md_intel.c revision 220210
1/*-
2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/geom/raid/md_intel.c 220210 2011-03-31 16:19:53Z mav $");
29
30#include <sys/param.h>
31#include <sys/bio.h>
32#include <sys/endian.h>
33#include <sys/kernel.h>
34#include <sys/kobj.h>
35#include <sys/limits.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mutex.h>
39#include <sys/systm.h>
40#include <sys/taskqueue.h>
41#include <geom/geom.h>
42#include "geom/raid/g_raid.h"
43#include "g_raid_md_if.h"
44
45static MALLOC_DEFINE(M_MD_INTEL, "md_intel_data", "GEOM_RAID Intel metadata");
46
47struct intel_raid_map {
48	uint32_t	offset;
49	uint32_t	disk_sectors;
50	uint32_t	stripe_count;
51	uint16_t	strip_sectors;
52	uint8_t		status;
53#define INTEL_S_READY           0x00
54#define INTEL_S_UNINITIALIZED   0x01
55#define INTEL_S_DEGRADED        0x02
56#define INTEL_S_FAILURE         0x03
57
58	uint8_t		type;
59#define INTEL_T_RAID0           0x00
60#define INTEL_T_RAID1           0x01
61#define INTEL_T_RAID5           0x05
62
63	uint8_t		total_disks;
64	uint8_t		total_domains;
65	uint8_t		failed_disk_num;
66	uint8_t		ddf;
67	uint32_t	filler_2[7];
68	uint32_t	disk_idx[1];	/* total_disks entries. */
69#define INTEL_DI_IDX	0x00ffffff
70#define INTEL_DI_RBLD	0x01000000
71} __packed;
72
73struct intel_raid_vol {
74	uint8_t		name[16];
75	u_int64_t	total_sectors __packed;
76	uint32_t	state;
77#define INTEL_ST_BOOTABLE		0x00000001
78#define INTEL_ST_BOOT_DEVICE		0x00000002
79#define INTEL_ST_READ_COALESCING	0x00000004
80#define INTEL_ST_WRITE_COALESCING	0x00000008
81#define INTEL_ST_LAST_SHUTDOWN_DIRTY	0x00000010
82#define INTEL_ST_HIDDEN_AT_BOOT		0x00000020
83#define INTEL_ST_CURRENTLY_HIDDEN	0x00000040
84#define INTEL_ST_VERIFY_AND_FIX		0x00000080
85#define INTEL_ST_MAP_STATE_UNINIT	0x00000100
86#define INTEL_ST_NO_AUTO_RECOVERY	0x00000200
87#define INTEL_ST_CLONE_N_GO		0x00000400
88#define INTEL_ST_CLONE_MAN_SYNC		0x00000800
89#define INTEL_ST_CNG_MASTER_DISK_NUM	0x00001000
90	uint32_t	reserved;
91	uint8_t		migr_priority;
92	uint8_t		num_sub_vols;
93	uint8_t		tid;
94	uint8_t		cng_master_disk;
95	uint16_t	cache_policy;
96	uint8_t		cng_state;
97	uint8_t		cng_sub_state;
98	uint32_t	filler_0[10];
99
100	uint32_t	curr_migr_unit;
101	uint32_t	checkpoint_id;
102	uint8_t		migr_state;
103	uint8_t		migr_type;
104#define INTEL_MT_INIT		0
105#define INTEL_MT_REBUILD	1
106#define INTEL_MT_VERIFY		2
107#define INTEL_MT_GEN_MIGR	3
108#define INTEL_MT_STATE_CHANGE	4
109#define INTEL_MT_REPAIR		5
110	uint8_t		dirty;
111	uint8_t		fs_state;
112	uint16_t	verify_errors;
113	uint16_t	bad_blocks;
114	uint32_t	filler_1[4];
115	struct intel_raid_map map[1];	/* 2 entries if migr_state != 0. */
116} __packed;
117
118struct intel_raid_disk {
119#define INTEL_SERIAL_LEN	16
120	uint8_t		serial[INTEL_SERIAL_LEN];
121	uint32_t	sectors;
122	uint32_t	id;
123	uint32_t	flags;
124#define INTEL_F_SPARE		0x01
125#define INTEL_F_ASSIGNED	0x02
126#define INTEL_F_FAILED		0x04
127#define INTEL_F_ONLINE		0x08
128
129	uint32_t	filler[5];
130} __packed;
131
132struct intel_raid_conf {
133	uint8_t		intel_id[24];
134#define INTEL_MAGIC             "Intel Raid ISM Cfg Sig. "
135
136	uint8_t		version[6];
137#define INTEL_VERSION_1000	"1.0.00"	/* RAID0 */
138#define INTEL_VERSION_1100	"1.1.00"	/* RAID1 */
139#define INTEL_VERSION_1200	"1.2.00"	/* Many volumes */
140#define INTEL_VERSION_1201	"1.2.01"	/* 3 or 4 disks */
141#define INTEL_VERSION_1202	"1.2.02"	/* RAID5 */
142#define INTEL_VERSION_1204	"1.2.04"	/* 5 or 6 disks */
143#define INTEL_VERSION_1206	"1.2.06"	/* CNG */
144#define INTEL_VERSION_1300	"1.3.00"	/* Attributes */
145
146	uint8_t		dummy_0[2];
147	uint32_t	checksum;
148	uint32_t	config_size;
149	uint32_t	config_id;
150	uint32_t	generation;
151	uint32_t	error_log_size;
152	uint32_t	attributes;
153#define INTEL_ATTR_RAID0	0x00000001
154#define INTEL_ATTR_RAID1	0x00000002
155#define INTEL_ATTR_RAID10	0x00000004
156#define INTEL_ATTR_RAID1E	0x00000008
157#define INTEL_ATTR_RAID5	0x00000010
158#define INTEL_ATTR_RAIDCNG	0x00000020
159#define INTEL_ATTR_2TB		0x20000000
160#define INTEL_ATTR_PM		0x40000000
161#define INTEL_ATTR_CHECKSUM	0x80000000
162
163	uint8_t		total_disks;
164	uint8_t		total_volumes;
165	uint8_t		dummy_2[2];
166	uint32_t	filler_0[39];
167	struct intel_raid_disk	disk[1];	/* total_disks entries. */
168	/* Here goes total_volumes of struct intel_raid_vol. */
169} __packed;
170
171#define INTEL_MAX_MD_SIZE(ndisks)				\
172    (sizeof(struct intel_raid_conf) +				\
173     sizeof(struct intel_raid_disk) * (ndisks - 1) +		\
174     sizeof(struct intel_raid_vol) * 2 +			\
175     sizeof(struct intel_raid_map) * 2 +			\
176     sizeof(uint32_t) * (ndisks - 1) * 4)
177
178struct g_raid_md_intel_perdisk {
179	struct intel_raid_conf	*pd_meta;
180	int			 pd_disk_pos;
181	struct intel_raid_disk	 pd_disk_meta;
182};
183
184struct g_raid_md_intel_object {
185	struct g_raid_md_object	 mdio_base;
186	uint32_t		 mdio_config_id;
187	uint32_t		 mdio_generation;
188	struct intel_raid_conf	*mdio_meta;
189	struct callout		 mdio_start_co;	/* STARTING state timer. */
190	int			 mdio_disks_present;
191	int			 mdio_started;
192	int			 mdio_incomplete;
193	struct root_hold_token	*mdio_rootmount; /* Root mount delay token. */
194};
195
196static g_raid_md_create_t g_raid_md_create_intel;
197static g_raid_md_taste_t g_raid_md_taste_intel;
198static g_raid_md_event_t g_raid_md_event_intel;
199static g_raid_md_ctl_t g_raid_md_ctl_intel;
200static g_raid_md_write_t g_raid_md_write_intel;
201static g_raid_md_fail_disk_t g_raid_md_fail_disk_intel;
202static g_raid_md_free_disk_t g_raid_md_free_disk_intel;
203static g_raid_md_free_t g_raid_md_free_intel;
204
205static kobj_method_t g_raid_md_intel_methods[] = {
206	KOBJMETHOD(g_raid_md_create,	g_raid_md_create_intel),
207	KOBJMETHOD(g_raid_md_taste,	g_raid_md_taste_intel),
208	KOBJMETHOD(g_raid_md_event,	g_raid_md_event_intel),
209	KOBJMETHOD(g_raid_md_ctl,	g_raid_md_ctl_intel),
210	KOBJMETHOD(g_raid_md_write,	g_raid_md_write_intel),
211	KOBJMETHOD(g_raid_md_fail_disk,	g_raid_md_fail_disk_intel),
212	KOBJMETHOD(g_raid_md_free_disk,	g_raid_md_free_disk_intel),
213	KOBJMETHOD(g_raid_md_free,	g_raid_md_free_intel),
214	{ 0, 0 }
215};
216
217static struct g_raid_md_class g_raid_md_intel_class = {
218	"Intel",
219	g_raid_md_intel_methods,
220	sizeof(struct g_raid_md_intel_object),
221	.mdc_priority = 100
222};
223
224
225static struct intel_raid_map *
226intel_get_map(struct intel_raid_vol *mvol, int i)
227{
228	struct intel_raid_map *mmap;
229
230	if (i > (mvol->migr_state ? 1 : 0))
231		return (NULL);
232	mmap = &mvol->map[0];
233	for (; i > 0; i--) {
234		mmap = (struct intel_raid_map *)
235		    &mmap->disk_idx[mmap->total_disks];
236	}
237	return ((struct intel_raid_map *)mmap);
238}
239
240static struct intel_raid_vol *
241intel_get_volume(struct intel_raid_conf *meta, int i)
242{
243	struct intel_raid_vol *mvol;
244	struct intel_raid_map *mmap;
245
246	if (i > 1)
247		return (NULL);
248	mvol = (struct intel_raid_vol *)&meta->disk[meta->total_disks];
249	for (; i > 0; i--) {
250		mmap = intel_get_map(mvol, mvol->migr_state ? 1 : 0);
251		mvol = (struct intel_raid_vol *)
252		    &mmap->disk_idx[mmap->total_disks];
253	}
254	return (mvol);
255}
256
257static void
258g_raid_md_intel_print(struct intel_raid_conf *meta)
259{
260	struct intel_raid_vol *mvol;
261	struct intel_raid_map *mmap;
262	int i, j, k;
263
264	if (g_raid_debug < 1)
265		return;
266
267	printf("********* ATA Intel MatrixRAID Metadata *********\n");
268	printf("intel_id            <%.24s>\n", meta->intel_id);
269	printf("version             <%.6s>\n", meta->version);
270	printf("checksum            0x%08x\n", meta->checksum);
271	printf("config_size         0x%08x\n", meta->config_size);
272	printf("config_id           0x%08x\n", meta->config_id);
273	printf("generation          0x%08x\n", meta->generation);
274	printf("attributes          0x%08x\n", meta->attributes);
275	printf("total_disks         %u\n", meta->total_disks);
276	printf("total_volumes       %u\n", meta->total_volumes);
277	printf("DISK#   serial disk_sectors disk_id flags\n");
278	for (i = 0; i < meta->total_disks; i++ ) {
279		printf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
280		    meta->disk[i].serial, meta->disk[i].sectors,
281		    meta->disk[i].id, meta->disk[i].flags);
282	}
283	for (i = 0; i < meta->total_volumes; i++) {
284		mvol = intel_get_volume(meta, i);
285		printf(" ****** Volume %d ******\n", i);
286		printf(" name               %.16s\n", mvol->name);
287		printf(" total_sectors      %ju\n", mvol->total_sectors);
288		printf(" state              %u\n", mvol->state);
289		printf(" reserved           %u\n", mvol->reserved);
290		printf(" curr_migr_unit     %u\n", mvol->curr_migr_unit);
291		printf(" checkpoint_id      %u\n", mvol->checkpoint_id);
292		printf(" migr_state         %u\n", mvol->migr_state);
293		printf(" migr_type          %u\n", mvol->migr_type);
294		printf(" dirty              %u\n", mvol->dirty);
295
296		for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
297			printf("  *** Map %d ***\n", j);
298			mmap = intel_get_map(mvol, j);
299			printf("  offset            %u\n", mmap->offset);
300			printf("  disk_sectors      %u\n", mmap->disk_sectors);
301			printf("  stripe_count      %u\n", mmap->stripe_count);
302			printf("  strip_sectors     %u\n", mmap->strip_sectors);
303			printf("  status            %u\n", mmap->status);
304			printf("  type              %u\n", mmap->type);
305			printf("  total_disks       %u\n", mmap->total_disks);
306			printf("  total_domains     %u\n", mmap->total_domains);
307			printf("  failed_disk_num   %u\n", mmap->failed_disk_num);
308			printf("  ddf               %u\n", mmap->ddf);
309			printf("  disk_idx         ");
310			for (k = 0; k < mmap->total_disks; k++)
311				printf(" 0x%08x", mmap->disk_idx[k]);
