union_subr.c revision 60938
1/*
2 * Copyright (c) 1994 Jan-Simon Pendry
3 * Copyright (c) 1994
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Jan-Simon Pendry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	@(#)union_subr.c	8.20 (Berkeley) 5/20/95
38 * $FreeBSD: head/sys/fs/unionfs/union_subr.c 60938 2000-05-26 02:09:24Z jake $
39 */
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/vnode.h>
45#include <sys/namei.h>
46#include <sys/malloc.h>
47#include <sys/fcntl.h>
48#include <sys/file.h>
49#include <sys/filedesc.h>
50#include <sys/module.h>
51#include <sys/mount.h>
52#include <sys/stat.h>
53#include <vm/vm.h>
54#include <vm/vm_extern.h>	/* for vnode_pager_setsize */
55#include <vm/vm_zone.h>
56#include <vm/vm_object.h>	/* for vm cache coherency */
57#include <miscfs/union/union.h>
58
59#include <sys/proc.h>
60
61extern int	union_init __P((void));
62
63/* must be power of two, otherwise change UNION_HASH() */
64#define NHASH 32
65
66/* unsigned int ... */
67#define UNION_HASH(u, l) \
68	(((((uintptr_t) (u)) + ((uintptr_t) l)) >> 8) & (NHASH-1))
69
70static LIST_HEAD(unhead, union_node) unhead[NHASH];
71static int unvplock[NHASH];
72
73static void	union_dircache_r __P((struct vnode *vp, struct vnode ***vppp,
74				      int *cntp));
75static int	union_list_lock __P((int ix));
76static void	union_list_unlock __P((int ix));
77static int	union_relookup __P((struct union_mount *um, struct vnode *dvp,
78				    struct vnode **vpp,
79				    struct componentname *cnp,
80				    struct componentname *cn, char *path,
81				    int pathlen));
82static void	union_updatevp __P((struct union_node *un,
83				    struct vnode *uppervp,
84				    struct vnode *lowervp));
85static void union_newlower __P((struct union_node *, struct vnode *));
86static void union_newupper __P((struct union_node *, struct vnode *));
87static int union_copyfile __P((struct vnode *, struct vnode *,
88					struct ucred *, struct proc *));
89static int union_vn_create __P((struct vnode **, struct union_node *,
90				struct proc *));
91static int union_vn_close __P((struct vnode *, int, struct ucred *,
92				struct proc *));
93
94int
95union_init()
96{
97	int i;
98
99	for (i = 0; i < NHASH; i++)
100		LIST_INIT(&unhead[i]);
101	bzero((caddr_t)unvplock, sizeof(unvplock));
102	return (0);
103}
104
105static int
106union_list_lock(ix)
107	int ix;
108{
109	if (unvplock[ix] & UNVP_LOCKED) {
110		unvplock[ix] |= UNVP_WANT;
111		(void) tsleep((caddr_t) &unvplock[ix], PINOD, "unllck", 0);
112		return (1);
113	}
114	unvplock[ix] |= UNVP_LOCKED;
115	return (0);
116}
117
118static void
119union_list_unlock(ix)
120	int ix;
121{
122	unvplock[ix] &= ~UNVP_LOCKED;
123
124	if (unvplock[ix] & UNVP_WANT) {
125		unvplock[ix] &= ~UNVP_WANT;
126		wakeup((caddr_t) &unvplock[ix]);
127	}
128}
129
130/*
131 *	union_updatevp:
132 *
133 *	The uppervp, if not NULL, must be referenced and not locked by us
134 *	The lowervp, if not NULL, must be referenced.
135 *
136 *	if uppervp and lowervp match pointers already installed, nothing
137 *	happens. The passed vp's (when matching) are not adjusted.  This
138 *	routine may only be called by union_newupper() and union_newlower().
