pmap.c revision 100378
10SN/A/*
2157SN/A * Copyright (c) 1991 Regents of the University of California.
30SN/A * All rights reserved.
40SN/A * Copyright (c) 1994 John S. Dyson
50SN/A * All rights reserved.
60SN/A * Copyright (c) 1994 David Greenman
7157SN/A * All rights reserved.
80SN/A *
9157SN/A * This code is derived from software contributed to Berkeley by
100SN/A * the Systems Programming Group of the University of Utah Computer
110SN/A * Science Department and William Jolitz of UUNET Technologies Inc.
120SN/A *
130SN/A * Redistribution and use in source and binary forms, with or without
140SN/A * modification, are permitted provided that the following conditions
150SN/A * are met:
160SN/A * 1. Redistributions of source code must retain the above copyright
170SN/A *    notice, this list of conditions and the following disclaimer.
180SN/A * 2. Redistributions in binary form must reproduce the above copyright
190SN/A *    notice, this list of conditions and the following disclaimer in the
200SN/A *    documentation and/or other materials provided with the distribution.
21157SN/A * 3. All advertising materials mentioning features or use of this software
22157SN/A *    must display the following acknowledgement:
23157SN/A *	This product includes software developed by the University of
240SN/A *	California, Berkeley and its contributors.
250SN/A * 4. Neither the name of the University nor the names of its contributors
260SN/A *    may be used to endorse or promote products derived from this software
270SN/A *    without specific prior written permission.
280SN/A *
290SN/A * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
300SN/A * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
310SN/A * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
320SN/A * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
330SN/A * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
340SN/A * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
350SN/A * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
360SN/A * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 100378 2002-07-19 19:35:06Z alc $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154struct pmaplist allpmaps;
155
156vm_offset_t avail_start;	/* PA of first available physical page */
157vm_offset_t avail_end;		/* PA of last available physical page */
158vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
159vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
160static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
161static int pgeflag;		/* PG_G or-in */
162static int pseflag;		/* PG_PS or-in */
163
164static vm_object_t kptobj;
165
166static int nkpt;
167vm_offset_t kernel_vm_end;
168extern u_int32_t KERNend;
169
170/*
171 * Data for the pv entry allocation mechanism
172 */
173static uma_zone_t pvzone;
174static struct vm_object pvzone_obj;
175static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
176static int pmap_pagedaemon_waken = 0;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2, CADDR3;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static void	pmap_remove_all(vm_page_t m);
207static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
208				      vm_page_t m, vm_page_t mpte);
209static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
210static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
211static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
212					vm_offset_t va);
213static boolean_t pmap_testbit(vm_page_t m, int bit);
214static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
215		vm_page_t mpte, vm_page_t m);
216
217static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
218
219static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
220static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
221static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
222static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
223static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
224static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
225static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
226
227static pd_entry_t pdir4mb;
228
229/*
230 *	Routine:	pmap_pte
231 *	Function:
232 *		Extract the page table entry associated
233 *		with the given map/virtual_address pair.
234 */
235
236PMAP_INLINE pt_entry_t *
237pmap_pte(pmap, va)
238	register pmap_t pmap;
239	vm_offset_t va;
240{
241	pd_entry_t *pdeaddr;
242
243	if (pmap) {
244		pdeaddr = pmap_pde(pmap, va);
245		if (*pdeaddr & PG_PS)
246			return pdeaddr;
247		if (*pdeaddr) {
248			return get_ptbase(pmap) + i386_btop(va);
249		}
250	}
251	return (0);
252}
253
254/*
255 * Move the kernel virtual free pointer to the next
256 * 4MB.  This is used to help improve performance
257 * by using a large (4MB) page for much of the kernel
258 * (.text, .data, .bss)
259 */
260static vm_offset_t
261pmap_kmem_choose(vm_offset_t addr)
262{
263	vm_offset_t newaddr = addr;
264
265#ifndef DISABLE_PSE
266	if (cpu_feature & CPUID_PSE)
267		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
268#endif
269	return newaddr;
270}
271
272/*
273 *	Bootstrap the system enough to run with virtual memory.
274 *
275 *	On the i386 this is called after mapping has already been enabled
276 *	and just syncs the pmap module with what has already been done.
277 *	[We can't call it easily with mapping off since the kernel is not
278 *	mapped with PA == VA, hence we would have to relocate every address
279 *	from the linked base (virtual) address "KERNBASE" to the actual
280 *	(physical) address starting relative to 0]
281 */
282void
283pmap_bootstrap(firstaddr, loadaddr)
284	vm_offset_t firstaddr;
285	vm_offset_t loadaddr;
286{
287	vm_offset_t va;
288	pt_entry_t *pte;
289	int i;
290
291	avail_start = firstaddr;
292
293	/*
294	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
295	 * large. It should instead be correctly calculated in locore.s and
296	 * not based on 'first' (which is a physical address, not a virtual
297	 * address, for the start of unused physical memory). The kernel
298	 * page tables are NOT double mapped and thus should not be included
299	 * in this calculation.
300	 */
301	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
302	virtual_avail = pmap_kmem_choose(virtual_avail);
303
304	virtual_end = VM_MAX_KERNEL_ADDRESS;
305
306	/*
307	 * Initialize protection array.
308	 */
309	i386_protection_init();
310
311	/*
312	 * Initialize the kernel pmap (which is statically allocated).
313	 */
314	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
315	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
316	TAILQ_INIT(&kernel_pmap->pm_pvlist);
317	LIST_INIT(&allpmaps);
318	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
319	nkpt = NKPT;
320
321	/*
322	 * Reserve some special page table entries/VA space for temporary
323	 * mapping of pages.
324	 */
325#define	SYSMAP(c, p, v, n)	\
326	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
327
328	va = virtual_avail;
329	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
330
331	/*
332	 * CMAP1/CMAP2 are used for zeroing and copying pages.
333	 * CMAP3 is used for the idle process page zeroing.
334	 */
335	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
336	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
337	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
338
339	/*
340	 * Crashdump maps.
341	 */
342	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
343
344	/*
345	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
346	 * XXX ptmmap is not used.
347	 */
348	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
349
350	/*
351	 * msgbufp is used to map the system message buffer.
352	 * XXX msgbufmap is not used.
353	 */
354	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
355	       atop(round_page(MSGBUF_SIZE)))
356
357	/*
358	 * ptemap is used for pmap_pte_quick
359	 */
360	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
361
362	virtual_avail = va;
363
364	*CMAP1 = *CMAP2 = 0;
365	for (i = 0; i < NKPT; i++)
366		PTD[i] = 0;
367
368	pgeflag = 0;
369#ifndef DISABLE_PG_G
370	if (cpu_feature & CPUID_PGE)
371		pgeflag = PG_G;
372#endif
373
374/*
375 * Initialize the 4MB page size flag
376 */
377	pseflag = 0;
378/*
379 * The 4MB page version of the initial
380 * kernel page mapping.
381 */
382	pdir4mb = 0;
383
384#ifndef DISABLE_PSE
385	if (cpu_feature & CPUID_PSE) {
386		pd_entry_t ptditmp;
387		/*
388		 * Note that we have enabled PSE mode
389		 */
390		pseflag = PG_PS;
391		ptditmp = *(PTmap + i386_btop(KERNBASE));
392		ptditmp &= ~(NBPDR - 1);
393		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
394		pdir4mb = ptditmp;
395	}
396#endif
397#ifndef SMP
398	/*
399	 * Turn on PGE/PSE.  SMP does this later on since the
400	 * 4K page tables are required for AP boot (for now).
401	 * XXX fixme.
402	 */
403	pmap_set_opt();
404#endif
405#ifdef SMP
406	if (cpu_apic_address == 0)
407		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
408
409	/* local apic is mapped on last page */
410	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
411	    (cpu_apic_address & PG_FRAME));
412#endif
413	invltlb();
414}
415
416/*
417 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
418 * BSP will run this after all the AP's have started up.
419 */
420void
421pmap_set_opt(void)
422{
423	pt_entry_t *pte;
424	vm_offset_t va, endva;
425
426	if (pgeflag && (cpu_feature & CPUID_PGE)) {
427		load_cr4(rcr4() | CR4_PGE);
428		invltlb();		/* Insurance */
429	}
430#ifndef DISABLE_PSE
431	if (pseflag && (cpu_feature & CPUID_PSE)) {
432		load_cr4(rcr4() | CR4_PSE);
433		invltlb();		/* Insurance */
434	}
435#endif
436	if (PCPU_GET(cpuid) == 0) {
437#ifndef DISABLE_PSE
438		if (pdir4mb) {
439			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
440			invltlb();	/* Insurance */
441		}
442#endif
443		if (pgeflag) {
444			/* Turn on PG_G for text, data, bss pages. */
445			va = (vm_offset_t)btext;
446#ifndef DISABLE_PSE
447			if (pseflag && (cpu_feature & CPUID_PSE)) {
448				if (va < KERNBASE + (1 << PDRSHIFT))
449					va = KERNBASE + (1 << PDRSHIFT);
450			}
451#endif
452			endva = KERNBASE + KERNend;
453			while (va < endva) {
454				pte = vtopte(va);
455				if (*pte)
456					*pte |= pgeflag;
457				va += PAGE_SIZE;
458			}
459			invltlb();	/* Insurance */
460		}
461		/*
462		 * We do not need to broadcast the invltlb here, because
463		 * each AP does it the moment it is released from the boot
464		 * lock.  See ap_init().
465		 */
466	}
467}
468
469void *
470pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
471{
472	*flags = UMA_SLAB_PRIV;
473	return (void *)kmem_alloc(kernel_map, bytes);
474}
475
476/*
477 *	Initialize the pmap module.
478 *	Called by vm_init, to initialize any structures that the pmap
479 *	system needs to map virtual memory.
480 *	pmap_init has been enhanced to support in a fairly consistant
481 *	way, discontiguous physical memory.
482 */
483void
484pmap_init(phys_start, phys_end)
485	vm_offset_t phys_start, phys_end;
486{
487	int i;
488	int initial_pvs;
489
490	/*
491	 * object for kernel page table pages
492	 */
493	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
494
495	/*
496	 * Allocate memory for random pmap data structures.  Includes the
497	 * pv_head_table.
498	 */
499
500	for(i = 0; i < vm_page_array_size; i++) {
501		vm_page_t m;
502
503		m = &vm_page_array[i];
504		TAILQ_INIT(&m->md.pv_list);
505		m->md.pv_list_count = 0;
506	}
507
508	/*
509	 * init the pv free list
510	 */
511	initial_pvs = vm_page_array_size;
512	if (initial_pvs < MINPV)
513		initial_pvs = MINPV;
514	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
515	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
516	uma_zone_set_allocf(pvzone, pmap_allocf);
517	uma_prealloc(pvzone, initial_pvs);
518
519	/*
520	 * Now it is safe to enable pv_table recording.
521	 */
522	pmap_initialized = TRUE;
523}
524
525/*
526 * Initialize the address space (zone) for the pv_entries.  Set a
527 * high water mark so that the system can recover from excessive
528 * numbers of pv entries.
529 */
530void
531pmap_init2()
532{
533	int shpgperproc = PMAP_SHPGPERPROC;
534
535	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
536	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
537	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
538	pv_entry_high_water = 9 * (pv_entry_max / 10);
539	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
540}
541
542
543/***************************************************
544 * Low level helper routines.....
545 ***************************************************/
546
547#if defined(PMAP_DIAGNOSTIC)
548
549/*
550 * This code checks for non-writeable/modified pages.
551 * This should be an invalid condition.
552 */
553static int
554pmap_nw_modified(pt_entry_t ptea)
555{
556	int pte;
557
558	pte = (int) ptea;
559
560	if ((pte & (PG_M|PG_RW)) == PG_M)
561		return 1;
562	else
563		return 0;
564}
565#endif
566
567
568/*
569 * this routine defines the region(s) of memory that should
570 * not be tested for the modified bit.
