md_intel.c revision 246168
1/*-
2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3 * Copyright (c) 2000 - 2008 S��ren Schmidt <sos@FreeBSD.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/9/sys/geom/raid/md_intel.c 246168 2013-01-31 22:12:25Z mav $");
30
31#include <sys/param.h>
32#include <sys/bio.h>
33#include <sys/endian.h>
34#include <sys/kernel.h>
35#include <sys/kobj.h>
36#include <sys/limits.h>
37#include <sys/lock.h>
38#include <sys/malloc.h>
39#include <sys/mutex.h>
40#include <sys/systm.h>
41#include <sys/taskqueue.h>
42#include <geom/geom.h>
43#include "geom/raid/g_raid.h"
44#include "g_raid_md_if.h"
45
46static MALLOC_DEFINE(M_MD_INTEL, "md_intel_data", "GEOM_RAID Intel metadata");
47
48struct intel_raid_map {
49	uint32_t	offset;
50	uint32_t	disk_sectors;
51	uint32_t	stripe_count;
52	uint16_t	strip_sectors;
53	uint8_t		status;
54#define INTEL_S_READY           0x00
55#define INTEL_S_UNINITIALIZED   0x01
56#define INTEL_S_DEGRADED        0x02
57#define INTEL_S_FAILURE         0x03
58
59	uint8_t		type;
60#define INTEL_T_RAID0           0x00
61#define INTEL_T_RAID1           0x01
62#define INTEL_T_RAID5           0x05
63
64	uint8_t		total_disks;
65	uint8_t		total_domains;
66	uint8_t		failed_disk_num;
67	uint8_t		ddf;
68	uint32_t	offset_hi;
69	uint32_t	disk_sectors_hi;
70	uint32_t	stripe_count_hi;
71	uint32_t	filler_2[4];
72	uint32_t	disk_idx[1];	/* total_disks entries. */
73#define INTEL_DI_IDX	0x00ffffff
74#define INTEL_DI_RBLD	0x01000000
75} __packed;
76
77struct intel_raid_vol {
78	uint8_t		name[16];
79	u_int64_t	total_sectors __packed;
80	uint32_t	state;
81#define INTEL_ST_BOOTABLE		0x00000001
82#define INTEL_ST_BOOT_DEVICE		0x00000002
83#define INTEL_ST_READ_COALESCING	0x00000004
84#define INTEL_ST_WRITE_COALESCING	0x00000008
85#define INTEL_ST_LAST_SHUTDOWN_DIRTY	0x00000010
86#define INTEL_ST_HIDDEN_AT_BOOT		0x00000020
87#define INTEL_ST_CURRENTLY_HIDDEN	0x00000040
88#define INTEL_ST_VERIFY_AND_FIX		0x00000080
89#define INTEL_ST_MAP_STATE_UNINIT	0x00000100
90#define INTEL_ST_NO_AUTO_RECOVERY	0x00000200
91#define INTEL_ST_CLONE_N_GO		0x00000400
92#define INTEL_ST_CLONE_MAN_SYNC		0x00000800
93#define INTEL_ST_CNG_MASTER_DISK_NUM	0x00001000
94	uint32_t	reserved;
95	uint8_t		migr_priority;
96	uint8_t		num_sub_vols;
97	uint8_t		tid;
98	uint8_t		cng_master_disk;
99	uint16_t	cache_policy;
100	uint8_t		cng_state;
101#define INTEL_SNGST_NEEDS_UPDATE	1
102#define INTEL_SNGST_MASTER_MISSING	2
103	uint8_t		cng_sub_state;
104	uint32_t	filler_0[10];
105
106	uint32_t	curr_migr_unit;
107	uint32_t	checkpoint_id;
108	uint8_t		migr_state;
109	uint8_t		migr_type;
110#define INTEL_MT_INIT		0
111#define INTEL_MT_REBUILD	1
112#define INTEL_MT_VERIFY		2
113#define INTEL_MT_GEN_MIGR	3
114#define INTEL_MT_STATE_CHANGE	4
115#define INTEL_MT_REPAIR		5
116	uint8_t		dirty;
117	uint8_t		fs_state;
118	uint16_t	verify_errors;
119	uint16_t	bad_blocks;
120	uint32_t	curr_migr_unit_hi;
121	uint32_t	filler_1[3];
122	struct intel_raid_map map[1];	/* 2 entries if migr_state != 0. */
123} __packed;
124
125struct intel_raid_disk {
126#define INTEL_SERIAL_LEN	16
127	uint8_t		serial[INTEL_SERIAL_LEN];
128	uint32_t	sectors;
129	uint32_t	id;
130	uint32_t	flags;
131#define INTEL_F_SPARE		0x01
132#define INTEL_F_ASSIGNED	0x02
133#define INTEL_F_FAILED		0x04
134#define INTEL_F_ONLINE		0x08
135#define INTEL_F_DISABLED	0x80
136	uint32_t	owner_cfg_num;
137	uint32_t	sectors_hi;
138	uint32_t	filler[3];
139} __packed;
140
141struct intel_raid_conf {
142	uint8_t		intel_id[24];
143#define INTEL_MAGIC             "Intel Raid ISM Cfg Sig. "
144
145	uint8_t		version[6];
146#define INTEL_VERSION_1000	"1.0.00"	/* RAID0 */
147#define INTEL_VERSION_1100	"1.1.00"	/* RAID1 */
148#define INTEL_VERSION_1200	"1.2.00"	/* Many volumes */
149#define INTEL_VERSION_1201	"1.2.01"	/* 3 or 4 disks */
150#define INTEL_VERSION_1202	"1.2.02"	/* RAID5 */
151#define INTEL_VERSION_1204	"1.2.04"	/* 5 or 6 disks */
152#define INTEL_VERSION_1206	"1.2.06"	/* CNG */
153#define INTEL_VERSION_1300	"1.3.00"	/* Attributes */
154
155	uint8_t		dummy_0[2];
156	uint32_t	checksum;
157	uint32_t	config_size;
158	uint32_t	config_id;
159	uint32_t	generation;
160	uint32_t	error_log_size;
161	uint32_t	attributes;
162#define INTEL_ATTR_RAID0	0x00000001
163#define INTEL_ATTR_RAID1	0x00000002
164#define INTEL_ATTR_RAID10	0x00000004
165#define INTEL_ATTR_RAID1E	0x00000008
166#define INTEL_ATTR_RAID5	0x00000010
167#define INTEL_ATTR_RAIDCNG	0x00000020
168#define INTEL_ATTR_2TB		0x20000000
169#define INTEL_ATTR_PM		0x40000000
170#define INTEL_ATTR_CHECKSUM	0x80000000
171
172	uint8_t		total_disks;
173	uint8_t		total_volumes;
174	uint8_t		dummy_2[2];
175	uint32_t	filler_0[39];
176	struct intel_raid_disk	disk[1];	/* total_disks entries. */
177	/* Here goes total_volumes of struct intel_raid_vol. */
178} __packed;
179
180#define INTEL_MAX_MD_SIZE(ndisks)				\
181    (sizeof(struct intel_raid_conf) +				\
182     sizeof(struct intel_raid_disk) * (ndisks - 1) +		\
183     sizeof(struct intel_raid_vol) * 2 +			\
184     sizeof(struct intel_raid_map) * 2 +			\
185     sizeof(uint32_t) * (ndisks - 1) * 4)
186
187struct g_raid_md_intel_perdisk {
188	struct intel_raid_conf	*pd_meta;
189	int			 pd_disk_pos;
190	struct intel_raid_disk	 pd_disk_meta;
191};
192
193struct g_raid_md_intel_pervolume {
194	int			 pv_volume_pos;
195	int			 pv_cng;
196	int			 pv_cng_man_sync;
197	int			 pv_cng_master_disk;
198};
199
200struct g_raid_md_intel_object {
201	struct g_raid_md_object	 mdio_base;
202	uint32_t		 mdio_config_id;
203	uint32_t		 mdio_generation;
204	struct intel_raid_conf	*mdio_meta;
205	struct callout		 mdio_start_co;	/* STARTING state timer. */
206	int			 mdio_disks_present;
207	int			 mdio_started;
208	int			 mdio_incomplete;
209	struct root_hold_token	*mdio_rootmount; /* Root mount delay token. */
210};
211
212static g_raid_md_create_t g_raid_md_create_intel;
213static g_raid_md_taste_t g_raid_md_taste_intel;
214static g_raid_md_event_t g_raid_md_event_intel;
215static g_raid_md_ctl_t g_raid_md_ctl_intel;
216static g_raid_md_write_t g_raid_md_write_intel;
217static g_raid_md_fail_disk_t g_raid_md_fail_disk_intel;
218static g_raid_md_free_disk_t g_raid_md_free_disk_intel;
219static g_raid_md_free_volume_t g_raid_md_free_volume_intel;
220static g_raid_md_free_t g_raid_md_free_intel;
221
222static kobj_method_t g_raid_md_intel_methods[] = {
223	KOBJMETHOD(g_raid_md_create,	g_raid_md_create_intel),
224	KOBJMETHOD(g_raid_md_taste,	g_raid_md_taste_intel),
225	KOBJMETHOD(g_raid_md_event,	g_raid_md_event_intel),
226	KOBJMETHOD(g_raid_md_ctl,	g_raid_md_ctl_intel),
227	KOBJMETHOD(g_raid_md_write,	g_raid_md_write_intel),
228	KOBJMETHOD(g_raid_md_fail_disk,	g_raid_md_fail_disk_intel),
229	KOBJMETHOD(g_raid_md_free_disk,	g_raid_md_free_disk_intel),
230	KOBJMETHOD(g_raid_md_free_volume,	g_raid_md_free_volume_intel),
231	KOBJMETHOD(g_raid_md_free,	g_raid_md_free_intel),
232	{ 0, 0 }
233};
234
235static struct g_raid_md_class g_raid_md_intel_class = {
236	"Intel",
237	g_raid_md_intel_methods,
238	sizeof(struct g_raid_md_intel_object),
239	.mdc_enable = 1,
240	.mdc_priority = 100
241};
242
243
244static struct intel_raid_map *
245intel_get_map(struct intel_raid_vol *mvol, int i)
246{
247	struct intel_raid_map *mmap;
248
249	if (i > (mvol->migr_state ? 1 : 0))
250		return (NULL);
251	mmap = &mvol->map[0];
252	for (; i > 0; i--) {
253		mmap = (struct intel_raid_map *)
254		    &mmap->disk_idx[mmap->total_disks];
255	}
256	return ((struct intel_raid_map *)mmap);
257}
258
259static struct intel_raid_vol *
260intel_get_volume(struct intel_raid_conf *meta, int i)
261{
262	struct intel_raid_vol *mvol;
263	struct intel_raid_map *mmap;
264
265	if (i > 1)
266		return (NULL);
267	mvol = (struct intel_raid_vol *)&meta->disk[meta->total_disks];
268	for (; i > 0; i--) {
269		mmap = intel_get_map(mvol, mvol->migr_state ? 1 : 0);
270		mvol = (struct intel_raid_vol *)
271		    &mmap->disk_idx[mmap->total_disks];
272	}
273	return (mvol);
274}
275
276static off_t
277intel_get_map_offset(struct intel_raid_map *mmap)
278{
279	off_t offset = (off_t)mmap->offset_hi << 32;
280
281	offset += mmap->offset;
282	return (offset);
283}
284
285static void
286intel_set_map_offset(struct intel_raid_map *mmap, off_t offset)
287{
288
289	mmap->offset = offset & 0xffffffff;
290	mmap->offset_hi = offset >> 32;
291}
292
293static off_t
294intel_get_map_disk_sectors(struct intel_raid_map *mmap)
295{
296	off_t disk_sectors = (off_t)mmap->disk_sectors_hi << 32;
297
298	disk_sectors += mmap->disk_sectors;
299	return (disk_sectors);
300}
301
302static void
303intel_set_map_disk_sectors(struct intel_raid_map *mmap, off_t disk_sectors)
304{
305
306	mmap->disk_sectors = disk_sectors & 0xffffffff;
307	mmap->disk_sectors_hi = disk_sectors >> 32;
308}
309
310static void
311intel_set_map_stripe_count(struct intel_raid_map *mmap, off_t stripe_count)
312{
313
314	mmap->stripe_count = stripe_count & 0xffffffff;
315	mmap->stripe_count_hi = stripe_count >> 32;
316}
317
318static off_t
319intel_get_disk_sectors(struct intel_raid_disk *disk)
320{
321	off_t sectors = (off_t)disk->sectors_hi << 32;
322
323	sectors += disk->sectors;
324	return (sectors);
325}
326
327static void
328intel_set_disk_sectors(struct intel_raid_disk *disk, off_t sectors)
329{
330
331	disk->sectors = sectors & 0xffffffff;
332	disk->sectors_hi = sectors >> 32;
333}
334
335static off_t
336intel_get_vol_curr_migr_unit(struct intel_raid_vol *vol)
337{
338	off_t curr_migr_unit = (off_t)vol->curr_migr_unit_hi << 32;
339
340	curr_migr_unit += vol->curr_migr_unit;
341	return (curr_migr_unit);
342}
343
344static void
345intel_set_vol_curr_migr_unit(struct intel_raid_vol *vol, off_t curr_migr_unit)
346{
347
348	vol->curr_migr_unit = curr_migr_unit & 0xffffffff;
349	vol->curr_migr_unit_hi = curr_migr_unit >> 32;
350}
351
352static void
353g_raid_md_intel_print(struct intel_raid_conf *meta)
354{
355	struct intel_raid_vol *mvol;
356	struct intel_raid_map *mmap;
357	int i, j, k;
358
359	if (g_raid_debug < 1)
360		return;
361
362	printf("********* ATA Intel MatrixRAID Metadata *********\n");
