if (dst_addr != src_addr)
2600		return;
2601
2602	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2603	if (src_frame != (PTDpde & PG_FRAME))
2604		return;
2605
2606	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2607	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2608		pt_entry_t *src_pte, *dst_pte;
2609		vm_page_t dstmpte, srcmpte;
2610		pd_entry_t srcptepaddr;
2611		unsigned ptepindex;
2612
2613		if (addr >= UPT_MIN_ADDRESS)
2614			panic("pmap_copy: invalid to pmap_copy page tables\n");
2615
2616		/*
2617		 * Don't let optional prefaulting of pages make us go
2618		 * way below the low water mark of free pages or way
2619		 * above high water mark of used pv entries.
2620		 */
2621		if (cnt.v_free_count < cnt.v_free_reserved ||
2622		    pv_entry_count > pv_entry_high_water)
2623			break;
2624
2625		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2626		ptepindex = addr >> PDRSHIFT;
2627
2628		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2629		if (srcptepaddr == 0)
2630			continue;
2631
2632		if (srcptepaddr & PG_PS) {
2633			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2634				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2635				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2636			}
2637			continue;
2638		}
2639
2640		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2641		if ((srcmpte == NULL) ||
2642		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2643			continue;
2644
2645		if (pdnxt > end_addr)
2646			pdnxt = end_addr;
2647
2648		/*
2649		 * Have to recheck this before every avtopte() call below
2650		 * in case we have blocked and something else used APTDpde.
2651		 */
2652		if (dst_frame != (APTDpde & PG_FRAME)) {
2653			APTDpde = dst_frame | PG_RW | PG_V;
2654			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2655		}
2656		src_pte = vtopte(addr);
2657		dst_pte = avtopte(addr);
2658		while (addr < pdnxt) {
2659			pt_entry_t ptetemp;
2660			ptetemp = *src_pte;
2661			/*
2662			 * we only virtual copy managed pages
2663			 */
2664			if ((ptetemp & PG_MANAGED) != 0) {
2665				/*
2666				 * We have to check after allocpte for the
2667				 * pte still being around...  allocpte can
2668				 * block.
2669				 */
2670				dstmpte = pmap_allocpte(dst_pmap, addr);
2671				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2672					/*
2673					 * Clear the modified and
2674					 * accessed (referenced) bits
2675					 * during the copy.
2676					 */
2677					m = PHYS_TO_VM_PAGE(ptetemp);
2678					*dst_pte = ptetemp & ~(PG_M | PG_A);
2679					dst_pmap->pm_stats.resident_count++;
2680					pmap_insert_entry(dst_pmap, addr,
2681						dstmpte, m);
2682	 			} else {
2683					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2684				}
2685				if (dstmpte->hold_count >= srcmpte->hold_count)
2686					break;
2687			}
2688			addr += PAGE_SIZE;
2689			src_pte++;
2690			dst_pte++;
2691		}
2692	}
2693}
2694
2695#ifdef SMP
2696
2697/*
2698 *	pmap_zpi_switchin*()
2699 *
2700 *	These functions allow us to avoid doing IPIs alltogether in certain
2701 *	temporary page-mapping situations (page zeroing).  Instead to deal
2702 *	with being preempted and moved onto a different cpu we invalidate
2703 *	the page when the scheduler switches us in.  This does not occur
2704 *	very often so we remain relatively optimal with very little effort.
2705 */
2706static void
2707pmap_zpi_switchin12(void)
2708{
2709	invlpg((u_int)CADDR1);
2710	invlpg((u_int)CADDR2);
2711}
2712
2713static void
2714pmap_zpi_switchin2(void)
2715{
2716	invlpg((u_int)CADDR2);
2717}
2718
2719static void
2720pmap_zpi_switchin3(void)
2721{
2722	invlpg((u_int)CADDR3);
2723}
2724
2725#endif
2726
2727/*
2728 *	pmap_zero_page zeros the specified hardware page by mapping
2729 *	the page into KVM and using bzero to clear its contents.
