reiserfs_fs.h revision 164033
1/*-
2 * Copyright 2000 Hans Reiser
3 * See README for licensing and copyright details
4 *
5 * Ported to FreeBSD by Jean-S�bastien P�dron <jspedron@club-internet.fr>
6 *
7 * $FreeBSD: head/sys/gnu/fs/reiserfs/reiserfs_fs.h 164033 2006-11-06 13:42:10Z rwatson $
8 */
9
10#ifndef _GNU_REISERFS_REISERFS_FS_H
11#define	_GNU_REISERFS_REISERFS_FS_H
12
13#include <sys/cdefs.h>
14#include <sys/types.h>
15#include <sys/endian.h>
16#include <sys/param.h>
17#include <sys/systm.h>
18#include <sys/kernel.h>
19#include <sys/mount.h>
20#include <sys/namei.h>
21#include <sys/priv.h>
22#include <sys/proc.h>
23#include <sys/vnode.h>
24#include <sys/unistd.h>
25
26#include <sys/bio.h>
27#include <sys/buf.h>
28#include <sys/conf.h>
29#include <sys/fcntl.h>
30#include <sys/syslog.h>
31
32#include <sys/malloc.h>
33#include <sys/dirent.h>
34#include <sys/stat.h>
35//#include <sys/mutex.h>
36
37#include <sys/ctype.h>
38#include <sys/bitstring.h>
39
40#include <geom/geom.h>
41#include <geom/geom_vfs.h>
42
43#include <gnu/fs/reiserfs/reiserfs_mount.h>
44#include <gnu/fs/reiserfs/reiserfs_fs_sb.h>
45#include <gnu/fs/reiserfs/reiserfs_fs_i.h>
46
47/* n must be power of 2 */
48#define	_ROUND_UP(x, n)	(((x) + (n) - 1u) & ~((n) - 1u))
49
50/* To be ok for alpha and others we have to align structures to 8 byte
51 * boundary. */
52#define	ROUND_UP(x)	_ROUND_UP(x, 8LL)
53
54/* -------------------------------------------------------------------
55 * Global variables
56 * -------------------------------------------------------------------*/
57
58extern struct vop_vector reiserfs_vnodeops;
59extern struct vop_vector reiserfs_specops;
60
61/* -------------------------------------------------------------------
62 * Super block
63 * -------------------------------------------------------------------*/
64
65#define	REISERFS_BSIZE 1024
66
67/* ReiserFS leaves the first 64k unused, so that partition labels have
68 * enough space. If someone wants to write a fancy bootloader that needs
69 * more than 64k, let us know, and this will be increased in size.
70 * This number must be larger than than the largest block size on any
71 * platform, or code will break. -Hans */
72#define	REISERFS_DISK_OFFSET 64
73#define	REISERFS_DISK_OFFSET_IN_BYTES                                        \
74    ((REISERFS_DISK_OFFSET) * (REISERFS_BSIZE))
75
76/* The spot for the super in versions 3.5 - 3.5.10 (inclusive) */
77#define	REISERFS_OLD_DISK_OFFSET 8
78#define	REISERFS_OLD_DISK_OFFSET_IN_BYTES                                    \
79    ((REISERFS_OLD_DISK_OFFSET) * (REISERFS_BSIZE))
80
81/*
82 * Structure of a super block on disk, a version of which in RAM is
83 * often accessed as REISERFS_SB(s)->r_rs. The version in RAM is part of
84 * a larger structure containing fields never written to disk.
85 */
86
87#define	UNSET_HASH	0 /* read_super will guess about, what hash names
88			     in directories were sorted with */
89#define	TEA_HASH	1
90#define	YURA_HASH	2
91#define	R5_HASH		3
92#define	DEFAULT_HASH	R5_HASH
93
94struct journal_params {
95	uint32_t	jp_journal_1st_block;      /* Where does journal start
96						      from on its device */
97	uint32_t	jp_journal_dev;            /* Journal device st_rdev */
98	uint32_t	jp_journal_size;           /* Size of the journal */
99	uint32_t	jp_journal_trans_max;      /* Max number of blocks in
100						      a transaction */
101	uint32_t	jp_journal_magic;          /* Random value made on
102						      fs creation (this was
103						      sb_journal_block_count) */
104	uint32_t	jp_journal_max_batch;      /* Max number of blocks to
105						      batch into a
106						      transaction */
107	uint32_t	jp_journal_max_commit_age; /* In seconds, how old can
108						      an async commit be */
109	uint32_t	jp_journal_max_trans_age;  /* In seconds, how old a
110						      transaction be */
111};
112
113struct reiserfs_super_block_v1 {
114	uint32_t	s_block_count; /* Blocks count      */
115	uint32_t	s_free_blocks; /* Free blocks count */
116	uint32_t	s_root_block;  /* Root block number */
117
118	struct journal_params s_journal;
119
120	uint16_t	s_blocksize;
121	uint16_t	s_oid_maxsize;
122	uint16_t	s_oid_cursize;
123	uint16_t	s_umount_state;
124
125	char 		s_magic[10];
126
127	uint16_t	s_fs_state;
128	uint32_t	s_hash_function_code;
129	uint16_t	s_tree_height;
130	uint16_t	s_bmap_nr;
131	uint16_t	s_version;
132	uint16_t	s_reserved_for_journal;
133} __packed;
134
135#define	SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
136
137struct reiserfs_super_block {
138	struct reiserfs_super_block_v1 s_v1;
139	uint32_t	s_inode_generation;
140	uint32_t	s_flags;
141	unsigned char	s_uuid[16];
142	unsigned char	s_label[16];
143	char		s_unused[88];
144} __packed;
145
146#define	SB_SIZE (sizeof(struct reiserfs_super_block))
147
148#define	REISERFS_VERSION_1	0
149#define	REISERFS_VERSION_2	2
150
151#define	REISERFS_SB(sbi)		(sbi)
152#define	SB_DISK_SUPER_BLOCK(sbi)	(REISERFS_SB(sbi)->s_rs)
153#define	SB_V1_DISK_SUPER_BLOCK(sbi)	(&(SB_DISK_SUPER_BLOCK(sbi)->s_v1))
154
155#define	SB_BLOCKSIZE(sbi)						\
156    le32toh((SB_V1_DISK_SUPER_BLOCK(sbi)->s_blocksize))
157#define	SB_BLOCK_COUNT(sbi)						\
158    le32toh((SB_V1_DISK_SUPER_BLOCK(sbi)->s_block_count))
159#define	SB_FREE_BLOCKS(s)						\
160    le32toh((SB_V1_DISK_SUPER_BLOCK(sbi)->s_free_blocks))
161
162#define	SB_REISERFS_MAGIC(sbi)						\
163    (SB_V1_DISK_SUPER_BLOCK(sbi)->s_magic)
164
165#define	SB_ROOT_BLOCK(sbi)						\