571 */
572static PMAP_INLINE int
573pmap_track_modified(vm_offset_t va)
574{
575	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
576		return 1;
577	else
578		return 0;
579}
580
581#ifdef I386_CPU
582/*
583 * i386 only has "invalidate everything" and no SMP to worry about.
584 */
585PMAP_INLINE void
586pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
587{
588
589	if (pmap == kernel_pmap || pmap->pm_active)
590		invltlb();
591}
592
593PMAP_INLINE void
594pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
595{
596
597	if (pmap == kernel_pmap || pmap->pm_active)
598		invltlb();
599}
600
601PMAP_INLINE void
602pmap_invalidate_all(pmap_t pmap)
603{
604
605	if (pmap == kernel_pmap || pmap->pm_active)
606		invltlb();
607}
608#else /* !I386_CPU */
609#ifdef SMP
610/*
611 * For SMP, these functions have to use the IPI mechanism for coherence.
612 */
613void
614pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
615{
616	u_int cpumask;
617	u_int other_cpus;
618
619	critical_enter();
620	/*
621	 * We need to disable interrupt preemption but MUST NOT have
622	 * interrupts disabled here.
623	 * XXX we may need to hold schedlock to get a coherent pm_active
624	 */
625	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
626		invlpg(va);
627		smp_invlpg(va);
628	} else {
629		cpumask = PCPU_GET(cpumask);
630		other_cpus = PCPU_GET(other_cpus);
631		if (pmap->pm_active & cpumask)
632			invlpg(va);
633		if (pmap->pm_active & other_cpus)
634			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
635	}
636	critical_exit();
637}
638
639void
640pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
641{
642	u_int cpumask;
643	u_int other_cpus;
644	vm_offset_t addr;
645
646	critical_enter();
647	/*
648	 * We need to disable interrupt preemption but MUST NOT have
649	 * interrupts disabled here.
650	 * XXX we may need to hold schedlock to get a coherent pm_active
651	 */
652	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
653		for (addr = sva; addr < eva; addr += PAGE_SIZE)
654			invlpg(addr);
655		smp_invlpg_range(sva, eva);
656	} else {
657		cpumask = PCPU_GET(cpumask);
658		other_cpus = PCPU_GET(other_cpus);
659		if (pmap->pm_active & cpumask)
660			for (addr = sva; addr < eva; addr += PAGE_SIZE)
661				invlpg(addr);
662		if (pmap->pm_active & other_cpus)
663			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
664			    sva, eva);
665	}
666	critical_exit();
667}
668
669void
670pmap_invalidate_all(pmap_t pmap)
671{
672	u_int cpumask;
673	u_int other_cpus;
674
675	critical_enter();
676	/*
677	 * We need to disable interrupt preemption but MUST NOT have
678	 * interrupts disabled here.
679	 * XXX we may need to hold schedlock to get a coherent pm_active
680	 */
681	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
682		invltlb();
683		smp_invltlb();
684	} else {
685		cpumask = PCPU_GET(cpumask);
686		other_cpus = PCPU_GET(other_cpus);
687		if (pmap->pm_active & cpumask)
688			invltlb();
689		if (pmap->pm_active & other_cpus)
690			smp_masked_invltlb(pmap->pm_active & other_cpus);
691	}
692	critical_exit();
693}
694#else /* !SMP */
695/*
696 * Normal, non-SMP, 486+ invalidation functions.
697 * We inline these within pmap.c for speed.
698 */
699PMAP_INLINE void
700pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
701{
702
703	if (pmap == kernel_pmap || pmap->pm_active)
704		invlpg(va);
705}
706
707PMAP_INLINE void
708pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
709{
710	vm_offset_t addr;
711
712	if (pmap == kernel_pmap || pmap->pm_active)
713		for (addr = sva; addr < eva; addr += PAGE_SIZE)
714			invlpg(addr);
715}
716
717PMAP_INLINE void
718pmap_invalidate_all(pmap_t pmap)
719{
720
721	if (pmap == kernel_pmap || pmap->pm_active)
722		invltlb();
723}
724#endif /* !SMP */
725#endif /* !I386_CPU */
726
727/*
728 * Return an address which is the base of the Virtual mapping of
729 * all the PTEs for the given pmap. Note this doesn't say that
730 * all the PTEs will be present or that the pages there are valid.
731 * The PTEs are made available by the recursive mapping trick.
732 * It will map in the alternate PTE space if needed.
733 */
734static pt_entry_t *
735get_ptbase(pmap)
736	pmap_t pmap;
737{
738	pd_entry_t frame;
739
740	/* are we current address space or kernel? */
741	if (pmap == kernel_pmap)
742		return PTmap;
743	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
744	if (frame == (PTDpde & PG_FRAME))
745		return PTmap;
746	/* otherwise, we are alternate address space */
747	if (frame != (APTDpde & PG_FRAME)) {
748		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
749		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
750	}
751	return APTmap;
752}
753
754/*
755 * Super fast pmap_pte routine best used when scanning
756 * the pv lists.  This eliminates many coarse-grained
757 * invltlb calls.  Note that many of the pv list
758 * scans are across different pmaps.  It is very wasteful
759 * to do an entire invltlb for checking a single mapping.
760 */
761
762static pt_entry_t *
763pmap_pte_quick(pmap, va)
764	register pmap_t pmap;
765	vm_offset_t va;
766{
767	pd_entry_t pde, newpf;
768	pde = pmap->pm_pdir[va >> PDRSHIFT];
769	if (pde != 0) {
770		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
771		unsigned index = i386_btop(va);
772		/* are we current address space or kernel? */
773		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
774			return PTmap + index;
775		newpf = pde & PG_FRAME;
776		if (((*PMAP1) & PG_FRAME) != newpf) {
777			*PMAP1 = newpf | PG_RW | PG_V;
778			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
779		}
780		return PADDR1 + (index & (NPTEPG - 1));
781	}
782	return (0);
783}
784
785/*
786 *	Routine:	pmap_extract
787 *	Function:
788 *		Extract the physical page address associated
789 *		with the given map/virtual_address pair.
790 */
791vm_offset_t
792pmap_extract(pmap, va)
793	register pmap_t pmap;
794	vm_offset_t va;
795{
796	vm_offset_t rtval;	/* XXX FIXME */
797	vm_offset_t pdirindex;
798
799	if (pmap == 0)
800		return 0;
801	pdirindex = va >> PDRSHIFT;
802	rtval = pmap->pm_pdir[pdirindex];
803	if (rtval != 0) {
804		pt_entry_t *pte;
805		if ((rtval & PG_PS) != 0) {
806			rtval &= ~(NBPDR - 1);
807			rtval |= va & (NBPDR - 1);
808			return rtval;
809		}
810		pte = get_ptbase(pmap) + i386_btop(va);
811		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
812		return rtval;
813	}
814	return 0;
815
816}
817
818/***************************************************
819 * Low level mapping routines.....
820 ***************************************************/
821
822/*
823 * Add a wired page to the kva.
824 * Note: not SMP coherent.
825 */
826PMAP_INLINE void
827pmap_kenter(vm_offset_t va, vm_offset_t pa)
828{
829	pt_entry_t *pte;
830
831	pte = vtopte(va);
832	*pte = pa | PG_RW | PG_V | pgeflag;
833}
834
835/*
836 * Remove a page from the kernel pagetables.
837 * Note: not SMP coherent.
838 */
839PMAP_INLINE void
840pmap_kremove(vm_offset_t va)
841{
842	pt_entry_t *pte;
843
844	pte = vtopte(va);
845	*pte = 0;
846}
847
848/*
849 *	Used to map a range of physical addresses into kernel
850 *	virtual address space.
851 *
852 *	The value passed in '*virt' is a suggested virtual address for
853 *	the mapping. Architectures which can support a direct-mapped
854 *	physical to virtual region can return the appropriate address
855 *	within that region, leaving '*virt' unchanged. Other
856 *	architectures should map the pages starting at '*virt' and
857 *	update '*virt' with the first usable address after the mapped
858 *	region.
859 */
860vm_offset_t
861pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
862{
863	vm_offset_t va, sva;
864
865	va = sva = *virt;
866	while (start < end) {
867		pmap_kenter(va, start);
868		va += PAGE_SIZE;
869		start += PAGE_SIZE;
870	}
871	pmap_invalidate_range(kernel_pmap, sva, va);
872	*virt = va;
873	return (sva);
874}
875
876
877/*
878 * Add a list of wired pages to the kva
879 * this routine is only used for temporary
880 * kernel mappings that do not need to have
881 * page modification or references recorded.
882 * Note that old mappings are simply written
883 * over.  The page *must* be wired.
884 * Note: SMP coherent.  Uses a ranged shootdown IPI.
885 */
886void
887pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
888{
889	vm_offset_t va;
890
891	va = sva;
892	while (count-- > 0) {
893		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
894		va += PAGE_SIZE;
895		m++;
896	}
897	pmap_invalidate_range(kernel_pmap, sva, va);
898}
899
900/*
901 * This routine tears out page mappings from the
902 * kernel -- it is meant only for temporary mappings.
903 * Note: SMP coherent.  Uses a ranged shootdown IPI.
904 */
905void
906pmap_qremove(vm_offset_t sva, int count)
907{
908	vm_offset_t va;
909
910	va = sva;
911	while (count-- > 0) {
912		pmap_kremove(va);
913		va += PAGE_SIZE;
914	}
915	pmap_invalidate_range(kernel_pmap, sva, va);
916}
917
918static vm_page_t
919pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
920{
921	vm_page_t m;
922
923retry:
924	m = vm_page_lookup(object, pindex);
925	if (m && vm_page_sleep_busy(m, FALSE, "pplookp"))
926		goto retry;
927	return m;
928}
929
930/*
931 * Create the kernel stack (including pcb for i386) for a new thread.
932 * This routine directly affects the fork perf for a process and
933 * create performance for a thread.
934 */
935void
936pmap_new_thread(struct thread *td)
937{
938	int i;
939	vm_page_t ma[KSTACK_PAGES];
940	vm_object_t ksobj;
941	vm_page_t m;
942	vm_offset_t ks;
943
944	/*
945	 * allocate object for the kstack
946	 */
947	ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
948	td->td_kstack_obj = ksobj;
949
950	/* get a kernel virtual address for the kstack for this thread */
951#ifdef KSTACK_GUARD
952	ks = kmem_alloc_nofault(kernel_map, (KSTACK_PAGES + 1) * PAGE_SIZE);
953	if (ks == 0)
954		panic("pmap_new_thread: kstack allocation failed");
955	if (*vtopte(ks) != 0)
956		pmap_qremove(ks, 1);
957	ks += PAGE_SIZE;
958	td->td_kstack = ks;
959#else
960	/* get a kernel virtual address for the kstack for this thread */
961	ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
962	if (ks == 0)
963		panic("pmap_new_thread: kstack allocation failed");
964	td->td_kstack = ks;
965#endif
966	/*
967	 * For the length of the stack, link in a real page of ram for each
968	 * page of stack.
969	 */
970	for (i = 0; i < KSTACK_PAGES; i++) {
971		/*
972		 * Get a kernel stack page
973		 */
974		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
975		ma[i] = m;
976
977		/*
978		 * Wire the page
979		 */
980		m->wire_count++;
981		cnt.v_wire_count++;
982
983		vm_page_wakeup(m);
984		vm_page_flag_clear(m, PG_ZERO);
985		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
986		m->valid = VM_PAGE_BITS_ALL;
987	}
988	pmap_qenter(ks, ma, KSTACK_PAGES);
989}
990
991/*
992 * Dispose the kernel stack for a thread that has exited.
993 * This routine directly impacts the exit perf of a process and thread.