2730 */
2731void
2732pmap_zero_page(vm_page_t m)
2733{
2734	vm_offset_t phys;
2735
2736	phys = VM_PAGE_TO_PHYS(m);
2737	if (*CMAP2)
2738		panic("pmap_zero_page: CMAP2 busy");
2739	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2740#ifdef I386_CPU
2741	invltlb();
2742#else
2743#ifdef SMP
2744	curthread->td_switchin = pmap_zpi_switchin2;
2745#endif
2746	invlpg((u_int)CADDR2);
2747#endif
2748#if defined(I686_CPU)
2749	if (cpu_class == CPUCLASS_686)
2750		i686_pagezero(CADDR2);
2751	else
2752#endif
2753		bzero(CADDR2, PAGE_SIZE);
2754#ifdef SMP
2755	curthread->td_switchin = NULL;
2756#endif
2757	*CMAP2 = 0;
2758}
2759
2760/*
2761 *	pmap_zero_page_area zeros the specified hardware page by mapping
2762 *	the page into KVM and using bzero to clear its contents.
2763 *
2764 *	off and size may not cover an area beyond a single hardware page.
2765 */
2766void
2767pmap_zero_page_area(vm_page_t m, int off, int size)
2768{
2769	vm_offset_t phys;
2770
2771	phys = VM_PAGE_TO_PHYS(m);
2772	if (*CMAP2)
2773		panic("pmap_zero_page: CMAP2 busy");
2774	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2775#ifdef I386_CPU
2776	invltlb();
2777#else
2778#ifdef SMP
2779	curthread->td_switchin = pmap_zpi_switchin2;
2780#endif
2781	invlpg((u_int)CADDR2);
2782#endif
2783#if defined(I686_CPU)
2784	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2785		i686_pagezero(CADDR2);
2786	else
2787#endif
2788		bzero((char *)CADDR2 + off, size);
2789#ifdef SMP
2790	curthread->td_switchin = NULL;
2791#endif
2792	*CMAP2 = 0;
2793}
2794
2795/*
2796 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2797 *	the page into KVM and using bzero to clear its contents.  This
2798 *	is intended to be called from the vm_pagezero process only and
2799 *	outside of Giant.
2800 */
2801void
2802pmap_zero_page_idle(vm_page_t m)
2803{
2804	vm_offset_t phys;
2805
2806	phys = VM_PAGE_TO_PHYS(m);
2807	if (*CMAP3)
2808		panic("pmap_zero_page: CMAP3 busy");
2809	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2810#ifdef I386_CPU
2811	invltlb();
2812#else
2813#ifdef SMP
2814	curthread->td_switchin = pmap_zpi_switchin3;
2815#endif
2816	invlpg((u_int)CADDR3);
2817#endif
2818#if defined(I686_CPU)
2819	if (cpu_class == CPUCLASS_686)
2820		i686_pagezero(CADDR3);
2821	else
2822#endif
2823		bzero(CADDR3, PAGE_SIZE);
2824#ifdef SMP
2825	curthread->td_switchin = NULL;
2826#endif
2827	*CMAP3 = 0;
2828}
2829
2830/*
2831 *	pmap_copy_page copies the specified (machine independent)
2832 *	page by mapping the page into virtual memory and using
2833 *	bcopy to copy the page, one machine dependent page at a
2834 *	time.
2835 */
2836void
2837pmap_copy_page(vm_page_t src, vm_page_t dst)
2838{
2839
2840	if (*CMAP1)
2841		panic("pmap_copy_page: CMAP1 busy");
2842	if (*CMAP2)
2843		panic("pmap_copy_page: CMAP2 busy");
2844	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2845	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2846#ifdef I386_CPU
2847	invltlb();
2848#else
2849#ifdef SMP
2850	curthread->td_switchin = pmap_zpi_switchin12;
2851#endif
2852	invlpg((u_int)CADDR1);
2853	invlpg((u_int)CADDR2);
2854#endif
2855	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2856#ifdef SMP
2857	curthread->td_switchin = NULL;
2858#endif
2859	*CMAP1 = 0;
2860	*CMAP2 = 0;
2861}
2862
2863
2864/*
2865 *	Routine:	pmap_pageable
2866 *	Function:
2867 *		Make the specified pages (by pmap, offset)
2868 *		pageable (or not) as requested.
2869 *
2870 *		A page which is not pageable may not take
2871 *		a fault; therefore, its page table entry
2872 *		must remain valid for the duration.
2873 *
2874 *		This routine is merely advisory; pmap_enter
2875 *		will specify that these pages are to be wired
2876 *		down (or not) as appropriate.
