geom_ccd.c revision 119299
1/*
2 * Copyright (c) 2003 Poul-Henning Kamp.
3 * Copyright (c) 1995 Jason R. Thorpe.
4 * Copyright (c) 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 * All rights reserved.
7 * Copyright (c) 1988 University of Utah.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed for the NetBSD Project
24 *	by Jason R. Thorpe.
25 * 4. The names of the authors may not be used to endorse or promote products
26 *    derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
35 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
36 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * Dynamic configuration and disklabel support by:
41 *	Jason R. Thorpe <thorpej@nas.nasa.gov>
42 *	Numerical Aerodynamic Simulation Facility
43 *	Mail Stop 258-6
44 *	NASA Ames Research Center
45 *	Moffett Field, CA 94035
46 *
47 * from: Utah $Hdr: cd.c 1.6 90/11/28$
48 *	@(#)cd.c	8.2 (Berkeley) 11/16/93
49 *	$NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $
50 */
51
52#include <sys/cdefs.h>
53__FBSDID("$FreeBSD: head/sys/geom/geom_ccd.c 119299 2003-08-22 11:04:47Z phk $");
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/kernel.h>
58#include <sys/module.h>
59#include <sys/bio.h>
60#include <sys/malloc.h>
61#include <geom/geom.h>
62
63/*
64 * Number of blocks to untouched in front of a component partition.
65 * This is to avoid violating its disklabel area when it starts at the
66 * beginning of the slice.
67 */
68#if !defined(CCD_OFFSET)
69#define CCD_OFFSET 16
70#endif
71
72/* sc_flags */
73#define CCDF_UNIFORM	0x02	/* use LCCD of sizes for uniform interleave */
74#define CCDF_MIRROR	0x04	/* use mirroring */
75
76/* Mask of user-settable ccd flags. */
77#define CCDF_USERMASK	(CCDF_UNIFORM|CCDF_MIRROR)
78
79/*
80 * Interleave description table.
81 * Computed at boot time to speed irregular-interleave lookups.
82 * The idea is that we interleave in "groups".  First we interleave
83 * evenly over all component disks up to the size of the smallest
84 * component (the first group), then we interleave evenly over all
85 * remaining disks up to the size of the next-smallest (second group),
86 * and so on.
87 *
88 * Each table entry describes the interleave characteristics of one
89 * of these groups.  For example if a concatenated disk consisted of
90 * three components of 5, 3, and 7 DEV_BSIZE blocks interleaved at
91 * DEV_BSIZE (1), the table would have three entries:
92 *
93 *	ndisk	startblk	startoff	dev
94 *	3	0		0		0, 1, 2
95 *	2	9		3		0, 2
96 *	1	13		5		2
97 *	0	-		-		-
98 *
99 * which says that the first nine blocks (0-8) are interleaved over
100 * 3 disks (0, 1, 2) starting at block offset 0 on any component disk,
101 * the next 4 blocks (9-12) are interleaved over 2 disks (0, 2) starting
102 * at component block 3, and the remaining blocks (13-14) are on disk
103 * 2 starting at offset 5.
104 */
105struct ccdiinfo {
106	int	ii_ndisk;	/* # of disks range is interleaved over */
107	daddr_t	ii_startblk;	/* starting scaled block # for range */
108	daddr_t	ii_startoff;	/* starting component offset (block #) */
109	int	*ii_index;	/* ordered list of components in range */
110};
111
112/*
113 * Component info table.
114 * Describes a single component of a concatenated disk.
115 */
116struct ccdcinfo {
117	size_t		ci_size; 		/* size */
118	struct g_provider *ci_provider;		/* provider */
119	struct g_consumer *ci_consumer;		/* consumer */
120};
121
122/*
123 * A concatenated disk is described by this structure.