166    le32toh((SB_V1_DISK_SUPER_BLOCK(sbi)->s_root_block))
167
168#define	SB_TREE_HEIGHT(sbi)						\
169    le16toh((SB_V1_DISK_SUPER_BLOCK(sbi)->s_tree_height))
170
171#define	SB_REISERFS_STATE(sbi)						\
172    le16toh((SB_V1_DISK_SUPER_BLOCK(sbi)->s_umount_state))
173
174#define	SB_VERSION(sbi)	le16toh((SB_V1_DISK_SUPER_BLOCK(sbi)->s_version))
175#define	SB_BMAP_NR(sbi)	le16toh((SB_V1_DISK_SUPER_BLOCK(sbi)->s_bmap_nr))
176
177#define	REISERFS_SUPER_MAGIC_STRING	"ReIsErFs"
178#define	REISER2FS_SUPER_MAGIC_STRING	"ReIsEr2Fs"
179#define	REISER2FS_JR_SUPER_MAGIC_STRING	"ReIsEr3Fs"
180
181extern const char reiserfs_3_5_magic_string[];
182extern const char reiserfs_3_6_magic_string[];
183extern const char reiserfs_jr_magic_string[];
184
185int	is_reiserfs_3_5(struct reiserfs_super_block *rs);
186int	is_reiserfs_3_6(struct reiserfs_super_block *rs);
187int	is_reiserfs_jr(struct reiserfs_super_block *rs);
188
189/* ReiserFS internal error code (used by search_by_key and fix_nodes) */
190#define	IO_ERROR	-2
191
192typedef uint32_t b_blocknr_t;
193typedef uint32_t unp_t;
194
195struct unfm_nodeinfo {
196	unp_t		unfm_nodenum;
197	unsigned short	unfm_freespace;
198};
199
200/* There are two formats of keys: 3.5 and 3.6 */
201#define	KEY_FORMAT_3_5	0
202#define	KEY_FORMAT_3_6	1
203
204/* There are two stat datas */
205#define	STAT_DATA_V1	0
206#define	STAT_DATA_V2	1
207
208#define	REISERFS_I(ip)	(ip)
209
210#define	get_inode_item_key_version(ip)					\
211    ((REISERFS_I(ip)->i_flags & i_item_key_version_mask) ?		\
212     KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
213
214#define	set_inode_item_key_version(ip, version) ({			\
215	if ((version) == KEY_FORMAT_3_6)				\
216    		REISERFS_I(ip)->i_flags |= i_item_key_version_mask;	\
217    	else								\
218    		REISERFS_I(ip)->i_flags &= ~i_item_key_version_mask;	\
219})
220
221#define	get_inode_sd_version(ip)					\
222    ((REISERFS_I(ip)->i_flags & i_stat_data_version_mask) ?		\
223     STAT_DATA_V2 : STAT_DATA_V1)
224
225#define	set_inode_sd_version(inode, version) ({				\
226	if((version) == STAT_DATA_V2)					\
227		REISERFS_I(ip)->i_flags |= i_stat_data_version_mask;	\
228	else								\
229		REISERFS_I(ip)->i_flags &= ~i_stat_data_version_mask;	\
230})
231
232/* Values for s_umount_state field */
233#define	REISERFS_VALID_FS	1
234#define	REISERFS_ERROR_FS	2
235
236/* There are 5 item types currently */
237#define	TYPE_STAT_DATA		0
238#define	TYPE_INDIRECT		1
239#define	TYPE_DIRECT		2
240#define	TYPE_DIRENTRY		3
241#define	TYPE_MAXTYPE		3
242#define	TYPE_ANY		15
243
244/* -------------------------------------------------------------------
245 * Key & item head
246 * -------------------------------------------------------------------*/
247
248struct offset_v1 {
249	uint32_t	k_offset;
250	uint32_t	k_uniqueness;
251} __packed;
252
253struct offset_v2 {
254#if BYTE_ORDER == LITTLE_ENDIAN
255	/* little endian version */
256	uint64_t	k_offset:60;
257	uint64_t	k_type:4;
258#else
259	/* big endian version */
260	uint64_t	k_type:4;
261	uint64_t	k_offset:60;
262#endif
263} __packed;
264
265#if (BYTE_ORDER == BIG_ENDIAN)
266typedef union {
267	struct offset_v2	offset_v2;
268	uint64_t		linear;
269} __packed offset_v2_esafe_overlay;
270
271static inline uint16_t
272offset_v2_k_type(const struct offset_v2 *v2)
273{
274
275	offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
276	tmp.linear = le64toh(tmp.linear);
277	return ((tmp.offset_v2.k_type <= TYPE_MAXTYPE) ?
278	    tmp.offset_v2.k_type : TYPE_ANY);
279}
280
281static inline void
282set_offset_v2_k_type(struct offset_v2 *v2, int type)
283{
284
285	offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
286	tmp->linear = le64toh(tmp->linear);
287	tmp->offset_v2.k_type = type;
288	tmp->linear = htole64(tmp->linear);
289}
290
291static inline off_t
292offset_v2_k_offset(const struct offset_v2 *v2)
293{
294
295	offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
296	tmp.linear = le64toh(tmp.linear);
297	return (tmp.offset_v2.k_offset);
298}
299
300static inline void
301set_offset_v2_k_offset(struct offset_v2 *v2, off_t offset)
302{
303
304	offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
305	tmp->linear = le64toh(tmp->linear);
306	tmp->offset_v2.k_offset = offset;
307	tmp->linear = htole64(tmp->linear);
308}
309#else /* BYTE_ORDER != BIG_ENDIAN */
310#define	offset_v2_k_type(v2)		((v2)->k_type)
311#define	set_offset_v2_k_type(v2, val)	(offset_v2_k_type(v2) = (val))
312#define	offset_v2_k_offset(v2)		((v2)->k_offset)
313#define	set_offset_v2_k_offset(v2, val)	(offset_v2_k_offset(v2) = (val))
314#endif /* BYTE_ORDER == BIG_ENDIAN */
315
316/*
317 * Key of an item determines its location in the S+tree, and
318 * is composed of 4 components
319 */
320struct key {
321	uint32_t	k_dir_id;    /* Packing locality: by default parent
322					directory object id */
323	uint32_t	k_objectid;  /* Object identifier */
324	union {
325		struct offset_v1	k_offset_v1;
326		struct offset_v2	k_offset_v2;
327	} __packed u;
328} __packed;
329
330struct cpu_key {
331	struct key	on_disk_key;
332	int		version;
333	int		key_length; /* 3 in all cases but direct2indirect
334				       and indirect2direct conversion */
335};
336
337/*
338 * Our function for comparing keys can compare keys of different
339 * lengths. It takes as a parameter the length of the keys it is to
340 * compare. These defines are used in determining what is to be passed
341 * to it as that parameter.