2877 */
2878void
2879pmap_pageable(pmap, sva, eva, pageable)
2880	pmap_t pmap;
2881	vm_offset_t sva, eva;
2882	boolean_t pageable;
2883{
2884}
2885
2886/*
2887 * Returns true if the pmap's pv is one of the first
2888 * 16 pvs linked to from this page.  This count may
2889 * be changed upwards or downwards in the future; it
2890 * is only necessary that true be returned for a small
2891 * subset of pmaps for proper page aging.
2892 */
2893boolean_t
2894pmap_page_exists_quick(pmap, m)
2895	pmap_t pmap;
2896	vm_page_t m;
2897{
2898	pv_entry_t pv;
2899	int loops = 0;
2900	int s;
2901
2902	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2903		return FALSE;
2904
2905	s = splvm();
2906
2907	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2908		if (pv->pv_pmap == pmap) {
2909			splx(s);
2910			return TRUE;
2911		}
2912		loops++;
2913		if (loops >= 16)
2914			break;
2915	}
2916	splx(s);
2917	return (FALSE);
2918}
2919
2920#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2921/*
2922 * Remove all pages from specified address space
2923 * this aids process exit speeds.  Also, this code
2924 * is special cased for current process only, but
2925 * can have the more generic (and slightly slower)
2926 * mode enabled.  This is much faster than pmap_remove
2927 * in the case of running down an entire address space.
2928 */
2929void
2930pmap_remove_pages(pmap, sva, eva)
2931	pmap_t pmap;
2932	vm_offset_t sva, eva;
2933{
2934	pt_entry_t *pte, tpte;
2935	vm_page_t m;
2936	pv_entry_t pv, npv;
2937	int s;
2938
2939#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2940	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2941		printf("warning: pmap_remove_pages called with non-current pmap\n");
2942		return;
2943	}
2944#endif
2945
2946	s = splvm();
2947	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2948
2949		if (pv->pv_va >= eva || pv->pv_va < sva) {
2950			npv = TAILQ_NEXT(pv, pv_plist);
2951			continue;
2952		}
2953
2954#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2955		pte = vtopte(pv->pv_va);
2956#else
2957		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2958#endif
2959		tpte = *pte;
2960
2961		if (tpte == 0) {
2962			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2963							pte, pv->pv_va);
2964			panic("bad pte");
2965		}
2966
2967/*
2968 * We cannot remove wired pages from a process' mapping at this time
2969 */
2970		if (tpte & PG_W) {
2971			npv = TAILQ_NEXT(pv, pv_plist);
2972			continue;
2973		}
2974
2975		m = PHYS_TO_VM_PAGE(tpte);
2976		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2977		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2978		    m, m->phys_addr, tpte));
2979
2980		KASSERT(m < &vm_page_array[vm_page_array_size],
2981			("pmap_remove_pages: bad tpte %x", tpte));
2982
2983		pv->pv_pmap->pm_stats.resident_count--;
2984
2985		*pte = 0;
2986
2987		/*
2988		 * Update the vm_page_t clean and reference bits.
2989		 */
2990		if (tpte & PG_M) {
2991			vm_page_dirty(m);
2992		}
2993
2994		npv = TAILQ_NEXT(pv, pv_plist);
2995		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2996
2997		m->md.pv_list_count--;
2998		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2999		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3000			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3001		}
3002
3003		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3004		free_pv_entry(pv);
3005	}
3006	splx(s);
3007	pmap_invalidate_all(pmap);
3008}
3009
3010/*
3011 * pmap_testbit tests bits in pte's
3012 * note that the testbit/changebit routines are inline,
3013 * and a lot of things compile-time evaluate.
3014 */
3015static boolean_t
3016pmap_testbit(m, bit)
3017	vm_page_t m;
3018	int bit;
3019{
3020	pv_entry_t pv;
3021	pt_entry_t *pte;
3022	int s;
3023
3024	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3025		return FALSE;
3026
3027	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3028		return FALSE;
3029
3030	s = splvm();
3031
3032	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3033		/*
3034		 * if the bit being tested is the modified bit, then
3035		 * mark clean_map and ptes as never
3036		 * modified.
