union_subr.c revision 71998
1/*
2 * Copyright (c) 1994 Jan-Simon Pendry
3 * Copyright (c) 1994
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Jan-Simon Pendry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	@(#)union_subr.c	8.20 (Berkeley) 5/20/95
38 * $FreeBSD: head/sys/fs/unionfs/union_subr.c 71998 2001-02-04 12:37:48Z phk $
39 */
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/vnode.h>
45#include <sys/namei.h>
46#include <sys/malloc.h>
47#include <sys/fcntl.h>
48#include <sys/file.h>
49#include <sys/filedesc.h>
50#include <sys/module.h>
51#include <sys/mount.h>
52#include <sys/stat.h>
53#include <vm/vm.h>
54#include <vm/vm_extern.h>	/* for vnode_pager_setsize */
55#include <vm/vm_zone.h>
56#include <vm/vm_object.h>	/* for vm cache coherency */
57#include <miscfs/union/union.h>
58
59#include <sys/proc.h>
60
61extern int	union_init __P((void));
62
63/* must be power of two, otherwise change UNION_HASH() */
64#define NHASH 32
65
66/* unsigned int ... */
67#define UNION_HASH(u, l) \
68	(((((uintptr_t) (u)) + ((uintptr_t) l)) >> 8) & (NHASH-1))
69
70static LIST_HEAD(unhead, union_node) unhead[NHASH];
71static int unvplock[NHASH];
72
73static void	union_dircache_r __P((struct vnode *vp, struct vnode ***vppp,
74				      int *cntp));
75static int	union_list_lock __P((int ix));
76static void	union_list_unlock __P((int ix));
77static int	union_relookup __P((struct union_mount *um, struct vnode *dvp,
78				    struct vnode **vpp,
79				    struct componentname *cnp,
80				    struct componentname *cn, char *path,
81				    int pathlen));
82static void	union_updatevp __P((struct union_node *un,
83				    struct vnode *uppervp,
84				    struct vnode *lowervp));
85static void union_newlower __P((struct union_node *, struct vnode *));
86static void union_newupper __P((struct union_node *, struct vnode *));
87static int union_copyfile __P((struct vnode *, struct vnode *,
88					struct ucred *, struct proc *));
89static int union_vn_create __P((struct vnode **, struct union_node *,
90				struct proc *));
91static int union_vn_close __P((struct vnode *, int, struct ucred *,
92				struct proc *));
93
94int
95union_init()
96{
97	int i;
98
99	for (i = 0; i < NHASH; i++)
100		LIST_INIT(&unhead[i]);
101	bzero((caddr_t)unvplock, sizeof(unvplock));
102	return (0);
103}
104
105static int
106union_list_lock(ix)
107	int ix;
108{
109	if (unvplock[ix] & UNVP_LOCKED) {
110		unvplock[ix] |= UNVP_WANT;
111		(void) tsleep((caddr_t) &unvplock[ix], PINOD, "unllck", 0);
112		return (1);
113	}
114	unvplock[ix] |= UNVP_LOCKED;
115	return (0);
116}
117
118static void
119union_list_unlock(ix)
120	int ix;
121{
122	unvplock[ix] &= ~UNVP_LOCKED;
123
124	if (unvplock[ix] & UNVP_WANT) {
125		unvplock[ix] &= ~UNVP_WANT;
126		wakeup((caddr_t) &unvplock[ix]);
127	}
128}
129
130/*
131 *	union_updatevp:
132 *
133 *	The uppervp, if not NULL, must be referenced and not locked by us
134 *	The lowervp, if not NULL, must be referenced.
135 *
136 *	if uppervp and lowervp match pointers already installed, nothing
137 *	happens. The passed vp's (when matching) are not adjusted.  This
138 *	routine may only be called by union_newupper() and union_newlower().
139 */
140
141static void
142union_updatevp(un, uppervp, lowervp)
143	struct union_node *un;
144	struct vnode *uppervp;
145	struct vnode *lowervp;
146{
147	int ohash = UNION_HASH(un->un_uppervp, un->un_lowervp);
148	int nhash = UNION_HASH(uppervp, lowervp);
149	int docache = (lowervp != NULLVP || uppervp != NULLVP);
150	int lhash, uhash;
151
152	/*
153	 * Ensure locking is ordered from lower to higher
154	 * to avoid deadlocks.
155	 */
156	if (nhash < ohash) {
157		lhash = nhash;
158		uhash = ohash;
159	} else {
160		lhash = ohash;
161		uhash = nhash;
162	}
163
164	if (lhash != uhash) {
165		while (union_list_lock(lhash))
166			continue;
167	}
168
169	while (union_list_lock(uhash))
170		continue;
171
172	if (ohash != nhash || !docache) {
173		if (un->un_flags & UN_CACHED) {
174			un->un_flags &= ~UN_CACHED;
175			LIST_REMOVE(un, un_cache);
176		}
177	}
178
179	if (ohash != nhash)
180		union_list_unlock(ohash);
181
182	if (un->un_lowervp != lowervp) {
183		if (un->un_lowervp) {
184			vrele(un->un_lowervp);
185			if (un->un_path) {
186				free(un->un_path, M_TEMP);
187				un->un_path = 0;
188			}
189		}
190		un->un_lowervp = lowervp;
191		un->un_lowersz = VNOVAL;
192	}
193
194	if (un->un_uppervp != uppervp) {
195		if (un->un_uppervp)
196			vrele(un->un_uppervp);
197		un->un_uppervp = uppervp;
198		un->un_uppersz = VNOVAL;
199	}
200
201	if (docache && (ohash != nhash)) {
202		LIST_INSERT_HEAD(&unhead[nhash], un, un_cache);
203		un->un_flags |= UN_CACHED;
204	}
205
206	union_list_unlock(nhash);
207}
208
209/*
210 * Set a new lowervp.  The passed lowervp must be referenced and will be
211 * stored in the vp in a referenced state.