994 */
995void
996pmap_dispose_thread(td)
997	struct thread *td;
998{
999	int i;
1000	vm_object_t ksobj;
1001	vm_offset_t ks;
1002	vm_page_t m;
1003
1004	ksobj = td->td_kstack_obj;
1005	ks = td->td_kstack;
1006	pmap_qremove(ks, KSTACK_PAGES);
1007	for (i = 0; i < KSTACK_PAGES; i++) {
1008		m = vm_page_lookup(ksobj, i);
1009		if (m == NULL)
1010			panic("pmap_dispose_thread: kstack already missing?");
1011		vm_page_lock_queues();
1012		vm_page_busy(m);
1013		vm_page_unwire(m, 0);
1014		vm_page_free(m);
1015		vm_page_unlock_queues();
1016	}
1017	/*
1018	 * Free the space that this stack was mapped to in the kernel
1019	 * address map.
1020	 */
1021#ifdef KSTACK_GUARD
1022	kmem_free(kernel_map, ks - PAGE_SIZE, (KSTACK_PAGES + 1) * PAGE_SIZE);
1023#else
1024	kmem_free(kernel_map, ks, KSTACK_PAGES * PAGE_SIZE);
1025#endif
1026	vm_object_deallocate(ksobj);
1027}
1028
1029/*
1030 * Allow the Kernel stack for a thread to be prejudicially paged out.
1031 */
1032void
1033pmap_swapout_thread(td)
1034	struct thread *td;
1035{
1036	int i;
1037	vm_object_t ksobj;
1038	vm_offset_t ks;
1039	vm_page_t m;
1040
1041	ksobj = td->td_kstack_obj;
1042	ks = td->td_kstack;
1043	pmap_qremove(ks, KSTACK_PAGES);
1044	for (i = 0; i < KSTACK_PAGES; i++) {
1045		m = vm_page_lookup(ksobj, i);
1046		if (m == NULL)
1047			panic("pmap_swapout_thread: kstack already missing?");
1048		vm_page_lock_queues();
1049		vm_page_dirty(m);
1050		vm_page_unwire(m, 0);
1051		vm_page_unlock_queues();
1052	}
1053}
1054
1055/*
1056 * Bring the kernel stack for a specified thread back in.
1057 */
1058void
1059pmap_swapin_thread(td)
1060	struct thread *td;
1061{
1062	int i, rv;
1063	vm_page_t ma[KSTACK_PAGES];
1064	vm_object_t ksobj;
1065	vm_offset_t ks;
1066	vm_page_t m;
1067
1068	ksobj = td->td_kstack_obj;
1069	ks = td->td_kstack;
1070	for (i = 0; i < KSTACK_PAGES; i++) {
1071		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1072		if (m->valid != VM_PAGE_BITS_ALL) {
1073			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1074			if (rv != VM_PAGER_OK)
1075				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1076			m = vm_page_lookup(ksobj, i);
1077			m->valid = VM_PAGE_BITS_ALL;
1078		}
1079		ma[i] = m;
1080		vm_page_lock_queues();
1081		vm_page_wire(m);
1082		vm_page_wakeup(m);
1083		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1084		vm_page_unlock_queues();
1085	}
1086	pmap_qenter(ks, ma, KSTACK_PAGES);
1087}
1088
1089/***************************************************
1090 * Page table page management routines.....
1091 ***************************************************/
1092
1093/*
1094 * This routine unholds page table pages, and if the hold count
1095 * drops to zero, then it decrements the wire count.
1096 */
1097static int
1098_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1099{
1100
1101	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1102		;
1103
1104	if (m->hold_count == 0) {
1105		vm_offset_t pteva;
1106		/*
1107		 * unmap the page table page
1108		 */
1109		pmap->pm_pdir[m->pindex] = 0;
1110		--pmap->pm_stats.resident_count;
1111		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1112		    (PTDpde & PG_FRAME)) {
1113			/*
1114			 * Do a invltlb to make the invalidated mapping
1115			 * take effect immediately.
1116			 */
1117			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1118			pmap_invalidate_page(pmap, pteva);
1119		}
1120
1121		if (pmap->pm_ptphint == m)
1122			pmap->pm_ptphint = NULL;
1123
1124		/*
1125		 * If the page is finally unwired, simply free it.
1126		 */
1127		--m->wire_count;
1128		if (m->wire_count == 0) {
1129
1130			vm_page_flash(m);
1131			vm_page_busy(m);
1132			vm_page_free_zero(m);
1133			--cnt.v_wire_count;
1134		}
1135		return 1;
1136	}
1137	return 0;
1138}
1139
1140static PMAP_INLINE int
1141pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1142{
1143	vm_page_unhold(m);
1144	if (m->hold_count == 0)
1145		return _pmap_unwire_pte_hold(pmap, m);
1146	else
1147		return 0;
1148}
1149
1150/*
1151 * After removing a page table entry, this routine is used to
1152 * conditionally free the page, and manage the hold/wire counts.
1153 */
1154static int
1155pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1156{
1157	unsigned ptepindex;
1158	if (va >= VM_MAXUSER_ADDRESS)
1159		return 0;
1160
1161	if (mpte == NULL) {
1162		ptepindex = (va >> PDRSHIFT);
1163		if (pmap->pm_ptphint &&
1164			(pmap->pm_ptphint->pindex == ptepindex)) {
1165			mpte = pmap->pm_ptphint;
1166		} else {
1167			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1168			pmap->pm_ptphint = mpte;
1169		}
1170	}
1171
1172	return pmap_unwire_pte_hold(pmap, mpte);
1173}
1174
1175void
1176pmap_pinit0(pmap)
1177	struct pmap *pmap;
1178{
1179	pmap->pm_pdir =
1180		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1181	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1182#ifndef I386_CPU
1183	invlpg((vm_offset_t)pmap->pm_pdir);
1184#else
1185	invltlb();
1186#endif
1187	pmap->pm_ptphint = NULL;
1188	pmap->pm_active = 0;
1189	TAILQ_INIT(&pmap->pm_pvlist);
1190	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1191	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1192}
1193
1194/*
1195 * Initialize a preallocated and zeroed pmap structure,
1196 * such as one in a vmspace structure.
1197 */
1198void
1199pmap_pinit(pmap)
1200	register struct pmap *pmap;
1201{
1202	vm_page_t ptdpg;
1203
1204	/*
1205	 * No need to allocate page table space yet but we do need a valid
1206	 * page directory table.
1207	 */
1208	if (pmap->pm_pdir == NULL)
1209		pmap->pm_pdir =
1210			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1211
1212	/*
1213	 * allocate object for the ptes
1214	 */
1215	if (pmap->pm_pteobj == NULL)
1216		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1217
1218	/*
1219	 * allocate the page directory page
1220	 */
1221	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1222			VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1223
1224	ptdpg->wire_count = 1;
1225	++cnt.v_wire_count;
1226
1227
1228	vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY); /* not usually mapped*/
1229	ptdpg->valid = VM_PAGE_BITS_ALL;
1230
1231	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1232	if ((ptdpg->flags & PG_ZERO) == 0)
1233		bzero(pmap->pm_pdir, PAGE_SIZE);
1234
1235	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1236	/* Wire in kernel global address entries. */
1237	/* XXX copies current process, does not fill in MPPTDI */
1238	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1239#ifdef SMP
1240	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1241#endif
1242
1243	/* install self-referential address mapping entry */
1244	pmap->pm_pdir[PTDPTDI] =
1245		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1246
1247	pmap->pm_active = 0;
1248	pmap->pm_ptphint = NULL;
1249	TAILQ_INIT(&pmap->pm_pvlist);
1250	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1251}
1252
1253/*
1254 * Wire in kernel global address entries.  To avoid a race condition
1255 * between pmap initialization and pmap_growkernel, this procedure
1256 * should be called after the vmspace is attached to the process
1257 * but before this pmap is activated.
1258 */
1259void
1260pmap_pinit2(pmap)
1261	struct pmap *pmap;
1262{
1263	/* XXX: Remove this stub when no longer called */
1264}
1265
1266static int
1267pmap_release_free_page(pmap_t pmap, vm_page_t p)
1268{
1269	pd_entry_t *pde = pmap->pm_pdir;
1270	/*
1271	 * This code optimizes the case of freeing non-busy
1272	 * page-table pages.  Those pages are zero now, and
1273	 * might as well be placed directly into the zero queue.
1274	 */
1275	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1276		return 0;
1277
1278	vm_page_busy(p);
1279
1280	/*
1281	 * Remove the page table page from the processes address space.
1282	 */
1283	pde[p->pindex] = 0;
1284	pmap->pm_stats.resident_count--;
1285
1286	if (p->hold_count)  {
1287		panic("pmap_release: freeing held page table page");
1288	}
1289	/*
1290	 * Page directory pages need to have the kernel
1291	 * stuff cleared, so they can go into the zero queue also.
1292	 */
1293	if (p->pindex == PTDPTDI) {
1294		bzero(pde + KPTDI, nkpt * PTESIZE);
1295#ifdef SMP
1296		pde[MPPTDI] = 0;
1297#endif
1298		pde[APTDPTDI] = 0;
1299		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1300	}
1301
1302	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1303		pmap->pm_ptphint = NULL;
1304
1305	p->wire_count--;
1306	cnt.v_wire_count--;
1307	vm_page_free_zero(p);
1308	return 1;
1309}
1310
1311/*
1312 * this routine is called if the page table page is not
1313 * mapped correctly.
1314 */
1315static vm_page_t
1316_pmap_allocpte(pmap, ptepindex)
1317	pmap_t	pmap;
1318	unsigned ptepindex;
1319{
1320	vm_offset_t pteva, ptepa;	/* XXXPA */
1321	vm_page_t m;
1322
1323	/*
1324	 * Find or fabricate a new pagetable page
1325	 */
1326	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1327			VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1328
1329	KASSERT(m->queue == PQ_NONE,
1330		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1331
1332	if (m->wire_count == 0)
1333		cnt.v_wire_count++;
1334	m->wire_count++;
1335
1336	/*
1337	 * Increment the hold count for the page table page
1338	 * (denoting a new mapping.)
1339	 */
1340	m->hold_count++;
1341
1342	/*
1343	 * Map the pagetable page into the process address space, if
1344	 * it isn't already there.
1345	 */
1346
1347	pmap->pm_stats.resident_count++;
1348
1349	ptepa = VM_PAGE_TO_PHYS(m);
1350	pmap->pm_pdir[ptepindex] =
1351		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1352
1353	/*
1354	 * Set the page table hint
1355	 */
1356	pmap->pm_ptphint = m;
1357
1358	/*
1359	 * Try to use the new mapping, but if we cannot, then
1360	 * do it with the routine that maps the page explicitly.
1361	 */
1362	if ((m->flags & PG_ZERO) == 0) {
1363		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1364		    (PTDpde & PG_FRAME)) {
1365			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1366			bzero((caddr_t) pteva, PAGE_SIZE);
1367		} else {
1368			pmap_zero_page(m);
1369		}
1370	}
1371
1372	m->valid = VM_PAGE_BITS_ALL;
1373	vm_page_flag_clear(m, PG_ZERO);
1374	vm_page_flag_set(m, PG_MAPPED);
1375	vm_page_wakeup(m);
1376
1377	return m;
1378}
1379
1380static vm_page_t
1381pmap_allocpte(pmap_t pmap, vm_offset_t va)
1382{
1383	unsigned ptepindex;
1384	pd_entry_t ptepa;
1385	vm_page_t m;
1386
1387	/*
1388	 * Calculate pagetable page index
1389	 */
1390	ptepindex = va >> PDRSHIFT;
1391
1392	/*
1393	 * Get the page directory entry
1394	 */
1395	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1396
1397	/*
1398	 * This supports switching from a 4MB page to a
1399	 * normal 4K page.