312			printf("\n");
313		}
314	}
315	printf("=================================================\n");
316}
317
318static struct intel_raid_conf *
319intel_meta_copy(struct intel_raid_conf *meta)
320{
321	struct intel_raid_conf *nmeta;
322
323	nmeta = malloc(meta->config_size, M_MD_INTEL, M_WAITOK);
324	memcpy(nmeta, meta, meta->config_size);
325	return (nmeta);
326}
327
328static int
329intel_meta_find_disk(struct intel_raid_conf *meta, char *serial)
330{
331	int pos;
332
333	for (pos = 0; pos < meta->total_disks; pos++) {
334		if (strncmp(meta->disk[pos].serial,
335		    serial, INTEL_SERIAL_LEN) == 0)
336			return (pos);
337	}
338	return (-1);
339}
340
341static struct intel_raid_conf *
342intel_meta_read(struct g_consumer *cp)
343{
344	struct g_provider *pp;
345	struct intel_raid_conf *meta;
346	struct intel_raid_vol *mvol;
347	struct intel_raid_map *mmap;
348	char *buf;
349	int error, i, j, k, left, size;
350	uint32_t checksum, *ptr;
351
352	pp = cp->provider;
353
354	/* Read the anchor sector. */
355	buf = g_read_data(cp,
356	    pp->mediasize - pp->sectorsize * 2, pp->sectorsize, &error);
357	if (buf == NULL) {
358		G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
359		    pp->name, error);
360		return (NULL);
361	}
362	meta = (struct intel_raid_conf *)buf;
363
364	/* Check if this is an Intel RAID struct */
365	if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
366		G_RAID_DEBUG(1, "Intel signature check failed on %s", pp->name);
367		g_free(buf);
368		return (NULL);
369	}
370	if (meta->config_size > 65536 ||
371	    meta->config_size < sizeof(struct intel_raid_conf)) {
372		G_RAID_DEBUG(1, "Intel metadata size looks wrong: %d",
373		    meta->config_size);
374		g_free(buf);
375		return (NULL);
376	}
377	size = meta->config_size;
378	meta = malloc(size, M_MD_INTEL, M_WAITOK);
379	memcpy(meta, buf, min(size, pp->sectorsize));
380	g_free(buf);
381
382	/* Read all the rest, if needed. */
383	if (meta->config_size > pp->sectorsize) {
384		left = (meta->config_size - 1) / pp->sectorsize;
385		buf = g_read_data(cp,
386		    pp->mediasize - pp->sectorsize * (2 + left),
387		    pp->sectorsize * left, &error);
388		if (buf == NULL) {
389			G_RAID_DEBUG(1, "Cannot read remaining metadata"
390			    " part from %s (error=%d).",
391			    pp->name, error);
392			free(meta, M_MD_INTEL);
393			return (NULL);
394		}
395		memcpy(((char *)meta) + pp->sectorsize, buf,
396		    pp->sectorsize * left);
397		g_free(buf);
398	}
399
400	/* Check metadata checksum. */
401	for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
402	    i < (meta->config_size / sizeof(uint32_t)); i++) {
403		checksum += *ptr++;
404	}
405	checksum -= meta->checksum;
406	if (checksum != meta->checksum) {
407		G_RAID_DEBUG(1, "Intel checksum check failed on %s", pp->name);
408		free(meta, M_MD_INTEL);
409		return (NULL);
410	}
411
412	/* Validate metadata size. */
413	size = sizeof(struct intel_raid_conf) +
414	    sizeof(struct intel_raid_disk) * (meta->total_disks - 1) +
415	    sizeof(struct intel_raid_vol) * meta->total_volumes;
416	if (size > meta->config_size) {
417badsize:
418		G_RAID_DEBUG(1, "Intel metadata size incorrect %d < %d",
419		    meta->config_size, size);
420		free(meta, M_MD_INTEL);
421		return (NULL);
422	}
423	for (i = 0; i < meta->total_volumes; i++) {
424		mvol = intel_get_volume(meta, i);
425		mmap = intel_get_map(mvol, 0);
426		size += 4 * (mmap->total_disks - 1);
427		if (size > meta->config_size)
428			goto badsize;
429		if (mvol->migr_state) {
430			size += sizeof(struct intel_raid_map);
431			if (size > meta->config_size)
432				goto badsize;
433			mmap = intel_get_map(mvol, 1);
434			size += 4 * (mmap->total_disks - 1);
435			if (size > meta->config_size)
436				goto badsize;
437		}
438	}
439
440	/* Validate disk indexes. */
441	for (i = 0; i < meta->total_volumes; i++) {
442		mvol = intel_get_volume(meta, i);
443		for (j = 0; j < (mvol->migr_state ? 2 : 1); j++) {
444			mmap = intel_get_map(mvol, j);
445			for (k = 0; k < mmap->total_disks; k++) {
446				if ((mmap->disk_idx[k] & INTEL_DI_IDX) >
447				    meta->total_disks) {
448					G_RAID_DEBUG(1, "Intel metadata disk"
449					    " index %d too big (>%d)",
450					    mmap->disk_idx[k] & INTEL_DI_IDX,
451					    meta->total_disks);
452					free(meta, M_MD_INTEL);
453					return (NULL);
454				}
455			}
456		}
457	}
458
459	/* Validate migration types. */
460	for (i = 0; i < meta->total_volumes; i++) {
461		mvol = intel_get_volume(meta, i);
462		if (mvol->migr_state &&
463		    mvol->migr_type != INTEL_MT_INIT &&
464		    mvol->migr_type != INTEL_MT_REBUILD &&
465		    mvol->migr_type != INTEL_MT_VERIFY &&
466		    mvol->migr_type != INTEL_MT_REPAIR) {
467			G_RAID_DEBUG(1, "Intel metadata has unsupported"
468			    " migration type %d", mvol->migr_type);
469			free(meta, M_MD_INTEL);
470			return (NULL);
471		}
472	}
473
474	return (meta);
475}
476
477static int
478intel_meta_write(struct g_consumer *cp, struct intel_raid_conf *meta)
479{
480	struct g_provider *pp;
481	char *buf;
482	int error, i, sectors;
483	uint32_t checksum, *ptr;
484
485	pp = cp->provider;
486
487	/* Recalculate checksum for case if metadata were changed. */
488	meta->checksum = 0;
489	for (checksum = 0, ptr = (uint32_t *)meta, i = 0;
490	    i < (meta->config_size / sizeof(uint32_t)); i++) {
491		checksum += *ptr++;
492	}
493	meta->checksum = checksum;
494
495	/* Create and fill buffer. */
496	sectors = (meta->config_size + pp->sectorsize - 1) / pp->sectorsize;
497	buf = malloc(sectors * pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
498	if (sectors > 1) {
499		memcpy(buf, ((char *)meta) + pp->sectorsize,
500		    (sectors - 1) * pp->sectorsize);
501	}
502	memcpy(buf + (sectors - 1) * pp->sectorsize, meta, pp->sectorsize);
503
504	error = g_write_data(cp,
505	    pp->mediasize - pp->sectorsize * (1 + sectors),
506	    buf, pp->sectorsize * sectors);
507	if (error != 0) {
508		G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
509		    pp->name, error);
510	}
511
512	free(buf, M_MD_INTEL);
513	return (error);
514}
515
516static int
517intel_meta_erase(struct g_consumer *cp)
518{
519	struct g_provider *pp;
520	char *buf;
521	int error;
522
523	pp = cp->provider;
524	buf = malloc(pp->sectorsize, M_MD_INTEL, M_WAITOK | M_ZERO);
525	error = g_write_data(cp,
526	    pp->mediasize - 2 * pp->sectorsize,
527	    buf, pp->sectorsize);
528	if (error != 0) {
529		G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
530		    pp->name, error);
531	}
532	free(buf, M_MD_INTEL);
533	return (error);
534}
535
536static int
537intel_meta_write_spare(struct g_consumer *cp, struct intel_raid_disk *d)
538{
539	struct intel_raid_conf *meta;
540	int error;
541
542	/* Fill anchor and single disk. */
543	meta = malloc(INTEL_MAX_MD_SIZE(1), M_MD_INTEL, M_WAITOK | M_ZERO);
544	memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
545	memcpy(&meta->version[0], INTEL_VERSION_1000,
546	    sizeof(INTEL_VERSION_1000) - 1);
547	meta->config_size = INTEL_MAX_MD_SIZE(1);
548	meta->config_id = arc4random();
549	meta->generation = 1;
550	meta->total_disks = 1;
551	meta->disk[0] = *d;
552	error = intel_meta_write(cp, meta);
553	free(meta, M_MD_INTEL);
554	return (error);
555}
556
557static struct g_raid_disk *
558g_raid_md_intel_get_disk(struct g_raid_softc *sc, int id)
559{
560	struct g_raid_disk	*disk;
561	struct g_raid_md_intel_perdisk *pd;
562
563	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
564		pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
565		if (pd->pd_disk_pos == id)
566			break;
567	}
568	return (disk);
569}
570
571static int
572g_raid_md_intel_supported(int level, int qual, int disks, int force)
573{
574
575	switch (level) {
576	case G_RAID_VOLUME_RL_RAID0:
577		if (disks < 1)
578			return (0);
579		if (!force && (disks < 2 || disks > 6))
580			return (0);
581		break;
582	case G_RAID_VOLUME_RL_RAID1:
583		if (disks < 1)
584			return (0);
585		if (!force && (disks != 2))
586			return (0);
587		break;
588	case G_RAID_VOLUME_RL_RAID1E:
589		if (disks < 2)
590			return (0);
591		if (!force && (disks != 4))
592			return (0);
593		break;
594	case G_RAID_VOLUME_RL_RAID5:
595		if (disks < 3)
596			return (0);
597		if (!force && disks > 6)
598			return (0);
599		break;
600	default:
601		return (0);
602	}
603	if (qual != G_RAID_VOLUME_RLQ_NONE)
604		return (0);
605	return (1);
606}
607
608static struct g_raid_volume *
609g_raid_md_intel_get_volume(struct g_raid_softc *sc, int id)
610{
611	struct g_raid_volume	*mvol;
612
613	TAILQ_FOREACH(mvol, &sc->sc_volumes, v_next) {
614		if ((intptr_t)(mvol->v_md_data) == id)
615			break;
616	}
617	return (mvol);
618}
619
620static int
621g_raid_md_intel_start_disk(struct g_raid_disk *disk)
622{
623	struct g_raid_softc *sc;
624	struct g_raid_subdisk *sd, *tmpsd;
625	struct g_raid_disk *olddisk, *tmpdisk;
626	struct g_raid_md_object *md;
627	struct g_raid_md_intel_object *mdi;
628	struct g_raid_md_intel_perdisk *pd, *oldpd;
629	struct intel_raid_conf *meta;
630	struct intel_raid_vol *mvol;
631	struct intel_raid_map *mmap0, *mmap1;
632	int disk_pos, resurrection = 0;
633
634	sc = disk->d_softc;
635	md = sc->sc_md;
636	mdi = (struct g_raid_md_intel_object *)md;
637	meta = mdi->mdio_meta;
638	pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
639	olddisk = NULL;
640
641	/* Find disk position in metadata by it's serial. */
642	disk_pos = intel_meta_find_disk(meta, pd->pd_disk_meta.serial);
643	if (disk_pos < 0) {
644		G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk");
645		/* Failed stale disk is useless for us. */
646		if (pd->pd_disk_meta.flags & INTEL_F_FAILED) {
647			g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
648			return (0);
649		}
650		/* If we are in the start process, that's all for now. */
651		if (!mdi->mdio_started)
652			goto nofit;
653		/*
654		 * If we have already started - try to get use of the disk.