212 */
213
214static void
215union_newlower(un, lowervp)
216	struct union_node *un;
217	struct vnode *lowervp;
218{
219	union_updatevp(un, un->un_uppervp, lowervp);
220}
221
222/*
223 * Set a new uppervp.  The passed uppervp must be locked and will be
224 * stored in the vp in a locked state.  The caller should not unlock
225 * uppervp.
226 */
227
228static void
229union_newupper(un, uppervp)
230	struct union_node *un;
231	struct vnode *uppervp;
232{
233	union_updatevp(un, uppervp, un->un_lowervp);
234}
235
236/*
237 * Keep track of size changes in the underlying vnodes.
238 * If the size changes, then callback to the vm layer
239 * giving priority to the upper layer size.
240 */
241void
242union_newsize(vp, uppersz, lowersz)
243	struct vnode *vp;
244	off_t uppersz, lowersz;
245{
246	struct union_node *un;
247	off_t sz;
248
249	/* only interested in regular files */
250	if (vp->v_type != VREG)
251		return;
252
253	un = VTOUNION(vp);
254	sz = VNOVAL;
255
256	if ((uppersz != VNOVAL) && (un->un_uppersz != uppersz)) {
257		un->un_uppersz = uppersz;
258		if (sz == VNOVAL)
259			sz = un->un_uppersz;
260	}
261
262	if ((lowersz != VNOVAL) && (un->un_lowersz != lowersz)) {
263		un->un_lowersz = lowersz;
264		if (sz == VNOVAL)
265			sz = un->un_lowersz;
266	}
267
268	if (sz != VNOVAL) {
269		UDEBUG(("union: %s size now %ld\n",
270			(uppersz != VNOVAL ? "upper" : "lower"), (long)sz));
271		vnode_pager_setsize(vp, sz);
272	}
273}
274
275/*
276 *	union_allocvp:	allocate a union_node and associate it with a
277 *			parent union_node and one or two vnodes.
278 *
279 *	vpp	Holds the returned vnode locked and referenced if no
280 *		error occurs.
281 *
282 *	mp	Holds the mount point.  mp may or may not be busied.
283 *		allocvp makes no changes to mp.
284 *
285 *	dvp	Holds the parent union_node to the one we wish to create.
286 *		XXX may only be used to traverse an uncopied lowervp-based
287 *		tree?  XXX
288 *
289 *		dvp may or may not be locked.  allocvp makes no changes
290 *		to dvp.
291 *
292 *	upperdvp Holds the parent vnode to uppervp, generally used along
293 *		with path component information to create a shadow of
294 *		lowervp when uppervp does not exist.
295 *
296 *		upperdvp is referenced but unlocked on entry, and will be
297 *		dereferenced on return.
298 *
299 *	uppervp	Holds the new uppervp vnode to be stored in the
300 *		union_node we are allocating.  uppervp is referenced but
301 *		not locked, and will be dereferenced on return.
302 *
303 *	lowervp	Holds the new lowervp vnode to be stored in the
304 *		union_node we are allocating.  uppervp is referenced but
305 *		not locked, and will be dereferenced on return.
306 *
307 *	cnp	Holds path component information to be coupled with
308 *		lowervp and upperdvp to allow unionfs to create an uppervp
309 *		later on.  Only used if lowervp is valid.  The conents
310 *		of cnp is only valid for the duration of the call.
311 *
312 *	docache	Determine whether this node should be entered in the
313 *		cache or whether it should be destroyed as soon as possible.
314 *
315 * all union_nodes are maintained on a singly-linked
316 * list.  new nodes are only allocated when they cannot
317 * be found on this list.  entries on the list are
318 * removed when the vfs reclaim entry is called.
319 *
320 * a single lock is kept for the entire list.  this is
321 * needed because the getnewvnode() function can block
322 * waiting for a vnode to become free, in which case there
323 * may be more than one process trying to get the same
324 * vnode.  this lock is only taken if we are going to
325 * call getnewvnode, since the kernel itself is single-threaded.
326 *
327 * if an entry is found on the list, then call vget() to
328 * take a reference.  this is done because there may be
329 * zero references to it and so it needs to removed from
330 * the vnode free list.