1400	 */
1401	if (ptepa & PG_PS) {
1402		pmap->pm_pdir[ptepindex] = 0;
1403		ptepa = 0;
1404		pmap_invalidate_all(kernel_pmap);
1405	}
1406
1407	/*
1408	 * If the page table page is mapped, we just increment the
1409	 * hold count, and activate it.
1410	 */
1411	if (ptepa) {
1412		/*
1413		 * In order to get the page table page, try the
1414		 * hint first.
1415		 */
1416		if (pmap->pm_ptphint &&
1417			(pmap->pm_ptphint->pindex == ptepindex)) {
1418			m = pmap->pm_ptphint;
1419		} else {
1420			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1421			pmap->pm_ptphint = m;
1422		}
1423		m->hold_count++;
1424		return m;
1425	}
1426	/*
1427	 * Here if the pte page isn't mapped, or if it has been deallocated.
1428	 */
1429	return _pmap_allocpte(pmap, ptepindex);
1430}
1431
1432
1433/***************************************************
1434* Pmap allocation/deallocation routines.
1435 ***************************************************/
1436
1437/*
1438 * Release any resources held by the given physical map.
1439 * Called when a pmap initialized by pmap_pinit is being released.
1440 * Should only be called if the map contains no valid mappings.
1441 */
1442void
1443pmap_release(pmap_t pmap)
1444{
1445	vm_page_t p,n,ptdpg;
1446	vm_object_t object = pmap->pm_pteobj;
1447	int curgeneration;
1448
1449#if defined(DIAGNOSTIC)
1450	if (object->ref_count != 1)
1451		panic("pmap_release: pteobj reference count != 1");
1452#endif
1453
1454	ptdpg = NULL;
1455	LIST_REMOVE(pmap, pm_list);
1456retry:
1457	curgeneration = object->generation;
1458	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1459		n = TAILQ_NEXT(p, listq);
1460		if (p->pindex == PTDPTDI) {
1461			ptdpg = p;
1462			continue;
1463		}
1464		while (1) {
1465			if (!pmap_release_free_page(pmap, p) &&
1466				(object->generation != curgeneration))
1467				goto retry;
1468		}
1469	}
1470
1471	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1472		goto retry;
1473}
1474
1475static int
1476kvm_size(SYSCTL_HANDLER_ARGS)
1477{
1478	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1479
1480	return sysctl_handle_long(oidp, &ksize, 0, req);
1481}
1482SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1483    0, 0, kvm_size, "IU", "Size of KVM");
1484
1485static int
1486kvm_free(SYSCTL_HANDLER_ARGS)
1487{
1488	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1489
1490	return sysctl_handle_long(oidp, &kfree, 0, req);
1491}
1492SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1493    0, 0, kvm_free, "IU", "Amount of KVM free");
1494
1495/*
1496 * grow the number of kernel page table entries, if needed
1497 */
1498void
1499pmap_growkernel(vm_offset_t addr)
1500{
1501	struct pmap *pmap;
1502	int s;
1503	vm_offset_t ptppaddr;
1504	vm_page_t nkpg;
1505	pd_entry_t newpdir;
1506
1507	s = splhigh();
1508	if (kernel_vm_end == 0) {
1509		kernel_vm_end = KERNBASE;
1510		nkpt = 0;
1511		while (pdir_pde(PTD, kernel_vm_end)) {
1512			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1513			nkpt++;
1514		}
1515	}
1516	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1517	while (kernel_vm_end < addr) {
1518		if (pdir_pde(PTD, kernel_vm_end)) {
1519			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1520			continue;
1521		}
1522
1523		/*
1524		 * This index is bogus, but out of the way
1525		 */
1526		nkpg = vm_page_alloc(kptobj, nkpt,
1527				     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1528		if (!nkpg)
1529			panic("pmap_growkernel: no memory to grow kernel");
1530
1531		nkpt++;
1532
1533		pmap_zero_page(nkpg);
1534		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1535		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1536		pdir_pde(PTD, kernel_vm_end) = newpdir;
1537
1538		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1539			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1540		}
1541		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1542	}
1543	splx(s);
1544}
1545
1546
1547/***************************************************
1548 * page management routines.
1549 ***************************************************/
1550
1551/*
1552 * free the pv_entry back to the free list
1553 */
1554static PMAP_INLINE void
1555free_pv_entry(pv_entry_t pv)
1556{
1557	pv_entry_count--;
1558	uma_zfree(pvzone, pv);
1559}
1560
1561/*
1562 * get a new pv_entry, allocating a block from the system
1563 * when needed.
1564 * the memory allocation is performed bypassing the malloc code
1565 * because of the possibility of allocations at interrupt time.
1566 */
1567static pv_entry_t
1568get_pv_entry(void)
1569{
1570	pv_entry_count++;
1571	if (pv_entry_high_water &&
1572		(pv_entry_count > pv_entry_high_water) &&
1573		(pmap_pagedaemon_waken == 0)) {
1574		pmap_pagedaemon_waken = 1;
1575		wakeup (&vm_pages_needed);
1576	}
1577	return uma_zalloc(pvzone, M_NOWAIT);
1578}
1579
1580/*
1581 * This routine is very drastic, but can save the system
1582 * in a pinch.
1583 */
1584void
1585pmap_collect()
1586{
1587	int i;
1588	vm_page_t m;
1589	static int warningdone = 0;
1590
1591	if (pmap_pagedaemon_waken == 0)
1592		return;
1593
1594	if (warningdone < 5) {
1595		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1596		warningdone++;
1597	}
1598
1599	for(i = 0; i < vm_page_array_size; i++) {
1600		m = &vm_page_array[i];
1601		if (m->wire_count || m->hold_count || m->busy ||
1602		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1603			continue;
1604		pmap_remove_all(m);
1605	}
1606	pmap_pagedaemon_waken = 0;
1607}
1608
1609
1610/*
1611 * If it is the first entry on the list, it is actually
1612 * in the header and we must copy the following entry up
1613 * to the header.  Otherwise we must search the list for
1614 * the entry.  In either case we free the now unused entry.
1615 */
1616
1617static int
1618pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1619{
1620	pv_entry_t pv;
1621	int rtval;
1622	int s;
1623
1624	s = splvm();
1625	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1626		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1627			if (pmap == pv->pv_pmap && va == pv->pv_va)
1628				break;
1629		}
1630	} else {
1631		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1632			if (va == pv->pv_va)
1633				break;
1634		}
1635	}
1636
1637	rtval = 0;
1638	if (pv) {
1639		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1640		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1641		m->md.pv_list_count--;
1642		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1643			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1644
1645		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1646		free_pv_entry(pv);
1647	}
1648
1649	splx(s);
1650	return rtval;
1651}
1652
1653/*
1654 * Create a pv entry for page at pa for
1655 * (pmap, va).
1656 */
1657static void
1658pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1659{
1660
1661	int s;
1662	pv_entry_t pv;
1663
1664	s = splvm();
1665	pv = get_pv_entry();
1666	pv->pv_va = va;
1667	pv->pv_pmap = pmap;
1668	pv->pv_ptem = mpte;
1669
1670	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1671	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1672	m->md.pv_list_count++;
1673
1674	splx(s);
1675}
1676
1677/*
1678 * pmap_remove_pte: do the things to unmap a page in a process
1679 */
1680static int
1681pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1682{
1683	pt_entry_t oldpte;
1684	vm_page_t m;
1685
1686	oldpte = atomic_readandclear_int(ptq);
1687	if (oldpte & PG_W)
1688		pmap->pm_stats.wired_count -= 1;
1689	/*
1690	 * Machines that don't support invlpg, also don't support
1691	 * PG_G.
1692	 */
1693	if (oldpte & PG_G)
1694		pmap_invalidate_page(kernel_pmap, va);
1695	pmap->pm_stats.resident_count -= 1;
1696	if (oldpte & PG_MANAGED) {
1697		m = PHYS_TO_VM_PAGE(oldpte);
1698		if (oldpte & PG_M) {
1699#if defined(PMAP_DIAGNOSTIC)
1700			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1701				printf(
1702	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1703				    va, oldpte);
1704			}
1705#endif
1706			if (pmap_track_modified(va))
1707				vm_page_dirty(m);
1708		}
1709		if (oldpte & PG_A)
1710			vm_page_flag_set(m, PG_REFERENCED);
1711		return pmap_remove_entry(pmap, m, va);
1712	} else {
1713		return pmap_unuse_pt(pmap, va, NULL);
1714	}
1715
1716	return 0;
1717}
1718
1719/*
1720 * Remove a single page from a process address space
1721 */
1722static void
1723pmap_remove_page(pmap_t pmap, vm_offset_t va)
1724{
1725	register pt_entry_t *ptq;
1726
1727	/*
1728	 * if there is no pte for this address, just skip it!!!
1729	 */
1730	if (*pmap_pde(pmap, va) == 0) {
1731		return;
1732	}
1733
1734	/*
1735	 * get a local va for mappings for this pmap.
1736	 */
1737	ptq = get_ptbase(pmap) + i386_btop(va);
1738	if (*ptq) {
1739		(void) pmap_remove_pte(pmap, ptq, va);
1740		pmap_invalidate_page(pmap, va);
1741	}
1742	return;
1743}
1744
1745/*
1746 *	Remove the given range of addresses from the specified map.
1747 *
1748 *	It is assumed that the start and end are properly
1749 *	rounded to the page size.
1750 */
1751void
1752pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1753{
1754	register pt_entry_t *ptbase;
1755	vm_offset_t pdnxt;
1756	pd_entry_t ptpaddr;
1757	vm_offset_t sindex, eindex;
1758	int anyvalid;
1759
1760	if (pmap == NULL)
1761		return;
1762
1763	if (pmap->pm_stats.resident_count == 0)
1764		return;
1765
1766	/*
1767	 * special handling of removing one page.  a very
1768	 * common operation and easy to short circuit some
1769	 * code.
1770	 */
1771	if ((sva + PAGE_SIZE == eva) &&
1772	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1773		pmap_remove_page(pmap, sva);
1774		return;
1775	}
1776
1777	anyvalid = 0;
1778
1779	/*
1780	 * Get a local virtual address for the mappings that are being
1781	 * worked with.
1782	 */
1783	ptbase = get_ptbase(pmap);
1784
1785	sindex = i386_btop(sva);
1786	eindex = i386_btop(eva);
1787
1788	for (; sindex < eindex; sindex = pdnxt) {
1789		unsigned pdirindex;
1790
1791		/*
1792		 * Calculate index for next page table.
1793		 */
1794		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1795		if (pmap->pm_stats.resident_count == 0)
1796			break;
1797
1798		pdirindex = sindex / NPDEPG;
1799		ptpaddr = pmap->pm_pdir[pdirindex];
1800		if ((ptpaddr & PG_PS) != 0) {
1801			pmap->pm_pdir[pdirindex] = 0;
1802			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1803			anyvalid++;
1804			continue;
1805		}
1806
1807		/*
1808		 * Weed out invalid mappings. Note: we assume that the page
1809		 * directory table is always allocated, and in kernel virtual.
1810		 */
1811		if (ptpaddr == 0)
1812			continue;
1813
1814		/*
1815		 * Limit our scan to either the end of the va represented
1816		 * by the current page table page, or to the end of the
1817		 * range being removed.
1818		 */
1819		if (pdnxt > eindex) {
1820			pdnxt = eindex;
1821		}
1822
1823		for (; sindex != pdnxt; sindex++) {
1824			vm_offset_t va;
1825			if (ptbase[sindex] == 0) {
1826				continue;
1827			}
1828			va = i386_ptob(sindex);
1829
1830			anyvalid++;
1831			if (pmap_remove_pte(pmap,
1832				ptbase + sindex, va))
1833				break;
1834		}
1835	}
1836
1837	if (anyvalid)
1838		pmap_invalidate_all(pmap);
1839}
1840
1841/*
1842 *	Routine:	pmap_remove_all
1843 *	Function:
1844 *		Removes this physical page from
1845 *		all physical maps in which it resides.