655		 * Try to replace OFFLINE disks first, then FAILED.
656		 */
657		TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) {
658			if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE &&
659			    tmpdisk->d_state != G_RAID_DISK_S_FAILED)
660				continue;
661			/* Make sure this disk is big enough. */
662			TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) {
663				if (sd->sd_offset + sd->sd_size + 4096 >
664				    (off_t)pd->pd_disk_meta.sectors * 512) {
665					G_RAID_DEBUG1(1, sc,
666					    "Disk too small (%llu < %llu)",
667					    ((unsigned long long)
668					    pd->pd_disk_meta.sectors) * 512,
669					    (unsigned long long)
670					    sd->sd_offset + sd->sd_size + 4096);
671					break;
672				}
673			}
674			if (sd != NULL)
675				continue;
676			if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) {
677				olddisk = tmpdisk;
678				break;
679			} else if (olddisk == NULL)
680				olddisk = tmpdisk;
681		}
682		if (olddisk == NULL) {
683nofit:
684			if (pd->pd_disk_meta.flags & INTEL_F_SPARE) {
685				g_raid_change_disk_state(disk,
686				    G_RAID_DISK_S_SPARE);
687				return (1);
688			} else {
689				g_raid_change_disk_state(disk,
690				    G_RAID_DISK_S_STALE);
691				return (0);
692			}
693		}
694		oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
695		disk_pos = oldpd->pd_disk_pos;
696		resurrection = 1;
697	}
698
699	if (olddisk == NULL) {
700		/* Find placeholder by position. */
701		olddisk = g_raid_md_intel_get_disk(sc, disk_pos);
702		if (olddisk == NULL)
703			panic("No disk at position %d!", disk_pos);
704		if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) {
705			G_RAID_DEBUG1(1, sc, "More then one disk for pos %d",
706			    disk_pos);
707			g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE);
708			return (0);
709		}
710		oldpd = (struct g_raid_md_intel_perdisk *)olddisk->d_md_data;
711	}
712
713	/* Replace failed disk or placeholder with new disk. */
714	TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) {
715		TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next);
716		TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
717		sd->sd_disk = disk;
718	}
719	oldpd->pd_disk_pos = -2;
720	pd->pd_disk_pos = disk_pos;
721
722	/* If it was placeholder -- destroy it. */
723	if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) {
724		g_raid_destroy_disk(olddisk);
725	} else {
726		/* Otherwise, make it STALE_FAILED. */
727		g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED);
728		/* Update global metadata just in case. */
729		memcpy(&meta->disk[disk_pos], &pd->pd_disk_meta,
730		    sizeof(struct intel_raid_disk));
731	}
732
733	/* Welcome the new disk. */
734	if (resurrection)
735		g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
736	else if (meta->disk[disk_pos].flags & INTEL_F_FAILED)
737		g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
738	else if (meta->disk[disk_pos].flags & INTEL_F_SPARE)
739		g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
740	else
741		g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
742	TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
743		mvol = intel_get_volume(meta,
744		    (uintptr_t)(sd->sd_volume->v_md_data));
745		mmap0 = intel_get_map(mvol, 0);
746		if (mvol->migr_state)
747			mmap1 = intel_get_map(mvol, 1);
748		else
749			mmap1 = mmap0;
750
751		if (resurrection) {
752			/* Stale disk, almost same as new. */
753			g_raid_change_subdisk_state(sd,
754			    G_RAID_SUBDISK_S_NEW);
755		} else if (meta->disk[disk_pos].flags & INTEL_F_FAILED) {
756			/* Failed disk, almost useless. */
757			g_raid_change_subdisk_state(sd,
758			    G_RAID_SUBDISK_S_FAILED);
759		} else if (mvol->migr_state == 0) {
760			if (mmap0->status == INTEL_S_UNINITIALIZED) {
761				/* Freshly created uninitialized volume. */
762				g_raid_change_subdisk_state(sd,
763				    G_RAID_SUBDISK_S_UNINITIALIZED);
764			} else if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
765				/* Freshly inserted disk. */
766				g_raid_change_subdisk_state(sd,
767				    G_RAID_SUBDISK_S_NEW);
768			} else if (mvol->dirty) {
769				/* Dirty volume (unclean shutdown). */
770				g_raid_change_subdisk_state(sd,
771				    G_RAID_SUBDISK_S_STALE);
772			} else {
773				/* Up to date disk. */
774				g_raid_change_subdisk_state(sd,
775				    G_RAID_SUBDISK_S_ACTIVE);
776			}
777		} else if (mvol->migr_type == INTEL_MT_INIT ||
778			   mvol->migr_type == INTEL_MT_REBUILD) {
779			if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
780				/* Freshly inserted disk. */
781				g_raid_change_subdisk_state(sd,
782				    G_RAID_SUBDISK_S_NEW);
783			} else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
784				/* Rebuilding disk. */
785				g_raid_change_subdisk_state(sd,
786				    G_RAID_SUBDISK_S_REBUILD);
787				if (mvol->dirty) {
788					sd->sd_rebuild_pos = 0;
789				} else {
790					sd->sd_rebuild_pos =
791					    (off_t)mvol->curr_migr_unit *
792					    sd->sd_volume->v_strip_size *
793					    mmap0->total_domains;
794				}
795			} else if (mvol->dirty) {
796				/* Dirty volume (unclean shutdown). */
797				g_raid_change_subdisk_state(sd,
798				    G_RAID_SUBDISK_S_STALE);
799			} else {
800				/* Up to date disk. */
801				g_raid_change_subdisk_state(sd,
802				    G_RAID_SUBDISK_S_ACTIVE);
803			}
804		} else if (mvol->migr_type == INTEL_MT_VERIFY ||
805			   mvol->migr_type == INTEL_MT_REPAIR) {
806			if (mmap0->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
807				/* Freshly inserted disk. */
808				g_raid_change_subdisk_state(sd,
809				    G_RAID_SUBDISK_S_NEW);
810			} else if (mmap1->disk_idx[sd->sd_pos] & INTEL_DI_RBLD) {
811				/* Resyncing disk. */
812				g_raid_change_subdisk_state(sd,
813				    G_RAID_SUBDISK_S_RESYNC);
814				if (mvol->dirty) {
815					sd->sd_rebuild_pos = 0;
816				} else {
817					sd->sd_rebuild_pos =
818					    (off_t)mvol->curr_migr_unit *
819					    sd->sd_volume->v_strip_size *
820					    mmap0->total_domains;
821				}
822			} else if (mvol->dirty) {
823				/* Dirty volume (unclean shutdown). */
824				g_raid_change_subdisk_state(sd,
825				    G_RAID_SUBDISK_S_STALE);
826			} else {
827				/* Up to date disk. */
828				g_raid_change_subdisk_state(sd,
829				    G_RAID_SUBDISK_S_ACTIVE);
830			}
831		}
832		g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
833		    G_RAID_EVENT_SUBDISK);
834	}
835
836	/* Update status of our need for spare. */
837	if (mdi->mdio_started) {
838		mdi->mdio_incomplete =
839		    (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) <
840		     meta->total_disks);
841	}
842
843	return (resurrection);
844}
845
846static void
847g_disk_md_intel_retaste(void *arg, int pending)
848{
849
850	G_RAID_DEBUG(1, "Array is not complete, trying to retaste.");
851	g_retaste(&g_raid_class);
852	free(arg, M_MD_INTEL);
853}
854
855static void
856g_raid_md_intel_refill(struct g_raid_softc *sc)
857{
858	struct g_raid_md_object *md;
859	struct g_raid_md_intel_object *mdi;
860	struct intel_raid_conf *meta;
861	struct g_raid_disk *disk;
862	struct task *task;
863	int update, na;
864
865	md = sc->sc_md;
866	mdi = (struct g_raid_md_intel_object *)md;
867	meta = mdi->mdio_meta;
868	update = 0;
869	do {
870		/* Make sure we miss anything. */
871		na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE);
872		if (na == meta->total_disks)
873			break;
874
875		G_RAID_DEBUG1(1, md->mdo_softc,
876		    "Array is not complete (%d of %d), "
877		    "trying to refill.", na, meta->total_disks);
878
879		/* Try to get use some of STALE disks. */
880		TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
881			if (disk->d_state == G_RAID_DISK_S_STALE) {
882				update += g_raid_md_intel_start_disk(disk);
883				if (disk->d_state == G_RAID_DISK_S_ACTIVE)
884					break;
885			}
886		}
887		if (disk != NULL)