331 */
332
333int
334union_allocvp(vpp, mp, dvp, upperdvp, cnp, uppervp, lowervp, docache)
335	struct vnode **vpp;
336	struct mount *mp;
337	struct vnode *dvp;		/* parent union vnode */
338	struct vnode *upperdvp;		/* parent vnode of uppervp */
339	struct componentname *cnp;	/* may be null */
340	struct vnode *uppervp;		/* may be null */
341	struct vnode *lowervp;		/* may be null */
342	int docache;
343{
344	int error;
345	struct union_node *un = 0;
346	struct vnode *xlowervp = NULLVP;
347	struct union_mount *um = MOUNTTOUNIONMOUNT(mp);
348	struct proc *p = (cnp) ? cnp->cn_proc : curproc;
349	int hash = 0;
350	int vflag;
351	int try;
352
353	if (uppervp == NULLVP && lowervp == NULLVP)
354		panic("union: unidentifiable allocation");
355
356	if (uppervp && lowervp && (uppervp->v_type != lowervp->v_type)) {
357		xlowervp = lowervp;
358		lowervp = NULLVP;
359	}
360
361	/* detect the root vnode (and aliases) */
362	vflag = 0;
363	if ((uppervp == um->um_uppervp) &&
364	    ((lowervp == NULLVP) || lowervp == um->um_lowervp)) {
365		if (lowervp == NULLVP) {
366			lowervp = um->um_lowervp;
367			if (lowervp != NULLVP)
368				VREF(lowervp);
369		}
370		vflag = VROOT;
371	}
372
373loop:
374	if (!docache) {
375		un = 0;
376	} else for (try = 0; try < 3; try++) {
377		switch (try) {
378		case 0:
379			if (lowervp == NULLVP)
380				continue;
381			hash = UNION_HASH(uppervp, lowervp);
382			break;
383
384		case 1:
385			if (uppervp == NULLVP)
386				continue;
387			hash = UNION_HASH(uppervp, NULLVP);
388			break;
389
390		case 2:
391			if (lowervp == NULLVP)
392				continue;
393			hash = UNION_HASH(NULLVP, lowervp);
394			break;
395		}
396
397		while (union_list_lock(hash))
398			continue;
399
400		LIST_FOREACH(un, &unhead[hash], un_cache) {
401			if ((un->un_lowervp == lowervp ||
402			     un->un_lowervp == NULLVP) &&
403			    (un->un_uppervp == uppervp ||
404			     un->un_uppervp == NULLVP) &&
405			    (UNIONTOV(un)->v_mount == mp)) {
406				if (vget(UNIONTOV(un), 0,
407				    cnp ? cnp->cn_proc : NULL)) {
408					union_list_unlock(hash);
409					goto loop;
410				}
411				break;
412			}
413		}
414
415		union_list_unlock(hash);
416
417		if (un)
418			break;
419	}
420
421	if (un) {
422		/*
423		 * Obtain a lock on the union_node.  Everything is unlocked
424		 * except for dvp, so check that case.  If they match, our
425		 * new un is already locked.  Otherwise we have to lock our
426		 * new un.
427		 *
428		 * A potential deadlock situation occurs when we are holding
429		 * one lock while trying to get another.  We must follow
430		 * strict ordering rules to avoid it.  We try to locate dvp
431		 * by scanning up from un_vnode, since the most likely
432		 * scenario is un being under dvp.
433		 */
434
435		if (dvp && un->un_vnode != dvp) {
436			struct vnode *scan = un->un_vnode;
437
438			do {
439				scan = VTOUNION(scan)->un_pvp;
440			} while (scan && scan->v_tag == VT_UNION && scan != dvp);
441			if (scan != dvp) {
442				/*
443				 * our new un is above dvp (we never saw dvp
444				 * while moving up the tree).
445				 */
446				VREF(dvp);
447				VOP_UNLOCK(dvp, 0, p);
448				error = vn_lock(un->un_vnode, LK_EXCLUSIVE, p);
449				vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, p);
450				vrele(dvp);
451			} else {
452				/*
453				 * our new un is under dvp
454				 */
455				error = vn_lock(un->un_vnode, LK_EXCLUSIVE, p);
456			}
457		} else if (dvp == NULLVP) {
458			/*
459			 * dvp is NULL, we need to lock un.
460			 */
461			error = vn_lock(un->un_vnode, LK_EXCLUSIVE, p);
462		} else {
463			/*
464			 * dvp == un->un_vnode, we are already locked.
465			 */
466			error = 0;
467		}
468
469		if (error)
470			goto loop;
471
472		/*
473		 * At this point, the union_node is locked and referenced.
474		 *
475		 * uppervp is locked and referenced or NULL, lowervp is
476		 * referenced or NULL.
477		 */
478		UDEBUG(("Modify existing un %p vn %p upper %p(refs %d) -> %p(refs %d)\n",
479			un, un->un_vnode, un->un_uppervp,
480			(un->un_uppervp ? un->un_uppervp->v_usecount : -99),
481			uppervp,
482			(uppervp ? uppervp->v_usecount : -99)
483		));
484
485		if (uppervp != un->un_uppervp) {
486			KASSERT(uppervp == NULL || uppervp->v_usecount > 0, ("union_allocvp: too few refs %d (at least 1 required) on uppervp", uppervp->v_usecount));
487			union_newupper(un, uppervp);
488		} else if (uppervp) {
489			KASSERT(uppervp->v_usecount > 1, ("union_allocvp: too few refs %d (at least 2 required) on uppervp", uppervp->v_usecount));
490			vrele(uppervp);
491		}
492
493		/*
494		 * Save information about the lower layer.
495		 * This needs to keep track of pathname
496		 * and directory information which union_vn_create
497		 * might need.
498		 */
499		if (lowervp != un->un_lowervp) {
500			union_newlower(un, lowervp);
501			if (cnp && (lowervp != NULLVP)) {
502				un->un_path = malloc(cnp->cn_namelen+1,
503						M_TEMP, M_WAITOK);
504				bcopy(cnp->cn_nameptr, un->un_path,
505						cnp->cn_namelen);
506				un->un_path[cnp->cn_namelen] = '\0';
507			}
508		} else if (lowervp) {
509			vrele(lowervp);
510		}
511
512		/*
513		 * and upperdvp
514		 */
515		if (upperdvp != un->un_dirvp) {
516			if (un->un_dirvp)
517				vrele(un->un_dirvp);
518			un->un_dirvp = upperdvp;
519		} else if (upperdvp) {
520			vrele(upperdvp);
521		}
522
523		*vpp = UNIONTOV(un);
524		return (0);
525	}
526
527	if (docache) {
528		/*
529		 * otherwise lock the vp list while we call getnewvnode
530		 * since that can block.
531		 */
532		hash = UNION_HASH(uppervp, lowervp);
533
534		if (union_list_lock(hash))
535			goto loop;
536	}
537
538	/*
539	 * Create new node rather then replace old node
540	 */
541
542	error = getnewvnode(VT_UNION, mp, union_vnodeop_p, vpp);
543	if (error) {
544		/*
545		 * If an error occurs clear out vnodes.