342 */
343#define	REISERFS_FULL_KEY_LEN	4
344#define	REISERFS_SHORT_KEY_LEN	2
345
346#define	KEY_SIZE	(sizeof(struct key))
347#define	SHORT_KEY_SIZE	(sizeof(uint32_t) + sizeof(uint32_t))
348
349/* Return values for search_by_key and clones */
350#define	ITEM_FOUND		 1
351#define	ITEM_NOT_FOUND		 0
352#define	ENTRY_FOUND		 1
353#define	ENTRY_NOT_FOUND		 0
354#define	DIRECTORY_NOT_FOUND	-1
355#define	REGULAR_FILE_FOUND	-2
356#define	DIRECTORY_FOUND		-3
357#define	BYTE_FOUND		 1
358#define	BYTE_NOT_FOUND		 0
359#define	FILE_NOT_FOUND		-1
360
361#define	POSITION_FOUND		 1
362#define	POSITION_NOT_FOUND	 0
363
364/* Return values for reiserfs_find_entry and search_by_entry_key */
365#define	NAME_FOUND		1
366#define	NAME_NOT_FOUND		0
367#define	GOTO_PREVIOUS_ITEM	2
368#define	NAME_FOUND_INVISIBLE	3
369
370/*
371 * Everything in the filesystem is stored as a set of items. The item
372 * head contains the key of the item, its free space (for indirect
373 * items) and specifies the location of the item itself within the
374 * block.
375 */
376struct item_head {
377	/*
378	 * Everything in the tree is found by searching for it based on
379	 * its key.
380	 */
381	struct key	ih_key;
382	union {
383		/*
384		 * The free space in the last unformatted node of an
385		 * indirect item if this is an indirect item. This
386		 * equals 0xFFFF iff this is a direct item or stat data
387		 * item. Note that the key, not this field, is used to
388		 * determine the item type, and thus which field this
389		 * union contains.
390		 */
391		uint16_t	ih_free_space_reserved;
392
393		/*
394		 * If this is a directory item, this field equals the number of
395		 * directory entries in the directory item.
396		 */
397		uint16_t	ih_entry_count;
398	} __packed u;
399	uint16_t	ih_item_len;      /* Total size of the item body */
400	uint16_t	ih_item_location; /* An offset to the item body within
401					     the block */
402	uint16_t	ih_version;       /* 0 for all old items, 2 for new
403					     ones. Highest bit is set by fsck
404					     temporary, cleaned after all
405					     done */
406} __packed;
407
408/* Size of item header */
409#define	IH_SIZE (sizeof(struct item_head))
410
411#define	ih_free_space(ih)	le16toh((ih)->u.ih_free_space_reserved)
412#define	ih_version(ih)		le16toh((ih)->ih_version)
413#define	ih_entry_count(ih)	le16toh((ih)->u.ih_entry_count)
414#define	ih_location(ih)		le16toh((ih)->ih_item_location)
415#define	ih_item_len(ih)		le16toh((ih)->ih_item_len)
416
417/*
418 * These operate on indirect items, where you've got an array of ints at
419 * a possibly unaligned location. These are a noop on IA32.
420 *
421 * p is the array of uint32_t, i is the index into the array, v is the
422 * value to store there.
423 */
424#define	get_unaligned(ptr)						\
425    ({ __typeof__(*(ptr)) __tmp;					\
426     memcpy(&__tmp, (ptr), sizeof(*(ptr))); __tmp; })
427
428#define	put_unaligned(val, ptr)						\
429    ({ __typeof__(*(ptr)) __tmp = (val);				\
430     memcpy((ptr), &__tmp, sizeof(*(ptr)));				\
431     (void)0; })
432
433#define	get_block_num(p, i)	le32toh(get_unaligned((p) + (i)))
434#define	put_block_num(p, i, v)	put_unaligned(htole32(v), (p) + (i))
435
436/* In old version uniqueness field shows key type */
437#define	V1_SD_UNIQUENESS	0
438#define	V1_INDIRECT_UNIQUENESS	0xfffffffe
439#define	V1_DIRECT_UNIQUENESS	0xffffffff
440#define	V1_DIRENTRY_UNIQUENESS	500
441#define	V1_ANY_UNIQUENESS	555
442
443/* Here are conversion routines */
444static inline int	uniqueness2type(uint32_t uniqueness);
445static inline uint32_t	type2uniqueness(int type);
446
447static inline int
448uniqueness2type(uint32_t uniqueness)
449{
450
451	switch ((int)uniqueness) {
452	case V1_SD_UNIQUENESS:
453		return (TYPE_STAT_DATA);
454	case V1_INDIRECT_UNIQUENESS:
455		return (TYPE_INDIRECT);
456	case V1_DIRECT_UNIQUENESS:
457		return (TYPE_DIRECT);
458	case V1_DIRENTRY_UNIQUENESS:
459		return (TYPE_DIRENTRY);
460	default:
461		log(LOG_NOTICE, "reiserfs: unknown uniqueness (%u)\n",
462		    uniqueness);
463	case V1_ANY_UNIQUENESS:
464		return (TYPE_ANY);
465	}
466}
467
468static inline uint32_t
469type2uniqueness(int type)
470{
471
472	switch (type) {
473	case TYPE_STAT_DATA:
474		return (V1_SD_UNIQUENESS);
475	case TYPE_INDIRECT:
476		return (V1_INDIRECT_UNIQUENESS);
477	case TYPE_DIRECT:
478		return (V1_DIRECT_UNIQUENESS);
479	case TYPE_DIRENTRY:
480		return (V1_DIRENTRY_UNIQUENESS);
481	default:
482		log(LOG_NOTICE, "reiserfs: unknown type (%u)\n", type);
483	case TYPE_ANY:
484		return (V1_ANY_UNIQUENESS);
485	}
486}
487
488/*
489 * Key is pointer to on disk key which is stored in le, result is cpu,
490 * there is no way to get version of object from key, so, provide
491 * version to these defines.
492 */
493static inline off_t
494le_key_k_offset(int version, const struct key *key)
495{
496
497	return ((version == KEY_FORMAT_3_5) ?
498	    le32toh(key->u.k_offset_v1.k_offset) :
499	    offset_v2_k_offset(&(key->u.k_offset_v2)));
500}
501
502static inline off_t
503le_ih_k_offset(const struct item_head *ih)
504{
505
506	return (le_key_k_offset(ih_version(ih), &(ih->ih_key)));
507}
508
509static inline off_t
510le_key_k_type(int version, const struct key *key)
511{
512
513	return ((version == KEY_FORMAT_3_5) ?
514	    uniqueness2type(le32toh(key->u.k_offset_v1.k_uniqueness)) :
515	    offset_v2_k_type(&(key->u.k_offset_v2)));
516}
517
518static inline off_t
519le_ih_k_type(const struct item_head *ih)
520{
521	return (le_key_k_type(ih_version(ih), &(ih->ih_key)));
522}
523
524static inline void
525set_le_key_k_offset(int version, struct key *key, off_t offset)
526{
527
528	(version == KEY_FORMAT_3_5) ?
529	    (key->u.k_offset_v1.k_offset = htole32(offset)) :
530	    (set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
531}
532
533static inline void
534set_le_ih_k_offset(struct item_head *ih, off_t offset)
535{
536
537	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
538}
539
540static inline void
541set_le_key_k_type(int version, struct key *key, int type)
542{
543
544	(version == KEY_FORMAT_3_5) ?