124 */
125
126struct ccd_s {
127	LIST_ENTRY(ccd_s) list;
128
129	int		 sc_unit;		/* logical unit number */
130	int		 sc_flags;		/* flags */
131	size_t		 sc_size;		/* size of ccd */
132	int		 sc_ileave;		/* interleave */
133	u_int		 sc_ndisks;		/* number of components */
134	struct ccdcinfo	 *sc_cinfo;		/* component info */
135	struct ccdiinfo	 *sc_itable;		/* interleave table */
136	u_int32_t	 sc_secsize;		/* # bytes per sector */
137	int		 sc_pick;		/* side of mirror picked */
138	daddr_t		 sc_blk[2];		/* mirror localization */
139};
140
141static g_start_t g_ccd_start;
142static void ccdiodone(struct bio *bp);
143static void ccdinterleave(struct ccd_s *);
144static int ccdinit(struct gctl_req *req, struct ccd_s *);
145static int ccdbuffer(struct bio **ret, struct ccd_s *,
146		      struct bio *, daddr_t, caddr_t, long);
147
148static void
149g_ccd_orphan(struct g_consumer *cp)
150{
151	/*
152	 * XXX: We don't do anything here.  It is not obvious
153	 * XXX: what DTRT would be, so we do what the previous
154	 * XXX: code did: ignore it and let the user cope.
155	 */
156}
157
158static int
159g_ccd_access(struct g_provider *pp, int dr, int dw, int de)
160{
161	struct g_geom *gp;
162	struct g_consumer *cp1, *cp2;
163	int error;
164
165	de += dr;
166	de += dw;
167
168	gp = pp->geom;
169	error = ENXIO;
170	LIST_FOREACH(cp1, &gp->consumer, consumer) {
171		error = g_access_rel(cp1, dr, dw, de);
172		if (error) {
173			LIST_FOREACH(cp2, &gp->consumer, consumer) {
174				if (cp1 == cp2)
175					break;
176				g_access_rel(cp1, -dr, -dw, -de);
177			}
178			break;
179		}
180	}
181	return (error);
182}
183
184/*
185 * Free the softc and its substructures.
186 */
187static void
188g_ccd_freesc(struct ccd_s *sc)
189{
190	struct ccdiinfo *ii;
191
192	g_free(sc->sc_cinfo);
193	if (sc->sc_itable != NULL) {
194		for (ii = sc->sc_itable; ii->ii_ndisk > 0; ii++)
195			if (ii->ii_index != NULL)
196				g_free(ii->ii_index);
197		g_free(sc->sc_itable);
198	}
199	g_free(sc);
200}
201
202
203static int
204ccdinit(struct gctl_req *req, struct ccd_s *cs)
205{
206	struct ccdcinfo *ci;
207	size_t size;
208	int ix;
209	size_t minsize;
210	int maxsecsize;
211	off_t mediasize;
212	u_int sectorsize;
213
214	cs->sc_size = 0;
215
216	maxsecsize = 0;
217	minsize = 0;
218	for (ix = 0; ix < cs->sc_ndisks; ix++) {
219		ci = &cs->sc_cinfo[ix];
220
221		mediasize = ci->ci_provider->mediasize;
222		sectorsize = ci->ci_provider->sectorsize;
223		if (sectorsize > maxsecsize)
224			maxsecsize = sectorsize;
225		size = mediasize / DEV_BSIZE - CCD_OFFSET;
226
227		/* Truncate to interleave boundary */
228
229		if (cs->sc_ileave > 1)
230			size -= size % cs->sc_ileave;
231
232		if (size == 0) {
233			gctl_error(req, "Component %s has effective size zero",
234			    ci->ci_provider->name);
235			return(ENODEV);
236		}
237
238		if (minsize == 0 || size < minsize)
239			minsize = size;
240		ci->ci_size = size;
241		cs->sc_size += size;
242	}
243
244	/*
245	 * Don't allow the interleave to be smaller than
246	 * the biggest component sector.
247	 */
248	if ((cs->sc_ileave > 0) &&
249	    (cs->sc_ileave < (maxsecsize / DEV_BSIZE))) {
250		gctl_error(req, "Interleave to small for sector size");
251		return(EINVAL);
252	}
253
254	/*
255	 * If uniform interleave is desired set all sizes to that of
256	 * the smallest component.  This will guarentee that a single
257	 * interleave table is generated.
258	 *
259	 * Lost space must be taken into account when calculating the
260	 * overall size.  Half the space is lost when CCDF_MIRROR is
261	 * specified.