3037		 */
3038		if (bit & (PG_A|PG_M)) {
3039			if (!pmap_track_modified(pv->pv_va))
3040				continue;
3041		}
3042
3043#if defined(PMAP_DIAGNOSTIC)
3044		if (!pv->pv_pmap) {
3045			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3046			continue;
3047		}
3048#endif
3049		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3050		if (*pte & bit) {
3051			splx(s);
3052			return TRUE;
3053		}
3054	}
3055	splx(s);
3056	return (FALSE);
3057}
3058
3059/*
3060 * this routine is used to modify bits in ptes
3061 */
3062static __inline void
3063pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3064{
3065	register pv_entry_t pv;
3066	register pt_entry_t *pte;
3067	int s;
3068
3069	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3070		return;
3071
3072	s = splvm();
3073
3074	/*
3075	 * Loop over all current mappings setting/clearing as appropos If
3076	 * setting RO do we need to clear the VAC?
3077	 */
3078	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3079		/*
3080		 * don't write protect pager mappings
3081		 */
3082		if (!setem && (bit == PG_RW)) {
3083			if (!pmap_track_modified(pv->pv_va))
3084				continue;
3085		}
3086
3087#if defined(PMAP_DIAGNOSTIC)
3088		if (!pv->pv_pmap) {
3089			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3090			continue;
3091		}
3092#endif
3093
3094		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3095
3096		if (setem) {
3097			*pte |= bit;
3098			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3099		} else {
3100			pt_entry_t pbits = *pte;
3101			if (pbits & bit) {
3102				if (bit == PG_RW) {
3103					if (pbits & PG_M) {
3104						vm_page_dirty(m);
3105					}
3106					*pte = pbits & ~(PG_M|PG_RW);
3107				} else {
3108					*pte = pbits & ~bit;
3109				}
3110				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3111			}
3112		}
3113	}
3114	splx(s);
3115}
3116
3117/*
3118 *      pmap_page_protect:
3119 *
3120 *      Lower the permission for all mappings to a given page.
3121 */
3122void
3123pmap_page_protect(vm_page_t m, vm_prot_t prot)
3124{
3125	if ((prot & VM_PROT_WRITE) == 0) {
3126		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3127			pmap_changebit(m, PG_RW, FALSE);
3128		} else {
3129			pmap_remove_all(m);
3130		}
3131	}
3132}
3133
3134vm_offset_t
3135pmap_phys_address(ppn)
3136	int ppn;
3137{
3138	return (i386_ptob(ppn));
3139}
3140
3141/*
3142 *	pmap_ts_referenced:
3143 *
3144 *	Return a count of reference bits for a page, clearing those bits.
3145 *	It is not necessary for every reference bit to be cleared, but it
3146 *	is necessary that 0 only be returned when there are truly no
3147 *	reference bits set.
3148 *
3149 *	XXX: The exact number of bits to check and clear is a matter that
3150 *	should be tested and standardized at some point in the future for
3151 *	optimal aging of shared pages.
3152 */
3153int
3154pmap_ts_referenced(vm_page_t m)
3155{
3156	register pv_entry_t pv, pvf, pvn;
3157	pt_entry_t *pte;
3158	int s;
3159	int rtval = 0;
3160
3161	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3162		return (rtval);
3163
3164	s = splvm();
3165
3166	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3167
3168		pvf = pv;
3169
3170		do {
3171			pvn = TAILQ_NEXT(pv, pv_list);
3172
3173			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3174
3175			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3176
3177			if (!pmap_track_modified(pv->pv_va))
3178				continue;
3179
3180			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3181
3182			if (pte && (*pte & PG_A)) {
3183				*pte &= ~PG_A;
3184
3185				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3186
3187				rtval++;
3188				if (rtval > 4) {
3189					break;
3190				}
3191			}
3192		} while ((pv = pvn) != NULL && pv != pvf);
3193	}
3194	splx(s);
3195
3196	return (rtval);
3197}
3198
3199/*
3200 *	pmap_is_modified:
3201 *
3202 *	Return whether or not the specified physical page was modified
3203 *	in any physical maps.
3204 */
3205boolean_t
3206pmap_is_modified(vm_page_t m)
3207{
3208	return pmap_testbit(m, PG_M);
3209}
3210
3211/*
3212 *	Clear the modify bits on the specified physical page.
3213 */
3214void
3215pmap_clear_modify(vm_page_t m)
3216{
3217	pmap_changebit(m, PG_M, FALSE);
3218}
3219
3220/*
3221 *	pmap_clear_reference:
3222 *
3223 *	Clear the reference bit on the specified physical page.