888			continue;
889
890		/* Try to get use some of SPARE disks. */
891		TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
892			if (disk->d_state == G_RAID_DISK_S_SPARE) {
893				update += g_raid_md_intel_start_disk(disk);
894				if (disk->d_state == G_RAID_DISK_S_ACTIVE)
895					break;
896			}
897		}
898	} while (disk != NULL);
899
900	/* Write new metadata if we changed something. */
901	if (update) {
902		g_raid_md_write_intel(md, NULL, NULL, NULL);
903		meta = mdi->mdio_meta;
904	}
905
906	/* Update status of our need for spare. */
907	mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) <
908	    meta->total_disks);
909
910	/* Request retaste hoping to find spare. */
911	if (mdi->mdio_incomplete) {
912		task = malloc(sizeof(struct task),
913		    M_MD_INTEL, M_WAITOK | M_ZERO);
914		TASK_INIT(task, 0, g_disk_md_intel_retaste, task);
915		taskqueue_enqueue(taskqueue_swi, task);
916	}
917}
918
919static void
920g_raid_md_intel_start(struct g_raid_softc *sc)
921{
922	struct g_raid_md_object *md;
923	struct g_raid_md_intel_object *mdi;
924	struct g_raid_md_intel_perdisk *pd;
925	struct intel_raid_conf *meta;
926	struct intel_raid_vol *mvol;
927	struct intel_raid_map *mmap;
928	struct g_raid_volume *vol;
929	struct g_raid_subdisk *sd;
930	struct g_raid_disk *disk;
931	int i, j, disk_pos;
932
933	md = sc->sc_md;
934	mdi = (struct g_raid_md_intel_object *)md;
935	meta = mdi->mdio_meta;
936
937	/* Create volumes and subdisks. */
938	for (i = 0; i < meta->total_volumes; i++) {
939		mvol = intel_get_volume(meta, i);
940		mmap = intel_get_map(mvol, 0);
941		vol = g_raid_create_volume(sc, mvol->name, -1);
942		vol->v_md_data = (void *)(intptr_t)i;
943		if (mmap->type == INTEL_T_RAID0)
944			vol->v_raid_level = G_RAID_VOLUME_RL_RAID0;
945		else if (mmap->type == INTEL_T_RAID1 &&
946		    mmap->total_domains >= 2 &&
947		    mmap->total_domains <= mmap->total_disks) {
948			/* Assume total_domains is correct. */
949			if (mmap->total_domains == mmap->total_disks)
950				vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
951			else
952				vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
953		} else if (mmap->type == INTEL_T_RAID1) {
954			/* total_domains looks wrong. */
955			if (mmap->total_disks <= 2)
956				vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
957			else
958				vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
959		} else if (mmap->type == INTEL_T_RAID5)
960			vol->v_raid_level = G_RAID_VOLUME_RL_RAID5;
961		else
962			vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
963		vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
964		vol->v_strip_size = (u_int)mmap->strip_sectors * 512; //ZZZ
965		vol->v_disks_count = mmap->total_disks;
966		vol->v_mediasize = (off_t)mvol->total_sectors * 512; //ZZZ
967		vol->v_sectorsize = 512; //ZZZ
968		for (j = 0; j < vol->v_disks_count; j++) {
969			sd = &vol->v_subdisks[j];
970			sd->sd_offset = (off_t)mmap->offset * 512; //ZZZ
971			sd->sd_size = (off_t)mmap->disk_sectors * 512; //ZZZ
972		}
973		g_raid_start_volume(vol);
974	}
975
976	/* Create disk placeholders to store data for later writing. */
977	for (disk_pos = 0; disk_pos < meta->total_disks; disk_pos++) {
978		pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
979		pd->pd_disk_pos = disk_pos;
980		pd->pd_disk_meta = meta->disk[disk_pos];
981		disk = g_raid_create_disk(sc);
982		disk->d_md_data = (void *)pd;
983		disk->d_state = G_RAID_DISK_S_OFFLINE;
984		for (i = 0; i < meta->total_volumes; i++) {
985			mvol = intel_get_volume(meta, i);
986			mmap = intel_get_map(mvol, 0);
987			for (j = 0; j < mmap->total_disks; j++) {
988				if ((mmap->disk_idx[j] & INTEL_DI_IDX) == disk_pos)
989					break;
990			}
991			if (j == mmap->total_disks)
992				continue;
993			vol = g_raid_md_intel_get_volume(sc, i);
994			sd = &vol->v_subdisks[j];
995			sd->sd_disk = disk;
996			TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
997		}
998	}
999
1000	/* Make all disks found till the moment take their places. */
1001	do {
1002		TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1003			if (disk->d_state == G_RAID_DISK_S_NONE) {
1004				g_raid_md_intel_start_disk(disk);
1005				break;
1006			}
1007		}
1008	} while (disk != NULL);
1009
1010	mdi->mdio_started = 1;
1011	G_RAID_DEBUG1(0, sc, "Array started.");
1012	g_raid_md_write_intel(md, NULL, NULL, NULL);
1013
1014	/* Pickup any STALE/SPARE disks to refill array if needed. */
1015	g_raid_md_intel_refill(sc);
1016
1017	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1018		g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1019		    G_RAID_EVENT_VOLUME);
1020	}
1021
1022	callout_stop(&mdi->mdio_start_co);
1023	G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount);
1024	root_mount_rel(mdi->mdio_rootmount);
1025	mdi->mdio_rootmount = NULL;
1026}
1027
1028static void
1029g_raid_md_intel_new_disk(struct g_raid_disk *disk)
1030{
1031	struct g_raid_softc *sc;
1032	struct g_raid_md_object *md;
1033	struct g_raid_md_intel_object *mdi;
1034	struct intel_raid_conf *pdmeta;
1035	struct g_raid_md_intel_perdisk *pd;
1036
1037	sc = disk->d_softc;
1038	md = sc->sc_md;
1039	mdi = (struct g_raid_md_intel_object *)md;
1040	pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1041	pdmeta = pd->pd_meta;
1042
1043	if (mdi->mdio_started) {
1044		if (g_raid_md_intel_start_disk(disk))
1045			g_raid_md_write_intel(md, NULL, NULL, NULL);
1046	} else {
1047		/* If we haven't started yet - check metadata freshness. */
1048		if (mdi->mdio_meta == NULL ||
1049		    ((int32_t)(pdmeta->generation - mdi->mdio_generation)) > 0) {
1050			G_RAID_DEBUG1(1, sc, "Newer disk");
1051			if (mdi->mdio_meta != NULL)
1052				free(mdi->mdio_meta, M_MD_INTEL);
1053			mdi->mdio_meta = intel_meta_copy(pdmeta);
1054			mdi->mdio_generation = mdi->mdio_meta->generation;
1055			mdi->mdio_disks_present = 1;
1056		} else if (pdmeta->generation == mdi->mdio_generation) {
1057			mdi->mdio_disks_present++;
1058			G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)",
1059			    mdi->mdio_disks_present,
1060			    mdi->mdio_meta->total_disks);
1061		} else {
1062			G_RAID_DEBUG1(1, sc, "Older disk");
1063		}
1064		/* If we collected all needed disks - start array. */
1065		if (mdi->mdio_disks_present == mdi->mdio_meta->total_disks)
1066			g_raid_md_intel_start(sc);
1067	}
1068}
1069
1070static void
1071g_raid_intel_go(void *arg)
1072{
1073	struct g_raid_softc *sc;
1074	struct g_raid_md_object *md;
1075	struct g_raid_md_intel_object *mdi;
1076
1077	sc = arg;
1078	md = sc->sc_md;
1079	mdi = (struct g_raid_md_intel_object *)md;
1080	if (!mdi->mdio_started) {
1081		G_RAID_DEBUG1(0, sc, "Force array start due to timeout.");
1082		g_raid_event_send(sc, G_RAID_NODE_E_START, 0);
1083	}
1084}
1085
1086static int
1087g_raid_md_create_intel(struct g_raid_md_object *md, struct g_class *mp,
1088    struct g_geom **gp)
1089{
1090	struct g_raid_softc *sc;
1091	struct g_raid_md_intel_object *mdi;
1092	char name[16];
1093
1094	mdi = (struct g_raid_md_intel_object *)md;
1095	mdi->mdio_config_id = arc4random();
1096	mdi->mdio_generation = 0;
1097	snprintf(name, sizeof(name), "Intel-%08x", mdi->mdio_config_id);
1098	sc = g_raid_create_node(mp, name, md);
1099	if (sc == NULL)
1100		return (G_RAID_MD_TASTE_FAIL);
1101	md->mdo_softc = sc;
1102	*gp = sc->sc_geom;
1103	return (G_RAID_MD_TASTE_NEW);
1104}
1105
1106/*
1107 * Return the last N characters of the serial label.  The Linux and
1108 * ataraid(7) code always uses the last 16 characters of the label to
1109 * store into the Intel meta format.  Generalize this to N characters
1110 * since that's easy.  Labels can be up to 20 characters for SATA drives
1111 * and up 251 characters for SAS drives.  Since intel controllers don't
1112 * support SAS drives, just stick with the SATA limits for stack friendliness.