545	    (key->u.k_offset_v1.k_uniqueness =
546	     htole32(type2uniqueness(type))) :
547	    (set_offset_v2_k_type(&(key->u.k_offset_v2), type));
548}
549
550static inline void
551set_le_ih_k_type(struct item_head *ih, int type)
552{
553
554	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
555}
556
557#define	is_direntry_le_key(version, key)				\
558    (le_key_k_type(version, key) == TYPE_DIRENTRY)
559#define	is_direct_le_key(version, key)					\
560    (le_key_k_type(version, key) == TYPE_DIRECT)
561#define	is_indirect_le_key(version, key)				\
562    (le_key_k_type(version, key) == TYPE_INDIRECT)
563#define	is_statdata_le_key(version, key)				\
564    (le_key_k_type(version, key) == TYPE_STAT_DATA)
565
566/* Item header has version. */
567#define	is_direntry_le_ih(ih)						\
568    is_direntry_le_key(ih_version(ih), &((ih)->ih_key))
569#define	is_direct_le_ih(ih)						\
570    is_direct_le_key(ih_version(ih), &((ih)->ih_key))
571#define	is_indirect_le_ih(ih)						\
572    is_indirect_le_key(ih_version(ih), &((ih)->ih_key))
573#define	is_statdata_le_ih(ih)						\
574    is_statdata_le_key(ih_version(ih), &((ih)->ih_key))
575
576static inline void
577set_cpu_key_k_offset(struct cpu_key *key, off_t offset)
578{
579
580	(key->version == KEY_FORMAT_3_5) ?
581	    (key->on_disk_key.u.k_offset_v1.k_offset = offset) :
582	    (key->on_disk_key.u.k_offset_v2.k_offset = offset);
583}
584
585static inline void
586set_cpu_key_k_type(struct cpu_key *key, int type)
587{
588
589	(key->version == KEY_FORMAT_3_5) ?
590	    (key->on_disk_key.u.k_offset_v1.k_uniqueness =
591	     type2uniqueness(type)):
592	    (key->on_disk_key.u.k_offset_v2.k_type = type);
593}
594
595#define	is_direntry_cpu_key(key)	(cpu_key_k_type (key) == TYPE_DIRENTRY)
596#define	is_direct_cpu_key(key)		(cpu_key_k_type (key) == TYPE_DIRECT)
597#define	is_indirect_cpu_key(key)	(cpu_key_k_type (key) == TYPE_INDIRECT)
598#define	is_statdata_cpu_key(key)	(cpu_key_k_type (key) == TYPE_STAT_DATA)
599
600/* Maximal length of item */
601#define	MAX_ITEM_LEN(block_size)	(block_size - BLKH_SIZE - IH_SIZE)
602#define	MIN_ITEM_LEN			1
603
604/* Object identifier for root dir */
605#define	REISERFS_ROOT_OBJECTID		2
606#define	REISERFS_ROOT_PARENT_OBJECTID	1
607
608/* key is pointer to cpu key, result is cpu */
609static inline off_t
610cpu_key_k_offset(const struct cpu_key *key)
611{
612
613	return ((key->version == KEY_FORMAT_3_5) ?
614	    key->on_disk_key.u.k_offset_v1.k_offset :
615	    key->on_disk_key.u.k_offset_v2.k_offset);
616}
617
618static inline off_t
619cpu_key_k_type(const struct cpu_key *key)
620{
621
622	return ((key->version == KEY_FORMAT_3_5) ?
623	    uniqueness2type(key->on_disk_key.u.k_offset_v1.k_uniqueness) :
624	    key->on_disk_key.u.k_offset_v2.k_type);
625}
626
627/*
628 * Header of a disk block.  More precisely, header of a formatted leaf
629 * or internal node, and not the header of an unformatted node.
630 */
631struct block_head {
632	uint16_t	blk_level;            /* Level of a block in the
633						 tree. */
634	uint16_t	blk_nr_item;          /* Number of keys/items in a
635						 block. */
636	uint16_t	blk_free_space;       /* Block free space in bytes. */
637	uint16_t	blk_reserved;         /* Dump this in v4/planA */
638	struct key	blk_right_delim_key;  /* Kept only for compatibility */
639};
640
641#define	BLKH_SIZE		(sizeof(struct block_head))
642#define	blkh_level(p_blkh)	(le16toh((p_blkh)->blk_level))
643#define	blkh_nr_item(p_blkh)	(le16toh((p_blkh)->blk_nr_item))
644#define	blkh_free_space(p_blkh)	(le16toh((p_blkh)->blk_free_space))
645
646#define	FREE_LEVEL	0 /* When node gets removed from the tree its
647			     blk_level is set to FREE_LEVEL. It is then
648			     used to see whether the node is still in the
649			     tree */
650
651/* Values for blk_level field of the struct block_head */
652#define	DISK_LEAF_NODE_LEVEL	1 /* Leaf node level.*/
653
654/*
655 * Given the buffer head of a formatted node, resolve to the block head
656 * of that node.
657 */
658#define	B_BLK_HEAD(p_s_bp)	((struct block_head *)((p_s_bp)->b_data))
659#define	B_NR_ITEMS(p_s_bp)	(blkh_nr_item(B_BLK_HEAD(p_s_bp)))
660#define	B_LEVEL(p_s_bp)		(blkh_level(B_BLK_HEAD(p_s_bp)))
661#define	B_FREE_SPACE(p_s_bp)	(blkh_free_space(B_BLK_HEAD(p_s_bp)))
662
663/* -------------------------------------------------------------------
664 * Stat data
665 * -------------------------------------------------------------------*/
666
667/*
668 * Old stat data is 32 bytes long. We are going to distinguish new one
669 * by different size.
670 */
671struct stat_data_v1 {
672	uint16_t	sd_mode;  /* File type, permissions */
673	uint16_t	sd_nlink; /* Number of hard links */
674	uint16_t	sd_uid;   /* Owner */
675	uint16_t	sd_gid;   /* Group */
676	uint32_t	sd_size;  /* File size */
677	uint32_t	sd_atime; /* Time of last access */
678	uint32_t	sd_mtime; /* Time file was last modified  */
679	uint32_t	sd_ctime; /* Time inode (stat data) was last changed
680				     (except changes to sd_atime and
681				     sd_mtime) */
682	union {
683		uint32_t 	sd_rdev;
684		uint32_t	sd_blocks;  /* Number of blocks file uses */
685	} __packed u;
686	uint32_t	sd_first_direct_byte; /* First byte of file which is
687						 stored in a direct item:
688						 except that if it equals 1
689						 it is a symlink and if it
690						 equals ~(uint32_t)0 there
691						 is no direct item. The
692						 existence of this field
693						 really grates on me. Let's
694						 replace it with a macro based
695						 on sd_size and our tail
696						 suppression policy. Someday.