546		 */
547		if (lowervp)
548			vrele(lowervp);
549		if (uppervp)
550			vrele(uppervp);
551		if (upperdvp)
552			vrele(upperdvp);
553		*vpp = NULL;
554		goto out;
555	}
556
557	MALLOC((*vpp)->v_data, void *, sizeof(struct union_node),
558		M_TEMP, M_WAITOK);
559
560	(*vpp)->v_flag |= vflag;
561	if (uppervp)
562		(*vpp)->v_type = uppervp->v_type;
563	else
564		(*vpp)->v_type = lowervp->v_type;
565
566	un = VTOUNION(*vpp);
567	bzero(un, sizeof(*un));
568
569	lockinit(&un->un_lock, PVFS, "unlock", 0, 0);
570	vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY, p);
571
572	un->un_vnode = *vpp;
573	un->un_uppervp = uppervp;
574	un->un_uppersz = VNOVAL;
575	un->un_lowervp = lowervp;
576	un->un_lowersz = VNOVAL;
577	un->un_dirvp = upperdvp;
578	un->un_pvp = dvp;		/* only parent dir in new allocation */
579	if (dvp != NULLVP)
580		VREF(dvp);
581	un->un_dircache = 0;
582	un->un_openl = 0;
583
584	if (cnp && (lowervp != NULLVP)) {
585		un->un_path = malloc(cnp->cn_namelen+1, M_TEMP, M_WAITOK);
586		bcopy(cnp->cn_nameptr, un->un_path, cnp->cn_namelen);
587		un->un_path[cnp->cn_namelen] = '\0';
588	} else {
589		un->un_path = 0;
590		un->un_dirvp = NULL;
591	}
592
593	if (docache) {
594		LIST_INSERT_HEAD(&unhead[hash], un, un_cache);
595		un->un_flags |= UN_CACHED;
596	}
597
598out:
599	if (xlowervp)
600		vrele(xlowervp);
601
602	if (docache)
603		union_list_unlock(hash);
604
605	return (error);
606}
607
608int
609union_freevp(vp)
610	struct vnode *vp;
611{
612	struct union_node *un = VTOUNION(vp);
613
614	if (un->un_flags & UN_CACHED) {
615		un->un_flags &= ~UN_CACHED;
616		LIST_REMOVE(un, un_cache);
617	}
618
619	if (un->un_pvp != NULLVP) {
620		vrele(un->un_pvp);
621		un->un_pvp = NULL;
622	}
623	if (un->un_uppervp != NULLVP) {
624		vrele(un->un_uppervp);
625		un->un_uppervp = NULL;
626	}
627	if (un->un_lowervp != NULLVP) {
628		vrele(un->un_lowervp);
629		un->un_lowervp = NULL;
630	}
631	if (un->un_dirvp != NULLVP) {
632		vrele(un->un_dirvp);
633		un->un_dirvp = NULL;
634	}
635	if (un->un_path) {
636		free(un->un_path, M_TEMP);
637		un->un_path = NULL;
638	}
639	lockdestroy(&un->un_lock);
640
641	FREE(vp->v_data, M_TEMP);
642	vp->v_data = 0;
643
644	return (0);
645}
646
647/*
648 * copyfile.  copy the vnode (fvp) to the vnode (tvp)
649 * using a sequence of reads and writes.  both (fvp)
650 * and (tvp) are locked on entry and exit.
651 *
652 * fvp and tvp are both exclusive locked on call, but their refcount's
653 * haven't been bumped at all.
654 */
655static int
656union_copyfile(fvp, tvp, cred, p)
657	struct vnode *fvp;
658	struct vnode *tvp;
659	struct ucred *cred;
660	struct proc *p;
661{
662	char *buf;
663	struct uio uio;
664	struct iovec iov;
665	int error = 0;
666
667	/*
668	 * strategy:
669	 * allocate a buffer of size MAXBSIZE.
670	 * loop doing reads and writes, keeping track
671	 * of the current uio offset.
672	 * give up at the first sign of trouble.
673	 */
674
675	bzero(&uio, sizeof(uio));
676
677	uio.uio_procp = p;
678	uio.uio_segflg = UIO_SYSSPACE;
679	uio.uio_offset = 0;
680
681	VOP_LEASE(fvp, p, cred, LEASE_READ);
682	VOP_LEASE(tvp, p, cred, LEASE_WRITE);
683
684	buf = malloc(MAXBSIZE, M_TEMP, M_WAITOK);
685
686	/* ugly loop follows... */
687	do {
688		off_t offset = uio.uio_offset;
689		int count;
690		int bufoffset;
691
692		/*
693		 * Setup for big read
694		 */
695		uio.uio_iov = &iov;
696		uio.uio_iovcnt = 1;
697		iov.iov_base = buf;
698		iov.iov_len = MAXBSIZE;
699		uio.uio_resid = iov.iov_len;
700		uio.uio_rw = UIO_READ;
701
702		if ((error = VOP_READ(fvp, &uio, 0, cred)) != 0)
703			break;
704
705		/*
706		 * Get bytes read, handle read eof case and setup for
707		 * write loop
708		 */
709		if ((count = MAXBSIZE - uio.uio_resid) == 0)
710			break;
711		bufoffset = 0;
712
713		/*
714		 * Write until an error occurs or our buffer has been
715		 * exhausted, then update the offset for the next read.
716		 */
717		while (bufoffset < count) {
718			uio.uio_iov = &iov;
719			uio.uio_iovcnt = 1;
720			iov.iov_base = buf + bufoffset;
721			iov.iov_len = count - bufoffset;
722			uio.uio_offset = offset + bufoffset;
723			uio.uio_rw = UIO_WRITE;
724			uio.uio_resid = iov.iov_len;
725
726			if ((error = VOP_WRITE(tvp, &uio, 0, cred)) != 0)
727				break;
728			bufoffset += (count - bufoffset) - uio.uio_resid;
729		}
730		uio.uio_offset = offset + bufoffset;
731	} while (error == 0);
732
733	free(buf, M_TEMP);
734	return (error);
735}
736
737/*
738 *
739 * un's vnode is assumed to be locked on entry and remains locked on exit.