363	printf("intel_id            <%.24s>\n", meta->intel_id);
364	printf("version             <%.6s>\n", meta->version);
365	printf("checksum            0x%08x\n", meta->checksum);
366	printf("config_size         0x%08x\n", meta->config_size);
367	printf("config_id           0x%08x\n", meta->config_id);
368	printf("generation          0x%08x\n", meta->generation);
369	printf("attributes          0x%08x\n", meta->attributes);
370	printf("total_disks         %u\n", meta->total_disks);
371	printf("total_volumes       %u\n", meta->total_volumes);
372	printf("DISK#   serial disk_sectors disk_sectors_hi disk_id flags\n");
373	for (i = 0; i < meta->total_disks; i++ ) {
374		printf("    %d   <%.16s> %u %u 0x%08x 0x%08x\n", i,
375		    meta->disk[i].serial, meta->disk[i].sectors,
376		    meta->disk[i].sectors_hi,
377		    meta->disk[i].id, meta->disk[i].flags);
378	}
379	for (i = 0; i < meta->total_volumes; i++) {
380		mvol = intel_get_volume(meta, i);
381		printf(" ****** Volume %d ******\n", i);
382		printf(" name               %.16s\n", mvol->name);
383		printf(" total_sectors      %ju\n", mvol->total_sectors);
384		printf(" state              0x%08x\n", mvol->state);
385		printf(" reserved           %u\n", mvol->reserved);
386		printf(" migr_priority      %u\n", mvol->migr_priority);
387		printf(" num_sub_vols       %u\n", mvol->num_sub_vols);
388		printf(" tid                %u\n", mvol->tid);
389		printf(" cng_master_disk    %u\n", mvol->cng_master_disk);
390		printf(" cache_policy       %u\n", mvol->cache_policy);
391		printf(" cng_state          %u\n", mvol->cng_state);
392		printf(" cng_sub_state      %u\n", mvol->cng_sub_state);
393		printf(" curr_migr_unit     %u\n", mvol->curr_migr_unit);
394		printf(" curr_migr_unit_hi  %u\n", mvol->curr_migr_unit_hi);
395		printf(" checkpoint_id      %u\n", mvol->checkpoint_id);
396		printf(" migr_state         %u\n", mvol->migr_state);
397		printf(" migr_type          %u\n", mvol->migr_type);
398		printf(" dirty              %u\n", mvol->dirty);
399
400		for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
401			printf("  *** Map %d ***\n", j);
402			mmap = intel_get_map(mvol, j);
403			printf("  offset            %u\n", mmap->offset);
404			printf("  offset_hi         %u\n", mmap->offset_hi);
405			printf("  disk_sectors      %u\n", mmap->disk_sectors);
406			printf("  disk_sectors_hi   %u\n", mmap->disk_sectors_hi);
407			printf("  stripe_count      %u\n", mmap->stripe_count);
408			printf("  stripe_count_hi   %u\n", mmap->stripe_count_hi);
409			printf("  strip_sectors     %u\n", mmap->strip_sectors);
410			printf("  status            %u\n", mmap->status);
411			printf("  type              %u\n", mmap->type);
412			printf("  total_disks       %u\n", mmap->total_disks);
413			printf("  total_domains     %u\n", mmap->total_domains);
414			printf("  failed_disk_num   %u\n", mmap->failed_disk_num);
415			printf("  ddf               %u\n", mmap->ddf);
416			printf("  disk_idx         ");
417			for (k = 0; k < mmap->total_disks; k++)
418				printf(" 0x%08x", mmap->disk_idx[k]);
419			printf("\n");
420		}
421	}
422	printf("=================================================\n");
423}
424
425static struct intel_raid_conf *
426intel_meta_copy(struct intel_raid_conf *meta)
427{
428	struct intel_raid_conf *nmeta;
429
430	nmeta = malloc(meta->config_size, M_MD_INTEL, M_WAITOK);
431	memcpy(nmeta, meta, meta->config_size);
432	return (nmeta);
433}
434
435static int
436intel_meta_find_disk(struct intel_raid_conf *meta, char *serial)
437{
438	int pos;
439
440	for (pos = 0; pos < meta->total_disks; pos++) {
441		if (strncmp(meta->disk[pos].serial,
442		    serial, INTEL_SERIAL_LEN) == 0)
443			return (pos);
444	}
445	return (-1);
446}
447
448static struct intel_raid_conf *
449intel_meta_read(struct g_consumer *cp)
450{
451	struct g_provider *pp;
452	struct intel_raid_conf *meta;
453	struct intel_raid_vol *mvol;
454	struct intel_raid_map *mmap;
455	char *buf;
456	int error, i, j, k, left, size;
457	uint32_t checksum, *ptr;
458
459	pp = cp->provider;
460
461	/* Read the anchor sector. */
462	buf = g_read_data(cp,
463	    pp->mediasize - pp->sectorsize * 2, pp->sectorsize, &error);
464	if (buf == NULL) {
465		G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
466		    pp->name, error);
467		return (NULL);
468	}
469	meta = (struct intel_raid_conf *)buf;
470
471	/* Check if this is an Intel RAID struct */
472	if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
473		G_RAID_DEBUG(1, "Intel signature check failed on %s", pp->name);
474		g_free(buf);
475		return (NULL);
476	}
477	if (meta->config_size > 65536 ||
478	    meta->config_size < sizeof(struct intel_raid_conf)) {
479		G_RAID_DEBUG(1, "Intel metadata size looks wrong: %d",
480		    meta->config_size);
481		g_free(buf);
482		return (NULL);
483	}
484	size = meta->config_size;
485	meta = malloc(size, M_MD_INTEL, M_WAITOK);
486	memcpy(meta, buf, min(size, pp->sectorsize));
487	g_free(buf);
488
489	/* Read all the rest, if needed. */
490	if (meta->config_size > pp->sectorsize) {
491		left = (meta->config_size - 1) / pp->sectorsize;
492		buf = g_read_data(cp,
493		    pp->mediasize - pp->sectorsize * (2 + left),
494		    pp->sectorsize * left, &error);
495		if (buf == NULL) {
496			G_RAID_DEBUG(1, "Cannot read remaining metadata"
497			    " part from %s (error=%d).",
498			    pp->name, error);
499			free(meta, M_MD_INTEL);
500			return (NULL);
501		}
502		memcpy(((char *)meta) + pp->sectorsize, buf,
503		    pp->sectorsize * left);
504		g_free(buf);
505	}
506
507	/* Check metadata checksum. */
508	for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
509	    i < (meta->config_size / sizeof(uint32_t)); i++) {
510		checksum += *ptr++;
511	}
512	checksum -= meta->checksum;
513	if (checksum != meta->checksum) {
514		G_RAID_DEBUG(1, "Intel checksum check failed on %s", pp->name);
515		free(meta, M_MD_INTEL);
516		return (NULL);
517	}
518
519	/* Validate metadata size. */
520	size = sizeof(struct intel_raid_conf) +
521	    sizeof(struct intel_raid_disk) * (meta->total_disks - 1) +
522	    sizeof(struct intel_raid_vol) * meta->total_volumes;
523	if (size > meta->config_size) {
524badsize:
525		G_RAID_DEBUG(1, "Intel metadata size incorrect %d < %d",
526		    meta->config_size, size);
527		free(meta, M_MD_INTEL);
528		return (NULL);
529	}
530	for (i = 0; i < meta->total_volumes; i++) {
531		mvol = intel_get_volume(meta, i);
532		mmap = intel_get_map(mvol, 0);
533		size += 4 * (mmap->total_disks - 1);
534		if (size > meta->config_size)
535			goto badsize;
536		if (mvol->migr_state) {
537			size += sizeof(struct intel_raid_map);
538			if (size > meta->config_size)
539				goto badsize;
540			mmap = intel_get_map(mvol, 1);
541			size += 4 * (mmap->total_disks - 1);
542			if (size > meta->config_size)
543				goto badsize;
544		}
545	}
546
547	/* Validate disk indexes. */
548	for (i = 0; i < meta->total_volumes; i++) {
549		mvol = intel_get_volume(meta, i);
550		for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
551			mmap = intel_get_map(mvol, j);
552			for (k = 0; k < mmap->total_disks; k++) {
553				if ((mmap->disk_idx[k] & INTEL_DI_IDX) >
554				    meta->total_disks) {
555					G_RAID_DEBUG(1, "Intel metadata disk"
556					    " index %d too big (>%d)",
557					    mmap->disk_idx[k] & INTEL_DI_IDX,
558					    meta->total_disks);
559					free(meta, M_MD_INTEL);
560					return (NULL);
561				}
562			}
563		}
564	}
565
566	/* Validate migration types. */
567	for (i = 0; i < meta->total_volumes; i++) {
568		mvol = intel_get_volume(meta, i);
569		if (mvol->migr_state &&
570		    mvol->migr_type != INTEL_MT_INIT &&
571		    mvol->migr_type != INTEL_MT_REBUILD &&
572		    mvol->migr_type != INTEL_MT_VERIFY &&
573		    mvol->migr_type != INTEL_MT_REPAIR) {
574			G_RAID_DEBUG(1, "Intel metadata has unsupported"
575			    " migration type %d", mvol->migr_type);
576			free(meta, M_MD_INTEL);
577			return (NULL);
578		}
579	}
580
581	return (meta);
582}
583
584static int
585intel_meta_write(struct g_consumer *cp, struct intel_raid_conf *meta)
586{
587	struct g_provider *pp;
588	char *buf;
589	int error, i, sectors;
590	uint32_t checksum, *ptr;
591
592	pp = cp->provider;
593
594	/* Recalculate checksum for case if metadata were changed. */
595	meta->checksum = 0;
596	for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
597	    i < (meta->config_size / sizeof(uint32_t)); i++) {
598		checksum += *ptr++;
599	}
600	meta->checksum = checksum;
601
602	/* Create and fill buffer. */
603	sectors = (meta->config_size + pp->sectorsize - 1) / pp->sectorsize;
604	buf = malloc(sectors * pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
605	if (sectors > 1) {
606		memcpy(buf, ((char *)meta) + pp->sectorsize,
607		    (sectors - 1) * pp->sectorsize);
608	}
609	memcpy(buf + (sectors - 1) * pp->sectorsize, meta, pp->sectorsize);
610
611	error = g_write_data(cp,
612	    pp->mediasize - pp->sectorsize * (1 + sectors),
613	    buf, pp->sectorsize * sectors);
614	if (error != 0) {
615		G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
616		    pp->name, error);
617	}
618
619	free(buf, M_MD_INTEL);
620	return (error);
621}
622
623static int
624intel_meta_erase(struct g_consumer *cp)
625{
626	struct g_provider *pp;
627	char *buf;
628	int error;
629
630	pp = cp->provider;
631	buf = malloc(pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
632	error = g_write_data(cp,
633	    pp->mediasize - 2 * pp->sectorsize,
634	    buf, pp->sectorsize);
635	if (error != 0) {
636		G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
637		    pp->name, error);
638	}
639	free(buf, M_MD_INTEL);
640	return (error);
641}
642
643static int
644intel_meta_write_spare(struct g_consumer *cp, struct intel_raid_disk *d)
645{
646	struct intel_raid_conf *meta;
647	int error;
648
649	/* Fill anchor and single disk. */
650	meta = malloc(INTEL_MAX_MD_SIZE(1), M_MD_INTEL, M_WAITOK | M_ZERO);
651	memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
652	memcpy(&meta->version[0], INTEL_VERSION_1000,