1113 */
1114static int
1115g_raid_md_get_label(struct g_consumer *cp, char *serial, int serlen)
1116{
1117	char serial_buffer[24];
1118	int len, error;
1119
1120	len = sizeof(serial_buffer);
1121	error = g_io_getattr("GEOM::ident", cp, &len, serial_buffer);
1122	if (error != 0)
1123		return (error);
1124	len = strlen(serial_buffer);
1125	if (len > serlen)
1126		len -= serlen;
1127	else
1128		len = 0;
1129	strncpy(serial, serial_buffer + len, serlen);
1130	return (0);
1131}
1132
1133static int
1134g_raid_md_taste_intel(struct g_raid_md_object *md, struct g_class *mp,
1135                              struct g_consumer *cp, struct g_geom **gp)
1136{
1137	struct g_consumer *rcp;
1138	struct g_provider *pp;
1139	struct g_raid_md_intel_object *mdi, *mdi1;
1140	struct g_raid_softc *sc;
1141	struct g_raid_disk *disk;
1142	struct intel_raid_conf *meta;
1143	struct g_raid_md_intel_perdisk *pd;
1144	struct g_geom *geom;
1145	int error, disk_pos, result, spare, len;
1146	char serial[INTEL_SERIAL_LEN];
1147	char name[16];
1148	uint16_t vendor;
1149
1150	G_RAID_DEBUG(1, "Tasting Intel on %s", cp->provider->name);
1151	mdi = (struct g_raid_md_intel_object *)md;
1152	pp = cp->provider;
1153
1154	/* Read metadata from device. */
1155	meta = NULL;
1156	vendor = 0xffff;
1157	disk_pos = 0;
1158	if (g_access(cp, 1, 0, 0) != 0)
1159		return (G_RAID_MD_TASTE_FAIL);
1160	g_topology_unlock();
1161	error = g_raid_md_get_label(cp, serial, sizeof(serial));
1162	if (error != 0) {
1163		G_RAID_DEBUG(1, "Cannot get serial number from %s (error=%d).",
1164		    pp->name, error);
1165		goto fail2;
1166	}
1167	len = 2;
1168	if (pp->geom->rank == 1)
1169		g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor);
1170	meta = intel_meta_read(cp);
1171	g_topology_lock();
1172	g_access(cp, -1, 0, 0);
1173	if (meta == NULL) {
1174		if (g_raid_aggressive_spare) {
1175			if (vendor == 0x8086) {
1176				G_RAID_DEBUG(1,
1177				    "No Intel metadata, forcing spare.");
1178				spare = 2;
1179				goto search;
1180			} else {
1181				G_RAID_DEBUG(1,
1182				    "Intel vendor mismatch 0x%04x != 0x8086",
1183				    vendor);
1184			}
1185		}
1186		return (G_RAID_MD_TASTE_FAIL);
1187	}
1188
1189	/* Check this disk position in obtained metadata. */
1190	disk_pos = intel_meta_find_disk(meta, serial);
1191	if (disk_pos < 0) {
1192		G_RAID_DEBUG(1, "Intel serial '%s' not found", serial);
1193		goto fail1;
1194	}
1195	if (meta->disk[disk_pos].sectors !=
1196	    (pp->mediasize / pp->sectorsize)) {
1197		G_RAID_DEBUG(1, "Intel size mismatch %u != %u",
1198		    meta->disk[disk_pos].sectors,
1199		    (u_int)(pp->mediasize / pp->sectorsize));
1200		goto fail1;
1201	}
1202
1203	/* Metadata valid. Print it. */
1204	g_raid_md_intel_print(meta);
1205	G_RAID_DEBUG(1, "Intel disk position %d", disk_pos);
1206	spare = meta->disk[disk_pos].flags & INTEL_F_SPARE;
1207
1208search:
1209	/* Search for matching node. */
1210	sc = NULL;
1211	mdi1 = NULL;
1212	LIST_FOREACH(geom, &mp->geom, geom) {
1213		sc = geom->softc;
1214		if (sc == NULL)
1215			continue;
1216		if (sc->sc_stopping != 0)
1217			continue;
1218		if (sc->sc_md->mdo_class != md->mdo_class)
1219			continue;
1220		mdi1 = (struct g_raid_md_intel_object *)sc->sc_md;
1221		if (spare) {
1222			if (mdi1->mdio_incomplete)
1223				break;
1224		} else {
1225			if (mdi1->mdio_config_id == meta->config_id)
1226				break;
1227		}
1228	}
1229
1230	/* Found matching node. */
1231	if (geom != NULL) {
1232		G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
1233		result = G_RAID_MD_TASTE_EXISTING;
1234
1235	} else if (spare) { /* Not found needy node -- left for later. */
1236		G_RAID_DEBUG(1, "Spare is not needed at this time");
1237		goto fail1;
1238
1239	} else { /* Not found matching node -- create one. */
1240		result = G_RAID_MD_TASTE_NEW;
1241		mdi->mdio_config_id = meta->config_id;
1242		snprintf(name, sizeof(name), "Intel-%08x", meta->config_id);
1243		sc = g_raid_create_node(mp, name, md);
1244		md->mdo_softc = sc;
1245		geom = sc->sc_geom;
1246		callout_init(&mdi->mdio_start_co, 1);
1247		callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz,
1248		    g_raid_intel_go, sc);
1249		mdi->mdio_rootmount = root_mount_hold("GRAID-Intel");
1250		G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount);
1251	}
1252
1253	rcp = g_new_consumer(geom);
1254	g_attach(rcp, pp);
1255	if (g_access(rcp, 1, 1, 1) != 0)
1256		; //goto fail1;
1257
1258	g_topology_unlock();
1259	sx_xlock(&sc->sc_lock);
1260
1261	pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1262	pd->pd_meta = meta;
1263	pd->pd_disk_pos = -1;
1264	if (spare == 2) {
1265		memcpy(&pd->pd_disk_meta.serial[0], serial, INTEL_SERIAL_LEN);
1266		pd->pd_disk_meta.sectors = pp->mediasize / pp->sectorsize;
1267		pd->pd_disk_meta.id = 0;
1268		pd->pd_disk_meta.flags = INTEL_F_SPARE;
1269	} else {
1270		pd->pd_disk_meta = meta->disk[disk_pos];
1271	}
1272	disk = g_raid_create_disk(sc);
1273	disk->d_md_data = (void *)pd;
1274	disk->d_consumer = rcp;
1275	rcp->private = disk;
1276
1277	/* Read kernel dumping information. */
1278	disk->d_kd.offset = 0;
1279	disk->d_kd.length = OFF_MAX;
1280	len = sizeof(disk->d_kd);
1281	error = g_io_getattr("GEOM::kerneldump", rcp, &len, &disk->d_kd);
1282	if (disk->d_kd.di.dumper == NULL)
1283		G_RAID_DEBUG1(2, sc, "Dumping not supported by %s: %d.",
1284		    rcp->provider->name, error);
1285
1286	g_raid_md_intel_new_disk(disk);
1287
1288	sx_xunlock(&sc->sc_lock);
1289	g_topology_lock();
1290	*gp = geom;
1291	return (result);
1292fail2:
1293	g_topology_lock();
1294	g_access(cp, -1, 0, 0);
1295fail1:
1296	free(meta, M_MD_INTEL);
1297	return (G_RAID_MD_TASTE_FAIL);
1298}
1299
1300static int
1301g_raid_md_event_intel(struct g_raid_md_object *md,
1302    struct g_raid_disk *disk, u_int event)
1303{
1304	struct g_raid_softc *sc;
1305	struct g_raid_subdisk *sd;
1306	struct g_raid_md_intel_object *mdi;
1307	struct g_raid_md_intel_perdisk *pd;
1308
1309	sc = md->mdo_softc;
1310	mdi = (struct g_raid_md_intel_object *)md;
1311	if (disk == NULL) {
1312		switch (event) {
1313		case G_RAID_NODE_E_START:
1314			if (!mdi->mdio_started)
1315				g_raid_md_intel_start(sc);
1316			return (0);
1317		}
1318		return (-1);
1319	}
1320	pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1321	switch (event) {
1322	case G_RAID_DISK_E_DISCONNECTED:
1323		/* If disk was assigned, just update statuses. */
1324		if (pd->pd_disk_pos >= 0) {
1325			g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
1326			if (disk->d_consumer) {
1327				g_raid_kill_consumer(sc, disk->d_consumer);
1328				disk->d_consumer = NULL;
1329			}
1330			TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
1331				g_raid_change_subdisk_state(sd,
1332				    G_RAID_SUBDISK_S_NONE);
1333				g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
1334				    G_RAID_EVENT_SUBDISK);
1335			}
1336		} else {
1337			/* Otherwise -- delete. */
1338			g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
1339			g_raid_destroy_disk(disk);
1340		}
1341
1342		/* Write updated metadata to all disks. */
1343		g_raid_md_write_intel(md, NULL, NULL, NULL);
1344
1345		/* Check if anything left except placeholders. */
1346		if (g_raid_ndisks(sc, -1) ==
1347		    g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
1348			g_raid_destroy_node(sc, 0);
1349		else
1350			g_raid_md_intel_refill(sc);
1351		return (0);
1352	}
1353	return (-2);
1354}
1355
1356static int
1357g_raid_md_ctl_intel(struct g_raid_md_object *md,
1358    struct gctl_req *req)
1359{
1360	struct g_raid_softc *sc;
1361	struct g_raid_volume *vol, *vol1;
1362	struct g_raid_subdisk *sd;
1363	struct g_raid_disk *disk;
1364	struct g_raid_md_intel_object *mdi;
1365	struct g_raid_md_intel_perdisk *pd;
1366	struct g_consumer *cp;
1367	struct g_provider *pp;
1368	char arg[16], serial[INTEL_SERIAL_LEN];
1369	const char *verb, *volname, *levelname, *diskname;
1370	char *tmp;
1371	int *nargs, *force;
1372	off_t off, size, sectorsize, strip;
1373	intmax_t *sizearg, *striparg;
1374	int numdisks, i, len, level, qual, update;
1375	int error;
1376
1377	sc = md->mdo_softc;
1378	mdi = (struct g_raid_md_intel_object *)md;
1379	verb = gctl_get_param(req, "verb", NULL);
1380	nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
1381	error = 0;
1382	if (strcmp(verb, "label") == 0) {
1383
1384		if (*nargs < 4) {
1385			gctl_error(req, "Invalid number of arguments.");
1386			return (-1);
1387		}
1388		volname = gctl_get_asciiparam(req, "arg1");
1389		if (volname == NULL) {
1390			gctl_error(req, "No volume name.");
1391			return (-2);
1392		}
1393		levelname = gctl_get_asciiparam(req, "arg2");
1394		if (levelname == NULL) {
1395			gctl_error(req, "No RAID level.");
1396			return (-3);
1397		}
1398		if (g_raid_volume_str2level(levelname, &level, &qual)) {
1399			gctl_error(req, "Unknown RAID level '%s'.", levelname);
1400			return (-4);
1401		}
1402		numdisks = *nargs - 3;
1403		force = gctl_get_paraml(req, "force", sizeof(*force));
1404		if (!g_raid_md_intel_supported(level, qual, numdisks,
1405		    force ? *force : 0)) {
1406			gctl_error(req, "Unsupported RAID level "
1407			    "(0x%02x/0x%02x), or number of disks (%d).",
1408			    level, qual, numdisks);
1409			return (-5);
1410		}
1411
1412		/* Search for disks, connect them and probe. */
1413		size = 0x7fffffffffffffffllu;
1414		sectorsize = 0;
1415		for (i = 0; i < numdisks; i++) {
1416			snprintf(arg, sizeof(arg), "arg%d", i + 3);
1417			diskname = gctl_get_asciiparam(req, arg);
1418			if (diskname == NULL) {
1419				gctl_error(req, "No disk name (%s).", arg);
1420				error = -6;
1421				break;
1422			}
1423			if (strcmp(diskname, "NONE") == 0) {
1424				cp = NULL;
1425				pp = NULL;
1426			} else {
1427				g_topology_lock();
1428				cp = g_raid_open_consumer(sc, diskname);
1429				if (cp == NULL) {
1430					gctl_error(req, "Can't open disk '%s'.",