697						 -Hans */
698} __packed;
699
700#define	SD_V1_SIZE			(sizeof(struct stat_data_v1))
701#define	stat_data_v1(ih)		(ih_version (ih) == KEY_FORMAT_3_5)
702#define	sd_v1_mode(sdp)			(le16toh((sdp)->sd_mode))
703#define	set_sd_v1_mode(sdp, v)		((sdp)->sd_mode = htole16(v))
704#define	sd_v1_nlink(sdp)		(le16toh((sdp)->sd_nlink))
705#define	set_sd_v1_nlink(sdp, v)		((sdp)->sd_nlink = htole16(v))
706#define	sd_v1_uid(sdp)			(le16toh((sdp)->sd_uid))
707#define	set_sd_v1_uid(sdp, v)		((sdp)->sd_uid = htole16(v))
708#define	sd_v1_gid(sdp)			(le16toh((sdp)->sd_gid))
709#define	set_sd_v1_gid(sdp, v)		((sdp)->sd_gid = htole16(v))
710#define	sd_v1_size(sdp)			(le32toh((sdp)->sd_size))
711#define	set_sd_v1_size(sdp, v)		((sdp)->sd_size = htole32(v))
712#define	sd_v1_atime(sdp)		(le32toh((sdp)->sd_atime))
713#define	set_sd_v1_atime(sdp, v)		((sdp)->sd_atime = htole32(v))
714#define	sd_v1_mtime(sdp)		(le32toh((sdp)->sd_mtime))
715#define	set_sd_v1_mtime(sdp, v)		((sdp)->sd_mtime = htole32(v))
716#define	sd_v1_ctime(sdp)		(le32toh((sdp)->sd_ctime))
717#define	set_sd_v1_ctime(sdp, v)		((sdp)->sd_ctime = htole32(v))
718#define	sd_v1_rdev(sdp)			(le32toh((sdp)->u.sd_rdev))
719#define	set_sd_v1_rdev(sdp, v)		((sdp)->u.sd_rdev = htole32(v))
720#define	sd_v1_blocks(sdp)		(le32toh((sdp)->u.sd_blocks))
721#define	set_sd_v1_blocks(sdp, v)	((sdp)->u.sd_blocks = htole32(v))
722#define	sd_v1_first_direct_byte(sdp)					\
723    (le32toh((sdp)->sd_first_direct_byte))
724#define	set_sd_v1_first_direct_byte(sdp, v)				\
725    ((sdp)->sd_first_direct_byte = htole32(v))
726
727/*
728 * We want common flags to have the same values as in ext2,
729 * so chattr(1) will work without problems
730 */
731#include <gnu/fs/ext2fs/ext2_fs.h>
732#define	REISERFS_IMMUTABLE_FL	EXT2_IMMUTABLE_FL
733#define	REISERFS_APPEND_FL	EXT2_APPEND_FL
734#define	REISERFS_SYNC_FL	EXT2_SYNC_FL
735#define	REISERFS_NOATIME_FL	EXT2_NOATIME_FL
736#define	REISERFS_NODUMP_FL	EXT2_NODUMP_FL
737#define	REISERFS_SECRM_FL	EXT2_SECRM_FL
738#define	REISERFS_UNRM_FL	EXT2_UNRM_FL
739#define	REISERFS_COMPR_FL	EXT2_COMPR_FL
740#define	REISERFS_NOTAIL_FL	EXT2_NOTAIL_FL
741
742/*
743 * Stat Data on disk (reiserfs version of UFS disk inode minus the
744 * address blocks)
745 */
746struct stat_data {
747	uint16_t	sd_mode;  /* File type, permissions */
748	uint16_t	sd_attrs; /* Persistent inode flags */
749	uint32_t	sd_nlink; /* Number of hard links */
750	uint64_t	sd_size;  /* File size */
751	uint32_t	sd_uid;   /* Owner */
752	uint32_t	sd_gid;   /* Group */
753	uint32_t	sd_atime; /* Time of last access */
754	uint32_t	sd_mtime; /* Time file was last modified  */
755	uint32_t	sd_ctime; /* Time inode (stat data) was last changed
756				     (except changes to sd_atime and
757				     sd_mtime) */
758	uint32_t	sd_blocks;
759	union {
760		uint32_t	sd_rdev;
761		uint32_t	sd_generation;
762		//uint32_t	sd_first_direct_byte;
763		/*
764		 * First byte of file which is stored in a
765		 * direct item: except that if it equals 1
766		 * it is a symlink and if it equals
767		 * ~(uint32_t)0 there is no direct item.  The
768		 * existence of this field really grates
769		 * on me. Let's replace it with a macro
770		 * based on sd_size and our tail
771		 * suppression policy?
772		 */
773	} __packed u;
774} __packed;
775
776/* This is 44 bytes long */
777#define	SD_SIZE				(sizeof(struct stat_data))
778#define	SD_V2_SIZE			SD_SIZE
779#define	stat_data_v2(ih)		(ih_version (ih) == KEY_FORMAT_3_6)
780#define	sd_v2_mode(sdp)			(le16toh((sdp)->sd_mode))
781#define	set_sd_v2_mode(sdp, v)		((sdp)->sd_mode = htole16(v))
782/* sd_reserved */
783/* set_sd_reserved */
784#define	sd_v2_nlink(sdp)		(le32toh((sdp)->sd_nlink))
785#define	set_sd_v2_nlink(sdp, v)		((sdp)->sd_nlink = htole32(v))
786#define	sd_v2_size(sdp)			(le64toh((sdp)->sd_size))
787#define	set_sd_v2_size(sdp, v)		((sdp)->sd_size = cpu_to_le64(v))
788#define	sd_v2_uid(sdp)			(le32toh((sdp)->sd_uid))
789#define	set_sd_v2_uid(sdp, v)		((sdp)->sd_uid = htole32(v))
790#define	sd_v2_gid(sdp)			(le32toh((sdp)->sd_gid))
791#define	set_sd_v2_gid(sdp, v)		((sdp)->sd_gid = htole32(v))
792#define	sd_v2_atime(sdp)		(le32toh((sdp)->sd_atime))
793#define	set_sd_v2_atime(sdp, v)		((sdp)->sd_atime = htole32(v))
794#define	sd_v2_mtime(sdp)		(le32toh((sdp)->sd_mtime))
795#define	set_sd_v2_mtime(sdp, v)		((sdp)->sd_mtime = htole32(v))
796#define	sd_v2_ctime(sdp)		(le32toh((sdp)->sd_ctime))
797#define	set_sd_v2_ctime(sdp, v)		((sdp)->sd_ctime = htole32(v))
798#define	sd_v2_blocks(sdp)		(le32toh((sdp)->sd_blocks))
799#define	set_sd_v2_blocks(sdp, v)	((sdp)->sd_blocks = htole32(v))
800#define	sd_v2_rdev(sdp)			(le32toh((sdp)->u.sd_rdev))
801#define	set_sd_v2_rdev(sdp, v)		((sdp)->u.sd_rdev = htole32(v))
802#define	sd_v2_generation(sdp)		(le32toh((sdp)->u.sd_generation))
803#define	set_sd_v2_generation(sdp, v)	((sdp)->u.sd_generation = htole32(v))
804#define	sd_v2_attrs(sdp)		(le16toh((sdp)->sd_attrs))
805#define	set_sd_v2_attrs(sdp, v)		((sdp)->sd_attrs = htole16(v))
806
807/* -------------------------------------------------------------------
808 * Directory structure
809 * -------------------------------------------------------------------*/
810
811#define	SD_OFFSET		0
812#define	SD_UNIQUENESS		0
813#define	DOT_OFFSET		1
814#define	DOT_DOT_OFFSET		2
815#define	DIRENTRY_UNIQUENESS	500
816
817#define	FIRST_ITEM_OFFSET	1
818
819struct reiserfs_de_head {
820	uint32_t	deh_offset;    /* Third component of the directory
821					  entry key */
822	uint32_t	deh_dir_id;    /* Objectid of the parent directory of
823					  the object, that is referenced by
824					  directory entry */
825	uint32_t	deh_objectid;  /* Objectid of the object, that is
826					  referenced by directory entry */
827	uint16_t	deh_location;  /* Offset of name in the whole item */
828	uint16_t	deh_state;     /* Whether 1) entry contains stat data
829					  (for future), and 2) whether entry
830					  is hidden (unlinked) */
831} __packed;
832
833#define	DEH_SIZE			sizeof(struct reiserfs_de_head)
834#define	deh_offset(p_deh)		(le32toh((p_deh)->deh_offset))
835#define	deh_dir_id(p_deh)		(le32toh((p_deh)->deh_dir_id))
836#define	deh_objectid(p_deh)		(le32toh((p_deh)->deh_objectid))
837#define	deh_location(p_deh)		(le16toh((p_deh)->deh_location))
838#define	deh_state(p_deh)		(le16toh((p_deh)->deh_state))
839
840#define	put_deh_offset(p_deh, v)	((p_deh)->deh_offset = htole32((v)))
841#define	put_deh_dir_id(p_deh, v)	((p_deh)->deh_dir_id = htole32((v)))
842#define	put_deh_objectid(p_deh, v)	((p_deh)->deh_objectid = htole32((v)))
843#define	put_deh_location(p_deh, v)	((p_deh)->deh_location = htole16((v)))
844#define	put_deh_state(p_deh, v)		((p_deh)->deh_state = htole16((v)))
845
846/* Empty directory contains two entries "." and ".." and their headers */
847#define	EMPTY_DIR_SIZE							\
848    (DEH_SIZE * 2 + ROUND_UP(strlen(".")) + ROUND_UP(strlen("..")))