653	    sizeof(INTEL_VERSION_1000) - 1);
654	meta->config_size = INTEL_MAX_MD_SIZE(1);
655	meta->config_id = arc4random();
656	meta->generation = 1;
657	meta->total_disks = 1;
658	meta->disk[0] = *d;
659	error = intel_meta_write(cp, meta);
660	free(meta, M_MD_INTEL);
661	return (error);
662}
663
664static struct g_raid_disk *
665g_raid_md_intel_get_disk(struct g_raid_softc *sc, int id)
666{
667	struct g_raid_disk	*disk;
668	struct g_raid_md_intel_perdisk *pd;
669
670	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
671		pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
672		if (pd->pd_disk_pos == id)
673			break;
674	}
675	return (disk);
676}
677
678static int
679g_raid_md_intel_supported(int level, int qual, int disks, int force)
680{
681
682	switch (level) {
683	case G_RAID_VOLUME_RL_RAID0:
684		if (disks < 1)
685			return (0);
686		if (!force && (disks < 2 || disks > 6))
687			return (0);
688		break;
689	case G_RAID_VOLUME_RL_RAID1:
690		if (disks < 1)
691			return (0);
692		if (!force && (disks != 2))
693			return (0);
694		break;
695	case G_RAID_VOLUME_RL_RAID1E:
696		if (disks < 2)
697			return (0);
698		if (!force && (disks != 4))
699			return (0);
700		break;
701	case G_RAID_VOLUME_RL_RAID5:
702		if (disks < 3)
703			return (0);
704		if (!force && disks > 6)
705			return (0);
706		if (qual != G_RAID_VOLUME_RLQ_R5LA)
707			return (0);
708		break;
709	default:
710		return (0);
711	}
712	if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE)
713		return (0);
714	return (1);
715}
716
717static struct g_raid_volume *
718g_raid_md_intel_get_volume(struct g_raid_softc *sc, int id)
719{
720	struct g_raid_volume	*mvol;
721	struct g_raid_md_intel_pervolume *pv;
722
723	TAILQ_FOREACH(mvol, &sc->sc_volumes, v_next) {
724		pv = mvol->v_md_data;
725		if (pv->pv_volume_pos == id)
726			break;
727	}
728	return (mvol);
729}
730
731static int
732g_raid_md_intel_start_disk(struct g_raid_disk *disk)
733{
734	struct g_raid_softc *sc;
735	struct g_raid_subdisk *sd, *tmpsd;
736	struct g_raid_disk *olddisk, *tmpdisk;
737	struct g_raid_md_object *md;
738	struct g_raid_md_intel_object *mdi;
739	struct g_raid_md_intel_pervolume *pv;
740	struct g_raid_md_intel_perdisk *pd, *oldpd;
741	struct intel_raid_conf *meta;
742	struct intel_raid_vol *mvol;
743	struct intel_raid_map *mmap0, *mmap1;
744	int disk_pos, resurrection = 0;
745
746	sc = disk->d_softc;
747	md = sc->sc_md;
748	mdi = (struct g_raid_md_intel_object *)md;
749	meta = mdi->mdio_meta;
750	pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
751	olddisk = NULL;
752
753	/* Find disk position in metadata by it's serial. */
754	disk_pos = intel_meta_find_disk(meta, pd->pd_disk_meta.serial);
755	if (disk_pos < 0) {
756		G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk");
757		/* Disabled disk is useless for us. */
758		if (pd->pd_disk_meta.flags & INTEL_F_DISABLED) {
759			g_raid_change_disk_state(disk, G_RAID_DISK_S_DISABLED);
760			return (0);
761		}
762		/* Failed stale disk is useless for us. */
763		if (pd->pd_disk_meta.flags & INTEL_F_FAILED) {
764			g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
765			return (0);
766		}
767		/* If we are in the start process, that's all for now. */
768		if (!mdi->mdio_started)
769			goto nofit;
770		/*
771		 * If we have already started - try to get use of the disk.
772		 * Try to replace OFFLINE disks first, then FAILED.
773		 */
774		TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) {
775			if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE &&
776			    tmpdisk->d_state != G_RAID_DISK_S_FAILED)
777				continue;
778			/* Make sure this disk is big enough. */
779			TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) {
780				off_t disk_sectors =
781				    intel_get_disk_sectors(&pd->pd_disk_meta);
782
783				if (sd->sd_offset + sd->sd_size + 4096 >
784				    disk_sectors * 512) {
785					G_RAID_DEBUG1(1, sc,
786					    "Disk too small (%llu < %llu)",
787					    (unsigned long long)
788					    disk_sectors * 512,
789					    (unsigned long long)
790					    sd->sd_offset + sd->sd_size + 4096);
791					break;
792				}
793			}
794			if (sd != NULL)
795				continue;
796			if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) {
797				olddisk = tmpdisk;
798				break;
799			} else if (olddisk == NULL)
800				olddisk = tmpdisk;
801		}
802		if (olddisk == NULL) {
803nofit:
804			if (pd->pd_disk_meta.flags & INTEL_F_SPARE) {
805				g_raid_change_disk_state(disk,
806				    G_RAID_DISK_S_SPARE);
807				return (1);
808			} else {
809				g_raid_change_disk_state(disk,
810				    G_RAID_DISK_S_STALE);
811				return (0);
812			}
813		}
814		oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
815		disk_pos = oldpd->pd_disk_pos;
816		resurrection = 1;
817	}
818
819	if (olddisk == NULL) {
820		/* Find placeholder by position. */
821		olddisk = g_raid_md_intel_get_disk(sc, disk_pos);
822		if (olddisk == NULL)
823			panic("No disk at position %d!", disk_pos);
824		if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) {
825			G_RAID_DEBUG1(1, sc, "More then one disk for pos %d",
826			    disk_pos);
827			g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE);
828			return (0);
829		}
830		oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
831	}
832
833	/* Replace failed disk or placeholder with new disk. */
834	TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) {
835		TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next);
836		TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
837		sd->sd_disk = disk;
838	}
839	oldpd->pd_disk_pos = -2;
840	pd->pd_disk_pos = disk_pos;
841
842	/* If it was placeholder -- destroy it. */
843	if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) {
844		g_raid_destroy_disk(olddisk);
845	} else {
846		/* Otherwise, make it STALE_FAILED. */
847		g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED);
848		/* Update global metadata just in case. */
849		memcpy(&meta->disk[disk_pos], &pd->pd_disk_meta,
850		    sizeof(struct intel_raid_disk));
851	}
852
853	/* Welcome the new disk. */
854	if (resurrection)
855		g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
856	else if (meta->disk[disk_pos].flags & INTEL_F_DISABLED)
857		g_raid_change_disk_state(disk, G_RAID_DISK_S_DISABLED);
858	else if (meta->disk[disk_pos].flags & INTEL_F_FAILED)
859		g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
860	else if (meta->disk[disk_pos].flags & INTEL_F_SPARE)
861		g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
862	else
863		g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
864	TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
865		pv = sd->sd_volume->v_md_data;
866		mvol = intel_get_volume(meta, pv->pv_volume_pos);
867		mmap0 = intel_get_map(mvol, 0);
868		if (mvol->migr_state)
869			mmap1 = intel_get_map(mvol, 1);
870		else
871			mmap1 = mmap0;
872
873		if (resurrection) {
874			/* Stale disk, almost same as new. */
875			g_raid_change_subdisk_state(sd,
876			    G_RAID_SUBDISK_S_NEW);
877		} else if (meta->disk[disk_pos].flags & INTEL_F_DISABLED) {
878			/* Disabled disk, useless. */
879			g_raid_change_subdisk_state(sd,
880			    G_RAID_SUBDISK_S_NONE);
881		} else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) {
882			/* Failed disk, almost useless. */
883			g_raid_change_subdisk_state(sd,
884			    G_RAID_SUBDISK_S_FAILED);
885		} else if (mvol->migr_state == 0) {
886			if (mmap0->status == INTEL_S_UNINITIALIZED &&
887			    (!pv->pv_cng || pv->pv_cng_master_disk != disk_pos)) {
888				/* Freshly created uninitialized volume. */
889				g_raid_change_subdisk_state(sd,
890				    G_RAID_SUBDISK_S_UNINITIALIZED);
891			} else if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
892				/* Freshly inserted disk. */
893				g_raid_change_subdisk_state(sd,
894				    G_RAID_SUBDISK_S_NEW);
895			} else if (mvol->dirty && (!pv->pv_cng ||
896			    pv->pv_cng_master_disk != disk_pos)) {
897				/* Dirty volume (unclean shutdown). */
898				g_raid_change_subdisk_state(sd,
899				    G_RAID_SUBDISK_S_STALE);
900			} else {
901				/* Up to date disk. */
902				g_raid_change_subdisk_state(sd,
903				    G_RAID_SUBDISK_S_ACTIVE);
904			}
905		} else if (mvol->migr_type == INTEL_MT_INIT ||
906			   mvol->migr_type == INTEL_MT_REBUILD) {
907			if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
908				/* Freshly inserted disk. */
909				g_raid_change_subdisk_state(sd,
910				    G_RAID_SUBDISK_S_NEW);
911			} else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
912				/* Rebuilding disk. */
913				g_raid_change_subdisk_state(sd,
914				    G_RAID_SUBDISK_S_REBUILD);
915				if (mvol->dirty) {
916					sd->sd_rebuild_pos = 0;
917				} else {
918					sd->sd_rebuild_pos =
919					    intel_get_vol_curr_migr_unit(mvol) *
920					    sd->sd_volume->v_strip_size *
921					    mmap0->total_domains;
922				}
923			} else if (mvol->dirty && (!pv->pv_cng ||
924			    pv->pv_cng_master_disk != disk_pos)) {
925				/* Dirty volume (unclean shutdown). */
926				g_raid_change_subdisk_state(sd,
927				    G_RAID_SUBDISK_S_STALE);
928			} else {
929				/* Up to date disk. */
930				g_raid_change_subdisk_state(sd,
931				    G_RAID_SUBDISK_S_ACTIVE);
932			}
933		} else if (mvol->migr_type == INTEL_MT_VERIFY ||
934			   mvol->migr_type == INTEL_MT_REPAIR) {
935			if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
936				/* Freshly inserted disk. */
937				g_raid_change_subdisk_state(sd,
938				    G_RAID_SUBDISK_S_NEW);
939			} else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
940				/* Resyncing disk. */
941				g_raid_change_subdisk_state(sd,
942				    G_RAID_SUBDISK_S_RESYNC);
943				if (mvol->dirty) {
944					sd->sd_rebuild_pos = 0;
945				} else {
946					sd->sd_rebuild_pos =
947					    intel_get_vol_curr_migr_unit(mvol) *
948					    sd->sd_volume->v_strip_size *
949					    mmap0->total_domains;
950				}
951			} else if (mvol->dirty) {
952				/* Dirty volume (unclean shutdown). */
953				g_raid_change_subdisk_state(sd,
954				    G_RAID_SUBDISK_S_STALE);
955			} else {