1431					    diskname);
1432					g_topology_unlock();
1433					error = -7;
1434					break;
1435				}
1436				pp = cp->provider;
1437			}
1438			pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1439			pd->pd_disk_pos = i;
1440			disk = g_raid_create_disk(sc);
1441			disk->d_md_data = (void *)pd;
1442			disk->d_consumer = cp;
1443			if (cp == NULL) {
1444				strcpy(&pd->pd_disk_meta.serial[0], "NONE");
1445				pd->pd_disk_meta.id = 0xffffffff;
1446				pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
1447				continue;
1448			}
1449			cp->private = disk;
1450			g_topology_unlock();
1451
1452			error = g_raid_md_get_label(cp,
1453			    &pd->pd_disk_meta.serial[0], INTEL_SERIAL_LEN);
1454			if (error != 0) {
1455				gctl_error(req,
1456				    "Can't get serial for provider '%s'.",
1457				    diskname);
1458				error = -8;
1459				break;
1460			}
1461
1462			/* Read kernel dumping information. */
1463			disk->d_kd.offset = 0;
1464			disk->d_kd.length = OFF_MAX;
1465			len = sizeof(disk->d_kd);
1466			g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
1467			if (disk->d_kd.di.dumper == NULL)
1468				G_RAID_DEBUG1(2, sc,
1469				    "Dumping not supported by %s.",
1470				    cp->provider->name);
1471
1472			pd->pd_disk_meta.sectors = pp->mediasize / pp->sectorsize;
1473			if (size > pp->mediasize)
1474				size = pp->mediasize;
1475			if (sectorsize < pp->sectorsize)
1476				sectorsize = pp->sectorsize;
1477			pd->pd_disk_meta.id = 0;
1478			pd->pd_disk_meta.flags = INTEL_F_ASSIGNED | INTEL_F_ONLINE;
1479		}
1480		if (error != 0)
1481			return (error);
1482
1483		if (sectorsize <= 0) {
1484			gctl_error(req, "Can't get sector size.");
1485			return (-8);
1486		}
1487
1488		/* Reserve some space for metadata. */
1489		size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
1490
1491		/* Handle size argument. */
1492		len = sizeof(*sizearg);
1493		sizearg = gctl_get_param(req, "size", &len);
1494		if (sizearg != NULL && len == sizeof(*sizearg) &&
1495		    *sizearg > 0) {
1496			if (*sizearg > size) {
1497				gctl_error(req, "Size too big %lld > %lld.",
1498				    (long long)*sizearg, (long long)size);
1499				return (-9);
1500			}
1501			size = *sizearg;
1502		}
1503
1504		/* Handle strip argument. */
1505		strip = 131072;
1506		len = sizeof(*striparg);
1507		striparg = gctl_get_param(req, "strip", &len);
1508		if (striparg != NULL && len == sizeof(*striparg) &&
1509		    *striparg > 0) {
1510			if (*striparg < sectorsize) {
1511				gctl_error(req, "Strip size too small.");
1512				return (-10);
1513			}
1514			if (*striparg % sectorsize != 0) {
1515				gctl_error(req, "Incorrect strip size.");
1516				return (-11);
1517			}
1518			if (strip > 65535 * sectorsize) {
1519				gctl_error(req, "Strip size too big.");
1520				return (-12);
1521			}
1522			strip = *striparg;
1523		}
1524
1525		/* Round size down to strip or sector. */
1526		if (level == G_RAID_VOLUME_RL_RAID1)
1527			size -= (size % sectorsize);
1528		else if (level == G_RAID_VOLUME_RL_RAID1E &&
1529		    (numdisks & 1) != 0)
1530			size -= (size % (2 * strip));
1531		else
1532			size -= (size % strip);
1533		if (size <= 0) {
1534			gctl_error(req, "Size too small.");
1535			return (-13);
1536		}
1537		if (size > 0xffffffffllu * sectorsize) {
1538			gctl_error(req, "Size too big.");
1539			return (-14);
1540		}
1541
1542		/* We have all we need, create things: volume, ... */
1543		mdi->mdio_started = 1;
1544		vol = g_raid_create_volume(sc, volname, -1);
1545		vol->v_md_data = (void *)(intptr_t)0;
1546		vol->v_raid_level = level;
1547		vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
1548		vol->v_strip_size = strip;
1549		vol->v_disks_count = numdisks;
1550		if (level == G_RAID_VOLUME_RL_RAID0)
1551			vol->v_mediasize = size * numdisks;
1552		else if (level == G_RAID_VOLUME_RL_RAID1)
1553			vol->v_mediasize = size;
1554		else if (level == G_RAID_VOLUME_RL_RAID5)
1555			vol->v_mediasize = size * (numdisks - 1);
1556		else { /* RAID1E */
1557			vol->v_mediasize = ((size * numdisks) / strip / 2) *
1558			    strip;
1559		}
1560		vol->v_sectorsize = sectorsize;
1561		g_raid_start_volume(vol);
1562
1563		/* , and subdisks. */
1564		TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1565			pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1566			sd = &vol->v_subdisks[pd->pd_disk_pos];
1567			sd->sd_disk = disk;
1568			sd->sd_offset = 0;
1569			sd->sd_size = size;
1570			TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1571			if (sd->sd_disk->d_consumer != NULL) {
1572				g_raid_change_disk_state(disk,
1573				    G_RAID_DISK_S_ACTIVE);
1574				g_raid_change_subdisk_state(sd,
1575				    G_RAID_SUBDISK_S_ACTIVE);
1576				g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1577				    G_RAID_EVENT_SUBDISK);
1578			} else {
1579				g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
1580			}
1581		}
1582
1583		/* Write metadata based on created entities. */
1584		G_RAID_DEBUG1(0, sc, "Array started.");
1585		g_raid_md_write_intel(md, NULL, NULL, NULL);
1586
1587		/* Pickup any STALE/SPARE disks to refill array if needed. */
1588		g_raid_md_intel_refill(sc);
1589
1590		g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1591		    G_RAID_EVENT_VOLUME);
1592		return (0);
1593	}
1594	if (strcmp(verb, "add") == 0) {
1595
1596		if (*nargs != 3) {
1597			gctl_error(req, "Invalid number of arguments.");
1598			return (-1);
1599		}
1600		volname = gctl_get_asciiparam(req, "arg1");
1601		if (volname == NULL) {
1602			gctl_error(req, "No volume name.");
1603			return (-2);
1604		}
1605		levelname = gctl_get_asciiparam(req, "arg2");
1606		if (levelname == NULL) {
1607			gctl_error(req, "No RAID level.");
1608			return (-3);
1609		}
1610		if (g_raid_volume_str2level(levelname, &level, &qual)) {
1611			gctl_error(req, "Unknown RAID level '%s'.", levelname);
1612			return (-4);
1613		}
1614
1615		/* Look for existing volumes. */
1616		i = 0;
1617		vol1 = NULL;
1618		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1619			vol1 = vol;
1620			i++;
1621		}
1622		if (i > 1) {
1623			gctl_error(req, "Maximum two volumes supported.");
1624			return (-6);
1625		}
1626		if (vol1 == NULL) {
1627			gctl_error(req, "At least one volume must exist.");
1628			return (-7);
1629		}
1630
1631		numdisks = vol1->v_disks_count;
1632		force = gctl_get_paraml(req, "force", sizeof(*force));
1633		if (!g_raid_md_intel_supported(level, qual, numdisks,
1634		    force ? *force : 0)) {
1635			gctl_error(req, "Unsupported RAID level "
1636			    "(0x%02x/0x%02x), or number of disks (%d).",
1637			    level, qual, numdisks);
1638			return (-5);
1639		}
1640
1641		/* Collect info about present disks. */
1642		size = 0x7fffffffffffffffllu;
1643		sectorsize = 512;
1644		for (i = 0; i < numdisks; i++) {
1645			disk = vol1->v_subdisks[i].sd_disk;
1646			pd = (struct g_raid_md_intel_perdisk *)
1647			    disk->d_md_data;
1648			if ((off_t)pd->pd_disk_meta.sectors * 512 < size)
1649				size = (off_t)pd->pd_disk_meta.sectors * 512;
1650			if (disk->d_consumer != NULL &&
1651			    disk->d_consumer->provider != NULL &&
1652			    disk->d_consumer->provider->sectorsize >
1653			     sectorsize) {
1654				sectorsize =
1655				    disk->d_consumer->provider->sectorsize;
1656			}
1657		}
1658
1659		/* Reserve some space for metadata. */
1660		size -= ((4096 + sectorsize - 1) / sectorsize) * sectorsize;
1661
1662		/* Decide insert before or after. */
1663		sd = &vol1->v_subdisks[0];
1664		if (sd->sd_offset >
1665		    size - (sd->sd_offset + sd->sd_size)) {
1666			off = 0;
1667			size = sd->sd_offset;
1668		} else {
1669			off = sd->sd_offset + sd->sd_size;
1670			size = size - (sd->sd_offset + sd->sd_size);
1671		}
1672
1673		/* Handle strip argument. */
1674		strip = 131072;
1675		len = sizeof(*striparg);
1676		striparg = gctl_get_param(req, "strip", &len);
1677		if (striparg != NULL && len == sizeof(*striparg) &&
1678		    *striparg > 0) {
1679			if (*striparg < sectorsize) {
1680				gctl_error(req, "Strip size too small.");
1681				return (-10);
1682			}
1683			if (*striparg % sectorsize != 0) {
1684				gctl_error(req, "Incorrect strip size.");
1685				return (-11);
1686			}
1687			if (strip > 65535 * sectorsize) {
1688				gctl_error(req, "Strip size too big.");
1689				return (-12);
1690			}
1691			strip = *striparg;
1692		}
1693
1694		/* Round offset up to strip. */
1695		if (off % strip != 0) {
1696			size -= strip - off % strip;
1697			off += strip - off % strip;
1698		}
1699
1700		/* Handle size argument. */
1701		len = sizeof(*sizearg);
1702		sizearg = gctl_get_param(req, "size", &len);
1703		if (sizearg != NULL && len == sizeof(*sizearg) &&
1704		    *sizearg > 0) {
1705			if (*sizearg > size) {
1706				gctl_error(req, "Size too big %lld > %lld.",
1707				    (long long)*sizearg, (long long)size);
1708				return (-9);
1709			}
1710			size = *sizearg;
1711		}
1712
1713		/* Round size down to strip or sector. */
1714		if (level == G_RAID_VOLUME_RL_RAID1)
1715			size -= (size % sectorsize);
1716		else
1717			size -= (size % strip);
1718		if (size <= 0) {
1719			gctl_error(req, "Size too small.");
1720			return (-13);
1721		}
1722		if (size > 0xffffffffllu * sectorsize) {
1723			gctl_error(req, "Size too big.");
1724			return (-14);
1725		}
1726
1727		/* We have all we need, create things: volume, ... */
1728		vol = g_raid_create_volume(sc, volname, -1);
1729		vol->v_md_data = (void *)(intptr_t)i;
1730		vol->v_raid_level = level;
1731		vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
1732		vol->v_strip_size = strip;
1733		vol->v_disks_count = numdisks;
1734		if (level == G_RAID_VOLUME_RL_RAID0)
1735			vol->v_mediasize = size * numdisks;
1736		else if (level == G_RAID_VOLUME_RL_RAID1)
1737			vol->v_mediasize = size;
1738		else if (level == G_RAID_VOLUME_RL_RAID5)