262	 */
263	if (cs->sc_flags & CCDF_UNIFORM) {
264		for (ix = 0; ix < cs->sc_ndisks; ix++) {
265			ci = &cs->sc_cinfo[ix];
266			ci->ci_size = minsize;
267		}
268		cs->sc_size = cs->sc_ndisks * minsize;
269	}
270
271	if (cs->sc_flags & CCDF_MIRROR) {
272		/*
273		 * Check to see if an even number of components
274		 * have been specified.  The interleave must also
275		 * be non-zero in order for us to be able to
276		 * guarentee the topology.
277		 */
278		if (cs->sc_ndisks % 2) {
279			gctl_error(req,
280			      "Mirroring requires an even number of disks");
281			return(EINVAL);
282		}
283		if (cs->sc_ileave == 0) {
284			gctl_error(req,
285			     "An interleave must be specified when mirroring");
286			return(EINVAL);
287		}
288		cs->sc_size = (cs->sc_ndisks/2) * minsize;
289	}
290
291	/*
292	 * Construct the interleave table.
293	 */
294	ccdinterleave(cs);
295
296	/*
297	 * Create pseudo-geometry based on 1MB cylinders.  It's
298	 * pretty close.
299	 */
300	cs->sc_secsize = maxsecsize;
301
302	return (0);
303}
304
305static void
306ccdinterleave(struct ccd_s *cs)
307{
308	struct ccdcinfo *ci, *smallci;
309	struct ccdiinfo *ii;
310	daddr_t bn, lbn;
311	int ix;
312	u_long size;
313
314
315	/*
316	 * Allocate an interleave table.  The worst case occurs when each
317	 * of N disks is of a different size, resulting in N interleave
318	 * tables.
319	 *
320	 * Chances are this is too big, but we don't care.
321	 */
322	size = (cs->sc_ndisks + 1) * sizeof(struct ccdiinfo);
323	cs->sc_itable = g_malloc(size, M_WAITOK | M_ZERO);
324
325	/*
326	 * Trivial case: no interleave (actually interleave of disk size).
327	 * Each table entry represents a single component in its entirety.
328	 *
329	 * An interleave of 0 may not be used with a mirror setup.
330	 */
331	if (cs->sc_ileave == 0) {
332		bn = 0;
333		ii = cs->sc_itable;
334
335		for (ix = 0; ix < cs->sc_ndisks; ix++) {
336			/* Allocate space for ii_index. */
337			ii->ii_index = g_malloc(sizeof(int), M_WAITOK);
338			ii->ii_ndisk = 1;
339			ii->ii_startblk = bn;
340			ii->ii_startoff = 0;
341			ii->ii_index[0] = ix;
342			bn += cs->sc_cinfo[ix].ci_size;
343			ii++;
344		}
345		ii->ii_ndisk = 0;
346		return;
347	}
348
349	/*
350	 * The following isn't fast or pretty; it doesn't have to be.
351	 */
352	size = 0;
353	bn = lbn = 0;
354	for (ii = cs->sc_itable; ; ii++) {
355		/*
356		 * Allocate space for ii_index.  We might allocate more then
357		 * we use.
358		 */
359		ii->ii_index = g_malloc((sizeof(int) * cs->sc_ndisks),
360		    M_WAITOK);
361
362		/*
363		 * Locate the smallest of the remaining components
364		 */
365		smallci = NULL;
366		for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_ndisks];
367		    ci++) {
368			if (ci->ci_size > size &&
369			    (smallci == NULL ||
370			     ci->ci_size < smallci->ci_size)) {
371				smallci = ci;
372			}
373		}
374
375		/*
376		 * Nobody left, all done
377		 */
378		if (smallci == NULL) {
379			ii->ii_ndisk = 0;
380			g_free(ii->ii_index);
381			ii->ii_index = NULL;
382			break;
383		}
384
385		/*
386		 * Record starting logical block using an sc_ileave blocksize.
387		 */
388		ii->ii_startblk = bn / cs->sc_ileave;
389
390		/*
391		 * Record starting component block using an sc_ileave
392		 * blocksize.  This value is relative to the beginning of
393		 * a component disk.
394		 */
395		ii->ii_startoff = lbn;
396
397		/*
398		 * Determine how many disks take part in this interleave
399		 * and record their indices.