956				/* Up to date disk. */
957				g_raid_change_subdisk_state(sd,
958				    G_RAID_SUBDISK_S_ACTIVE);
959			}
960		}
961		g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
962		    G_RAID_EVENT_SUBDISK);
963	}
964
965	/* Update status of our need for spare. */
966	if (mdi->mdio_started) {
967		mdi->mdio_incomplete =
968		    (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) <
969		     meta->total_disks);
970	}
971
972	return (resurrection);
973}
974
975static void
976g_disk_md_intel_retaste(void *arg, int pending)
977{
978
979	G_RAID_DEBUG(1, "Array is not complete, trying to retaste.");
980	g_retaste(&g_raid_class);
981	free(arg, M_MD_INTEL);
982}
983
984static void
985g_raid_md_intel_refill(struct g_raid_softc *sc)
986{
987	struct g_raid_md_object *md;
988	struct g_raid_md_intel_object *mdi;
989	struct intel_raid_conf *meta;
990	struct g_raid_disk *disk;
991	struct task *task;
992	int update, na;
993
994	md = sc->sc_md;
995	mdi = (struct g_raid_md_intel_object *)md;
996	meta = mdi->mdio_meta;
997	update = 0;
998	do {
999		/* Make sure we miss anything. */
1000		na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE);
1001		if (na == meta->total_disks)
1002			break;
1003
1004		G_RAID_DEBUG1(1, md->mdo_softc,
1005		    "Array is not complete (%d of %d), "
1006		    "trying to refill.", na, meta->total_disks);
1007
1008		/* Try to get use some of STALE disks. */
1009		TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1010			if (disk->d_state == G_RAID_DISK_S_STALE) {
1011				update += g_raid_md_intel_start_disk(disk);
1012				if (disk->d_state == G_RAID_DISK_S_ACTIVE)
1013					break;
1014			}
1015		}
1016		if (disk != NULL)
1017			continue;
1018
1019		/* Try to get use some of SPARE disks. */
1020		TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1021			if (disk->d_state == G_RAID_DISK_S_SPARE) {
1022				update += g_raid_md_intel_start_disk(disk);
1023				if (disk->d_state == G_RAID_DISK_S_ACTIVE)
1024					break;
1025			}
1026		}
1027	} while (disk != NULL);
1028
1029	/* Write new metadata if we changed something. */
1030	if (update) {
1031		g_raid_md_write_intel(md, NULL, NULL, NULL);
1032		meta = mdi->mdio_meta;
1033	}
1034
1035	/* Update status of our need for spare. */
1036	mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) <
1037	    meta->total_disks);
1038
1039	/* Request retaste hoping to find spare. */
1040	if (mdi->mdio_incomplete) {
1041		task = malloc(sizeof(struct task),
1042		    M_MD_INTEL, M_WAITOK | M_ZERO);
1043		TASK_INIT(task, 0, g_disk_md_intel_retaste, task);
1044		taskqueue_enqueue(taskqueue_swi, task);
1045	}
1046}
1047
1048static void
1049g_raid_md_intel_start(struct g_raid_softc *sc)
1050{
1051	struct g_raid_md_object *md;
1052	struct g_raid_md_intel_object *mdi;
1053	struct g_raid_md_intel_pervolume *pv;
1054	struct g_raid_md_intel_perdisk *pd;
1055	struct intel_raid_conf *meta;
1056	struct intel_raid_vol *mvol;
1057	struct intel_raid_map *mmap;
1058	struct g_raid_volume *vol;
1059	struct g_raid_subdisk *sd;
1060	struct g_raid_disk *disk;
1061	int i, j, disk_pos;
1062
1063	md = sc->sc_md;
1064	mdi = (struct g_raid_md_intel_object *)md;
1065	meta = mdi->mdio_meta;
1066
1067	/* Create volumes and subdisks. */
1068	for (i = 0; i < meta->total_volumes; i++) {
1069		mvol = intel_get_volume(meta, i);
1070		mmap = intel_get_map(mvol, 0);
1071		vol = g_raid_create_volume(sc, mvol->name, -1);
1072		pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
1073		pv->pv_volume_pos = i;
1074		pv->pv_cng = (mvol->state & INTEL_ST_CLONE_N_GO) != 0;
1075		pv->pv_cng_man_sync = (mvol->state & INTEL_ST_CLONE_MAN_SYNC) != 0;
1076		if (mvol->cng_master_disk < mmap->total_disks)
1077			pv->pv_cng_master_disk = mvol->cng_master_disk;
1078		vol->v_md_data = pv;
1079		vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
1080		if (mmap->type == INTEL_T_RAID0)
1081			vol->v_raid_level = G_RAID_VOLUME_RL_RAID0;
1082		else if (mmap->type == INTEL_T_RAID1 &&
1083		    mmap->total_domains >= 2 &&
1084		    mmap->total_domains <= mmap->total_disks) {
1085			/* Assume total_domains is correct. */
1086			if (mmap->total_domains == mmap->total_disks)
1087				vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
1088			else
1089				vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1090		} else if (mmap->type == INTEL_T_RAID1) {
1091			/* total_domains looks wrong. */
1092			if (mmap->total_disks <= 2)
1093				vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
1094			else
1095				vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
1096		} else if (mmap->type == INTEL_T_RAID5) {
1097			vol->v_raid_level = G_RAID_VOLUME_RL_RAID5;
1098			vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA;
1099		} else
1100			vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1101		vol->v_strip_size = (u_int)mmap->strip_sectors * 512; //ZZZ
1102		vol->v_disks_count = mmap->total_disks;
1103		vol->v_mediasize = (off_t)mvol->total_sectors * 512; //ZZZ
1104		vol->v_sectorsize = 512; //ZZZ
1105		for (j = 0; j < vol->v_disks_count; j++) {
1106			sd = &vol->v_subdisks[j];
1107			sd->sd_offset = intel_get_map_offset(mmap) * 512; //ZZZ
1108			sd->sd_size = intel_get_map_disk_sectors(mmap) * 512; //ZZZ
1109		}
1110		g_raid_start_volume(vol);
1111	}
1112
1113	/* Create disk placeholders to store data for later writing. */
1114	for (disk_pos = 0; disk_pos < meta->total_disks; disk_pos++) {
1115		pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1116		pd->pd_disk_pos = disk_pos;
1117		pd->pd_disk_meta = meta->disk[disk_pos];
1118		disk = g_raid_create_disk(sc);
1119		disk->d_md_data = (void *)pd;
1120		disk->d_state = G_RAID_DISK_S_OFFLINE;
1121		for (i = 0; i < meta->total_volumes; i++) {
1122			mvol = intel_get_volume(meta, i);
1123			mmap = intel_get_map(mvol, 0);
1124			for (j = 0; j < mmap->total_disks; j++) {
1125				if ((mmap->disk_idx[j] & INTEL_DI_IDX) == disk_pos)
1126					break;
1127			}
1128			if (j == mmap->total_disks)
1129				continue;
1130			vol = g_raid_md_intel_get_volume(sc, i);
1131			sd = &vol->v_subdisks[j];
1132			sd->sd_disk = disk;
1133			TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1134		}
1135	}
1136
1137	/* Make all disks found till the moment take their places. */
1138	do {
1139		TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1140			if (disk->d_state == G_RAID_DISK_S_NONE) {
1141				g_raid_md_intel_start_disk(disk);
1142				break;
1143			}
1144		}
1145	} while (disk != NULL);
1146
1147	mdi->mdio_started = 1;
1148	G_RAID_DEBUG1(0, sc, "Array started.");
1149	g_raid_md_write_intel(md, NULL, NULL, NULL);
1150
1151	/* Pickup any STALE/SPARE disks to refill array if needed. */
1152	g_raid_md_intel_refill(sc);
1153
1154	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1155		g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1156		    G_RAID_EVENT_VOLUME);
1157	}
1158
1159	callout_stop(&mdi->mdio_start_co);
1160	G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount);
1161	root_mount_rel(mdi->mdio_rootmount);
1162	mdi->mdio_rootmount = NULL;
1163}
1164
1165static void
1166g_raid_md_intel_new_disk(struct g_raid_disk *disk)
1167{
1168	struct g_raid_softc *sc;
1169	struct g_raid_md_object *md;
1170	struct g_raid_md_intel_object *mdi;
1171	struct intel_raid_conf *pdmeta;
1172	struct g_raid_md_intel_perdisk *pd;
1173
1174	sc = disk->d_softc;
1175	md = sc->sc_md;
1176	mdi = (struct g_raid_md_intel_object *)md;
1177	pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1178	pdmeta = pd->pd_meta;
1179
1180	if (mdi->mdio_started) {
1181		if (g_raid_md_intel_start_disk(disk))
1182			g_raid_md_write_intel(md, NULL, NULL, NULL);
1183	} else {
1184		/* If we haven't started yet - check metadata freshness. */
1185		if (mdi->mdio_meta == NULL ||
1186		    ((int32_t)(pdmeta->generation - mdi->mdio_generation)) > 0) {
1187			G_RAID_DEBUG1(1, sc, "Newer disk");
1188			if (mdi->mdio_meta != NULL)
1189				free(mdi->mdio_meta, M_MD_INTEL);
1190			mdi->mdio_meta = intel_meta_copy(pdmeta);
1191			mdi->mdio_generation = mdi->mdio_meta->generation;
1192			mdi->mdio_disks_present = 1;
1193		} else if (pdmeta->generation == mdi->mdio_generation) {
1194			mdi->mdio_disks_present++;
1195			G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)",
1196			    mdi->mdio_disks_present,
1197			    mdi->mdio_meta->total_disks);
1198		} else {
1199			G_RAID_DEBUG1(1, sc, "Older disk");
1200		}
1201		/* If we collected all needed disks - start array. */
1202		if (mdi->mdio_disks_present == mdi->mdio_meta->total_disks)
1203			g_raid_md_intel_start(sc);
1204	}
1205}
1206
1207static void
1208g_raid_intel_go(void *arg)
1209{
1210	struct g_raid_softc *sc;
1211	struct g_raid_md_object *md;
1212	struct g_raid_md_intel_object *mdi;
1213
1214	sc = arg;
1215	md = sc->sc_md;
1216	mdi = (struct g_raid_md_intel_object *)md;
1217	if (!mdi->mdio_started) {
1218		G_RAID_DEBUG1(0, sc, "Force array start due to timeout.");
1219		g_raid_event_send(sc, G_RAID_NODE_E_START, 0);
1220	}
1221}
1222
1223static int
1224g_raid_md_create_intel(struct g_raid_md_object *md, struct g_class *mp,
1225    struct g_geom **gp)
1226{
1227	struct g_raid_softc *sc;
1228	struct g_raid_md_intel_object *mdi;
1229	char name[16];
1230
1231	mdi = (struct g_raid_md_intel_object *)md;
1232	mdi->mdio_config_id = arc4random();
1233	mdi->mdio_generation = 0;
1234	snprintf(name, sizeof(name), "Intel-%08x", mdi->mdio_config_id);
1235	sc = g_raid_create_node(mp, name, md);
1236	if (sc == NULL)
1237		return (G_RAID_MD_TASTE_FAIL);
1238	md->mdo_softc = sc;
1239	*gp = sc->sc_geom;
1240	return (G_RAID_MD_TASTE_NEW);
1241}
1242
1243/*
1244 * Return the last N characters of the serial label.  The Linux and
1245 * ataraid(7) code always uses the last 16 characters of the label to
1246 * store into the Intel meta format.  Generalize this to N characters
1247 * since that's easy.  Labels can be up to 20 characters for SATA drives
1248 * and up 251 characters for SAS drives.  Since intel controllers don't
1249 * support SAS drives, just stick with the SATA limits for stack friendliness.