1739			vol->v_mediasize = size * (numdisks - 1);
1740		else { /* RAID1E */
1741			vol->v_mediasize = ((size * numdisks) / strip / 2) *
1742			    strip;
1743		}
1744		vol->v_sectorsize = sectorsize;
1745		g_raid_start_volume(vol);
1746
1747		/* , and subdisks. */
1748		for (i = 0; i < numdisks; i++) {
1749			disk = vol1->v_subdisks[i].sd_disk;
1750			sd = &vol->v_subdisks[i];
1751			sd->sd_disk = disk;
1752			sd->sd_offset = off;
1753			sd->sd_size = size;
1754			TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
1755			if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
1756				g_raid_change_subdisk_state(sd,
1757				    G_RAID_SUBDISK_S_ACTIVE);
1758				g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
1759				    G_RAID_EVENT_SUBDISK);
1760			}
1761		}
1762
1763		/* Write metadata based on created entities. */
1764		g_raid_md_write_intel(md, NULL, NULL, NULL);
1765
1766		g_raid_event_send(vol, G_RAID_VOLUME_E_START,
1767		    G_RAID_EVENT_VOLUME);
1768		return (0);
1769	}
1770	if (strcmp(verb, "delete") == 0) {
1771
1772		/* Full node destruction. */
1773		if (*nargs == 1) {
1774			/* Check if some volume is still open. */
1775			force = gctl_get_paraml(req, "force", sizeof(*force));
1776			if (force != NULL && *force == 0 &&
1777			    g_raid_nopens(sc) != 0) {
1778				gctl_error(req, "Some volume is still open.");
1779				return (-4);
1780			}
1781
1782			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1783				if (disk->d_consumer)
1784					intel_meta_erase(disk->d_consumer);
1785			}
1786			g_raid_destroy_node(sc, 0);
1787			return (0);
1788		}
1789
1790		/* Destroy specified volume. If it was last - all node. */
1791		if (*nargs != 2) {
1792			gctl_error(req, "Invalid number of arguments.");
1793			return (-1);
1794		}
1795		volname = gctl_get_asciiparam(req, "arg1");
1796		if (volname == NULL) {
1797			gctl_error(req, "No volume name.");
1798			return (-2);
1799		}
1800
1801		/* Search for volume. */
1802		TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1803			if (strcmp(vol->v_name, volname) == 0)
1804				break;
1805		}
1806		if (vol == NULL) {
1807			i = strtol(volname, &tmp, 10);
1808			if (verb != volname && tmp[0] == 0) {
1809				TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1810					if (vol->v_global_id == i)
1811						break;
1812				}
1813			}
1814		}
1815		if (vol == NULL) {
1816			gctl_error(req, "Volume '%s' not found.", volname);
1817			return (-3);
1818		}
1819
1820		/* Check if volume is still open. */
1821		force = gctl_get_paraml(req, "force", sizeof(*force));
1822		if (force != NULL && *force == 0 &&
1823		    vol->v_provider_open != 0) {
1824			gctl_error(req, "Volume is still open.");
1825			return (-4);
1826		}
1827
1828		/* Destroy volume and potentially node. */
1829		i = 0;
1830		TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
1831			i++;
1832		if (i >= 2) {
1833			g_raid_destroy_volume(vol);
1834			g_raid_md_write_intel(md, NULL, NULL, NULL);
1835		} else {
1836			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1837				if (disk->d_consumer)
1838					intel_meta_erase(disk->d_consumer);
1839			}
1840			g_raid_destroy_node(sc, 0);
1841		}
1842		return (0);
1843	}
1844	if (strcmp(verb, "remove") == 0 ||
1845	    strcmp(verb, "fail") == 0) {
1846		if (*nargs < 2) {
1847			gctl_error(req, "Invalid number of arguments.");
1848			return (-1);
1849		}
1850		for (i = 1; i < *nargs; i++) {
1851			snprintf(arg, sizeof(arg), "arg%d", i);
1852			diskname = gctl_get_asciiparam(req, arg);
1853			if (diskname == NULL) {
1854				gctl_error(req, "No disk name (%s).", arg);
1855				error = -2;
1856				break;
1857			}
1858			if (strncmp(diskname, "/dev/", 5) == 0)
1859				diskname += 5;
1860
1861			TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
1862				if (disk->d_consumer != NULL &&
1863				    disk->d_consumer->provider != NULL &&
1864				    strcmp(disk->d_consumer->provider->name,
1865				     diskname) == 0)
1866					break;
1867			}
1868			if (disk == NULL) {
1869				gctl_error(req, "Disk '%s' not found.",
1870				    diskname);
1871				error = -3;
1872				break;
1873			}
1874
1875			if (strcmp(verb, "fail") == 0) {
1876				g_raid_md_fail_disk_intel(md, NULL, disk);
1877				continue;
1878			}
1879
1880			pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
1881
1882			/* Erase metadata on deleting disk. */
1883			intel_meta_erase(disk->d_consumer);
1884
1885			/* If disk was assigned, just update statuses. */
1886			if (pd->pd_disk_pos >= 0) {
1887				g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE);
1888				g_raid_kill_consumer(sc, disk->d_consumer);
1889				disk->d_consumer = NULL;
1890				TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
1891					g_raid_change_subdisk_state(sd,
1892					    G_RAID_SUBDISK_S_NONE);
1893					g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
1894					    G_RAID_EVENT_SUBDISK);
1895				}
1896			} else {
1897				/* Otherwise -- delete. */
1898				g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
1899				g_raid_destroy_disk(disk);
1900			}
1901		}
1902
1903		/* Write updated metadata to remaining disks. */
1904		g_raid_md_write_intel(md, NULL, NULL, NULL);
1905
1906		/* Check if anything left except placeholders. */
1907		if (g_raid_ndisks(sc, -1) ==
1908		    g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
1909			g_raid_destroy_node(sc, 0);
1910		else
1911			g_raid_md_intel_refill(sc);
1912		return (error);
1913	}
1914	if (strcmp(verb, "insert") == 0) {
1915		if (*nargs < 2) {
1916			gctl_error(req, "Invalid number of arguments.");
1917			return (-1);
1918		}
1919		update = 0;
1920		for (i = 1; i < *nargs; i++) {
1921			/* Get disk name. */
1922			snprintf(arg, sizeof(arg), "arg%d", i);
1923			diskname = gctl_get_asciiparam(req, arg);
1924			if (diskname == NULL) {
1925				gctl_error(req, "No disk name (%s).", arg);
1926				error = -3;
1927				break;
1928			}
1929
1930			/* Try to find provider with specified name. */
1931			g_topology_lock();
1932			cp = g_raid_open_consumer(sc, diskname);
1933			if (cp == NULL) {
1934				gctl_error(req, "Can't open disk '%s'.",
1935				    diskname);
1936				g_topology_unlock();
1937				error = -4;
1938				break;
1939			}
1940			pp = cp->provider;
1941			g_topology_unlock();
1942
1943			/* Read disk serial. */
1944			error = g_raid_md_get_label(cp,
1945			    &serial[0], INTEL_SERIAL_LEN);
1946			if (error != 0) {
1947				gctl_error(req,
1948				    "Can't get serial for provider '%s'.",
1949				    diskname);
1950				g_raid_kill_consumer(sc, cp);
1951				error = -7;
1952				break;
1953			}
1954
1955			pd = malloc(sizeof(*pd), M_MD_INTEL, M_WAITOK | M_ZERO);
1956			pd->pd_disk_pos = -1;
1957
1958			disk = g_raid_create_disk(sc);
1959			disk->d_consumer = cp;
1960			disk->d_md_data = (void *)pd;
1961			cp->private = disk;
1962
1963			/* Read kernel dumping information. */
1964			disk->d_kd.offset = 0;
1965			disk->d_kd.length = OFF_MAX;
1966			len = sizeof(disk->d_kd);
1967			g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
1968			if (disk->d_kd.di.dumper == NULL)
1969				G_RAID_DEBUG1(2, sc,
1970				    "Dumping not supported by %s.",
1971				    cp->provider->name);
1972
1973			memcpy(&pd->pd_disk_meta.serial[0], &serial[0],
1974			    INTEL_SERIAL_LEN);
1975			pd->pd_disk_meta.sectors = pp->mediasize / pp->sectorsize;
1976			pd->pd_disk_meta.id = 0;
1977			pd->pd_disk_meta.flags = INTEL_F_SPARE;
1978
1979			/* Welcome the "new" disk. */
1980			update += g_raid_md_intel_start_disk(disk);
1981			if (disk->d_state == G_RAID_DISK_S_SPARE) {
1982				intel_meta_write_spare(cp, &pd->pd_disk_meta);
1983				g_raid_destroy_disk(disk);
1984			} else if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
1985				gctl_error(req, "Disk '%s' doesn't fit.",
1986				    diskname);
1987				g_raid_destroy_disk(disk);
1988				error = -8;
1989				break;
1990			}
1991		}
1992
1993		/* Write new metadata if we changed something. */
1994		if (update)
1995			g_raid_md_write_intel(md, NULL, NULL, NULL);
1996		return (error);
1997	}
1998	return (-100);
1999}
2000
2001static int
2002g_raid_md_write_intel(struct g_raid_md_object *md, struct g_raid_volume *tvol,
2003    struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2004{
2005	struct g_raid_softc *sc;
2006	struct g_raid_volume *vol;
2007	struct g_raid_subdisk *sd;
2008	struct g_raid_disk *disk;
2009	struct g_raid_md_intel_object *mdi;
2010	struct g_raid_md_intel_perdisk *pd;
2011	struct intel_raid_conf *meta;
2012	struct intel_raid_vol *mvol;
2013	struct intel_raid_map *mmap0, *mmap1;
2014	off_t sectorsize = 512, pos;
2015	const char *version, *cv;
2016	int vi, sdi, numdisks, len, state, stale;
2017
2018	sc = md->mdo_softc;
2019	mdi = (struct g_raid_md_intel_object *)md;
2020
2021	if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2022		return (0);
2023
2024	/* Bump generation. Newly written metadata may differ from previous. */
2025	mdi->mdio_generation++;
2026
2027	/* Count number of disks. */
2028	numdisks = 0;
2029	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2030		pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2031		if (pd->pd_disk_pos < 0)
2032			continue;
2033		numdisks++;
2034		if (disk->d_state == G_RAID_DISK_S_ACTIVE) {
2035			pd->pd_disk_meta.flags =
2036			    INTEL_F_ONLINE | INTEL_F_ASSIGNED;
2037		} else if (disk->d_state == G_RAID_DISK_S_FAILED) {
2038			pd->pd_disk_meta.flags = INTEL_F_FAILED | INTEL_F_ASSIGNED;
2039		} else {
2040			pd->pd_disk_meta.flags = INTEL_F_ASSIGNED;
2041			if (pd->pd_disk_meta.id != 0xffffffff) {
2042				pd->pd_disk_meta.id = 0xffffffff;
2043				len = strlen(pd->pd_disk_meta.serial);
2044				len = min(len, INTEL_SERIAL_LEN - 3);
2045				strcpy(pd->pd_disk_meta.serial + len, ":0");
2046			}
2047		}
2048	}
2049
2050	/* Fill anchor and disks. */
2051	meta = malloc(INTEL_MAX_MD_SIZE(numdisks),