400		 */
401		ix = 0;
402		for (ci = cs->sc_cinfo;
403		    ci < &cs->sc_cinfo[cs->sc_ndisks]; ci++) {
404			if (ci->ci_size >= smallci->ci_size) {
405				ii->ii_index[ix++] = ci - cs->sc_cinfo;
406			}
407		}
408		ii->ii_ndisk = ix;
409		bn += ix * (smallci->ci_size - size);
410		lbn = smallci->ci_size / cs->sc_ileave;
411		size = smallci->ci_size;
412	}
413}
414
415static void
416g_ccd_start(struct bio *bp)
417{
418	long bcount, rcount;
419	struct bio *cbp[2];
420	caddr_t addr;
421	daddr_t bn;
422	int err;
423	struct ccd_s *cs;
424
425	cs = bp->bio_to->geom->softc;
426
427	/*
428	 * Block all GETATTR requests, we wouldn't know which of our
429	 * subdevices we should ship it off to.
430	 * XXX: this may not be the right policy.
431	 */
432	if(bp->bio_cmd == BIO_GETATTR) {
433		g_io_deliver(bp, EINVAL);
434		return;
435	}
436
437	/*
438	 * Translate the partition-relative block number to an absolute.
439	 */
440	bn = bp->bio_offset / cs->sc_secsize;
441
442	/*
443	 * Allocate component buffers and fire off the requests
444	 */
445	addr = bp->bio_data;
446	for (bcount = bp->bio_length; bcount > 0; bcount -= rcount) {
447		err = ccdbuffer(cbp, cs, bp, bn, addr, bcount);
448		if (err) {
449			bp->bio_completed += bcount;
450			if (bp->bio_error != 0)
451				bp->bio_error = err;
452			if (bp->bio_completed == bp->bio_length)
453				g_io_deliver(bp, bp->bio_error);
454			return;
455		}
456		rcount = cbp[0]->bio_length;
457
458		if (cs->sc_flags & CCDF_MIRROR) {
459			/*
460			 * Mirroring.  Writes go to both disks, reads are
461			 * taken from whichever disk seems most appropriate.
462			 *
463			 * We attempt to localize reads to the disk whos arm
464			 * is nearest the read request.  We ignore seeks due
465			 * to writes when making this determination and we
466			 * also try to avoid hogging.
467			 */
468			if (cbp[0]->bio_cmd != BIO_READ) {
469				g_io_request(cbp[0], cbp[0]->bio_from);
470				g_io_request(cbp[1], cbp[1]->bio_from);
471			} else {
472				int pick = cs->sc_pick;
473				daddr_t range = cs->sc_size / 16;
474
475				if (bn < cs->sc_blk[pick] - range ||
476				    bn > cs->sc_blk[pick] + range
477				) {
478					cs->sc_pick = pick = 1 - pick;
479				}
480				cs->sc_blk[pick] = bn + btodb(rcount);
481				g_io_request(cbp[pick], cbp[pick]->bio_from);
482			}
483		} else {
484			/*
485			 * Not mirroring
486			 */
487			g_io_request(cbp[0], cbp[0]->bio_from);
488		}
489		bn += btodb(rcount);
490		addr += rcount;
491	}
492}
493
494/*
495 * Build a component buffer header.
496 */
497static int
498ccdbuffer(struct bio **cb, struct ccd_s *cs, struct bio *bp, daddr_t bn, caddr_t addr, long bcount)
499{
500	struct ccdcinfo *ci, *ci2 = NULL;
501	struct bio *cbp;
502	daddr_t cbn, cboff;
503	off_t cbc;
504
505	/*
506	 * Determine which component bn falls in.
507	 */
508	cbn = bn;
509	cboff = 0;
510
511	if (cs->sc_ileave == 0) {
512		/*
513		 * Serially concatenated and neither a mirror nor a parity
514		 * config.  This is a special case.
515		 */
516		daddr_t sblk;
517
518		sblk = 0;
519		for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++)
520			sblk += ci->ci_size;
521		cbn -= sblk;
522	} else {
523		struct ccdiinfo *ii;
524		int ccdisk, off;
525
526		/*
527		 * Calculate cbn, the logical superblock (sc_ileave chunks),
528		 * and cboff, a normal block offset (DEV_BSIZE chunks) relative
529		 * to cbn.
530		 */
531		cboff = cbn % cs->sc_ileave;	/* DEV_BSIZE gran */
532		cbn = cbn / cs->sc_ileave;	/* DEV_BSIZE * ileave gran */
533
534		/*
535		 * Figure out which interleave table to use.