1250 */
1251static int
1252g_raid_md_get_label(struct g_consumer *cp, char *serial, int serlen)
1253{
1254	char serial_buffer[24];
1255	int len, error;
1256
1257	len = sizeof(serial_buffer);
1258	error = g_io_getattr("GEOM::ident", cp, &len, serial_buffer);
1259	if (error != 0)
1260		return (error);
1261	len = strlen(serial_buffer);
1262	if (len > serlen)
1263		len -= serlen;
1264	else
1265		len = 0;
1266	strncpy(serial, serial_buffer + len, serlen);
1267	return (0);
1268}
1269
1270static int
1271g_raid_md_taste_intel(struct g_raid_md_object *md, struct g_class *mp,
1272                              struct g_consumer *cp, struct g_geom **gp)
1273{
1274	struct g_consumer *rcp;
1275	struct g_provider *pp;
1276	struct g_raid_md_intel_object *mdi, *mdi1;
1277	struct g_raid_softc *sc;
1278	struct g_raid_disk *disk;
1279	struct intel_raid_conf *meta;
1280	struct g_raid_md_intel_perdisk *pd;
1281	struct g_geom *geom;
1282	int error, disk_pos, result, spare, len;
1283	char serial[INTEL_SERIAL_LEN];
1284	char name[16];
1285	uint16_t vendor;
1286
1287	G_RAID_DEBUG(1, "Tasting Intel on %s", cp->provider->name);
1288	mdi = (struct g_raid_md_intel_object *)md;
1289	pp = cp->provider;
1290
1291	/* Read metadata from device. */
1292	meta = NULL;
1293	vendor = 0xffff;
1294	disk_pos = 0;
1295	if (g_access(cp, 1, 0, 0) != 0)
1296		return (G_RAID_MD_TASTE_FAIL);
1297	g_topology_unlock();
1298	error = g_raid_md_get_label(cp, serial, sizeof(serial));
1299	if (error != 0) {
1300		G_RAID_DEBUG(1, "Cannot get serial number from %s (error=%d).",
1301		    pp->name, error);
1302		goto fail2;
1303	}
1304	len = 2;
1305	if (pp->geom->rank == 1)
1306		g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor);
1307	meta = intel_meta_read(cp);
1308	g_topology_lock();
1309	g_access(cp, -1, 0, 0);
1310	if (meta == NULL) {
1311		if (g_raid_aggressive_spare) {
1312			if (vendor != 0x8086) {
1313				G_RAID_DEBUG(1,
1314				    "Intel vendor mismatch 0x%04x != 0x8086",
1315				    vendor);
1316			} else {
1317				G_RAID_DEBUG(1,
1318				    "No Intel metadata, forcing spare.");
1319				spare = 2;
1320				goto search;
1321			}
1322		}
1323		return (G_RAID_MD_TASTE_FAIL);
1324	}
1325
1326	/* Check this disk position in obtained metadata. */
1327	disk_pos = intel_meta_find_disk(meta, serial);
1328	if (disk_pos < 0) {
1329		G_RAID_DEBUG(1, "Intel serial '%s' not found", serial);
1330		goto fail1;
1331	}
1332	if (intel_get_disk_sectors(&meta->disk[disk_pos]) !=
1333	    (pp->mediasize / pp->sectorsize)) {
1334		G_RAID_DEBUG(1, "Intel size mismatch %ju != %ju",
1335		    intel_get_disk_sectors(&meta->disk[disk_pos]),
1336		    (off_t)(pp->mediasize / pp->sectorsize));
1337		goto fail1;
1338	}
1339
1340	/* Metadata valid. Print it. */
1341	g_raid_md_intel_print(meta);
1342	G_RAID_DEBUG(1, "Intel disk position %d", disk_pos);
1343	spare = meta->disk[disk_pos].flags & INTEL_F_SPARE;
1344
1345search:
1346	/* Search for matching node. */
1347	sc = NULL;
1348	mdi1 = NULL;
1349	LIST_FOREACH(geom, &mp->geom, geom) {
1350		sc = geom->softc;
1351		if (sc == NULL)
1352			continue;
1353		if (sc->sc_stopping != 0)
1354			continue;
1355		if (sc->sc_md->mdo_class != md->mdo_class)
1356			continue;
1357		mdi1 = (struct g_raid_md_intel_object *)sc->sc_md;
1358		if (spare) {
1359			if (mdi1->mdio_incomplete)
1360				break;
1361		} else {
1362			if (mdi1->mdio_config_id == meta->config_id)
1363				break;
1364		}
1365	}
1366
1367	/* Found matching node. */
1368	if (geom != NULL) {
1369		G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
1370		result = G_RAID_MD_TASTE_EXISTING;
1371
1372	} else if (spare) { /* Not found needy node -- left for later. */
1373		G_RAID_DEBUG(1, "Spare is not needed at this time");
1374		goto fail1;
1375
1376	} else { /* Not found matching node -- create one. */
1377		result = G_RAID_MD_TASTE_NEW;
1378		mdi->mdio_config_id = meta->config_id;
1379		snprintf(name, sizeof(name), "Intel-%08x", meta->config_id);
1380		sc = g_raid_create_node(mp, name, md);
1381		md->mdo_softc = sc;
1382		geom = sc->sc_geom;
1383		callout_init(&mdi->mdio_start_co, 1);
1384		callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz,
1385		    g_raid_intel_go, sc);
1386		mdi->mdio_rootmount = root_mount_hold("GRAID-Intel");
1387		G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount);
1388	}
1389
1390	rcp = g_new_consumer(geom);
1391	g_attach(rcp, pp);
1392	if (g_access(rcp, 1, 1, 1) != 0)
1393		; //goto fail1;
1394
1395	g_topology_unlock();
1396	sx_xlock(&sc->sc_lock);
1397
1398	pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1399	pd->pd_meta = meta;
1400	pd->pd_disk_pos = -1;
1401	if (spare == 2) {
1402		memcpy(&pd->pd_disk_meta.serial[0], serial, INTEL_SERIAL_LEN);
1403		intel_set_disk_sectors(&pd->pd_disk_meta,
1404		    pp->mediasize / pp->sectorsize);
1405		pd->pd_disk_meta.id = 0;
1406		pd->pd_disk_meta.flags = INTEL_F_SPARE;
1407	} else {
1408		pd->pd_disk_meta = meta->disk[disk_pos];
1409	}
1410	disk = g_raid_create_disk(sc);
1411	disk->d_md_data = (void *)pd;
1412	disk->d_consumer = rcp;
1413	rcp->private = disk;
1414
1415	g_raid_get_disk_info(disk);
1416
1417	g_raid_md_intel_new_disk(disk);
1418
1419	sx_xunlock(&sc->sc_lock);
1420	g_topology_lock();
1421	*gp = geom;
1422	return (result);
1423fail2:
1424	g_topology_lock();
1425	g_access(cp, -1, 0, 0);
1426fail1:
1427	free(meta, M_MD_INTEL);
1428	return (G_RAID_MD_TASTE_FAIL);
1429}
1430
1431static int
1432g_raid_md_event_intel(struct g_raid_md_object *md,
1433    struct g_raid_disk *disk, u_int event)
1434{
1435	struct g_raid_softc *sc;
1436	struct g_raid_subdisk *sd;
1437	struct g_raid_md_intel_object *mdi;
1438	struct g_raid_md_intel_perdisk *pd;
1439
1440	sc = md->mdo_softc;
1441	mdi = (struct g_raid_md_intel_object *)md;
1442	if (disk == NULL) {
1443		switch (event) {
1444		case G_RAID_NODE_E_START:
1445			if (!mdi->mdio_started)
1446				g_raid_md_intel_start(sc);
1447			return (0);
1448		}
1449		return (-1);
1450	}
1451	pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1452	switch (event) {
1453	case G_RAID_DISK_E_DISCONNECTED:
1454		/* If disk was assigned, just update statuses. */
1455		if (pd->pd_disk_pos >= 0) {
1456			g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
1457			if (disk->d_consumer) {
1458				g_raid_kill_consumer(sc, disk->d_consumer);
1459				disk->d_consumer = NULL;
1460			}
1461			TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
1462				g_raid_change_subdisk_state(sd,
1463				    G_RAID_SUBDISK_S_NONE);
1464				g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
1465				    G_RAID_EVENT_SUBDISK);
1466			}
1467		} else {
1468			/* Otherwise -- delete. */
1469			g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
1470			g_raid_destroy_disk(disk);
1471		}
1472
1473		/* Write updated metadata to all disks. */
1474		g_raid_md_write_intel(md, NULL, NULL, NULL);
1475
1476		/* Check if anything left except placeholders. */
1477		if (g_raid_ndisks(sc, -1) ==
1478		    g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
1479			g_raid_destroy_node(sc, 0);
1480		else
1481			g_raid_md_intel_refill(sc);
1482		return (0);
1483	}
1484	return (-2);
1485}
1486
1487static int
1488g_raid_md_ctl_intel(struct g_raid_md_object *md,
1489    struct gctl_req *req)
1490{
1491	struct g_raid_softc *sc;
1492	struct g_raid_volume *vol, *vol1;
1493	struct g_raid_subdisk *sd;
1494	struct g_raid_disk *disk;
1495	struct g_raid_md_intel_object *mdi;
1496	struct g_raid_md_intel_pervolume *pv;
1497	struct g_raid_md_intel_perdisk *pd;
1498	struct g_consumer *cp;
1499	struct g_provider *pp;
1500	char arg[16], serial[INTEL_SERIAL_LEN];
1501	const char *nodename, *verb, *volname, *levelname, *diskname;
1502	char *tmp;
1503	int *nargs, *force;
1504	off_t off, size, sectorsize, strip, disk_sectors;
1505	intmax_t *sizearg, *striparg;
1506	int numdisks, i, len, level, qual, update;
1507	int error;
1508
1509	sc = md->mdo_softc;
1510	mdi = (struct g_raid_md_intel_object *)md;
1511	verb = gctl_get_param(req, "verb", NULL);
1512	nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
1513	error = 0;
1514	if (strcmp(verb, "label") == 0) {
1515
1516		if (*nargs < 4) {
1517			gctl_error(req, "Invalid number of arguments.");
1518			return (-1);
1519		}
1520		volname = gctl_get_asciiparam(req, "arg1");
1521		if (volname == NULL) {
1522			gctl_error(req, "No volume name.");
1523			return (-2);
1524		}
1525		levelname = gctl_get_asciiparam(req, "arg2");
1526		if (levelname == NULL) {
1527			gctl_error(req, "No RAID level.");
1528			return (-3);
1529		}
1530		if (strcasecmp(levelname, "RAID5") == 0)
1531			levelname = "RAID5-LA";
1532		if (g_raid_volume_str2level(levelname, &level, &qual)) {
1533			gctl_error(req, "Unknown RAID level '%s'.", levelname);
1534			return (-4);
1535		}
1536		numdisks = *nargs - 3;
1537		force = gctl_get_paraml(req, "force", sizeof(*force));
1538		if (!g_raid_md_intel_supported(level, qual, numdisks,
1539		    force ? *force : 0)) {
1540			gctl_error(req, "Unsupported RAID level "
1541			    "(0x%02x/0x%02x), or number of disks (%d).",
1542			    level, qual, numdisks);
1543			return (-5);
1544		}
1545
1546		/* Search for disks, connect them and probe. */
1547		size = 0x7fffffffffffffffllu;
1548		sectorsize = 0;
1549		for (i = 0; i < numdisks; i++) {
1550			snprintf(arg, sizeof(arg), "arg%d", i + 3);
1551			diskname = gctl_get_asciiparam(req, arg);
1552			if (diskname == NULL) {
1553				gctl_error(req, "No disk name (%s).", arg);
1554				error = -6;
1555				break;
1556			}
1557			if (strcmp(diskname, "NONE") == 0) {
1558				cp = NULL;
1559				pp = NULL;
1560			} else {
1561				g_topology_lock();
1562				cp = g_raid_open_consumer(sc, diskname);
1563				if (cp == NULL) {
1564					gctl_error(req, "Can't open disk '%s'.",
1565					    diskname);
1566					g_topology_unlock();
1567					error = -7;
1568					break;
1569				}
1570				pp = cp->provider;
1571			}
1572			pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1573			pd->pd_disk_pos = i;
1574			disk = g_raid_create_disk(sc);
1575			disk->d_md_data = (void *)pd;
1576			disk->d_consumer = cp;
1577			if (cp == NULL) {
1578				strcpy(&pd->pd_disk_meta.serial[0], "NONE");
1579				pd->pd_disk_meta.id = 0xffffffff;