740 */
741
742int
743union_copyup(un, docopy, cred, p)
744	struct union_node *un;
745	int docopy;
746	struct ucred *cred;
747	struct proc *p;
748{
749	int error;
750	struct mount *mp;
751	struct vnode *lvp, *uvp;
752
753	/*
754	 * If the user does not have read permission, the vnode should not
755	 * be copied to upper layer.
756	 */
757	vn_lock(un->un_lowervp, LK_EXCLUSIVE | LK_RETRY, p);
758	error = VOP_ACCESS(un->un_lowervp, VREAD, cred, p);
759	VOP_UNLOCK(un->un_lowervp, 0, p);
760	if (error)
761		return (error);
762
763	if ((error = vn_start_write(un->un_dirvp, &mp, V_WAIT | PCATCH)) != 0)
764		return (error);
765	if ((error = union_vn_create(&uvp, un, p)) != 0) {
766		vn_finished_write(mp);
767		return (error);
768	}
769
770	lvp = un->un_lowervp;
771
772	KASSERT(uvp->v_usecount > 0, ("copy: uvp refcount 0: %d", uvp->v_usecount));
773	if (docopy) {
774		/*
775		 * XX - should not ignore errors
776		 * from VOP_CLOSE
777		 */
778		vn_lock(lvp, LK_EXCLUSIVE | LK_RETRY, p);
779		error = VOP_OPEN(lvp, FREAD, cred, p);
780		if (error == 0 && vn_canvmio(lvp) == TRUE)
781			error = vfs_object_create(lvp, p, cred);
782		if (error == 0) {
783			error = union_copyfile(lvp, uvp, cred, p);
784			VOP_UNLOCK(lvp, 0, p);
785			(void) VOP_CLOSE(lvp, FREAD, cred, p);
786		}
787		if (error == 0)
788			UDEBUG(("union: copied up %s\n", un->un_path));
789
790	}
791	VOP_UNLOCK(uvp, 0, p);
792	vn_finished_write(mp);
793	union_newupper(un, uvp);
794	KASSERT(uvp->v_usecount > 0, ("copy: uvp refcount 0: %d", uvp->v_usecount));
795	union_vn_close(uvp, FWRITE, cred, p);
796	KASSERT(uvp->v_usecount > 0, ("copy: uvp refcount 0: %d", uvp->v_usecount));
797	/*
798	 * Subsequent IOs will go to the top layer, so
799	 * call close on the lower vnode and open on the
800	 * upper vnode to ensure that the filesystem keeps
801	 * its references counts right.  This doesn't do
802	 * the right thing with (cred) and (FREAD) though.
803	 * Ignoring error returns is not right, either.
804	 */
805	if (error == 0) {
806		int i;
807
808		for (i = 0; i < un->un_openl; i++) {
809			(void) VOP_CLOSE(lvp, FREAD, cred, p);
810			(void) VOP_OPEN(uvp, FREAD, cred, p);
811		}
812		if (un->un_openl) {
813			if (vn_canvmio(uvp) == TRUE)
814				error = vfs_object_create(uvp, p, cred);
815		}
816		un->un_openl = 0;
817	}
818
819	return (error);
820
821}
822
823/*
824 *	union_relookup:
825 *
826 *	dvp should be locked on entry and will be locked on return.  No
827 *	net change in the ref count will occur.
828 *
829 *	If an error is returned, *vpp will be invalid, otherwise it
830 *	will hold a locked, referenced vnode.  If *vpp == dvp then
831 *	remember that only one exclusive lock is held.
832 */
833
834static int
835union_relookup(um, dvp, vpp, cnp, cn, path, pathlen)
836	struct union_mount *um;
837	struct vnode *dvp;
838	struct vnode **vpp;
839	struct componentname *cnp;
840	struct componentname *cn;
841	char *path;
842	int pathlen;
843{
844	int error;
845
846	/*
847	 * A new componentname structure must be faked up because
848	 * there is no way to know where the upper level cnp came
849	 * from or what it is being used for.  This must duplicate
850	 * some of the work done by NDINIT, some of the work done
851	 * by namei, some of the work done by lookup and some of
852	 * the work done by VOP_LOOKUP when given a CREATE flag.
853	 * Conclusion: Horrible.
854	 */
855	cn->cn_namelen = pathlen;
856	cn->cn_pnbuf = zalloc(namei_zone);
857	bcopy(path, cn->cn_pnbuf, cn->cn_namelen);
858	cn->cn_pnbuf[cn->cn_namelen] = '\0';
859
860	cn->cn_nameiop = CREATE;
861	cn->cn_flags = (LOCKPARENT|LOCKLEAF|HASBUF|SAVENAME|ISLASTCN);
862	cn->cn_proc = cnp->cn_proc;
863	if (um->um_op == UNMNT_ABOVE)
864		cn->cn_cred = cnp->cn_cred;
865	else
866		cn->cn_cred = um->um_cred;
867	cn->cn_nameptr = cn->cn_pnbuf;
868	cn->cn_consume = cnp->cn_consume;
869
870	VREF(dvp);
871	VOP_UNLOCK(dvp, 0, cnp->cn_proc);
872
873	/*
874	 * Pass dvp unlocked and referenced on call to relookup().
875	 *
876	 * If an error occurs, dvp will be returned unlocked and dereferenced.
877	 */
878
879	if ((error = relookup(dvp, vpp, cn)) != 0) {
880		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, cnp->cn_proc);
881		return(error);
882	}
883
884	/*
885	 * If no error occurs, dvp will be returned locked with the reference
886	 * left as before, and vpp will be returned referenced and locked.
887	 *
888	 * We want to return with dvp as it was passed to us, so we get
889	 * rid of our reference.