536		 */
537		for (ii = cs->sc_itable; ii->ii_ndisk; ii++) {
538			if (ii->ii_startblk > cbn)
539				break;
540		}
541		ii--;
542
543		/*
544		 * off is the logical superblock relative to the beginning
545		 * of this interleave block.
546		 */
547		off = cbn - ii->ii_startblk;
548
549		/*
550		 * We must calculate which disk component to use (ccdisk),
551		 * and recalculate cbn to be the superblock relative to
552		 * the beginning of the component.  This is typically done by
553		 * adding 'off' and ii->ii_startoff together.  However, 'off'
554		 * must typically be divided by the number of components in
555		 * this interleave array to be properly convert it from a
556		 * CCD-relative logical superblock number to a
557		 * component-relative superblock number.
558		 */
559		if (ii->ii_ndisk == 1) {
560			/*
561			 * When we have just one disk, it can't be a mirror
562			 * or a parity config.
563			 */
564			ccdisk = ii->ii_index[0];
565			cbn = ii->ii_startoff + off;
566		} else {
567			if (cs->sc_flags & CCDF_MIRROR) {
568				/*
569				 * We have forced a uniform mapping, resulting
570				 * in a single interleave array.  We double
571				 * up on the first half of the available
572				 * components and our mirror is in the second
573				 * half.  This only works with a single
574				 * interleave array because doubling up
575				 * doubles the number of sectors, so there
576				 * cannot be another interleave array because
577				 * the next interleave array's calculations
578				 * would be off.
579				 */
580				int ndisk2 = ii->ii_ndisk / 2;
581				ccdisk = ii->ii_index[off % ndisk2];
582				cbn = ii->ii_startoff + off / ndisk2;
583				ci2 = &cs->sc_cinfo[ccdisk + ndisk2];
584			} else {
585				ccdisk = ii->ii_index[off % ii->ii_ndisk];
586				cbn = ii->ii_startoff + off / ii->ii_ndisk;
587			}
588		}
589
590		ci = &cs->sc_cinfo[ccdisk];
591
592		/*
593		 * Convert cbn from a superblock to a normal block so it
594		 * can be used to calculate (along with cboff) the normal
595		 * block index into this particular disk.
596		 */
597		cbn *= cs->sc_ileave;
598	}
599
600	/*
601	 * Fill in the component buf structure.
602	 */
603	cbp = g_clone_bio(bp);
604	if (cbp == NULL)
605		return (ENOMEM);
606	cbp->bio_done = g_std_done;
607	cbp->bio_offset = dbtob(cbn + cboff + CCD_OFFSET);
608	cbp->bio_data = addr;
609	if (cs->sc_ileave == 0)
610              cbc = dbtob((off_t)(ci->ci_size - cbn));
611	else
612              cbc = dbtob((off_t)(cs->sc_ileave - cboff));
613	cbp->bio_length = (cbc < bcount) ? cbc : bcount;
614
615	cbp->bio_from = ci->ci_consumer;
616	cb[0] = cbp;
617
618	if (cs->sc_flags & CCDF_MIRROR) {
619		cbp = g_clone_bio(bp);
620		if (cbp == NULL)
621			return (ENOMEM);
622		cbp->bio_done = cb[0]->bio_done = ccdiodone;
623		cbp->bio_offset = cb[0]->bio_offset;
624		cbp->bio_data = cb[0]->bio_data;
625		cbp->bio_length = cb[0]->bio_length;
626		cbp->bio_from = ci2->ci_consumer;
627		cbp->bio_caller1 = cb[0];
628		cb[0]->bio_caller1 = cbp;
629		cb[1] = cbp;
630	}
631	return (0);
632}
633
634/*
635 * Called only for mirrored operations.