1580				pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
1581				continue;
1582			}
1583			cp->private = disk;
1584			g_topology_unlock();
1585
1586			error = g_raid_md_get_label(cp,
1587			    &pd->pd_disk_meta.serial[0], INTEL_SERIAL_LEN);
1588			if (error != 0) {
1589				gctl_error(req,
1590				    "Can't get serial for provider '%s'.",
1591				    diskname);
1592				error = -8;
1593				break;
1594			}
1595
1596			g_raid_get_disk_info(disk);
1597
1598			intel_set_disk_sectors(&pd->pd_disk_meta,
1599			    pp->mediasize / pp->sectorsize);
1600			if (size > pp->mediasize)
1601				size = pp->mediasize;
1602			if (sectorsize < pp->sectorsize)
1603				sectorsize = pp->sectorsize;
1604			pd->pd_disk_meta.id = 0;
1605			pd->pd_disk_meta.flags = INTEL_F_ASSIGNED | INTEL_F_ONLINE;
1606		}
1607		if (error != 0)
1608			return (error);
1609
1610		if (sectorsize <= 0) {
1611			gctl_error(req, "Can't get sector size.");
1612			return (-8);
1613		}
1614
1615		/* Reserve some space for metadata. */
1616		size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
1617
1618		/* Handle size argument. */
1619		len = sizeof(*sizearg);
1620		sizearg = gctl_get_param(req, "size", &len);
1621		if (sizearg != NULL && len == sizeof(*sizearg) &&
1622		    *sizearg > 0) {
1623			if (*sizearg > size) {
1624				gctl_error(req, "Size too big %lld > %lld.",
1625				    (long long)*sizearg, (long long)size);
1626				return (-9);
1627			}
1628			size = *sizearg;
1629		}
1630
1631		/* Handle strip argument. */
1632		strip = 131072;
1633		len = sizeof(*striparg);
1634		striparg = gctl_get_param(req, "strip", &len);
1635		if (striparg != NULL && len == sizeof(*striparg) &&
1636		    *striparg > 0) {
1637			if (*striparg < sectorsize) {
1638				gctl_error(req, "Strip size too small.");
1639				return (-10);
1640			}
1641			if (*striparg % sectorsize != 0) {
1642				gctl_error(req, "Incorrect strip size.");
1643				return (-11);
1644			}
1645			if (strip > 65535 * sectorsize) {
1646				gctl_error(req, "Strip size too big.");
1647				return (-12);
1648			}
1649			strip = *striparg;
1650		}
1651
1652		/* Round size down to strip or sector. */
1653		if (level == G_RAID_VOLUME_RL_RAID1)
1654			size -= (size % sectorsize);
1655		else if (level == G_RAID_VOLUME_RL_RAID1E &&
1656		    (numdisks & 1) != 0)
1657			size -= (size % (2 * strip));
1658		else
1659			size -= (size % strip);
1660		if (size <= 0) {
1661			gctl_error(req, "Size too small.");
1662			return (-13);
1663		}
1664
1665		/* We have all we need, create things: volume, ... */
1666		mdi->mdio_started = 1;
1667		vol = g_raid_create_volume(sc, volname, -1);
1668		pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
1669		pv->pv_volume_pos = 0;
1670		vol->v_md_data = pv;
1671		vol->v_raid_level = level;
1672		vol->v_raid_level_qualifier = qual;
1673		vol->v_strip_size = strip;
1674		vol->v_disks_count = numdisks;
1675		if (level == G_RAID_VOLUME_RL_RAID0)
1676			vol->v_mediasize = size * numdisks;
1677		else if (level == G_RAID_VOLUME_RL_RAID1)
1678			vol->v_mediasize = size;
1679		else if (level == G_RAID_VOLUME_RL_RAID5)
1680			vol->v_mediasize = size * (numdisks - 1);
1681		else { /* RAID1E */
1682			vol->v_mediasize = ((size * numdisks) / strip / 2) *
1683			    strip;
1684		}
1685		vol->v_sectorsize = sectorsize;
1686		g_raid_start_volume(vol);
1687
1688		/* , and subdisks. */
1689		TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1690			pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1691			sd = &vol->v_subdisks[pd->pd_disk_pos];
1692			sd->sd_disk = disk;
1693			sd->sd_offset = 0;
1694			sd->sd_size = size;
1695			TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1696			if (sd->sd_disk->d_consumer != NULL) {
1697				g_raid_change_disk_state(disk,
1698				    G_RAID_DISK_S_ACTIVE);
1699				if (level == G_RAID_VOLUME_RL_RAID5)
1700					g_raid_change_subdisk_state(sd,
1701					    G_RAID_SUBDISK_S_UNINITIALIZED);
1702				else
1703					g_raid_change_subdisk_state(sd,
1704					    G_RAID_SUBDISK_S_ACTIVE);
1705				g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1706				    G_RAID_EVENT_SUBDISK);
1707			} else {
1708				g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
1709			}
1710		}
1711
1712		/* Write metadata based on created entities. */
1713		G_RAID_DEBUG1(0, sc, "Array started.");
1714		g_raid_md_write_intel(md, NULL, NULL, NULL);
1715
1716		/* Pickup any STALE/SPARE disks to refill array if needed. */
1717		g_raid_md_intel_refill(sc);
1718
1719		g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1720		    G_RAID_EVENT_VOLUME);
1721		return (0);
1722	}
1723	if (strcmp(verb, "add") == 0) {
1724
1725		if (*nargs != 3) {
1726			gctl_error(req, "Invalid number of arguments.");
1727			return (-1);
1728		}
1729		volname = gctl_get_asciiparam(req, "arg1");
1730		if (volname == NULL) {
1731			gctl_error(req, "No volume name.");
1732			return (-2);
1733		}
1734		levelname = gctl_get_asciiparam(req, "arg2");
1735		if (levelname == NULL) {
1736			gctl_error(req, "No RAID level.");
1737			return (-3);
1738		}
1739		if (strcasecmp(levelname, "RAID5") == 0)
1740			levelname = "RAID5-LA";
1741		if (g_raid_volume_str2level(levelname, &level, &qual)) {
1742			gctl_error(req, "Unknown RAID level '%s'.", levelname);
1743			return (-4);
1744		}
1745
1746		/* Look for existing volumes. */
1747		i = 0;
1748		vol1 = NULL;
1749		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1750			vol1 = vol;
1751			i++;
1752		}
1753		if (i > 1) {
1754			gctl_error(req, "Maximum two volumes supported.");
1755			return (-6);
1756		}
1757		if (vol1 == NULL) {
1758			gctl_error(req, "At least one volume must exist.");
1759			return (-7);
1760		}
1761
1762		numdisks = vol1->v_disks_count;
1763		force = gctl_get_paraml(req, "force", sizeof(*force));
1764		if (!g_raid_md_intel_supported(level, qual, numdisks,
1765		    force ? *force : 0)) {
1766			gctl_error(req, "Unsupported RAID level "
1767			    "(0x%02x/0x%02x), or number of disks (%d).",
1768			    level, qual, numdisks);
1769			return (-5);
1770		}
1771
1772		/* Collect info about present disks. */
1773		size = 0x7fffffffffffffffllu;
1774		sectorsize = 512;
1775		for (i = 0; i < numdisks; i++) {
1776			disk = vol1->v_subdisks[i].sd_disk;
1777			pd = (struct g_raid_md_intel_perdisk *)
1778			    disk->d_md_data;
1779			disk_sectors =
1780			    intel_get_disk_sectors(&pd->pd_disk_meta);
1781
1782			if (disk_sectors * 512 < size)
1783				size = disk_sectors * 512;
1784			if (disk->d_consumer != NULL &&
1785			    disk->d_consumer->provider != NULL &&
1786			    disk->d_consumer->provider->sectorsize >
1787			     sectorsize) {
1788				sectorsize =
1789				    disk->d_consumer->provider->sectorsize;
1790			}
1791		}
1792
1793		/* Reserve some space for metadata. */
1794		size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
1795
1796		/* Decide insert before or after. */
1797		sd = &vol1->v_subdisks[0];
1798		if (sd->sd_offset >
1799		    size - (sd->sd_offset + sd->sd_size)) {
1800			off = 0;
1801			size = sd->sd_offset;
1802		} else {
1803			off = sd->sd_offset + sd->sd_size;
1804			size = size - (sd->sd_offset + sd->sd_size);
1805		}
1806
1807		/* Handle strip argument. */
1808		strip = 131072;
1809		len = sizeof(*striparg);
1810		striparg = gctl_get_param(req, "strip", &len);
1811		if (striparg != NULL && len == sizeof(*striparg) &&
1812		    *striparg > 0) {
1813			if (*striparg < sectorsize) {
1814				gctl_error(req, "Strip size too small.");
1815				return (-10);
1816			}
1817			if (*striparg % sectorsize != 0) {
1818				gctl_error(req, "Incorrect strip size.");
1819				return (-11);
1820			}
1821			if (strip > 65535 * sectorsize) {
1822				gctl_error(req, "Strip size too big.");
1823				return (-12);
1824			}
1825			strip = *striparg;
1826		}
1827
1828		/* Round offset up to strip. */
1829		if (off % strip != 0) {
1830			size -= strip - off % strip;
1831			off += strip - off % strip;
1832		}
1833
1834		/* Handle size argument. */
1835		len = sizeof(*sizearg);
1836		sizearg = gctl_get_param(req, "size", &len);
1837		if (sizearg != NULL && len == sizeof(*sizearg) &&
1838		    *sizearg > 0) {
1839			if (*sizearg > size) {
1840				gctl_error(req, "Size too big %lld > %lld.",
1841				    (long long)*sizearg, (long long)size);
1842				return (-9);
1843			}
1844			size = *sizearg;
1845		}
1846
1847		/* Round size down to strip or sector. */
1848		if (level == G_RAID_VOLUME_RL_RAID1)
1849			size -= (size % sectorsize);
1850		else
1851			size -= (size % strip);
1852		if (size <= 0) {
1853			gctl_error(req, "Size too small.");
1854			return (-13);
1855		}
1856		if (size > 0xffffffffllu * sectorsize) {
1857			gctl_error(req, "Size too big.");
1858			return (-14);
1859		}
1860
1861		/* We have all we need, create things: volume, ... */
1862		vol = g_raid_create_volume(sc, volname, -1);
1863		pv = malloc(sizeof(*pv), M_MD_INTEL, M_WAITOK | M_ZERO);
1864		pv->pv_volume_pos = i;
1865		vol->v_md_data = pv;
1866		vol->v_raid_level = level;
1867		vol->v_raid_level_qualifier = qual;
1868		vol->v_strip_size = strip;
1869		vol->v_disks_count = numdisks;
1870		if (level == G_RAID_VOLUME_RL_RAID0)
1871			vol->v_mediasize = size * numdisks;
1872		else if (level == G_RAID_VOLUME_RL_RAID1)
1873			vol->v_mediasize = size;
1874		else if (level == G_RAID_VOLUME_RL_RAID5)
1875			vol->v_mediasize = size * (numdisks - 1);
1876		else { /* RAID1E */
1877			vol->v_mediasize = ((size * numdisks) / strip / 2) *
1878			    strip;
1879		}
1880		vol->v_sectorsize = sectorsize;
1881		g_raid_start_volume(vol);
1882
1883		/* , and subdisks. */
1884		for (i = 0; i < numdisks; i++) {
1885			disk = vol1->v_subdisks[i].sd_disk;
1886			sd = &vol->v_subdisks[i];
1887			sd->sd_disk = disk;
1888			sd->sd_offset = off;
1889			sd->sd_size = size;
1890			TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1891			if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
1892				if (level == G_RAID_VOLUME_RL_RAID5)
1893					g_raid_change_subdisk_state(sd,
1894					    G_RAID_SUBDISK_S_UNINITIALIZED);
1895				else
1896					g_raid_change_subdisk_state(sd,
1897					    G_RAID_SUBDISK_S_ACTIVE);
1898				g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1899				    G_RAID_EVENT_SUBDISK);