1846 *		Reflects back modify bits to the pager.
1847 *
1848 *	Notes:
1849 *		Original versions of this routine were very
1850 *		inefficient because they iteratively called
1851 *		pmap_remove (slow...)
1852 */
1853
1854static void
1855pmap_remove_all(vm_page_t m)
1856{
1857	register pv_entry_t pv;
1858	pt_entry_t *pte, tpte;
1859	int s;
1860
1861#if defined(PMAP_DIAGNOSTIC)
1862	/*
1863	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1864	 * pages!
1865	 */
1866	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1867		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1868	}
1869#endif
1870
1871	s = splvm();
1872	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1873		pv->pv_pmap->pm_stats.resident_count--;
1874
1875		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1876
1877		tpte = atomic_readandclear_int(pte);
1878		if (tpte & PG_W)
1879			pv->pv_pmap->pm_stats.wired_count--;
1880
1881		if (tpte & PG_A)
1882			vm_page_flag_set(m, PG_REFERENCED);
1883
1884		/*
1885		 * Update the vm_page_t clean and reference bits.
1886		 */
1887		if (tpte & PG_M) {
1888#if defined(PMAP_DIAGNOSTIC)
1889			if (pmap_nw_modified((pt_entry_t) tpte)) {
1890				printf(
1891	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1892				    pv->pv_va, tpte);
1893			}
1894#endif
1895			if (pmap_track_modified(pv->pv_va))
1896				vm_page_dirty(m);
1897		}
1898		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1899
1900		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1901		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1902		m->md.pv_list_count--;
1903		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1904		free_pv_entry(pv);
1905	}
1906
1907	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1908
1909	splx(s);
1910}
1911
1912/*
1913 *	Set the physical protection on the
1914 *	specified range of this map as requested.
1915 */
1916void
1917pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1918{
1919	register pt_entry_t *ptbase;
1920	vm_offset_t pdnxt;
1921	pd_entry_t ptpaddr;
1922	vm_offset_t sindex, eindex;
1923	int anychanged;
1924
1925	if (pmap == NULL)
1926		return;
1927
1928	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1929		pmap_remove(pmap, sva, eva);
1930		return;
1931	}
1932
1933	if (prot & VM_PROT_WRITE)
1934		return;
1935
1936	anychanged = 0;
1937
1938	ptbase = get_ptbase(pmap);
1939
1940	sindex = i386_btop(sva);
1941	eindex = i386_btop(eva);
1942
1943	for (; sindex < eindex; sindex = pdnxt) {
1944
1945		unsigned pdirindex;
1946
1947		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1948
1949		pdirindex = sindex / NPDEPG;
1950		ptpaddr = pmap->pm_pdir[pdirindex];
1951		if ((ptpaddr & PG_PS) != 0) {
1952			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1953			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1954			anychanged++;
1955			continue;
1956		}
1957
1958		/*
1959		 * Weed out invalid mappings. Note: we assume that the page
1960		 * directory table is always allocated, and in kernel virtual.
1961		 */
1962		if (ptpaddr == 0)
1963			continue;
1964
1965		if (pdnxt > eindex) {
1966			pdnxt = eindex;
1967		}
1968
1969		for (; sindex != pdnxt; sindex++) {
1970
1971			pt_entry_t pbits;
1972			vm_page_t m;
1973
1974			pbits = ptbase[sindex];
1975
1976			if (pbits & PG_MANAGED) {
1977				m = NULL;
1978				if (pbits & PG_A) {
1979					m = PHYS_TO_VM_PAGE(pbits);
1980					vm_page_flag_set(m, PG_REFERENCED);
1981					pbits &= ~PG_A;
1982				}
1983				if (pbits & PG_M) {
1984					if (pmap_track_modified(i386_ptob(sindex))) {
1985						if (m == NULL)
1986							m = PHYS_TO_VM_PAGE(pbits);
1987						vm_page_dirty(m);
1988						pbits &= ~PG_M;
1989					}
1990				}
1991			}
1992
1993			pbits &= ~PG_RW;
1994
1995			if (pbits != ptbase[sindex]) {
1996				ptbase[sindex] = pbits;
1997				anychanged = 1;
1998			}
1999		}
2000	}
2001	if (anychanged)
2002		pmap_invalidate_all(pmap);
2003}
2004
2005/*
2006 *	Insert the given physical page (p) at
2007 *	the specified virtual address (v) in the
2008 *	target physical map with the protection requested.
2009 *
2010 *	If specified, the page will be wired down, meaning
2011 *	that the related pte can not be reclaimed.
2012 *
2013 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2014 *	or lose information.  That is, this routine must actually
2015 *	insert this page into the given map NOW.
2016 */
2017void
2018pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2019	   boolean_t wired)
2020{
2021	vm_offset_t pa;
2022	register pt_entry_t *pte;
2023	vm_offset_t opa;
2024	pt_entry_t origpte, newpte;
2025	vm_page_t mpte;
2026
2027	if (pmap == NULL)
2028		return;
2029
2030	va &= PG_FRAME;
2031#ifdef PMAP_DIAGNOSTIC
2032	if (va > VM_MAX_KERNEL_ADDRESS)
2033		panic("pmap_enter: toobig");
2034	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2035		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2036#endif
2037
2038	mpte = NULL;
2039	/*
2040	 * In the case that a page table page is not
2041	 * resident, we are creating it here.
2042	 */
2043	if (va < VM_MAXUSER_ADDRESS) {
2044		mpte = pmap_allocpte(pmap, va);
2045	}
2046#if 0 && defined(PMAP_DIAGNOSTIC)
2047	else {
2048		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2049		origpte = *pdeaddr;
2050		if ((origpte & PG_V) == 0) {
2051			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2052				pmap->pm_pdir[PTDPTDI], origpte, va);
2053		}
2054	}
2055#endif
2056
2057	pte = pmap_pte(pmap, va);
2058
2059	/*
2060	 * Page Directory table entry not valid, we need a new PT page
2061	 */
2062	if (pte == NULL) {
2063		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2064			(void *)pmap->pm_pdir[PTDPTDI], va);
2065	}
2066
2067	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2068	origpte = *(vm_offset_t *)pte;
2069	opa = origpte & PG_FRAME;
2070
2071	if (origpte & PG_PS)
2072		panic("pmap_enter: attempted pmap_enter on 4MB page");
2073
2074	/*
2075	 * Mapping has not changed, must be protection or wiring change.
2076	 */
2077	if (origpte && (opa == pa)) {
2078		/*
2079		 * Wiring change, just update stats. We don't worry about
2080		 * wiring PT pages as they remain resident as long as there
2081		 * are valid mappings in them. Hence, if a user page is wired,
2082		 * the PT page will be also.
2083		 */
2084		if (wired && ((origpte & PG_W) == 0))
2085			pmap->pm_stats.wired_count++;
2086		else if (!wired && (origpte & PG_W))
2087			pmap->pm_stats.wired_count--;
2088
2089#if defined(PMAP_DIAGNOSTIC)
2090		if (pmap_nw_modified((pt_entry_t) origpte)) {
2091			printf(
2092	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2093			    va, origpte);
2094		}
2095#endif
2096
2097		/*
2098		 * Remove extra pte reference
2099		 */
2100		if (mpte)
2101			mpte->hold_count--;
2102
2103		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2104			if ((origpte & PG_RW) == 0) {
2105				*pte |= PG_RW;
2106				pmap_invalidate_page(pmap, va);
2107			}
2108			return;
2109		}
2110
2111		/*
2112		 * We might be turning off write access to the page,
2113		 * so we go ahead and sense modify status.
2114		 */
2115		if (origpte & PG_MANAGED) {
2116			if ((origpte & PG_M) && pmap_track_modified(va)) {
2117				vm_page_t om;
2118				om = PHYS_TO_VM_PAGE(opa);
2119				vm_page_dirty(om);
2120			}
2121			pa |= PG_MANAGED;
2122		}
2123		goto validate;
2124	}
2125	/*
2126	 * Mapping has changed, invalidate old range and fall through to
2127	 * handle validating new mapping.
2128	 */
2129	if (opa) {
2130		int err;
2131		err = pmap_remove_pte(pmap, pte, va);
2132		if (err)
2133			panic("pmap_enter: pte vanished, va: 0x%x", va);
2134	}
2135
2136	/*
2137	 * Enter on the PV list if part of our managed memory. Note that we
2138	 * raise IPL while manipulating pv_table since pmap_enter can be
2139	 * called at interrupt time.
2140	 */
2141	if (pmap_initialized &&
2142	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2143		pmap_insert_entry(pmap, va, mpte, m);
2144		pa |= PG_MANAGED;
2145	}
2146
2147	/*
2148	 * Increment counters
2149	 */
2150	pmap->pm_stats.resident_count++;
2151	if (wired)
2152		pmap->pm_stats.wired_count++;
2153
2154validate:
2155	/*
2156	 * Now validate mapping with desired protection/wiring.
2157	 */
2158	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2159
2160	if (wired)
2161		newpte |= PG_W;
2162	if (va < VM_MAXUSER_ADDRESS)
2163		newpte |= PG_U;
2164	if (pmap == kernel_pmap)
2165		newpte |= pgeflag;
2166
2167	/*
2168	 * if the mapping or permission bits are different, we need
2169	 * to update the pte.
2170	 */
2171	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2172		*pte = newpte | PG_A;
2173		/*if (origpte)*/ {
2174			pmap_invalidate_page(pmap, va);
2175		}
2176	}
2177}
2178
2179/*
2180 * this code makes some *MAJOR* assumptions:
2181 * 1. Current pmap & pmap exists.
2182 * 2. Not wired.
2183 * 3. Read access.
2184 * 4. No page table pages.
2185 * 5. Tlbflush is deferred to calling procedure.
2186 * 6. Page IS managed.
2187 * but is *MUCH* faster than pmap_enter...
2188 */
2189
2190static vm_page_t
2191pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2192{
2193	pt_entry_t *pte;
2194	vm_offset_t pa;
2195
2196	/*
2197	 * In the case that a page table page is not
2198	 * resident, we are creating it here.
2199	 */
2200	if (va < VM_MAXUSER_ADDRESS) {
2201		unsigned ptepindex;
2202		pd_entry_t ptepa;
2203
2204		/*
2205		 * Calculate pagetable page index
2206		 */
2207		ptepindex = va >> PDRSHIFT;
2208		if (mpte && (mpte->pindex == ptepindex)) {
2209			mpte->hold_count++;
2210		} else {
2211retry:
2212			/*
2213			 * Get the page directory entry
2214			 */
2215			ptepa = pmap->pm_pdir[ptepindex];
2216
2217			/*
2218			 * If the page table page is mapped, we just increment
2219			 * the hold count, and activate it.
2220			 */
2221			if (ptepa) {
2222				if (ptepa & PG_PS)
2223					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2224				if (pmap->pm_ptphint &&
2225					(pmap->pm_ptphint->pindex == ptepindex)) {
2226					mpte = pmap->pm_ptphint;
2227				} else {
2228					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2229					pmap->pm_ptphint = mpte;
2230				}
2231				if (mpte == NULL)
2232					goto retry;
2233				mpte->hold_count++;
2234			} else {
2235				mpte = _pmap_allocpte(pmap, ptepindex);
2236			}
2237		}
2238	} else {
2239		mpte = NULL;
2240	}
2241
2242	/*
2243	 * This call to vtopte makes the assumption that we are
2244	 * entering the page into the current pmap.  In order to support
2245	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2246	 * But that isn't as quick as vtopte.
2247	 */
2248	pte = vtopte(va);
2249	if (*pte) {
2250		if (mpte)
2251			pmap_unwire_pte_hold(pmap, mpte);
2252		return 0;
2253	}
2254
2255	/*
2256	 * Enter on the PV list if part of our managed memory. Note that we
2257	 * raise IPL while manipulating pv_table since pmap_enter can be
2258	 * called at interrupt time.