2052	    M_MD_INTEL, M_WAITOK | M_ZERO);
2053	memcpy(&meta->intel_id[0], INTEL_MAGIC, sizeof(INTEL_MAGIC) - 1);
2054	meta->config_size = INTEL_MAX_MD_SIZE(numdisks);
2055	meta->config_id = mdi->mdio_config_id;
2056	meta->generation = mdi->mdio_generation;
2057	meta->attributes = INTEL_ATTR_CHECKSUM;
2058	meta->total_disks = numdisks;
2059	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2060		pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2061		if (pd->pd_disk_pos < 0)
2062			continue;
2063		meta->disk[pd->pd_disk_pos] = pd->pd_disk_meta;
2064	}
2065
2066	/* Fill volumes and maps. */
2067	vi = 0;
2068	version = INTEL_VERSION_1000;
2069	TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2070		if (vol->v_stopping)
2071			continue;
2072		mvol = intel_get_volume(meta, vi);
2073
2074		/* New metadata may have different volumes order. */
2075		vol->v_md_data = (void *)(intptr_t)vi;
2076
2077		for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2078			sd = &vol->v_subdisks[sdi];
2079			if (sd->sd_disk != NULL)
2080				break;
2081		}
2082		if (sdi >= vol->v_disks_count)
2083			panic("No any filled subdisk in volume");
2084		if (vol->v_mediasize >= 0x20000000000llu)
2085			meta->attributes |= INTEL_ATTR_2TB;
2086		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
2087			meta->attributes |= INTEL_ATTR_RAID0;
2088		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2089			meta->attributes |= INTEL_ATTR_RAID1;
2090		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
2091			meta->attributes |= INTEL_ATTR_RAID5;
2092		else
2093			meta->attributes |= INTEL_ATTR_RAID10;
2094
2095		if (meta->attributes & INTEL_ATTR_2TB)
2096			cv = INTEL_VERSION_1300;
2097//		else if (dev->status == DEV_CLONE_N_GO)
2098//			cv = INTEL_VERSION_1206;
2099		else if (vol->v_disks_count > 4)
2100			cv = INTEL_VERSION_1204;
2101		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
2102			cv = INTEL_VERSION_1202;
2103		else if (vol->v_disks_count > 2)
2104			cv = INTEL_VERSION_1201;
2105		else if (vi > 0)
2106			cv = INTEL_VERSION_1200;
2107		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2108			cv = INTEL_VERSION_1100;
2109		else
2110			cv = INTEL_VERSION_1000;
2111		if (strcmp(cv, version) > 0)
2112			version = cv;
2113
2114		strlcpy(&mvol->name[0], vol->v_name, sizeof(mvol->name));
2115		mvol->total_sectors = vol->v_mediasize / sectorsize;
2116
2117		/* Check for any recovery in progress. */
2118		state = G_RAID_SUBDISK_S_ACTIVE;
2119		pos = 0x7fffffffffffffffllu;
2120		stale = 0;
2121		for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2122			sd = &vol->v_subdisks[sdi];
2123			if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD)
2124				state = G_RAID_SUBDISK_S_REBUILD;
2125			else if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC &&
2126			    state != G_RAID_SUBDISK_S_REBUILD)
2127				state = G_RAID_SUBDISK_S_RESYNC;
2128			else if (sd->sd_state == G_RAID_SUBDISK_S_STALE)
2129				stale = 1;
2130			if ((sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2131			    sd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
2132			     sd->sd_rebuild_pos < pos)
2133			        pos = sd->sd_rebuild_pos;
2134		}
2135		if (state == G_RAID_SUBDISK_S_REBUILD) {
2136			mvol->migr_state = 1;
2137			mvol->migr_type = INTEL_MT_REBUILD;
2138		} else if (state == G_RAID_SUBDISK_S_RESYNC) {
2139			mvol->migr_state = 1;
2140			/* mvol->migr_type = INTEL_MT_REPAIR; */
2141			mvol->migr_type = INTEL_MT_VERIFY;
2142			mvol->state |= INTEL_ST_VERIFY_AND_FIX;
2143		} else
2144			mvol->migr_state = 0;
2145		mvol->dirty = (vol->v_dirty || stale);
2146
2147		mmap0 = intel_get_map(mvol, 0);
2148
2149		/* Write map / common part of two maps. */
2150		mmap0->offset = sd->sd_offset / sectorsize;
2151		mmap0->disk_sectors = sd->sd_size / sectorsize;
2152		mmap0->strip_sectors = vol->v_strip_size / sectorsize;
2153		if (vol->v_state == G_RAID_VOLUME_S_BROKEN)
2154			mmap0->status = INTEL_S_FAILURE;
2155		else if (vol->v_state == G_RAID_VOLUME_S_DEGRADED)
2156			mmap0->status = INTEL_S_DEGRADED;
2157		else
2158			mmap0->status = INTEL_S_READY;
2159		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0)
2160			mmap0->type = INTEL_T_RAID0;
2161		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
2162		    vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
2163			mmap0->type = INTEL_T_RAID1;
2164		else
2165			mmap0->type = INTEL_T_RAID5;
2166		mmap0->total_disks = vol->v_disks_count;
2167		if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1)
2168			mmap0->total_domains = vol->v_disks_count;
2169		else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
2170			mmap0->total_domains = 2;
2171		else
2172			mmap0->total_domains = 1;
2173		mmap0->stripe_count = sd->sd_size / vol->v_strip_size /
2174		    mmap0->total_domains;
2175		mmap0->failed_disk_num = 0xff;
2176		mmap0->ddf = 1;
2177
2178		/* If there are two maps - copy common and update. */
2179		if (mvol->migr_state) {
2180			mvol->curr_migr_unit = pos /
2181			    vol->v_strip_size / mmap0->total_domains;
2182			mmap1 = intel_get_map(mvol, 1);
2183			memcpy(mmap1, mmap0, sizeof(struct intel_raid_map));
2184			mmap0->status = INTEL_S_READY;
2185		} else
2186			mmap1 = NULL;
2187
2188		/* Write disk indexes and put rebuild flags. */
2189		for (sdi = 0; sdi < vol->v_disks_count; sdi++) {
2190			sd = &vol->v_subdisks[sdi];
2191			pd = (struct g_raid_md_intel_perdisk *)
2192			    sd->sd_disk->d_md_data;
2193			mmap0->disk_idx[sdi] = pd->pd_disk_pos;
2194			if (mvol->migr_state)
2195				mmap1->disk_idx[sdi] = pd->pd_disk_pos;
2196			if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2197			    sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2198				mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
2199			} else if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
2200			    sd->sd_state != G_RAID_SUBDISK_S_STALE) {
2201				mmap0->disk_idx[sdi] |= INTEL_DI_RBLD;
2202				if (mvol->migr_state)
2203					mmap1->disk_idx[sdi] |= INTEL_DI_RBLD;
2204			}
2205			if ((sd->sd_state == G_RAID_SUBDISK_S_NONE ||
2206			     sd->sd_state == G_RAID_SUBDISK_S_FAILED) &&
2207			    mmap0->failed_disk_num == 0xff) {
2208				mmap0->failed_disk_num = sdi;
2209				if (mvol->migr_state)
2210					mmap1->failed_disk_num = sdi;
2211			}
2212		}
2213		vi++;
2214	}
2215	meta->total_volumes = vi;
2216	if (strcmp(version, INTEL_VERSION_1300) != 0)
2217		meta->attributes &= INTEL_ATTR_CHECKSUM;
2218	memcpy(&meta->version[0], version, sizeof(INTEL_VERSION_1000) - 1);
2219
2220	/* We are done. Print meta data and store them to disks. */
2221	g_raid_md_intel_print(meta);
2222	if (mdi->mdio_meta != NULL)
2223		free(mdi->mdio_meta, M_MD_INTEL);
2224	mdi->mdio_meta = meta;
2225	TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
2226		pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2227		if (disk->d_state != G_RAID_DISK_S_ACTIVE)
2228			continue;
2229		if (pd->pd_meta != NULL) {
2230			free(pd->pd_meta, M_MD_INTEL);
2231			pd->pd_meta = NULL;
2232		}
2233		pd->pd_meta = intel_meta_copy(meta);
2234		intel_meta_write(disk->d_consumer, meta);
2235	}
2236	return (0);
2237}
2238
2239static int
2240g_raid_md_fail_disk_intel(struct g_raid_md_object *md,
2241    struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
2242{
2243	struct g_raid_softc *sc;
2244	struct g_raid_md_intel_object *mdi;
2245	struct g_raid_md_intel_perdisk *pd;
2246	struct g_raid_subdisk *sd;
2247
2248	sc = md->mdo_softc;
2249	mdi = (struct g_raid_md_intel_object *)md;
2250	pd = (struct g_raid_md_intel_perdisk *)tdisk->d_md_data;
2251
2252	/* We can't fail disk that is not a part of array now. */
2253	if (pd->pd_disk_pos < 0)
2254		return (-1);
2255
2256	/*
2257	 * Mark disk as failed in metadata and try to write that metadata
2258	 * to the disk itself to prevent it's later resurrection as STALE.
2259	 */
2260	mdi->mdio_meta->disk[pd->pd_disk_pos].flags = INTEL_F_FAILED;
2261	pd->pd_disk_meta.flags = INTEL_F_FAILED;
2262	g_raid_md_intel_print(mdi->mdio_meta);
2263	if (tdisk->d_consumer)
2264		intel_meta_write(tdisk->d_consumer, mdi->mdio_meta);
2265
2266	/* Change states. */
2267	g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
2268	TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
2269		g_raid_change_subdisk_state(sd,
2270		    G_RAID_SUBDISK_S_FAILED);
2271		g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
2272		    G_RAID_EVENT_SUBDISK);
2273	}
2274
2275	/* Write updated metadata to remaining disks. */
2276	g_raid_md_write_intel(md, NULL, NULL, tdisk);
2277
2278	/* Check if anything left except placeholders. */
2279	if (g_raid_ndisks(sc, -1) ==
2280	    g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE))
2281		g_raid_destroy_node(sc, 0);
2282	else
2283		g_raid_md_intel_refill(sc);
2284	return (0);
2285}
2286
2287static int
2288g_raid_md_free_disk_intel(struct g_raid_md_object *md,
2289    struct g_raid_disk *disk)
2290{
2291	struct g_raid_md_intel_perdisk *pd;
2292
2293	pd = (struct g_raid_md_intel_perdisk *)disk->d_md_data;
2294	if (pd->pd_meta != NULL) {
2295		free(pd->pd_meta, M_MD_INTEL);
2296		pd->pd_meta = NULL;
2297	}
2298	free(pd, M_MD_INTEL);
2299	disk->d_md_data = NULL;
2300	return (0);
2301}
2302
2303static int
2304g_raid_md_free_intel(struct g_raid_md_object *md)
2305{
2306	struct g_raid_md_intel_object *mdi;
2307
2308	mdi = (struct g_raid_md_intel_object *)md;
2309	if (!mdi->mdio_started) {
2310		mdi->mdio_started = 0;
2311		callout_stop(&mdi->mdio_start_co);
2312		G_RAID_DEBUG1(1, md->mdo_softc,
2313		    "root_mount_rel %p", mdi->mdio_rootmount);
2314		root_mount_rel(mdi->mdio_rootmount);
2315		mdi->mdio_rootmount = NULL;
2316	}
2317	if (mdi->mdio_meta != NULL) {
2318		free(mdi->mdio_meta, M_MD_INTEL);
2319		mdi->mdio_meta = NULL;
2320	}
2321	return (0);
2322}
2323
2324G_RAID_MD_DECLARE(g_raid_md_intel);
2325