1900			}
1901		}
1902
1903		/* Write metadata based on created entities. */
1904		g_raid_md_write_intel(md, NULL, NULL, NULL);
1905
1906		g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1907		    G_RAID_EVENT_VOLUME);
1908		return (0);
1909	}
1910	if (strcmp(verb, "delete") == 0) {
1911
1912		nodename = gctl_get_asciiparam(req, "arg0");
1913		if (nodename != NULL && strcasecmp(sc->sc_name, nodename) != 0)
1914			nodename = NULL;
1915
1916		/* Full node destruction. */
1917		if (*nargs == 1 && nodename != NULL) {
1918			/* Check if some volume is still open. */
1919			force = gctl_get_paraml(req, "force", sizeof(*force));
1920			if (force != NULL && *force == 0 &&
1921			    g_raid_nopens(sc) != 0) {
1922				gctl_error(req, "Some volume is still open.");
1923				return (-4);
1924			}
1925
1926			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1927				if (disk->d_consumer)
1928					intel_meta_erase(disk->d_consumer);
1929			}
1930			g_raid_destroy_node(sc, 0);
1931			return (0);
1932		}
1933
1934		/* Destroy specified volume. If it was last - all node. */
1935		if (*nargs > 2) {
1936			gctl_error(req, "Invalid number of arguments.");
1937			return (-1);
1938		}
1939		volname = gctl_get_asciiparam(req,
1940		    nodename != NULL ? "arg1" : "arg0");
1941		if (volname == NULL) {
1942			gctl_error(req, "No volume name.");
1943			return (-2);
1944		}
1945
1946		/* Search for volume. */
1947		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1948			if (strcmp(vol->v_name, volname) == 0)
1949				break;
1950			pp = vol->v_provider;
1951			if (pp == NULL)
1952				continue;
1953			if (strcmp(pp->name, volname) == 0)
1954				break;
1955			if (strncmp(pp->name, "raid/", 5) == 0 &&
1956			    strcmp(pp->name + 5, volname) == 0)
1957				break;
1958		}
1959		if (vol == NULL) {
1960			i = strtol(volname, &tmp, 10);
1961			if (verb != volname && tmp[0] == 0) {
1962				TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1963					if (vol->v_global_id == i)
1964						break;
1965				}
1966			}
1967		}
1968		if (vol == NULL) {
1969			gctl_error(req, "Volume '%s' not found.", volname);
1970			return (-3);
1971		}
1972
1973		/* Check if volume is still open. */
1974		force = gctl_get_paraml(req, "force", sizeof(*force));
1975		if (force != NULL && *force == 0 &&
1976		    vol->v_provider_open != 0) {
1977			gctl_error(req, "Volume is still open.");
1978			return (-4);
1979		}
1980
1981		/* Destroy volume and potentially node. */
1982		i = 0;
1983		TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
1984			i++;
1985		if (i >= 2) {
1986			g_raid_destroy_volume(vol);
1987			g_raid_md_write_intel(md, NULL, NULL, NULL);
1988		} else {
1989			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1990				if (disk->d_consumer)
1991					intel_meta_erase(disk->d_consumer);
1992			}
1993			g_raid_destroy_node(sc, 0);
1994		}
1995		return (0);
1996	}
1997	if (strcmp(verb, "remove") == 0 ||
1998	    strcmp(verb, "fail") == 0) {
1999		if (*nargs < 2) {
2000			gctl_error(req, "Invalid number of arguments.");
2001			return (-1);
2002		}
2003		for (i = 1; i < *nargs; i++) {
2004			snprintf(arg, sizeof(arg), "arg%d", i);
2005			diskname = gctl_get_asciiparam(req, arg);
2006			if (diskname == NULL) {
2007				gctl_error(req, "No disk name (%s).", arg);
2008				error = -2;
2009				break;
2010			}
2011			if (strncmp(diskname, "/dev/", 5) == 0)
2012				diskname += 5;
2013
2014			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2015				if (disk->d_consumer != NULL &&
2016				    disk->d_consumer->provider != NULL &&
2017				    strcmp(disk->d_consumer->provider->name,
2018				     diskname) == 0)
2019					break;
2020			}
2021			if (disk == NULL) {
2022				gctl_error(req, "Disk '%s' not found.",
2023				    diskname);
2024				error = -3;
2025				break;
2026			}
2027
2028			if (strcmp(verb, "fail") == 0) {
2029				g_raid_md_fail_disk_intel(md, NULL, disk);
2030				continue;
2031			}
2032
2033			pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2034
2035			/* Erase metadata on deleting disk. */
2036			intel_meta_erase(disk->d_consumer);
2037
2038			/* If disk was assigned, just update statuses. */
2039			if (pd->pd_disk_pos >= 0) {
2040				g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
2041				g_raid_kill_consumer(sc, disk->d_consumer);
2042				disk->d_consumer = NULL;
2043				TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2044					g_raid_change_subdisk_state(sd,
2045					    G_RAID_SUBDISK_S_NONE);
2046					g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2047					    G_RAID_EVENT_SUBDISK);
2048				}
2049			} else {
2050				/* Otherwise -- delete. */
2051				g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
2052				g_raid_destroy_disk(disk);
2053			}
2054		}
2055
2056		/* Write updated metadata to remaining disks. */
2057		g_raid_md_write_intel(md, NULL, NULL, NULL);
2058
2059		/* Check if anything left except placeholders. */
2060		if (g_raid_ndisks(sc, -1) ==
2061		    g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
2062			g_raid_destroy_node(sc, 0);
2063		else
2064			g_raid_md_intel_refill(sc);
2065		return (error);
2066	}
2067	if (strcmp(verb, "insert") == 0) {
2068		if (*nargs < 2) {
2069			gctl_error(req, "Invalid number of arguments.");
2070			return (-1);
2071		}
2072		update = 0;
2073		for (i = 1; i < *nargs; i++) {
2074			/* Get disk name. */
2075			snprintf(arg, sizeof(arg), "arg%d", i);
2076			diskname = gctl_get_asciiparam(req, arg);
2077			if (diskname == NULL) {
2078				gctl_error(req, "No disk name (%s).", arg);
2079				error = -3;
2080				break;
2081			}
2082
2083			/* Try to find provider with specified name. */
2084			g_topology_lock();
2085			cp = g_raid_open_consumer(sc, diskname);
2086			if (cp == NULL) {
2087				gctl_error(req, "Can't open disk '%s'.",
2088				    diskname);
2089				g_topology_unlock();
2090				error = -4;
2091				break;
2092			}
2093			pp = cp->provider;
2094			g_topology_unlock();
2095
2096			/* Read disk serial. */
2097			error = g_raid_md_get_label(cp,
2098			    &serial[0], INTEL_SERIAL_LEN);
2099			if (error != 0) {
2100				gctl_error(req,
2101				    "Can't get serial for provider '%s'.",
2102				    diskname);
2103				g_raid_kill_consumer(sc, cp);
2104				error = -7;
2105				break;
2106			}
2107
2108			pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
2109			pd->pd_disk_pos = -1;
2110
2111			disk = g_raid_create_disk(sc);
2112			disk->d_consumer = cp;
2113			disk->d_md_data = (void *)pd;
2114			cp->private = disk;
2115
2116			g_raid_get_disk_info(disk);
2117
2118			memcpy(&pd->pd_disk_meta.serial[0], &serial[0],
2119			    INTEL_SERIAL_LEN);
2120			intel_set_disk_sectors(&pd->pd_disk_meta,
2121			    pp->mediasize / pp->sectorsize);
2122			pd->pd_disk_meta.id = 0;
2123			pd->pd_disk_meta.flags = INTEL_F_SPARE;
2124
2125			/* Welcome the "new" disk. */
2126			update += g_raid_md_intel_start_disk(disk);
2127			if (disk->d_state == G_RAID_DISK_S_SPARE) {
2128				intel_meta_write_spare(cp, &pd->pd_disk_meta);
2129				g_raid_destroy_disk(disk);
2130			} else if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2131				gctl_error(req, "Disk '%s' doesn't fit.",
2132				    diskname);
2133				g_raid_destroy_disk(disk);
2134				error = -8;
2135				break;
2136			}
2137		}
2138
2139		/* Write new metadata if we changed something. */
2140		if (update)
2141			g_raid_md_write_intel(md, NULL, NULL, NULL);
2142		return (error);
2143	}
2144	return (-100);
2145}
2146
2147static int
2148g_raid_md_write_intel(struct g_raid_md_object *md, struct g_raid_volume *tvol,
2149    struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2150{
2151	struct g_raid_softc *sc;
2152	struct g_raid_volume *vol;
2153	struct g_raid_subdisk *sd;
2154	struct g_raid_disk *disk;
2155	struct g_raid_md_intel_object *mdi;
2156	struct g_raid_md_intel_pervolume *pv;
2157	struct g_raid_md_intel_perdisk *pd;
2158	struct intel_raid_conf *meta;
2159	struct intel_raid_vol *mvol;
2160	struct intel_raid_map *mmap0, *mmap1;
2161	off_t sectorsize = 512, pos;
2162	const char *version, *cv;
2163	int vi, sdi, numdisks, len, state, stale;
2164
2165	sc = md->mdo_softc;
2166	mdi = (struct g_raid_md_intel_object *)md;
2167
2168	if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2169		return (0);
2170
2171	/* Bump generation. Newly written metadata may differ from previous. */
2172	mdi->mdio_generation++;
2173
2174	/* Count number of disks. */
2175	numdisks = 0;
2176	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2177		pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2178		if (pd->pd_disk_pos < 0)
2179			continue;
2180		numdisks++;
2181		if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
2182			pd->pd_disk_meta.flags =
2183			    INTEL_F_ONLINE | INTEL_F_ASSIGNED;
2184		} else if (disk->d_state == G_RAID_DISK_S_FAILED) {
2185			pd->pd_disk_meta.flags = INTEL_F_FAILED |
2186			    INTEL_F_ASSIGNED;
2187		} else if (disk->d_state == G_RAID_DISK_S_DISABLED) {
2188			pd->pd_disk_meta.flags = INTEL_F_FAILED |
2189			    INTEL_F_ASSIGNED | INTEL_F_DISABLED;
2190		} else {
2191			pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
2192			if (pd->pd_disk_meta.id != 0xffffffff) {
2193				pd->pd_disk_meta.id = 0xffffffff;
2194				len = strlen(pd->pd_disk_meta.serial);
2195				len = min(len, INTEL_SERIAL_LEN - 3);
2196				strcpy(pd->pd_disk_meta.serial + len, ":0");
2197			}
2198		}
2199	}
2200
2201	/* Fill anchor and disks. */
2202	meta = malloc(INTEL_MAX_MD_SIZE(numdisks),
2203	    M_MD_INTEL, M_WAITOK | M_ZERO);
2204	memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
2205	meta->config_size = INTEL_MAX_MD_SIZE(numdisks);
2206	meta->config_id = mdi->mdio_config_id;
2207	meta->generation = mdi->mdio_generation;
2208	meta->attributes = INTEL_ATTR_CHECKSUM;
2209	meta->total_disks = numdisks;
2210	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2211		pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2212		if (pd->pd_disk_pos < 0)
2213			continue;
2214		meta->disk[pd->pd_disk_pos] = pd->pd_disk_meta;
2215	}
2216
2217	/* Fill volumes and maps. */
2218	vi = 0;
2219	version = INTEL_VERSION_1000;
2220	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2221		pv = vol->v_md_data;