2259	 */
2260	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2261		pmap_insert_entry(pmap, va, mpte, m);
2262
2263	/*
2264	 * Increment counters
2265	 */
2266	pmap->pm_stats.resident_count++;
2267
2268	pa = VM_PAGE_TO_PHYS(m);
2269
2270	/*
2271	 * Now validate mapping with RO protection
2272	 */
2273	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2274		*pte = pa | PG_V | PG_U;
2275	else
2276		*pte = pa | PG_V | PG_U | PG_MANAGED;
2277
2278	return mpte;
2279}
2280
2281/*
2282 * Make a temporary mapping for a physical address.  This is only intended
2283 * to be used for panic dumps.
2284 */
2285void *
2286pmap_kenter_temporary(vm_offset_t pa, int i)
2287{
2288	vm_offset_t va;
2289
2290	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2291	pmap_kenter(va, pa);
2292#ifndef I386_CPU
2293	invlpg(va);
2294#else
2295	invltlb();
2296#endif
2297	return ((void *)crashdumpmap);
2298}
2299
2300#define MAX_INIT_PT (96)
2301/*
2302 * pmap_object_init_pt preloads the ptes for a given object
2303 * into the specified pmap.  This eliminates the blast of soft
2304 * faults on process startup and immediately after an mmap.
2305 */
2306void
2307pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2308		    vm_object_t object, vm_pindex_t pindex,
2309		    vm_size_t size, int limit)
2310{
2311	vm_offset_t tmpidx;
2312	int psize;
2313	vm_page_t p, mpte;
2314	int objpgs;
2315
2316	if (pmap == NULL || object == NULL)
2317		return;
2318
2319	/*
2320	 * This code maps large physical mmap regions into the
2321	 * processor address space.  Note that some shortcuts
2322	 * are taken, but the code works.
2323	 */
2324	if (pseflag && (object->type == OBJT_DEVICE) &&
2325	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2326		int i;
2327		vm_page_t m[1];
2328		unsigned int ptepindex;
2329		int npdes;
2330		pd_entry_t ptepa;
2331
2332		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2333			return;
2334
2335retry:
2336		p = vm_page_lookup(object, pindex);
2337		if (p && vm_page_sleep_busy(p, FALSE, "init4p"))
2338			goto retry;
2339
2340		if (p == NULL) {
2341			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2342			if (p == NULL)
2343				return;
2344			m[0] = p;
2345
2346			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2347				vm_page_free(p);
2348				return;
2349			}
2350
2351			p = vm_page_lookup(object, pindex);
2352			vm_page_wakeup(p);
2353		}
2354
2355		ptepa = VM_PAGE_TO_PHYS(p);
2356		if (ptepa & (NBPDR - 1)) {
2357			return;
2358		}
2359
2360		p->valid = VM_PAGE_BITS_ALL;
2361
2362		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2363		npdes = size >> PDRSHIFT;
2364		for(i = 0; i < npdes; i++) {
2365			pmap->pm_pdir[ptepindex] =
2366			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2367			ptepa += NBPDR;
2368			ptepindex += 1;
2369		}
2370		vm_page_flag_set(p, PG_MAPPED);
2371		pmap_invalidate_all(kernel_pmap);
2372		return;
2373	}
2374
2375	psize = i386_btop(size);
2376
2377	if ((object->type != OBJT_VNODE) ||
2378	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2379	     (object->resident_page_count > MAX_INIT_PT))) {
2380		return;
2381	}
2382
2383	if (psize + pindex > object->size) {
2384		if (object->size < pindex)
2385			return;
2386		psize = object->size - pindex;
2387	}
2388
2389	mpte = NULL;
2390	/*
2391	 * if we are processing a major portion of the object, then scan the
2392	 * entire thing.
2393	 */
2394	if (psize > (object->resident_page_count >> 2)) {
2395		objpgs = psize;
2396
2397		for (p = TAILQ_FIRST(&object->memq);
2398		    ((objpgs > 0) && (p != NULL));
2399		    p = TAILQ_NEXT(p, listq)) {
2400
2401			if (p->pindex < pindex || p->pindex - pindex >= psize) {
2402				continue;
2403			}
2404			tmpidx = p->pindex - pindex;
2405			/*
2406			 * don't allow an madvise to blow away our really
2407			 * free pages allocating pv entries.
2408			 */
2409			if ((limit & MAP_PREFAULT_MADVISE) &&
2410			    cnt.v_free_count < cnt.v_free_reserved) {
2411				break;
2412			}
2413			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2414				(p->busy == 0) &&
2415			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2416				if ((p->queue - p->pc) == PQ_CACHE)
2417					vm_page_deactivate(p);
2418				vm_page_busy(p);
2419				mpte = pmap_enter_quick(pmap,
2420					addr + i386_ptob(tmpidx), p, mpte);
2421				vm_page_flag_set(p, PG_MAPPED);
2422				vm_page_wakeup(p);
2423			}
2424			objpgs -= 1;
2425		}
2426	} else {
2427		/*
2428		 * else lookup the pages one-by-one.
2429		 */
2430		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2431			/*
2432			 * don't allow an madvise to blow away our really
2433			 * free pages allocating pv entries.
2434			 */
2435			if ((limit & MAP_PREFAULT_MADVISE) &&
2436			    cnt.v_free_count < cnt.v_free_reserved) {
2437				break;
2438			}
2439			p = vm_page_lookup(object, tmpidx + pindex);
2440			if (p &&
2441			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2442				(p->busy == 0) &&
2443			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2444				if ((p->queue - p->pc) == PQ_CACHE)
2445					vm_page_deactivate(p);
2446				vm_page_busy(p);
2447				mpte = pmap_enter_quick(pmap,
2448					addr + i386_ptob(tmpidx), p, mpte);
2449				vm_page_flag_set(p, PG_MAPPED);
2450				vm_page_wakeup(p);
2451			}
2452		}
2453	}
2454	return;
2455}
2456
2457/*
2458 * pmap_prefault provides a quick way of clustering
2459 * pagefaults into a processes address space.  It is a "cousin"
2460 * of pmap_object_init_pt, except it runs at page fault time instead
2461 * of mmap time.
2462 */
2463#define PFBAK 4
2464#define PFFOR 4
2465#define PAGEORDER_SIZE (PFBAK+PFFOR)
2466
2467static int pmap_prefault_pageorder[] = {
2468	-PAGE_SIZE, PAGE_SIZE,
2469	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2470	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2471	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2472};
2473
2474void
2475pmap_prefault(pmap, addra, entry)
2476	pmap_t pmap;
2477	vm_offset_t addra;
2478	vm_map_entry_t entry;
2479{
2480	int i;
2481	vm_offset_t starta;
2482	vm_offset_t addr;
2483	vm_pindex_t pindex;
2484	vm_page_t m, mpte;
2485	vm_object_t object;
2486
2487	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2488		return;
2489
2490	object = entry->object.vm_object;
2491
2492	starta = addra - PFBAK * PAGE_SIZE;
2493	if (starta < entry->start) {
2494		starta = entry->start;
2495	} else if (starta > addra) {
2496		starta = 0;
2497	}
2498
2499	mpte = NULL;
2500	for (i = 0; i < PAGEORDER_SIZE; i++) {
2501		vm_object_t lobject;
2502		pt_entry_t *pte;
2503
2504		addr = addra + pmap_prefault_pageorder[i];
2505		if (addr > addra + (PFFOR * PAGE_SIZE))
2506			addr = 0;
2507
2508		if (addr < starta || addr >= entry->end)
2509			continue;
2510
2511		if ((*pmap_pde(pmap, addr)) == NULL)
2512			continue;
2513
2514		pte = vtopte(addr);
2515		if (*pte)
2516			continue;
2517
2518		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2519		lobject = object;
2520		for (m = vm_page_lookup(lobject, pindex);
2521		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2522		    lobject = lobject->backing_object) {
2523			if (lobject->backing_object_offset & PAGE_MASK)
2524				break;
2525			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2526			m = vm_page_lookup(lobject->backing_object, pindex);
2527		}
2528
2529		/*
2530		 * give-up when a page is not in memory
2531		 */
2532		if (m == NULL)
2533			break;
2534
2535		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2536			(m->busy == 0) &&
2537		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2538
2539			if ((m->queue - m->pc) == PQ_CACHE) {
2540				vm_page_deactivate(m);
2541			}
2542			vm_page_busy(m);
2543			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2544			vm_page_flag_set(m, PG_MAPPED);
2545			vm_page_wakeup(m);
2546		}
2547	}
2548}
2549
2550/*
2551 *	Routine:	pmap_change_wiring
2552 *	Function:	Change the wiring attribute for a map/virtual-address
2553 *			pair.
2554 *	In/out conditions:
2555 *			The mapping must already exist in the pmap.
2556 */
2557void
2558pmap_change_wiring(pmap, va, wired)
2559	register pmap_t pmap;
2560	vm_offset_t va;
2561	boolean_t wired;
2562{
2563	register pt_entry_t *pte;
2564
2565	if (pmap == NULL)
2566		return;
2567
2568	pte = pmap_pte(pmap, va);
2569
2570	if (wired && !pmap_pte_w(pte))
2571		pmap->pm_stats.wired_count++;
2572	else if (!wired && pmap_pte_w(pte))
2573		pmap->pm_stats.wired_count--;
2574
2575	/*
2576	 * Wiring is not a hardware characteristic so there is no need to
2577	 * invalidate TLB.
2578	 */
2579	pmap_pte_set_w(pte, wired);
2580}
2581
2582
2583
2584/*
2585 *	Copy the range specified by src_addr/len
2586 *	from the source map to the range dst_addr/len
2587 *	in the destination map.
2588 *
2589 *	This routine is only advisory and need not do anything.
2590 */
2591
2592void
2593pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2594	  vm_offset_t src_addr)
2595{
2596	vm_offset_t addr;
2597	vm_offset_t end_addr = src_addr + len;
2598	vm_offset_t pdnxt;
2599	pd_entry_t src_frame, dst_frame;
2600	vm_page_t m;
2601
2602	if (dst_addr != src_addr)
2603		return;
2604
2605	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2606	if (src_frame != (PTDpde & PG_FRAME))
2607		return;
2608
2609	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2610	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2611		pt_entry_t *src_pte, *dst_pte;
2612		vm_page_t dstmpte, srcmpte;
2613		pd_entry_t srcptepaddr;
2614		unsigned ptepindex;
2615
2616		if (addr >= UPT_MIN_ADDRESS)
2617			panic("pmap_copy: invalid to pmap_copy page tables\n");
2618
2619		/*
2620		 * Don't let optional prefaulting of pages make us go
2621		 * way below the low water mark of free pages or way
2622		 * above high water mark of used pv entries.
2623		 */
2624		if (cnt.v_free_count < cnt.v_free_reserved ||
2625		    pv_entry_count > pv_entry_high_water)
2626			break;
2627
2628		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2629		ptepindex = addr >> PDRSHIFT;
2630
2631		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2632		if (srcptepaddr == 0)
2633			continue;
2634
2635		if (srcptepaddr & PG_PS) {
2636			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2637				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2638				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2639			}
2640			continue;
2641		}
2642
2643		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2644		if ((srcmpte == NULL) ||
2645		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2646			continue;
2647
2648		if (pdnxt > end_addr)
2649			pdnxt = end_addr;
2650
2651		/*
2652		 * Have to recheck this before every avtopte() call below
2653		 * in case we have blocked and something else used APTDpde.