849
850/* Old format directories have this size when empty */
851#define	EMPTY_DIR_SIZE_V1	(DEH_SIZE * 2 + 3)
852
853#define	DEH_Statdata	0 /* Not used now */
854#define	DEH_Visible	2
855
856/* Macro to map Linux' *_bit function to bitstring.h macros */
857#define	set_bit(bit, name)		bit_set((bitstr_t *)name, bit)
858#define	clear_bit(bit, name)		bit_clear((bitstr_t *)name, bit)
859#define	test_bit(bit, name)		bit_test((bitstr_t *)name, bit)
860
861#define	set_bit_unaligned(bit, name)	set_bit(bit, name)
862#define	clear_bit_unaligned(bit, name)	clear_bit(bit, name)
863#define	test_bit_unaligned(bit, name)	test_bit(bit, name)
864
865#define	mark_de_with_sd(deh)						\
866    set_bit_unaligned(DEH_Statdata, &((deh)->deh_state))
867#define	mark_de_without_sd(deh)						\
868    clear_bit_unaligned(DEH_Statdata, &((deh)->deh_state))
869#define	mark_de_visible(deh)						\
870    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
871#define	mark_de_hidden(deh)						\
872    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
873
874#define	de_with_sd(deh)							\
875    test_bit_unaligned(DEH_Statdata, &((deh)->deh_state))
876#define	de_visible(deh)							\
877    test_bit_unaligned(DEH_Visible, &((deh)->deh_state))
878#define	de_hidden(deh)							\
879    !test_bit_unaligned(DEH_Visible, &((deh)->deh_state))
880
881/* Two entries per block (at least) */
882#define	REISERFS_MAX_NAME(block_size)	255
883
884/*
885 * This structure is used for operations on directory entries. It is not
886 * a disk structure. When reiserfs_find_entry or search_by_entry_key
887 * find directory entry, they return filled reiserfs_dir_entry structure
888 */
889struct reiserfs_dir_entry {
890	struct buf *de_bp;
891	int	 de_item_num;
892	struct item_head *de_ih;
893	int	 de_entry_num;
894	struct reiserfs_de_head *de_deh;
895	int	 de_entrylen;
896	int	 de_namelen;
897	char	*de_name;
898	char	*de_gen_number_bit_string;
899
900	uint32_t de_dir_id;
901	uint32_t de_objectid;
902
903	struct cpu_key de_entry_key;
904};
905
906/* Pointer to file name, stored in entry */
907#define	B_I_DEH_ENTRY_FILE_NAME(bp, ih, deh)				\
908    (B_I_PITEM(bp, ih) + deh_location(deh))
909
910/* Length of name */
911#define	I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih, deh, entry_num)		\
912    (I_DEH_N_ENTRY_LENGTH(ih, deh, entry_num) -				\
913     (de_with_sd(deh) ? SD_SIZE : 0))
914
915/* Hash value occupies bits from 7 up to 30 */
916#define	GET_HASH_VALUE(offset)		((offset) & 0x7fffff80LL)
917
918/* Generation number occupies 7 bits starting from 0 up to 6 */
919#define	GET_GENERATION_NUMBER(offset)	((offset) & 0x7fLL)
920#define	MAX_GENERATION_NUMBER		127
921
922/* Get item body */
923#define	B_I_PITEM(bp, ih)	((bp)->b_data + ih_location(ih))
924#define	B_I_DEH(bp, ih)		((struct reiserfs_de_head *)(B_I_PITEM(bp, ih)))
925
926/*
927 * Length of the directory entry in directory item. This define
928 * calculates length of i-th directory entry using directory entry
929 * locations from dir entry head. When it calculates length of 0-th
930 * directory entry, it uses length of whole item in place of entry
931 * location of the non-existent following entry in the calculation. See
932 * picture above.
933 */
934static inline int
935entry_length (const struct buf *bp, const struct item_head *ih,
936    int pos_in_item)
937{
938	struct reiserfs_de_head *deh;
939
940	deh = B_I_DEH(bp, ih) + pos_in_item;
941	if (pos_in_item)
942		return (deh_location(deh - 1) - deh_location(deh));
943
944	return (ih_item_len(ih) - deh_location(deh));
945}
946
947/*
948 * Number of entries in the directory item, depends on ENTRY_COUNT
949 * being at the start of directory dynamic data.
950 */
951#define	I_ENTRY_COUNT(ih)	(ih_entry_count((ih)))
952
953/* -------------------------------------------------------------------
954 * Disk child
955 * -------------------------------------------------------------------*/
956
957/*
958 * Disk child pointer: The pointer from an internal node of the tree
959 * to a node that is on disk.