890	 */
891	vrele(dvp);
892	return (0);
893}
894
895/*
896 * Create a shadow directory in the upper layer.
897 * The new vnode is returned locked.
898 *
899 * (um) points to the union mount structure for access to the
900 * the mounting process's credentials.
901 * (dvp) is the directory in which to create the shadow directory,
902 * it is locked (but not ref'd) on entry and return.
903 * (cnp) is the componentname to be created.
904 * (vpp) is the returned newly created shadow directory, which
905 * is returned locked and ref'd
906 */
907int
908union_mkshadow(um, dvp, cnp, vpp)
909	struct union_mount *um;
910	struct vnode *dvp;
911	struct componentname *cnp;
912	struct vnode **vpp;
913{
914	int error;
915	struct vattr va;
916	struct proc *p = cnp->cn_proc;
917	struct componentname cn;
918	struct mount *mp;
919
920	if ((error = vn_start_write(dvp, &mp, V_WAIT | PCATCH)) != 0)
921		return (error);
922	if ((error = union_relookup(um, dvp, vpp, cnp, &cn,
923			cnp->cn_nameptr, cnp->cn_namelen)) != 0) {
924		vn_finished_write(mp);
925		return (error);
926	}
927
928	if (*vpp) {
929		if (cn.cn_flags & HASBUF) {
930			zfree(namei_zone, cn.cn_pnbuf);
931			cn.cn_flags &= ~HASBUF;
932		}
933		if (dvp == *vpp)
934			vrele(*vpp);
935		else
936			vput(*vpp);
937		vn_finished_write(mp);
938		*vpp = NULLVP;
939		return (EEXIST);
940	}
941
942	/*
943	 * policy: when creating the shadow directory in the
944	 * upper layer, create it owned by the user who did
945	 * the mount, group from parent directory, and mode
946	 * 777 modified by umask (ie mostly identical to the
947	 * mkdir syscall).  (jsp, kb)
948	 */
949
950	VATTR_NULL(&va);
951	va.va_type = VDIR;
952	va.va_mode = um->um_cmode;
953
954	/* VOP_LEASE: dvp is locked */
955	VOP_LEASE(dvp, p, cn.cn_cred, LEASE_WRITE);
956
957	error = VOP_MKDIR(dvp, vpp, &cn, &va);
958	if (cn.cn_flags & HASBUF) {
959		zfree(namei_zone, cn.cn_pnbuf);
960		cn.cn_flags &= ~HASBUF;
961	}
962	/*vput(dvp);*/
963	vn_finished_write(mp);
964	return (error);
965}
966
967/*
968 * Create a whiteout entry in the upper layer.
969 *
970 * (um) points to the union mount structure for access to the
971 * the mounting process's credentials.
972 * (dvp) is the directory in which to create the whiteout.
973 * it is locked on entry and return.
974 * (cnp) is the componentname to be created.
975 */
976int
977union_mkwhiteout(um, dvp, cnp, path)
978	struct union_mount *um;
979	struct vnode *dvp;
980	struct componentname *cnp;
981	char *path;
982{
983	int error;
984	struct proc *p = cnp->cn_proc;
985	struct vnode *wvp;
986	struct componentname cn;
987	struct mount *mp;
988
989	if ((error = vn_start_write(dvp, &mp, V_WAIT | PCATCH)) != 0)
990		return (error);
991	error = union_relookup(um, dvp, &wvp, cnp, &cn, path, strlen(path));
992	if (error) {
993		vn_finished_write(mp);
994		return (error);
995	}
996
997	if (wvp) {
998		if (cn.cn_flags & HASBUF) {
999			zfree(namei_zone, cn.cn_pnbuf);
1000			cn.cn_flags &= ~HASBUF;
1001		}
1002		if (wvp == dvp)
1003			vrele(wvp);
1004		else
1005			vput(wvp);
1006		vn_finished_write(mp);
1007		return (EEXIST);
1008	}
1009
1010	/* VOP_LEASE: dvp is locked */
1011	VOP_LEASE(dvp, p, p->p_ucred, LEASE_WRITE);
1012
1013	error = VOP_WHITEOUT(dvp, &cn, CREATE);
1014	if (cn.cn_flags & HASBUF) {
1015		zfree(namei_zone, cn.cn_pnbuf);
1016		cn.cn_flags &= ~HASBUF;
1017	}
1018	vn_finished_write(mp);
1019	return (error);
1020}
1021
1022/*
1023 * union_vn_create: creates and opens a new shadow file
1024 * on the upper union layer.  this function is similar
1025 * in spirit to calling vn_open but it avoids calling namei().
1026 * the problem with calling namei is that a) it locks too many
1027 * things, and b) it doesn't start at the "right" directory,
1028 * whereas relookup is told where to start.
1029 *
1030 * On entry, the vnode associated with un is locked.  It remains locked
1031 * on return.
1032 *
1033 * If no error occurs, *vpp contains a locked referenced vnode for your
1034 * use.  If an error occurs *vpp iis undefined.
1035 */
1036static int
1037union_vn_create(vpp, un, p)
1038	struct vnode **vpp;
1039	struct union_node *un;
1040	struct proc *p;
1041{
1042	struct vnode *vp;
1043	struct ucred *cred = p->p_ucred;
1044	struct vattr vat;
1045	struct vattr *vap = &vat;
1046	int fmode = FFLAGS(O_WRONLY|O_CREAT|O_TRUNC|O_EXCL);
1047	int error;
1048	int cmode = UN_FILEMODE & ~p->p_fd->fd_cmask;
1049	struct componentname cn;
1050
1051	*vpp = NULLVP;
1052
1053	/*
1054	 * Build a new componentname structure (for the same
1055	 * reasons outlines in union_mkshadow).