2222		if (vol->v_stopping)
2223			continue;
2224		mvol = intel_get_volume(meta, vi);
2225
2226		/* New metadata may have different volumes order. */
2227		pv->pv_volume_pos = vi;
2228
2229		for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2230			sd = &vol->v_subdisks[sdi];
2231			if (sd->sd_disk != NULL)
2232				break;
2233		}
2234		if (sdi >= vol->v_disks_count)
2235			panic("No any filled subdisk in volume");
2236		if (vol->v_mediasize >= 0x20000000000llu)
2237			meta->attributes |= INTEL_ATTR_2TB;
2238		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
2239			meta->attributes |= INTEL_ATTR_RAID0;
2240		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2241			meta->attributes |= INTEL_ATTR_RAID1;
2242		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
2243			meta->attributes |= INTEL_ATTR_RAID5;
2244		else
2245			meta->attributes |= INTEL_ATTR_RAID10;
2246
2247		if (meta->attributes & INTEL_ATTR_2TB)
2248			cv = INTEL_VERSION_1300;
2249		else if (pv->pv_cng)
2250			cv = INTEL_VERSION_1206;
2251		else if (vol->v_disks_count > 4)
2252			cv = INTEL_VERSION_1204;
2253		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
2254			cv = INTEL_VERSION_1202;
2255		else if (vol->v_disks_count > 2)
2256			cv = INTEL_VERSION_1201;
2257		else if (vi > 0)
2258			cv = INTEL_VERSION_1200;
2259		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2260			cv = INTEL_VERSION_1100;
2261		else
2262			cv = INTEL_VERSION_1000;
2263		if (strcmp(cv, version) > 0)
2264			version = cv;
2265
2266		strlcpy(&mvol->name[0], vol->v_name, sizeof(mvol->name));
2267		mvol->total_sectors = vol->v_mediasize / sectorsize;
2268		if (pv->pv_cng) {
2269			mvol->state |= INTEL_ST_CLONE_N_GO;
2270			if (pv->pv_cng_man_sync)
2271				mvol->state |= INTEL_ST_CLONE_MAN_SYNC;
2272			mvol->cng_master_disk = pv->pv_cng_master_disk;
2273			if (vol->v_subdisks[pv->pv_cng_master_disk].sd_state ==
2274			    G_RAID_SUBDISK_S_NONE)
2275				mvol->cng_state = INTEL_SNGST_MASTER_MISSING;
2276			else if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL)
2277				mvol->cng_state = INTEL_SNGST_NEEDS_UPDATE;
2278		}
2279
2280		/* Check for any recovery in progress. */
2281		state = G_RAID_SUBDISK_S_ACTIVE;
2282		pos = 0x7fffffffffffffffllu;
2283		stale = 0;
2284		for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2285			sd = &vol->v_subdisks[sdi];
2286			if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD)
2287				state = G_RAID_SUBDISK_S_REBUILD;
2288			else if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC &&
2289			    state != G_RAID_SUBDISK_S_REBUILD)
2290				state = G_RAID_SUBDISK_S_RESYNC;
2291			else if (sd->sd_state == G_RAID_SUBDISK_S_STALE)
2292				stale = 1;
2293			if ((sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2294			    sd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
2295			     sd->sd_rebuild_pos < pos)
2296			        pos = sd->sd_rebuild_pos;
2297		}
2298		if (state == G_RAID_SUBDISK_S_REBUILD) {
2299			mvol->migr_state = 1;
2300			mvol->migr_type = INTEL_MT_REBUILD;
2301		} else if (state == G_RAID_SUBDISK_S_RESYNC) {
2302			mvol->migr_state = 1;
2303			/* mvol->migr_type = INTEL_MT_REPAIR; */
2304			mvol->migr_type = INTEL_MT_VERIFY;
2305			mvol->state |= INTEL_ST_VERIFY_AND_FIX;
2306		} else
2307			mvol->migr_state = 0;
2308		mvol->dirty = (vol->v_dirty || stale);
2309
2310		mmap0 = intel_get_map(mvol, 0);
2311
2312		/* Write map / common part of two maps. */
2313		intel_set_map_offset(mmap0, sd->sd_offset / sectorsize);
2314		intel_set_map_disk_sectors(mmap0, sd->sd_size / sectorsize);
2315		mmap0->strip_sectors = vol->v_strip_size / sectorsize;
2316		if (vol->v_state == G_RAID_VOLUME_S_BROKEN)
2317			mmap0->status = INTEL_S_FAILURE;
2318		else if (vol->v_state == G_RAID_VOLUME_S_DEGRADED)
2319			mmap0->status = INTEL_S_DEGRADED;
2320		else if (g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED)
2321		    == g_raid_nsubdisks(vol, -1))
2322			mmap0->status = INTEL_S_UNINITIALIZED;
2323		else
2324			mmap0->status = INTEL_S_READY;
2325		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
2326			mmap0->type = INTEL_T_RAID0;
2327		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
2328		    vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
2329			mmap0->type = INTEL_T_RAID1;
2330		else
2331			mmap0->type = INTEL_T_RAID5;
2332		mmap0->total_disks = vol->v_disks_count;
2333		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2334			mmap0->total_domains = vol->v_disks_count;
2335		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
2336			mmap0->total_domains = 2;
2337		else
2338			mmap0->total_domains = 1;
2339		intel_set_map_stripe_count(mmap0,
2340		    sd->sd_size / vol->v_strip_size / mmap0->total_domains);
2341		mmap0->failed_disk_num = 0xff;
2342		mmap0->ddf = 1;
2343
2344		/* If there are two maps - copy common and update. */
2345		if (mvol->migr_state) {
2346			intel_set_vol_curr_migr_unit(mvol,
2347			    pos / vol->v_strip_size / mmap0->total_domains);
2348			mmap1 = intel_get_map(mvol, 1);
2349			memcpy(mmap1, mmap0, sizeof(struct intel_raid_map));
2350			mmap0->status = INTEL_S_READY;
2351		} else
2352			mmap1 = NULL;
2353
2354		/* Write disk indexes and put rebuild flags. */
2355		for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2356			sd = &vol->v_subdisks[sdi];
2357			pd = (struct g_raid_md_intel_perdisk *)
2358			    sd->sd_disk->d_md_data;
2359			mmap0->disk_idx[sdi] = pd->pd_disk_pos;
2360			if (mvol->migr_state)
2361				mmap1->disk_idx[sdi] = pd->pd_disk_pos;
2362			if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2363			    sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2364				mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
2365			} else if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
2366			    sd->sd_state != G_RAID_SUBDISK_S_STALE &&
2367			    sd->sd_state != G_RAID_SUBDISK_S_UNINITIALIZED) {
2368				mmap0->disk_idx[sdi] |= INTEL_DI_RBLD;
2369				if (mvol->migr_state)
2370					mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
2371			}
2372			if ((sd->sd_state == G_RAID_SUBDISK_S_NONE ||
2373			     sd->sd_state == G_RAID_SUBDISK_S_FAILED) &&
2374			    mmap0->failed_disk_num == 0xff) {
2375				mmap0->failed_disk_num = sdi;
2376				if (mvol->migr_state)
2377					mmap1->failed_disk_num = sdi;
2378			}
2379		}
2380		vi++;
2381	}
2382	meta->total_volumes = vi;
2383	if (strcmp(version, INTEL_VERSION_1300) != 0)
2384		meta->attributes &= INTEL_ATTR_CHECKSUM;
2385	memcpy(&meta->version[0], version, sizeof(INTEL_VERSION_1000) - 1);
2386
2387	/* We are done. Print meta data and store them to disks. */
2388	g_raid_md_intel_print(meta);
2389	if (mdi->mdio_meta != NULL)
2390		free(mdi->mdio_meta, M_MD_INTEL);
2391	mdi->mdio_meta = meta;
2392	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2393		pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2394		if (disk->d_state != G_RAID_DISK_S_ACTIVE)
2395			continue;
2396		if (pd->pd_meta != NULL) {
2397			free(pd->pd_meta, M_MD_INTEL);
2398			pd->pd_meta = NULL;
2399		}
2400		pd->pd_meta = intel_meta_copy(meta);
2401		intel_meta_write(disk->d_consumer, meta);
2402	}
2403	return (0);
2404}
2405
2406static int
2407g_raid_md_fail_disk_intel(struct g_raid_md_object *md,
2408    struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2409{
2410	struct g_raid_softc *sc;
2411	struct g_raid_md_intel_object *mdi;
2412	struct g_raid_md_intel_perdisk *pd;
2413	struct g_raid_subdisk *sd;
2414
2415	sc = md->mdo_softc;
2416	mdi = (struct g_raid_md_intel_object *)md;
2417	pd = (struct g_raid_md_intel_perdisk *)tdisk->d_md_data;
2418
2419	/* We can't fail disk that is not a part of array now. */
2420	if (pd->pd_disk_pos < 0)
2421		return (-1);
2422
2423	/*
2424	 * Mark disk as failed in metadata and try to write that metadata
2425	 * to the disk itself to prevent it's later resurrection as STALE.
2426	 */
2427	mdi->mdio_meta->disk[pd->pd_disk_pos].flags = INTEL_F_FAILED;
2428	pd->pd_disk_meta.flags = INTEL_F_FAILED;
2429	g_raid_md_intel_print(mdi->mdio_meta);
2430	if (tdisk->d_consumer)
2431		intel_meta_write(tdisk->d_consumer, mdi->mdio_meta);
2432
2433	/* Change states. */
2434	g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
2435	TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
2436		g_raid_change_subdisk_state(sd,
2437		    G_RAID_SUBDISK_S_FAILED);
2438		g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
2439		    G_RAID_EVENT_SUBDISK);
2440	}
2441
2442	/* Write updated metadata to remaining disks. */
2443	g_raid_md_write_intel(md, NULL, NULL, tdisk);
2444
2445	/* Check if anything left except placeholders. */
2446	if (g_raid_ndisks(sc, -1) ==
2447	    g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
2448		g_raid_destroy_node(sc, 0);
2449	else
2450		g_raid_md_intel_refill(sc);
2451	return (0);
2452}
2453
2454static int
2455g_raid_md_free_disk_intel(struct g_raid_md_object *md,
2456    struct g_raid_disk *disk)
2457{
2458	struct g_raid_md_intel_perdisk *pd;
2459
2460	pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2461	if (pd->pd_meta != NULL) {
2462		free(pd->pd_meta, M_MD_INTEL);
2463		pd->pd_meta = NULL;
2464	}
2465	free(pd, M_MD_INTEL);
2466	disk->d_md_data = NULL;
2467	return (0);
2468}
2469
2470static int
2471g_raid_md_free_volume_intel(struct g_raid_md_object *md,
2472    struct g_raid_volume *vol)
2473{
2474	struct g_raid_md_intel_pervolume *pv;
2475
2476	pv = (struct g_raid_md_intel_pervolume *)vol->v_md_data;
2477	free(pv, M_MD_INTEL);
2478	vol->v_md_data = NULL;
2479	return (0);
2480}
2481
2482static int
2483g_raid_md_free_intel(struct g_raid_md_object *md)
2484{
2485	struct g_raid_md_intel_object *mdi;
2486
2487	mdi = (struct g_raid_md_intel_object *)md;
2488	if (!mdi->mdio_started) {
2489		mdi->mdio_started = 0;
2490		callout_stop(&mdi->mdio_start_co);
2491		G_RAID_DEBUG1(1, md->mdo_softc,
2492		    "root_mount_rel %p", mdi->mdio_rootmount);
2493		root_mount_rel(mdi->mdio_rootmount);
2494		mdi->mdio_rootmount = NULL;
2495	}
2496	if (mdi->mdio_meta != NULL) {
2497		free(mdi->mdio_meta, M_MD_INTEL);
2498		mdi->mdio_meta = NULL;
2499	}
2500	return (0);
2501}
2502
2503G_RAID_MD_DECLARE(intel, "Intel");
2504