960 */
961struct disk_child {
962	uint32_t	dc_block_number; /* Disk child's block number. */
963	uint16_t	dc_size;         /* Disk child's used space. */
964	uint16_t	dc_reserved;
965};
966
967#define	DC_SIZE			(sizeof(struct disk_child))
968#define	dc_block_number(dc_p)	(le32toh((dc_p)->dc_block_number))
969#define	dc_size(dc_p)		(le16toh((dc_p)->dc_size))
970#define	put_dc_block_number(dc_p, val)					\
971    do { (dc_p)->dc_block_number = htole32(val); } while (0)
972#define	put_dc_size(dc_p, val)						\
973    do { (dc_p)->dc_size = htole16(val); } while (0)
974
975/* Get disk child by buffer header and position in the tree node. */
976#define	B_N_CHILD(p_s_bp, n_pos)					\
977    ((struct disk_child *)((p_s_bp)->b_data + BLKH_SIZE +		\
978			   B_NR_ITEMS(p_s_bp) * KEY_SIZE +		\
979			   DC_SIZE * (n_pos)))
980
981/* Get disk child number by buffer header and position in the tree node. */
982#define	B_N_CHILD_NUM(p_s_bp, n_pos)					\
983    (dc_block_number(B_N_CHILD(p_s_bp, n_pos)))
984#define	PUT_B_N_CHILD_NUM(p_s_bp, n_pos, val)				\
985    (put_dc_block_number(B_N_CHILD(p_s_bp, n_pos), val))
986
987/* -------------------------------------------------------------------
988 * Path structures and defines
989 * -------------------------------------------------------------------*/
990
991struct path_element {
992	struct buf	*pe_buffer;  /* Pointer to the buffer at the path in
993					the tree. */
994	int		pe_position; /* Position in the tree node which is
995					placed in the buffer above. */
996};
997
998#define	MAX_HEIGHT			5 /* Maximal height of a tree. Don't
999					     change this without changing
1000					     JOURNAL_PER_BALANCE_CNT */
1001#define	EXTENDED_MAX_HEIGHT		7 /* Must be equals MAX_HEIGHT +
1002					     FIRST_PATH_ELEMENT_OFFSET */
1003#define	FIRST_PATH_ELEMENT_OFFSET	2 /* Must be equal to at least 2. */
1004#define	ILLEGAL_PATH_ELEMENT_OFFSET	1 /* Must be equal to
1005					     FIRST_PATH_ELEMENT_OFFSET - 1 */
1006#define	MAX_FEB_SIZE			6 /* This MUST be MAX_HEIGHT + 1.
1007					     See about FEB below */
1008
1009struct path {
1010	/* Length of the array below. */
1011	int	path_length;
1012	/* Array of the path element */
1013	struct path_element path_elements[EXTENDED_MAX_HEIGHT];
1014	int	pos_in_item;
1015};
1016
1017#define	pos_in_item(path)	((path)->pos_in_item)
1018
1019#ifdef __amd64__
1020/* To workaround a bug in gcc. He generates a call to memset() which
1021 * is a inline function; this causes a compile time error. */
1022#define	INITIALIZE_PATH(var)						\
1023    struct path var;							\
1024    bzero(&var, sizeof(var));						\
1025    var.path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
1026#else
1027#define	INITIALIZE_PATH(var)						\
1028    struct path var = { ILLEGAL_PATH_ELEMENT_OFFSET, }
1029#endif
1030
1031/* Get path element by path and path position. */
1032#define	PATH_OFFSET_PELEMENT(p_s_path, n_offset)			\
1033    ((p_s_path)->path_elements + (n_offset))
1034
1035/* Get buffer header at the path by path and path position. */
1036#define	PATH_OFFSET_PBUFFER(p_s_path, n_offset)				\
1037    (PATH_OFFSET_PELEMENT(p_s_path, n_offset)->pe_buffer)
1038
1039/* Get position in the element at the path by path and path position. */
1040#define	PATH_OFFSET_POSITION(p_s_path, n_offset)			\
1041    (PATH_OFFSET_PELEMENT(p_s_path, n_offset)->pe_position)
1042
1043#define	PATH_PLAST_BUFFER(p_s_path)					\
1044    (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1045
1046#define	PATH_LAST_POSITION(p_s_path)					\
1047    (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1048
1049#define	PATH_PITEM_HEAD(p_s_path)					\
1050    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path), PATH_LAST_POSITION(p_s_path))
1051
1052#define	get_last_bp(path)	PATH_PLAST_BUFFER(path)
1053#define	get_ih(path)		PATH_PITEM_HEAD(path)
1054
1055/* -------------------------------------------------------------------
1056 * Misc.
1057 * -------------------------------------------------------------------*/
1058
1059/* Size of pointer to the unformatted node. */
1060#define	UNFM_P_SIZE	(sizeof(unp_t))
1061#define	UNFM_P_SHIFT	2
1062
1063/* In in-core inode key is stored on le form */
1064#define	INODE_PKEY(ip)	((struct key *)(REISERFS_I(ip)->i_key))
1065
1066#define	MAX_UL_INT	0xffffffff
1067#define	MAX_INT		0x7ffffff
1068#define	MAX_US_INT	0xffff
1069
1070/* The purpose is to detect overflow of an unsigned short */
1071#define	REISERFS_LINK_MAX	(MAX_US_INT - 1000)
1072
1073#define	fs_generation(sbi)	(REISERFS_SB(sbi)->s_generation_counter)
1074#define	get_generation(sbi)	(fs_generation(sbi))
1075
1076#define	__fs_changed(gen, sbi)	(gen != get_generation (sbi))
1077/*#define	fs_changed(gen, sbi)	({ cond_resched();		\
1078    __fs_changed(gen, sbi); })*/
1079#define	fs_changed(gen, sbi)	(__fs_changed(gen, sbi))
1080
1081/* -------------------------------------------------------------------
1082 * Fixate node
1083 * -------------------------------------------------------------------*/
1084
1085/*
1086 * To make any changes in the tree we always first find node, that
1087 * contains item to be changed/deleted or place to insert a new item.
1088 * We call this node S. To do balancing we need to decide what we will
1089 * shift to left/right neighbor, or to a new node, where new item will
1090 * be etc. To make this analysis simpler we build virtual node. Virtual
1091 * node is an array of items, that will replace items of node S. (For
1092 * instance if we are going to delete an item, virtual node does not
1093 * contain it). Virtual node keeps information about item sizes and
1094 * types, mergeability of first and last items, sizes of all entries in
1095 * directory item. We use this array of items when calculating what we
1096 * can shift to neighbors and how many nodes we have to have if we do
1097 * not any shiftings, if we shift to left/right neighbor or to both.