1056	 * The difference here is that the file is owned by
1057	 * the current user, rather than by the person who
1058	 * did the mount, since the current user needs to be
1059	 * able to write the file (that's why it is being
1060	 * copied in the first place).
1061	 */
1062	cn.cn_namelen = strlen(un->un_path);
1063	cn.cn_pnbuf = zalloc(namei_zone);
1064	bcopy(un->un_path, cn.cn_pnbuf, cn.cn_namelen+1);
1065	cn.cn_nameiop = CREATE;
1066	cn.cn_flags = (LOCKPARENT|LOCKLEAF|HASBUF|SAVENAME|ISLASTCN);
1067	cn.cn_proc = p;
1068	cn.cn_cred = p->p_ucred;
1069	cn.cn_nameptr = cn.cn_pnbuf;
1070	cn.cn_consume = 0;
1071
1072	/*
1073	 * Pass dvp unlocked and referenced on call to relookup().
1074	 *
1075	 * If an error occurs, dvp will be returned unlocked and dereferenced.
1076	 */
1077	VREF(un->un_dirvp);
1078	error = relookup(un->un_dirvp, &vp, &cn);
1079	if (error)
1080		return (error);
1081
1082	/*
1083	 * If no error occurs, dvp will be returned locked with the reference
1084	 * left as before, and vpp will be returned referenced and locked.
1085	 */
1086	if (vp) {
1087		vput(un->un_dirvp);
1088		if (cn.cn_flags & HASBUF) {
1089			zfree(namei_zone, cn.cn_pnbuf);
1090			cn.cn_flags &= ~HASBUF;
1091		}
1092		if (vp == un->un_dirvp)
1093			vrele(vp);
1094		else
1095			vput(vp);
1096		return (EEXIST);
1097	}
1098
1099	/*
1100	 * Good - there was no race to create the file
1101	 * so go ahead and create it.  The permissions
1102	 * on the file will be 0666 modified by the
1103	 * current user's umask.  Access to the file, while
1104	 * it is unioned, will require access to the top *and*
1105	 * bottom files.  Access when not unioned will simply
1106	 * require access to the top-level file.
1107	 * TODO: confirm choice of access permissions.
1108	 */
1109	VATTR_NULL(vap);
1110	vap->va_type = VREG;
1111	vap->va_mode = cmode;
1112	VOP_LEASE(un->un_dirvp, p, cred, LEASE_WRITE);
1113	error = VOP_CREATE(un->un_dirvp, &vp, &cn, vap);
1114	if (cn.cn_flags & HASBUF) {
1115		zfree(namei_zone, cn.cn_pnbuf);
1116		cn.cn_flags &= ~HASBUF;
1117	}
1118	vput(un->un_dirvp);
1119	if (error)
1120		return (error);
1121
1122	error = VOP_OPEN(vp, fmode, cred, p);
1123	if (error == 0 && vn_canvmio(vp) == TRUE)
1124		error = vfs_object_create(vp, p, cred);
1125	if (error) {
1126		vput(vp);
1127		return (error);
1128	}
1129	vp->v_writecount++;
1130	*vpp = vp;
1131	return (0);
1132}
1133
1134static int
1135union_vn_close(vp, fmode, cred, p)
1136	struct vnode *vp;
1137	int fmode;
1138	struct ucred *cred;
1139	struct proc *p;
1140{
1141
1142	if (fmode & FWRITE)
1143		--vp->v_writecount;
1144	return (VOP_CLOSE(vp, fmode, cred, p));
1145}
1146
1147#if 0
1148
1149/*
1150 *	union_removed_upper:
1151 *
1152 *	called with union_node unlocked. XXX
1153 */
1154
1155void
1156union_removed_upper(un)
1157	struct union_node *un;
1158{
1159	struct proc *p = curproc;	/* XXX */
1160	struct vnode **vpp;
1161
1162	/*
1163	 * Do not set the uppervp to NULLVP.  If lowervp is NULLVP,
1164	 * union node will have neither uppervp nor lowervp.  We remove
1165	 * the union node from cache, so that it will not be referrenced.
1166	 */
1167	union_newupper(un, NULLVP);
1168	if (un->un_dircache != 0) {
1169		for (vpp = un->un_dircache; *vpp != NULLVP; vpp++)
1170			vrele(*vpp);
1171		free(un->un_dircache, M_TEMP);
1172		un->un_dircache = 0;
1173	}
1174
1175	if (un->un_flags & UN_CACHED) {
1176		un->un_flags &= ~UN_CACHED;
1177		LIST_REMOVE(un, un_cache);
1178	}
1179}
1180
1181#endif
1182
1183/*
1184 * determine whether a whiteout is needed
1185 * during a remove/rmdir operation.