636 */
637static void
638ccdiodone(struct bio *cbp)
639{
640	struct bio *mbp, *pbp;
641
642	mbp = cbp->bio_caller1;
643	pbp = cbp->bio_parent;
644
645	if (pbp->bio_cmd == BIO_READ) {
646		if (cbp->bio_error == 0) {
647			/* We will not be needing the partner bio */
648			if (mbp != NULL) {
649				pbp->bio_inbed++;
650				g_destroy_bio(mbp);
651			}
652			g_std_done(cbp);
653			return;
654		}
655		if (mbp != NULL) {
656			/* Try partner the bio instead */
657			mbp->bio_caller1 = NULL;
658			pbp->bio_inbed++;
659			g_destroy_bio(cbp);
660			g_io_request(mbp, mbp->bio_from);
661			/*
662			 * XXX: If this comes back OK, we should actually
663			 * try to write the good data on the failed mirror
664			 */
665			return;
666		}
667		g_std_done(cbp);
668		return;
669	}
670	if (mbp != NULL) {
671		mbp->bio_caller1 = NULL;
672		pbp->bio_inbed++;
673		if (cbp->bio_error != 0 && pbp->bio_error == 0)
674			pbp->bio_error = cbp->bio_error;
675		g_destroy_bio(cbp);
676		return;
677	}
678	g_std_done(cbp);
679}
680
681static void
682g_ccd_create(struct gctl_req *req, struct g_class *mp)
683{
684	int *unit, *ileave, *nprovider;
685	struct g_geom *gp;
686	struct g_consumer *cp;
687	struct g_provider *pp;
688	struct ccd_s *sc;
689	struct sbuf *sb;
690	char buf[20];
691	int i, error;
692
693	g_topology_assert();
694	unit = gctl_get_paraml(req, "unit", sizeof (*unit));
695	ileave = gctl_get_paraml(req, "ileave", sizeof (*ileave));
696	nprovider = gctl_get_paraml(req, "nprovider", sizeof (*nprovider));
697
698	/* Check for duplicate unit */
699	LIST_FOREACH(gp, &mp->geom, geom) {
700		sc = gp->softc;
701		if (sc != NULL && sc->sc_unit == *unit) {
702			gctl_error(req, "Unit %d already configured", *unit);
703			return;
704		}
705	}
706
707	if (*nprovider <= 0) {
708		gctl_error(req, "Bogus nprovider argument (= %d)", *nprovider);
709		return;
710	}
711
712	/* Check all providers are valid */
713	for (i = 0; i < *nprovider; i++) {
714		sprintf(buf, "provider%d", i);
715		pp = gctl_get_provider(req, buf);
716		if (pp == NULL)
717			return;
718	}
719
720	gp = g_new_geomf(mp, "ccd%d", *unit);
721	gp->start = g_ccd_start;
722	gp->orphan = g_ccd_orphan;
723	gp->access = g_ccd_access;
724	sc = g_malloc(sizeof *sc, M_WAITOK | M_ZERO);
725	gp->softc = sc;
726	sc->sc_ndisks = *nprovider;
727
728	/* Allocate space for the component info. */
729	sc->sc_cinfo = g_malloc(sc->sc_ndisks * sizeof(struct ccdcinfo),
730	    M_WAITOK | M_ZERO);
731
732	/* Create consumers and attach to all providers */
733	for (i = 0; i < *nprovider; i++) {
734		sprintf(buf, "provider%d", i);
735		pp = gctl_get_provider(req, buf);
736		cp = g_new_consumer(gp);
737		error = g_attach(cp, pp);
738		KASSERT(error == 0, ("attach to %s failed", pp->name));
739		sc->sc_cinfo[i].ci_consumer = cp;
740		sc->sc_cinfo[i].ci_provider = pp;
741	}
742
743	sc->sc_unit = *unit;
744	sc->sc_ileave = *ileave;
745
746	if (gctl_get_param(req, "uniform", NULL))
747		sc->sc_flags |= CCDF_UNIFORM;
748	if (gctl_get_param(req, "mirror", NULL))
749		sc->sc_flags |= CCDF_MIRROR;
750
751	if (sc->sc_ileave == 0 && (sc->sc_flags & CCDF_MIRROR)) {
752		printf("%s: disabling mirror, interleave is 0\n", gp->name);
753		sc->sc_flags &= ~(CCDF_MIRROR);
754	}
755