2654		 */
2655		if (dst_frame != (APTDpde & PG_FRAME)) {
2656			APTDpde = dst_frame | PG_RW | PG_V;
2657			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2658		}
2659		src_pte = vtopte(addr);
2660		dst_pte = avtopte(addr);
2661		while (addr < pdnxt) {
2662			pt_entry_t ptetemp;
2663			ptetemp = *src_pte;
2664			/*
2665			 * we only virtual copy managed pages
2666			 */
2667			if ((ptetemp & PG_MANAGED) != 0) {
2668				/*
2669				 * We have to check after allocpte for the
2670				 * pte still being around...  allocpte can
2671				 * block.
2672				 */
2673				dstmpte = pmap_allocpte(dst_pmap, addr);
2674				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2675					/*
2676					 * Clear the modified and
2677					 * accessed (referenced) bits
2678					 * during the copy.
2679					 */
2680					m = PHYS_TO_VM_PAGE(ptetemp);
2681					*dst_pte = ptetemp & ~(PG_M | PG_A);
2682					dst_pmap->pm_stats.resident_count++;
2683					pmap_insert_entry(dst_pmap, addr,
2684						dstmpte, m);
2685	 			} else {
2686					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2687				}
2688				if (dstmpte->hold_count >= srcmpte->hold_count)
2689					break;
2690			}
2691			addr += PAGE_SIZE;
2692			src_pte++;
2693			dst_pte++;
2694		}
2695	}
2696}
2697
2698#ifdef SMP
2699
2700/*
2701 *	pmap_zpi_switchin*()
2702 *
2703 *	These functions allow us to avoid doing IPIs alltogether in certain
2704 *	temporary page-mapping situations (page zeroing).  Instead to deal
2705 *	with being preempted and moved onto a different cpu we invalidate
2706 *	the page when the scheduler switches us in.  This does not occur
2707 *	very often so we remain relatively optimal with very little effort.
2708 */
2709static void
2710pmap_zpi_switchin12(void)
2711{
2712	invlpg((u_int)CADDR1);
2713	invlpg((u_int)CADDR2);
2714}
2715
2716static void
2717pmap_zpi_switchin2(void)
2718{
2719	invlpg((u_int)CADDR2);
2720}
2721
2722static void
2723pmap_zpi_switchin3(void)
2724{
2725	invlpg((u_int)CADDR3);
2726}
2727
2728#endif
2729
2730/*
2731 *	pmap_zero_page zeros the specified hardware page by mapping
2732 *	the page into KVM and using bzero to clear its contents.
2733 */
2734void
2735pmap_zero_page(vm_page_t m)
2736{
2737	vm_offset_t phys;
2738
2739	phys = VM_PAGE_TO_PHYS(m);
2740	if (*CMAP2)
2741		panic("pmap_zero_page: CMAP2 busy");
2742	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2743#ifdef I386_CPU
2744	invltlb();
2745#else
2746#ifdef SMP
2747	curthread->td_switchin = pmap_zpi_switchin2;
2748#endif
2749	invlpg((u_int)CADDR2);
2750#endif
2751#if defined(I686_CPU)
2752	if (cpu_class == CPUCLASS_686)
2753		i686_pagezero(CADDR2);
2754	else
2755#endif
2756		bzero(CADDR2, PAGE_SIZE);
2757#ifdef SMP
2758	curthread->td_switchin = NULL;
2759#endif
2760	*CMAP2 = 0;
2761}
2762
2763/*
2764 *	pmap_zero_page_area zeros the specified hardware page by mapping
2765 *	the page into KVM and using bzero to clear its contents.
2766 *
2767 *	off and size may not cover an area beyond a single hardware page.
2768 */
2769void
2770pmap_zero_page_area(vm_page_t m, int off, int size)
2771{
2772	vm_offset_t phys;
2773
2774	phys = VM_PAGE_TO_PHYS(m);
2775	if (*CMAP2)
2776		panic("pmap_zero_page: CMAP2 busy");
2777	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2778#ifdef I386_CPU
2779	invltlb();
2780#else
2781#ifdef SMP
2782	curthread->td_switchin = pmap_zpi_switchin2;
2783#endif
2784	invlpg((u_int)CADDR2);
2785#endif
2786#if defined(I686_CPU)
2787	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2788		i686_pagezero(CADDR2);
2789	else
2790#endif
2791		bzero((char *)CADDR2 + off, size);
2792#ifdef SMP
2793	curthread->td_switchin = NULL;
2794#endif
2795	*CMAP2 = 0;
2796}
2797
2798/*
2799 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2800 *	the page into KVM and using bzero to clear its contents.  This
2801 *	is intended to be called from the vm_pagezero process only and
2802 *	outside of Giant.
2803 */
2804void
2805pmap_zero_page_idle(vm_page_t m)
2806{
2807	vm_offset_t phys;
2808
2809	phys = VM_PAGE_TO_PHYS(m);
2810	if (*CMAP3)
2811		panic("pmap_zero_page: CMAP3 busy");
2812	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2813#ifdef I386_CPU
2814	invltlb();
2815#else
2816#ifdef SMP
2817	curthread->td_switchin = pmap_zpi_switchin3;
2818#endif
2819	invlpg((u_int)CADDR3);
2820#endif
2821#if defined(I686_CPU)
2822	if (cpu_class == CPUCLASS_686)
2823		i686_pagezero(CADDR3);
2824	else
2825#endif
2826		bzero(CADDR3, PAGE_SIZE);
2827#ifdef SMP
2828	curthread->td_switchin = NULL;
2829#endif
2830	*CMAP3 = 0;
2831}
2832
2833/*
2834 *	pmap_copy_page copies the specified (machine independent)
2835 *	page by mapping the page into virtual memory and using
2836 *	bcopy to copy the page, one machine dependent page at a
2837 *	time.
2838 */
2839void
2840pmap_copy_page(vm_page_t src, vm_page_t dst)
2841{
2842
2843	if (*CMAP1)
2844		panic("pmap_copy_page: CMAP1 busy");
2845	if (*CMAP2)
2846		panic("pmap_copy_page: CMAP2 busy");
2847	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2848	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2849#ifdef I386_CPU
2850	invltlb();
2851#else
2852#ifdef SMP
2853	curthread->td_switchin = pmap_zpi_switchin12;
2854#endif
2855	invlpg((u_int)CADDR1);
2856	invlpg((u_int)CADDR2);
2857#endif
2858	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2859#ifdef SMP
2860	curthread->td_switchin = NULL;
2861#endif
2862	*CMAP1 = 0;
2863	*CMAP2 = 0;
2864}
2865
2866
2867/*
2868 *	Routine:	pmap_pageable
2869 *	Function:
2870 *		Make the specified pages (by pmap, offset)
2871 *		pageable (or not) as requested.
2872 *
2873 *		A page which is not pageable may not take
2874 *		a fault; therefore, its page table entry
2875 *		must remain valid for the duration.
2876 *
2877 *		This routine is merely advisory; pmap_enter
2878 *		will specify that these pages are to be wired
2879 *		down (or not) as appropriate.
2880 */
2881void
2882pmap_pageable(pmap, sva, eva, pageable)
2883	pmap_t pmap;
2884	vm_offset_t sva, eva;
2885	boolean_t pageable;
2886{
2887}
2888
2889/*
2890 * Returns true if the pmap's pv is one of the first
2891 * 16 pvs linked to from this page.  This count may
2892 * be changed upwards or downwards in the future; it
2893 * is only necessary that true be returned for a small
2894 * subset of pmaps for proper page aging.
2895 */
2896boolean_t
2897pmap_page_exists_quick(pmap, m)
2898	pmap_t pmap;
2899	vm_page_t m;
2900{
2901	pv_entry_t pv;
2902	int loops = 0;
2903	int s;
2904
2905	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2906		return FALSE;
2907
2908	s = splvm();
2909
2910	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2911		if (pv->pv_pmap == pmap) {
2912			splx(s);
2913			return TRUE;
2914		}
2915		loops++;
2916		if (loops >= 16)
2917			break;
2918	}
2919	splx(s);
2920	return (FALSE);
2921}
2922
2923#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2924/*
2925 * Remove all pages from specified address space
2926 * this aids process exit speeds.  Also, this code
2927 * is special cased for current process only, but
2928 * can have the more generic (and slightly slower)
2929 * mode enabled.  This is much faster than pmap_remove
2930 * in the case of running down an entire address space.
2931 */
2932void
2933pmap_remove_pages(pmap, sva, eva)
2934	pmap_t pmap;
2935	vm_offset_t sva, eva;
2936{
2937	pt_entry_t *pte, tpte;
2938	vm_page_t m;
2939	pv_entry_t pv, npv;
2940	int s;
2941
2942#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2943	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2944		printf("warning: pmap_remove_pages called with non-current pmap\n");
2945		return;
2946	}
2947#endif
2948
2949	s = splvm();
2950	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2951
2952		if (pv->pv_va >= eva || pv->pv_va < sva) {
2953			npv = TAILQ_NEXT(pv, pv_plist);
2954			continue;
2955		}
2956
2957#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2958		pte = vtopte(pv->pv_va);
2959#else
2960		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2961#endif
2962		tpte = *pte;
2963
2964		if (tpte == 0) {
2965			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2966							pte, pv->pv_va);
2967			panic("bad pte");
2968		}
2969
2970/*
2971 * We cannot remove wired pages from a process' mapping at this time
2972 */
2973		if (tpte & PG_W) {
2974			npv = TAILQ_NEXT(pv, pv_plist);
2975			continue;
2976		}
2977
2978		m = PHYS_TO_VM_PAGE(tpte);
2979		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2980		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2981		    m, m->phys_addr, tpte));
2982
2983		KASSERT(m < &vm_page_array[vm_page_array_size],
2984			("pmap_remove_pages: bad tpte %x", tpte));
2985
2986		pv->pv_pmap->pm_stats.resident_count--;
2987
2988		*pte = 0;
2989
2990		/*
2991		 * Update the vm_page_t clean and reference bits.
2992		 */
2993		if (tpte & PG_M) {
2994			vm_page_dirty(m);
2995		}
2996
2997		npv = TAILQ_NEXT(pv, pv_plist);
2998		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2999
3000		m->md.pv_list_count--;
3001		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3002		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3003			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3004		}
3005
3006		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3007		free_pv_entry(pv);
3008	}
3009	splx(s);
3010	pmap_invalidate_all(pmap);
3011}
3012
3013/*
3014 * pmap_testbit tests bits in pte's
3015 * note that the testbit/changebit routines are inline,
3016 * and a lot of things compile-time evaluate.
3017 */
3018static boolean_t
3019pmap_testbit(m, bit)
3020	vm_page_t m;
3021	int bit;
3022{
3023	pv_entry_t pv;
3024	pt_entry_t *pte;
3025	int s;
3026
3027	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3028		return FALSE;
3029
3030	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3031		return FALSE;
3032
3033	s = splvm();
3034
3035	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3036		/*
3037		 * if the bit being tested is the modified bit, then
3038		 * mark clean_map and ptes as never
3039		 * modified.
3040		 */
3041		if (bit & (PG_A|PG_M)) {
3042			if (!pmap_track_modified(pv->pv_va))
3043				continue;
3044		}
3045
3046#if defined(PMAP_DIAGNOSTIC)
3047		if (!pv->pv_pmap) {
3048			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3049			continue;
3050		}
3051#endif
3052		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3053		if (*pte & bit) {
3054			splx(s);
3055			return TRUE;
3056		}
3057	}
3058	splx(s);
3059	return (FALSE);
3060}
3061
3062/*
3063 * this routine is used to modify bits in ptes
3064 */
3065static __inline void
3066pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3067{
3068	register pv_entry_t pv;
3069	register pt_entry_t *pte;
3070	int s;
3071
3072	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3073		return;
3074
3075	s = splvm();
3076
3077	/*
3078	 * Loop over all current mappings setting/clearing as appropos If
3079	 * setting RO do we need to clear the VAC?