1186 */
1187int
1188union_dowhiteout(un, cred, p)
1189	struct union_node *un;
1190	struct ucred *cred;
1191	struct proc *p;
1192{
1193	struct vattr va;
1194
1195	if (un->un_lowervp != NULLVP)
1196		return (1);
1197
1198	if (VOP_GETATTR(un->un_uppervp, &va, cred, p) == 0 &&
1199	    (va.va_flags & OPAQUE))
1200		return (1);
1201
1202	return (0);
1203}
1204
1205static void
1206union_dircache_r(vp, vppp, cntp)
1207	struct vnode *vp;
1208	struct vnode ***vppp;
1209	int *cntp;
1210{
1211	struct union_node *un;
1212
1213	if (vp->v_op != union_vnodeop_p) {
1214		if (vppp) {
1215			VREF(vp);
1216			*(*vppp)++ = vp;
1217			if (--(*cntp) == 0)
1218				panic("union: dircache table too small");
1219		} else {
1220			(*cntp)++;
1221		}
1222
1223		return;
1224	}
1225
1226	un = VTOUNION(vp);
1227	if (un->un_uppervp != NULLVP)
1228		union_dircache_r(un->un_uppervp, vppp, cntp);
1229	if (un->un_lowervp != NULLVP)
1230		union_dircache_r(un->un_lowervp, vppp, cntp);
1231}
1232
1233struct vnode *
1234union_dircache(vp, p)
1235	struct vnode *vp;
1236	struct proc *p;
1237{
1238	int cnt;
1239	struct vnode *nvp;
1240	struct vnode **vpp;
1241	struct vnode **dircache;
1242	struct union_node *un;
1243	int error;
1244
1245	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1246	dircache = VTOUNION(vp)->un_dircache;
1247
1248	nvp = NULLVP;
1249
1250	if (dircache == NULL) {
1251		cnt = 0;
1252		union_dircache_r(vp, 0, &cnt);
1253		cnt++;
1254		dircache = malloc(cnt * sizeof(struct vnode *),
1255				M_TEMP, M_WAITOK);
1256		vpp = dircache;
1257		union_dircache_r(vp, &vpp, &cnt);
1258		*vpp = NULLVP;
1259		vpp = dircache + 1;
1260	} else {
1261		vpp = dircache;
1262		do {
1263			if (*vpp++ == VTOUNION(vp)->un_uppervp)
1264				break;
1265		} while (*vpp != NULLVP);
1266	}
1267
1268	if (*vpp == NULLVP)
1269		goto out;
1270
1271	/*vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY, p);*/
1272	UDEBUG(("ALLOCVP-3 %p ref %d\n", *vpp, (*vpp ? (*vpp)->v_usecount : -99)));
1273	VREF(*vpp);
1274	error = union_allocvp(&nvp, vp->v_mount, NULLVP, NULLVP, NULL, *vpp, NULLVP, 0);
1275	UDEBUG(("ALLOCVP-3B %p ref %d\n", nvp, (*vpp ? (*vpp)->v_usecount : -99)));
1276	if (error)
1277		goto out;
1278
1279	VTOUNION(vp)->un_dircache = 0;
1280	un = VTOUNION(nvp);
1281	un->un_dircache = dircache;
1282
1283out:
1284	VOP_UNLOCK(vp, 0, p);
1285	return (nvp);
1286}
1287
1288/*
1289 * Guarentee coherency with the VM cache by invalidating any clean VM pages
1290 * associated with this write and updating any dirty VM pages.  Since our
1291 * vnode is locked, other processes will not be able to read the pages in
1292 * again until after our write completes.
1293 *
1294 * We also have to be coherent with reads, by flushing any pending dirty
1295 * pages prior to issuing the read.
1296 *
1297 * XXX this is somewhat of a hack at the moment.  To support this properly
1298 * we would have to be able to run VOP_READ and VOP_WRITE through the VM
1299 * cache.  Then we wouldn't need to worry about coherency.
1300 */
1301
1302void
1303union_vm_coherency(struct vnode *vp, struct uio *uio, int cleanfls)
1304{
1305	vm_object_t object;
1306	vm_pindex_t pstart;
1307	vm_pindex_t pend;
1308	int pgoff;
1309
1310	if ((object = vp->v_object) == NULL)
1311	    return;
1312
1313	pgoff = uio->uio_offset & PAGE_MASK;
1314	pstart = uio->uio_offset / PAGE_SIZE;
1315	pend = pstart + (uio->uio_resid + pgoff + PAGE_MASK) / PAGE_SIZE;
1316
1317	vm_object_page_clean(object, pstart, pend, OBJPC_SYNC);
1318	if (cleanfls)
1319		vm_object_page_remove(object, pstart, pend, TRUE);
1320}
1321
1322/*
1323 * Module glue to remove #ifdef UNION from vfs_syscalls.c
1324 */
1325static int
1326union_dircheck(struct proc *p, struct vnode **vp, struct file *fp)
1327{
1328	int error = 0;
1329
1330	if ((*vp)->v_op == union_vnodeop_p) {
1331		struct vnode *lvp;
1332
1333		lvp = union_dircache(*vp, p);
1334		if (lvp != NULLVP) {
1335			struct vattr va;
1336
1337			/*
1338			 * If the directory is opaque,
1339			 * then don't show lower entries
1340			 */
1341			error = VOP_GETATTR(*vp, &va, fp->f_cred, p);
1342			if (va.va_flags & OPAQUE) {
1343				vput(lvp);
1344				lvp = NULL;
1345			}
1346		}
1347
1348		if (lvp != NULLVP) {
1349			error = VOP_OPEN(lvp, FREAD, fp->f_cred, p);
1350			if (error == 0 && vn_canvmio(lvp) == TRUE)
1351				error = vfs_object_create(lvp, p, fp->f_cred);
1352			if (error) {
1353				vput(lvp);
1354				return (error);
1355			}
1356			VOP_UNLOCK(lvp, 0, p);
1357			fp->f_data = (caddr_t) lvp;
1358			fp->f_offset = 0;
1359			error = vn_close(*vp, FREAD, fp->f_cred, p);
1360			if (error)
1361				return (error);
1362			*vp = lvp;
1363			return -1;	/* goto unionread */
1364		}
1365	}
1366	return error;
1367}
1368
1369static int
1370union_modevent(module_t mod, int type, void *data)
1371{
1372	switch (type) {
1373	case MOD_LOAD:
1374		union_dircheckp = union_dircheck;
1375		break;
1376	case MOD_UNLOAD:
1377		union_dircheckp = NULL;
1378		break;
1379	default:
1380		break;
1381	}
1382	return 0;
1383}
1384
1385static moduledata_t union_mod = {
1386	"union_dircheck",
1387	union_modevent,
1388	NULL
1389};
1390
1391DECLARE_MODULE(union_dircheck, union_mod, SI_SUB_VFS, SI_ORDER_ANY);
1392