756	if ((sc->sc_flags & CCDF_MIRROR) && !(sc->sc_flags & CCDF_UNIFORM)) {
757		printf("%s: mirror/parity forces uniform flag\n", gp->name);
758		sc->sc_flags |= CCDF_UNIFORM;
759	}
760
761	error = ccdinit(req, sc);
762	if (error != 0) {
763		g_ccd_freesc(sc);
764		gp->softc = NULL;
765		g_wither_geom(gp, ENXIO);
766		return;
767	}
768
769	pp = g_new_providerf(gp, "%s", gp->name);
770	pp->mediasize = sc->sc_size * (off_t)sc->sc_secsize;
771	pp->sectorsize = sc->sc_secsize;
772	g_error_provider(pp, 0);
773
774	sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND);
775	sbuf_clear(sb);
776	sbuf_printf(sb, "ccd%d: %d components ", sc->sc_unit, *nprovider);
777	for (i = 0; i < *nprovider; i++) {
778		sbuf_printf(sb, "%s%s",
779		    i == 0 ? "(" : ", ",
780		    sc->sc_cinfo[i].ci_provider->name);
781	}
782	sbuf_printf(sb, "), %jd blocks ", (off_t)pp->mediasize / DEV_BSIZE);
783	if (sc->sc_ileave != 0)
784		sbuf_printf(sb, "interleaved at %d blocks\n",
785			sc->sc_ileave);
786	else
787		sbuf_printf(sb, "concatenated\n");
788	sbuf_finish(sb);
789	gctl_set_param(req, "output", sbuf_data(sb), sbuf_len(sb) + 1);
790	sbuf_delete(sb);
791}
792
793static int
794g_ccd_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp)
795{
796	struct g_provider *pp;
797	struct ccd_s *sc;
798
799	g_topology_assert();
800	sc = gp->softc;
801	pp = LIST_FIRST(&gp->provider);
802	if (sc == NULL || pp == NULL)
803		return (EBUSY);
804	if (pp->acr != 0 || pp->acw != 0 || pp->ace != 0) {
805		gctl_error(req, "%s is open(r%dw%de%d)", gp->name,
806		    pp->acr, pp->acw, pp->ace);
807		return (EBUSY);
808	}
809	g_ccd_freesc(sc);
810	gp->softc = NULL;
811	g_wither_geom(gp, ENXIO);
812	return (0);
813}
814
815static void
816g_ccd_list(struct gctl_req *req, struct g_class *mp)
817{
818	struct sbuf *sb;
819	struct ccd_s *cs;
820	struct g_geom *gp;
821	int i, unit, *up;
822
823	up = gctl_get_paraml(req, "unit", sizeof (int));
824	unit = *up;
825	sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND);
826	sbuf_clear(sb);
827	LIST_FOREACH(gp, &mp->geom, geom) {
828		cs = gp->softc;
829		if (cs == NULL || (unit >= 0 && unit != cs->sc_unit))
830			continue;
831		sbuf_printf(sb, "ccd%d\t\t%d\t%d\t",
832		    cs->sc_unit, cs->sc_ileave, cs->sc_flags & CCDF_USERMASK);
833
834		for (i = 0; i < cs->sc_ndisks; ++i) {
835			sbuf_printf(sb, "%s/dev/%s", i == 0 ? "" : " ",
836			    cs->sc_cinfo[i].ci_provider->name);
837		}
838		sbuf_printf(sb, "\n");
839	}
840	sbuf_finish(sb);
841	gctl_set_param(req, "output", sbuf_data(sb), sbuf_len(sb) + 1);
842	sbuf_delete(sb);
843}
844
845static void
846g_ccd_config(struct gctl_req *req, struct g_class *mp, char const *verb)
847{
848	struct g_geom *gp;
849
850	g_topology_assert();
851	if (!strcmp(verb, "create geom")) {
852		g_ccd_create(req, mp);
853	} else if (!strcmp(verb, "destroy geom")) {
854		gp = gctl_get_geom(req, mp, "geom");
855		if (gp != NULL)
856		g_ccd_destroy_geom(req, mp, gp);
857	} else if (!strcmp(verb, "list")) {
858		g_ccd_list(req, mp);
859	} else {
860		gctl_error(req, "unknown verb");
861	}
862}
863
864static struct g_class g_ccd_class = {
865	.name = "CCD",
866	.ctlreq = g_ccd_config,
867	.destroy_geom = g_ccd_destroy_geom,
868};
869
870DECLARE_GEOM_CLASS(g_ccd_class, g_ccd);
871