3080	 */
3081	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3082		/*
3083		 * don't write protect pager mappings
3084		 */
3085		if (!setem && (bit == PG_RW)) {
3086			if (!pmap_track_modified(pv->pv_va))
3087				continue;
3088		}
3089
3090#if defined(PMAP_DIAGNOSTIC)
3091		if (!pv->pv_pmap) {
3092			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3093			continue;
3094		}
3095#endif
3096
3097		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3098
3099		if (setem) {
3100			*pte |= bit;
3101			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3102		} else {
3103			pt_entry_t pbits = *pte;
3104			if (pbits & bit) {
3105				if (bit == PG_RW) {
3106					if (pbits & PG_M) {
3107						vm_page_dirty(m);
3108					}
3109					*pte = pbits & ~(PG_M|PG_RW);
3110				} else {
3111					*pte = pbits & ~bit;
3112				}
3113				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3114			}
3115		}
3116	}
3117	splx(s);
3118}
3119
3120/*
3121 *      pmap_page_protect:
3122 *
3123 *      Lower the permission for all mappings to a given page.
3124 */
3125void
3126pmap_page_protect(vm_page_t m, vm_prot_t prot)
3127{
3128	if ((prot & VM_PROT_WRITE) == 0) {
3129		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3130			pmap_changebit(m, PG_RW, FALSE);
3131		} else {
3132			pmap_remove_all(m);
3133		}
3134	}
3135}
3136
3137vm_offset_t
3138pmap_phys_address(ppn)
3139	int ppn;
3140{
3141	return (i386_ptob(ppn));
3142}
3143
3144/*
3145 *	pmap_ts_referenced:
3146 *
3147 *	Return a count of reference bits for a page, clearing those bits.
3148 *	It is not necessary for every reference bit to be cleared, but it
3149 *	is necessary that 0 only be returned when there are truly no
3150 *	reference bits set.
3151 *
3152 *	XXX: The exact number of bits to check and clear is a matter that
3153 *	should be tested and standardized at some point in the future for
3154 *	optimal aging of shared pages.
3155 */
3156int
3157pmap_ts_referenced(vm_page_t m)
3158{
3159	register pv_entry_t pv, pvf, pvn;
3160	pt_entry_t *pte;
3161	int s;
3162	int rtval = 0;
3163
3164	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3165		return (rtval);
3166
3167	s = splvm();
3168
3169	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3170
3171		pvf = pv;
3172
3173		do {
3174			pvn = TAILQ_NEXT(pv, pv_list);
3175
3176			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3177
3178			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3179
3180			if (!pmap_track_modified(pv->pv_va))
3181				continue;
3182
3183			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3184
3185			if (pte && (*pte & PG_A)) {
3186				*pte &= ~PG_A;
3187
3188				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3189
3190				rtval++;
3191				if (rtval > 4) {
3192					break;
3193				}
3194			}
3195		} while ((pv = pvn) != NULL && pv != pvf);
3196	}
3197	splx(s);
3198
3199	return (rtval);
3200}
3201
3202/*
3203 *	pmap_is_modified:
3204 *
3205 *	Return whether or not the specified physical page was modified
3206 *	in any physical maps.
3207 */
3208boolean_t
3209pmap_is_modified(vm_page_t m)
3210{
3211	return pmap_testbit(m, PG_M);
3212}
3213
3214/*
3215 *	Clear the modify bits on the specified physical page.
3216 */
3217void
3218pmap_clear_modify(vm_page_t m)
3219{
3220	pmap_changebit(m, PG_M, FALSE);
3221}
3222
3223/*
3224 *	pmap_clear_reference:
3225 *
3226 *	Clear the reference bit on the specified physical page.
3227 */
3228void
3229pmap_clear_reference(vm_page_t m)
3230{
3231	pmap_changebit(m, PG_A, FALSE);
3232}
3233
3234/*
3235 * Miscellaneous support routines follow
3236 */
3237
3238static void
3239i386_protection_init()
3240{
3241	register int *kp, prot;
3242
3243	kp = protection_codes;
3244	for (prot = 0; prot < 8; prot++) {
3245		switch (prot) {
3246		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3247			/*
3248			 * Read access is also 0. There isn't any execute bit,
3249			 * so just make it readable.
3250			 */
3251		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3252		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3253		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3254			*kp++ = 0;
3255			break;
3256		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3257		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3258		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3259		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3260			*kp++ = PG_RW;
3261			break;
3262		}
3263	}
3264}
3265
3266/*
3267 * Map a set of physical memory pages into the kernel virtual
3268 * address space. Return a pointer to where it is mapped. This
3269 * routine is intended to be used for mapping device memory,
3270 * NOT real memory.
3271 */
3272void *
3273pmap_mapdev(pa, size)
3274	vm_offset_t pa;
3275	vm_size_t size;
3276{
3277	vm_offset_t va, tmpva, offset;
3278	pt_entry_t *pte;
3279
3280	offset = pa & PAGE_MASK;
3281	size = roundup(offset + size, PAGE_SIZE);
3282
3283	GIANT_REQUIRED;
3284
3285	va = kmem_alloc_pageable(kernel_map, size);
3286	if (!va)
3287		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3288
3289	pa = pa & PG_FRAME;
3290	for (tmpva = va; size > 0; ) {
3291		pte = vtopte(tmpva);
3292		*pte = pa | PG_RW | PG_V | pgeflag;
3293		size -= PAGE_SIZE;
3294		tmpva += PAGE_SIZE;
3295		pa += PAGE_SIZE;
3296	}
3297	pmap_invalidate_range(kernel_pmap, va, tmpva);
3298	return ((void *)(va + offset));
3299}
3300
3301void
3302pmap_unmapdev(va, size)
3303	vm_offset_t va;
3304	vm_size_t size;
3305{
3306	vm_offset_t base, offset, tmpva;
3307	pt_entry_t *pte;
3308
3309	base = va & PG_FRAME;
3310	offset = va & PAGE_MASK;
3311	size = roundup(offset + size, PAGE_SIZE);
3312	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3313		pte = vtopte(tmpva);
3314		*pte = 0;
3315	}
3316	pmap_invalidate_range(kernel_pmap, va, tmpva);
3317	kmem_free(kernel_map, base, size);
3318}
3319
3320/*
3321 * perform the pmap work for mincore
3322 */
3323int
3324pmap_mincore(pmap, addr)
3325	pmap_t pmap;
3326	vm_offset_t addr;
3327{
3328	pt_entry_t *ptep, pte;
3329	vm_page_t m;
3330	int val = 0;
3331
3332	ptep = pmap_pte(pmap, addr);
3333	if (ptep == 0) {
3334		return 0;
3335	}
3336
3337	if ((pte = *ptep) != 0) {
3338		vm_offset_t pa;
3339
3340		val = MINCORE_INCORE;
3341		if ((pte & PG_MANAGED) == 0)
3342			return val;
3343
3344		pa = pte & PG_FRAME;
3345
3346		m = PHYS_TO_VM_PAGE(pa);
3347
3348		/*
3349		 * Modified by us
3350		 */
3351		if (pte & PG_M)
3352			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3353		/*
3354		 * Modified by someone
3355		 */
3356		else if (m->dirty || pmap_is_modified(m))
3357			val |= MINCORE_MODIFIED_OTHER;
3358		/*
3359		 * Referenced by us
3360		 */
3361		if (pte & PG_A)
3362			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3363
3364		/*
3365		 * Referenced by someone
3366		 */
3367		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3368			val |= MINCORE_REFERENCED_OTHER;
3369			vm_page_flag_set(m, PG_REFERENCED);
3370		}
3371	}
3372	return val;
3373}
3374
3375void
3376pmap_activate(struct thread *td)
3377{
3378	struct proc *p = td->td_proc;
3379	pmap_t	pmap;
3380	u_int32_t  cr3;
3381
3382	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3383#if defined(SMP)
3384	pmap->pm_active |= PCPU_GET(cpumask);
3385#else
3386	pmap->pm_active |= 1;
3387#endif
3388#if defined(SWTCH_OPTIM_STATS)
3389	tlb_flush_count++;
3390#endif
3391	cr3 = vtophys(pmap->pm_pdir);
3392	/* XXXKSE this is wrong.
3393	 * pmap_activate is for the current thread on the current cpu
3394	 */
3395	if (p->p_flag & P_KSES) {
3396		/* Make sure all other cr3 entries are updated. */
3397		/* what if they are running?  XXXKSE (maybe abort them) */
3398		FOREACH_THREAD_IN_PROC(p, td) {
3399			td->td_pcb->pcb_cr3 = cr3;
3400		}
3401	} else {
3402		td->td_pcb->pcb_cr3 = cr3;
3403	}
3404	load_cr3(cr3);
3405}
3406
3407vm_offset_t
3408pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3409{
3410
3411	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3412		return addr;
3413	}
3414
3415	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3416	return addr;
3417}
3418
3419
3420#if defined(PMAP_DEBUG)
3421pmap_pid_dump(int pid)
3422{
3423	pmap_t pmap;
3424	struct proc *p;
3425	int npte = 0;
3426	int index;
3427
3428	sx_slock(&allproc_lock);
3429	LIST_FOREACH(p, &allproc, p_list) {
3430		if (p->p_pid != pid)
3431			continue;
3432
3433		if (p->p_vmspace) {
3434			int i,j;
3435			index = 0;
3436			pmap = vmspace_pmap(p->p_vmspace);
3437			for (i = 0; i < NPDEPG; i++) {
3438				pd_entry_t *pde;
3439				pt_entry_t *pte;
3440				vm_offset_t base = i << PDRSHIFT;
3441
3442				pde = &pmap->pm_pdir[i];
3443				if (pde && pmap_pde_v(pde)) {
3444					for (j = 0; j < NPTEPG; j++) {
3445						vm_offset_t va = base + (j << PAGE_SHIFT);
3446						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3447							if (index) {
3448								index = 0;
3449								printf("\n");
3450							}
3451							sx_sunlock(&allproc_lock);
3452							return npte;
3453						}
3454						pte = pmap_pte_quick(pmap, va);
3455						if (pte && pmap_pte_v(pte)) {
3456							pt_entry_t pa;
3457							vm_page_t m;
3458							pa = *pte;
3459							m = PHYS_TO_VM_PAGE(pa);
3460							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3461								va, pa, m->hold_count, m->wire_count, m->flags);
3462							npte++;
3463							index++;
3464							if (index >= 2) {
3465								index = 0;
3466								printf("\n");
3467							} else {
3468								printf(" ");
3469							}
3470						}
3471					}
3472				}
3473			}
3474		}
3475	}
3476	sx_sunlock(&allproc_lock);
3477	return npte;
3478}
3479#endif
3480
3481#if defined(DEBUG)
3482
3483static void	pads(pmap_t pm);
3484void		pmap_pvdump(vm_offset_t pa);
3485
3486/* print address space of pmap*/
3487static void
3488pads(pm)
3489	pmap_t pm;
3490{
3491	int i, j;
3492	vm_offset_t va;
3493	pt_entry_t *ptep;
3494
3495	if (pm == kernel_pmap)
3496		return;
3497	for (i = 0; i < NPDEPG; i++)
3498		if (pm->pm_pdir[i])
3499			for (j = 0; j < NPTEPG; j++) {
3500				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3501				if (pm == kernel_pmap && va < KERNBASE)
3502					continue;
3503				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3504					continue;
3505				ptep = pmap_pte_quick(pm, va);
3506				if (pmap_pte_v(ptep))
3507					printf("%x:%x ", va, *ptep);
3508			};
3509
3510}
3511
3512void
3513pmap_pvdump(pa)
3514	vm_offset_t pa;
3515{
3516	pv_entry_t pv;
3517	vm_page_t m;
3518
3519	printf("pa %x", pa);
3520	m = PHYS_TO_VM_PAGE(pa);
3521	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3522		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3523		pads(pv->pv_pmap);
3524	}
3525	printf(" ");
3526}
3527#endif
3528