3224 */
3225void
3226pmap_clear_reference(vm_page_t m)
3227{
3228	pmap_changebit(m, PG_A, FALSE);
3229}
3230
3231/*
3232 * Miscellaneous support routines follow
3233 */
3234
3235static void
3236i386_protection_init()
3237{
3238	register int *kp, prot;
3239
3240	kp = protection_codes;
3241	for (prot = 0; prot < 8; prot++) {
3242		switch (prot) {
3243		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3244			/*
3245			 * Read access is also 0. There isn't any execute bit,
3246			 * so just make it readable.
3247			 */
3248		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3249		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3250		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3251			*kp++ = 0;
3252			break;
3253		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3254		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3255		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3256		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3257			*kp++ = PG_RW;
3258			break;
3259		}
3260	}
3261}
3262
3263/*
3264 * Map a set of physical memory pages into the kernel virtual
3265 * address space. Return a pointer to where it is mapped. This
3266 * routine is intended to be used for mapping device memory,
3267 * NOT real memory.
3268 */
3269void *
3270pmap_mapdev(pa, size)
3271	vm_offset_t pa;
3272	vm_size_t size;
3273{
3274	vm_offset_t va, tmpva, offset;
3275	pt_entry_t *pte;
3276
3277	offset = pa & PAGE_MASK;
3278	size = roundup(offset + size, PAGE_SIZE);
3279
3280	GIANT_REQUIRED;
3281
3282	va = kmem_alloc_pageable(kernel_map, size);
3283	if (!va)
3284		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3285
3286	pa = pa & PG_FRAME;
3287	for (tmpva = va; size > 0; ) {
3288		pte = vtopte(tmpva);
3289		*pte = pa | PG_RW | PG_V | pgeflag;
3290		size -= PAGE_SIZE;
3291		tmpva += PAGE_SIZE;
3292		pa += PAGE_SIZE;
3293	}
3294	pmap_invalidate_range(kernel_pmap, va, tmpva);
3295	return ((void *)(va + offset));
3296}
3297
3298void
3299pmap_unmapdev(va, size)
3300	vm_offset_t va;
3301	vm_size_t size;
3302{
3303	vm_offset_t base, offset, tmpva;
3304	pt_entry_t *pte;
3305
3306	base = va & PG_FRAME;
3307	offset = va & PAGE_MASK;
3308	size = roundup(offset + size, PAGE_SIZE);
3309	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3310		pte = vtopte(tmpva);
3311		*pte = 0;
3312	}
3313	pmap_invalidate_range(kernel_pmap, va, tmpva);
3314	kmem_free(kernel_map, base, size);
3315}
3316
3317/*
3318 * perform the pmap work for mincore
3319 */
3320int
3321pmap_mincore(pmap, addr)
3322	pmap_t pmap;
3323	vm_offset_t addr;
3324{
3325	pt_entry_t *ptep, pte;
3326	vm_page_t m;
3327	int val = 0;
3328
3329	ptep = pmap_pte(pmap, addr);
3330	if (ptep == 0) {
3331		return 0;
3332	}
3333
3334	if ((pte = *ptep) != 0) {
3335		vm_offset_t pa;
3336
3337		val = MINCORE_INCORE;
3338		if ((pte & PG_MANAGED) == 0)
3339			return val;
3340
3341		pa = pte & PG_FRAME;
3342
3343		m = PHYS_TO_VM_PAGE(pa);
3344
3345		/*
3346		 * Modified by us
3347		 */
3348		if (pte & PG_M)
3349			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3350		/*
3351		 * Modified by someone
3352		 */
3353		else if (m->dirty || pmap_is_modified(m))
3354			val |= MINCORE_MODIFIED_OTHER;
3355		/*
3356		 * Referenced by us
3357		 */
3358		if (pte & PG_A)
3359			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3360
3361		/*
3362		 * Referenced by someone
3363		 */
3364		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3365			val |= MINCORE_REFERENCED_OTHER;
3366			vm_page_flag_set(m, PG_REFERENCED);
3367		}
3368	}
3369	return val;
3370}
3371
3372void
3373pmap_activate(struct thread *td)
3374{
3375	struct proc *p = td->td_proc;
3376	pmap_t	pmap;
3377	u_int32_t  cr3;
3378
3379	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3380#if defined(SMP)
3381	pmap->pm_active |= PCPU_GET(cpumask);
3382#else
3383	pmap->pm_active |= 1;
3384#endif
3385	cr3 = vtophys(pmap->pm_pdir);
3386	/* XXXKSE this is wrong.