1098 */
1099struct virtual_item {
1100	int			 vi_index;    /* Index in the array of item
1101						 operations */
1102	unsigned short		 vi_type;     /* Left/right mergeability */
1103	unsigned short		 vi_item_len; /* Length of item that it will
1104						 have after balancing */
1105	struct item_head	*vi_ih;
1106	const char		*vi_item;     /* Body of item (old or new) */
1107	const void		*vi_new_data; /* 0 always but paste mode */
1108	void			*vi_uarea;    /* Item specific area */
1109};
1110
1111struct virtual_node {
1112	char		*vn_free_ptr; /* This is a pointer to the free space
1113					 in the buffer */
1114	unsigned short	 vn_nr_item;  /* Number of items in virtual node */
1115	short		 vn_size;     /* Size of node , that node would have
1116					 if it has unlimited size and no
1117					 balancing is performed */
1118	short		 vn_mode;     /* Mode of balancing (paste, insert,
1119					 delete, cut) */
1120	short		 vn_affected_item_num;
1121	short		 vn_pos_in_item;
1122	struct item_head *vn_ins_ih;  /* Item header of inserted item, 0 for
1123					 other modes */
1124	const void	*vn_data;
1125	struct virtual_item *vn_vi;   /* Array of items (including a new one,
1126					 excluding item to be deleted) */
1127};
1128
1129/* Used by directory items when creating virtual nodes */
1130struct direntry_uarea {
1131	int		flags;
1132	uint16_t	entry_count;
1133	uint16_t	entry_sizes[1];
1134} __packed;
1135
1136/* -------------------------------------------------------------------
1137 * Tree balance
1138 * -------------------------------------------------------------------*/
1139
1140struct reiserfs_iget_args {
1141	uint32_t	objectid;
1142	uint32_t	dirid;
1143};
1144
1145struct item_operations {
1146	int	(*bytes_number)(struct item_head * ih, int block_size);
1147	void	(*decrement_key)(struct cpu_key *);
1148	int	(*is_left_mergeable)(struct key * ih, unsigned long bsize);
1149	void	(*print_item)(struct item_head *, char * item);
1150	void	(*check_item)(struct item_head *, char * item);
1151
1152	int	(*create_vi)(struct virtual_node * vn,
1153	    struct virtual_item * vi, int is_affected, int insert_size);
1154	int	(*check_left)(struct virtual_item * vi, int free,
1155	    int start_skip, int end_skip);
1156	int	(*check_right)(struct virtual_item * vi, int free);
1157	int	(*part_size)(struct virtual_item * vi, int from, int to);
1158	int	(*unit_num)(struct virtual_item * vi);
1159	void	(*print_vi)(struct virtual_item * vi);
1160};
1161
1162extern struct item_operations *item_ops[TYPE_ANY + 1];
1163
1164#define	op_bytes_number(ih, bsize)					\
1165    item_ops[le_ih_k_type(ih)]->bytes_number(ih, bsize)
1166
1167#define	COMP_KEYS	comp_keys
1168#define	COMP_SHORT_KEYS	comp_short_keys
1169
1170/* Get the item header */
1171#define	B_N_PITEM_HEAD(bp, item_num)					\
1172    ((struct item_head *)((bp)->b_data + BLKH_SIZE) + (item_num))
1173
1174/* Get key */
1175#define	B_N_PDELIM_KEY(bp, item_num)					\
1176    ((struct key *)((bp)->b_data + BLKH_SIZE) + (item_num))
1177
1178/* -------------------------------------------------------------------
1179 * Function declarations
1180 * -------------------------------------------------------------------*/
1181
1182/* reiserfs_stree.c */
1183int	B_IS_IN_TREE(const struct buf *p_s_bp);
1184
1185extern void	copy_item_head(struct item_head * p_v_to,
1186		    const struct item_head * p_v_from);
1187
1188extern int	comp_keys(const struct key *le_key,
1189		    const struct cpu_key *cpu_key);
1190extern int	comp_short_keys(const struct key *le_key,
1191		    const struct cpu_key *cpu_key);
1192
1193extern int	comp_le_keys(const struct key *, const struct key *);
1194
1195static inline int
1196le_key_version(const struct key *key)
1197{
1198	int type;
1199
1200	type = offset_v2_k_type(&(key->u.k_offset_v2));
1201	if (type != TYPE_DIRECT && type != TYPE_INDIRECT &&
1202	    type != TYPE_DIRENTRY)
1203		return (KEY_FORMAT_3_5);
1204
1205	return (KEY_FORMAT_3_6);
1206}
1207
1208static inline void
1209copy_key(struct key *to, const struct key *from)
1210{
1211
1212	memcpy(to, from, KEY_SIZE);
1213}
1214
1215const struct key	*get_lkey(const struct path *p_s_chk_path,
1216			    const struct reiserfs_sb_info *p_s_sbi);
1217const struct key	*get_rkey(const struct path *p_s_chk_path,
1218			    const struct reiserfs_sb_info *p_s_sbi);
1219inline int	bin_search(const void * p_v_key, const void * p_v_base,
1220		    int p_n_num, int p_n_width, int * p_n_pos);
1221
1222void	pathrelse(struct path *p_s_search_path);
1223int	reiserfs_check_path(struct path *p);
1224
1225int	search_by_key(struct reiserfs_sb_info *p_s_sbi,
1226	    const struct cpu_key *p_s_key,
1227	    struct path *p_s_search_path,
1228	    int n_stop_level);
1229#define	search_item(sbi, key, path)					\
1230    search_by_key(sbi, key, path, DISK_LEAF_NODE_LEVEL)
1231int	search_for_position_by_key(struct reiserfs_sb_info *p_s_sbi,
1232	    const struct cpu_key *p_s_cpu_key,
1233	    struct path *p_s_search_path);
1234void	decrement_counters_in_path(struct path *p_s_search_path);
1235
1236/* reiserfs_inode.c */
1237vop_read_t	reiserfs_read;
1238vop_inactive_t	reiserfs_inactive;
1239vop_reclaim_t	reiserfs_reclaim;
1240
1241int	reiserfs_get_block(struct reiserfs_node *ip, long block,
1242	    off_t offset, struct uio *uio);
1243
1244void	make_cpu_key(struct cpu_key *cpu_key, struct reiserfs_node *ip,
1245	    off_t offset, int type, int key_length);
1246
1247void	reiserfs_read_locked_inode(struct reiserfs_node *ip,
1248	    struct reiserfs_iget_args *args);
1249int	reiserfs_iget(struct mount *mp, const struct cpu_key *key,
1250	    struct vnode **vpp, struct thread *td);
1251
1252void	sd_attrs_to_i_attrs(uint16_t sd_attrs, struct reiserfs_node *ip);
1253void	i_attrs_to_sd_attrs(struct reiserfs_node *ip, uint16_t *sd_attrs);
1254
1255/* reiserfs_namei.c */
1256vop_readdir_t		reiserfs_readdir;
1257vop_cachedlookup_t	reiserfs_lookup;
1258
1259void	set_de_name_and_namelen(struct reiserfs_dir_entry * de);
1260int	search_by_entry_key(struct reiserfs_sb_info *sbi,
1261	    const struct cpu_key *key, struct path *path,
1262	    struct reiserfs_dir_entry *de);
1263
1264/* reiserfs_prints.c */
1265char	*reiserfs_hashname(int code);
1266void	 reiserfs_dump_buffer(caddr_t buf, off_t len);
1267
1268#if defined(REISERFS_DEBUG)
1269#define	reiserfs_log(lvl, fmt, ...)					\
1270    log(lvl, "ReiserFS/%s: " fmt, __func__, ## __VA_ARGS__)
1271#elif defined (REISERFS_DEBUG_CONS)
1272#define	reiserfs_log(lvl, fmt, ...)					\
1273    printf("%s:%d: " fmt, __func__, __LINE__, ## __VA_ARGS__)
1274#else
1275#define	reiserfs_log(lvl, fmt, ...)
1276#endif
1277
1278#define	reiserfs_log_0(lvl, fmt, ...)					\
1279    printf("%s:%d: " fmt, __func__, __LINE__, ## __VA_ARGS__)
1280
1281/* reiserfs_hashes.c */
1282uint32_t	keyed_hash(const signed char *msg, int len);
1283uint32_t	yura_hash(const signed char *msg, int len);
1284uint32_t	r5_hash(const signed char *msg, int len);
1285
1286#define	reiserfs_test_le_bit  test_bit
1287
1288#endif /* !defined _GNU_REISERFS_REISERFS_FS_H */
1289