3387	 * pmap_activate is for the current thread on the current cpu
3388	 */
3389	if (p->p_flag & P_KSES) {
3390		/* Make sure all other cr3 entries are updated. */
3391		/* what if they are running?  XXXKSE (maybe abort them) */
3392		FOREACH_THREAD_IN_PROC(p, td) {
3393			td->td_pcb->pcb_cr3 = cr3;
3394		}
3395	} else {
3396		td->td_pcb->pcb_cr3 = cr3;
3397	}
3398	load_cr3(cr3);
3399#ifdef SWTCH_OPTIM_STATS
3400	tlb_flush_count++;
3401#endif
3402}
3403
3404vm_offset_t
3405pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3406{
3407
3408	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3409		return addr;
3410	}
3411
3412	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3413	return addr;
3414}
3415
3416
3417#if defined(PMAP_DEBUG)
3418pmap_pid_dump(int pid)
3419{
3420	pmap_t pmap;
3421	struct proc *p;
3422	int npte = 0;
3423	int index;
3424
3425	sx_slock(&allproc_lock);
3426	LIST_FOREACH(p, &allproc, p_list) {
3427		if (p->p_pid != pid)
3428			continue;
3429
3430		if (p->p_vmspace) {
3431			int i,j;
3432			index = 0;
3433			pmap = vmspace_pmap(p->p_vmspace);
3434			for (i = 0; i < NPDEPG; i++) {
3435				pd_entry_t *pde;
3436				pt_entry_t *pte;
3437				vm_offset_t base = i << PDRSHIFT;
3438
3439				pde = &pmap->pm_pdir[i];
3440				if (pde && pmap_pde_v(pde)) {
3441					for (j = 0; j < NPTEPG; j++) {
3442						vm_offset_t va = base + (j << PAGE_SHIFT);
3443						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3444							if (index) {
3445								index = 0;
3446								printf("\n");
3447							}
3448							sx_sunlock(&allproc_lock);
3449							return npte;
3450						}
3451						pte = pmap_pte_quick(pmap, va);
3452						if (pte && pmap_pte_v(pte)) {
3453							pt_entry_t pa;
3454							vm_page_t m;
3455							pa = *pte;
3456							m = PHYS_TO_VM_PAGE(pa);
3457							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3458								va, pa, m->hold_count, m->wire_count, m->flags);
3459							npte++;
3460							index++;
3461							if (index >= 2) {
3462								index = 0;
3463								printf("\n");
3464							} else {
3465								printf(" ");
3466							}
3467						}
3468					}
3469				}
3470			}
3471		}
3472	}
3473	sx_sunlock(&allproc_lock);
3474	return npte;
3475}
3476#endif
3477
3478#if defined(DEBUG)
3479
3480static void	pads(pmap_t pm);
3481void		pmap_pvdump(vm_offset_t pa);
3482
3483/* print address space of pmap*/
3484static void
3485pads(pm)
3486	pmap_t pm;
3487{
3488	int i, j;
3489	vm_offset_t va;
3490	pt_entry_t *ptep;
3491
3492	if (pm == kernel_pmap)
3493		return;
3494	for (i = 0; i < NPDEPG; i++)
3495		if (pm->pm_pdir[i])
3496			for (j = 0; j < NPTEPG; j++) {
3497				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3498				if (pm == kernel_pmap && va < KERNBASE)
3499					continue;
3500				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3501					continue;
3502				ptep = pmap_pte_quick(pm, va);
3503				if (pmap_pte_v(ptep))
3504					printf("%x:%x ", va, *ptep);
3505			};
3506
3507}
3508
3509void
3510pmap_pvdump(pa)
3511	vm_offset_t pa;
3512{
3513	pv_entry_t pv;
3514	vm_page_t m;
3515
3516	printf("pa %x", pa);
3517	m = PHYS_TO_VM_PAGE(pa);
3518	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3519		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3520		pads(pv->pv_pmap);
3521	}
3522	printf(" ");
3523}
3524#endif
3525