139 */
140
141static void
142union_updatevp(un, uppervp, lowervp)
143	struct union_node *un;
144	struct vnode *uppervp;
145	struct vnode *lowervp;
146{
147	int ohash = UNION_HASH(un->un_uppervp, un->un_lowervp);
148	int nhash = UNION_HASH(uppervp, lowervp);
149	int docache = (lowervp != NULLVP || uppervp != NULLVP);
150	int lhash, uhash;
151
152	/*
153	 * Ensure locking is ordered from lower to higher
154	 * to avoid deadlocks.
155	 */
156	if (nhash < ohash) {
157		lhash = nhash;
158		uhash = ohash;
159	} else {
160		lhash = ohash;
161		uhash = nhash;
162	}
163
164	if (lhash != uhash) {
165		while (union_list_lock(lhash))
166			continue;
167	}
168
169	while (union_list_lock(uhash))
170		continue;
171
172	if (ohash != nhash || !docache) {
173		if (un->un_flags & UN_CACHED) {
174			un->un_flags &= ~UN_CACHED;
175			LIST_REMOVE(un, un_cache);
176		}
177	}
178
179	if (ohash != nhash)
180		union_list_unlock(ohash);
181
182	if (un->un_lowervp != lowervp) {
183		if (un->un_lowervp) {
184			vrele(un->un_lowervp);
185			if (un->un_path) {
186				free(un->un_path, M_TEMP);
187				un->un_path = 0;
188			}
189		}
190		un->un_lowervp = lowervp;
191		un->un_lowersz = VNOVAL;
192	}
193
194	if (un->un_uppervp != uppervp) {
195		if (un->un_uppervp)
196			vrele(un->un_uppervp);
197		un->un_uppervp = uppervp;
198		un->un_uppersz = VNOVAL;
199	}
200
201	if (docache && (ohash != nhash)) {
202		LIST_INSERT_HEAD(&unhead[nhash], un, un_cache);
203		un->un_flags |= UN_CACHED;
204	}
205
206	union_list_unlock(nhash);
207}
208
209/*
210 * Set a new lowervp.  The passed lowervp must be referenced and will be
211 * stored in the vp in a referenced state.
212 */
213
214static void
215union_newlower(un, lowervp)
216	struct union_node *un;
217	struct vnode *lowervp;
218{
219	union_updatevp(un, un->un_uppervp, lowervp);
220}
221
222/*
223 * Set a new uppervp.  The passed uppervp must be locked and will be
224 * stored in the vp in a locked state.  The caller should not unlock
225 * uppervp.
226 */
227
228static void
229union_newupper(un, uppervp)
230	struct union_node *un;
231	struct vnode *uppervp;
232{
233	union_updatevp(un, uppervp, un->un_lowervp);
234}
235
236/*
237 * Keep track of size changes in the underlying vnodes.
238 * If the size changes, then callback to the vm layer
239 * giving priority to the upper layer size.
240 */
241void
242union_newsize(vp, uppersz, lowersz)
243	struct vnode *vp;
244	off_t uppersz, lowersz;
245{
246	struct union_node *un;
247	off_t sz;
248
249	/* only interested in regular files */
250	if (vp->v_type != VREG)
251		return;
252
253	un = VTOUNION(vp);
254	sz = VNOVAL;
255
256	if ((uppersz != VNOVAL) && (un->un_uppersz != uppersz)) {
257		un->un_uppersz = uppersz;
258		if (sz == VNOVAL)
259			sz = un->un_uppersz;
260	}
261
262	if ((lowersz != VNOVAL) && (un->un_lowersz != lowersz)) {
263		un->un_lowersz = lowersz;
264		if (sz == VNOVAL)
265			sz = un->un_lowersz;
266	}
267
268	if (sz != VNOVAL) {
269		UDEBUG(("union: %s size now %ld\n",
270			(uppersz != VNOVAL ? "upper" : "lower"), (long)sz));
271		vnode_pager_setsize(vp, sz);
272	}
273}
274
275/*
276 *	union_allocvp:	allocate a union_node and associate it with a
277 *			parent union_node and one or two vnodes.
278 *
279 *	vpp	Holds the returned vnode locked and referenced if no
280 *		error occurs.
281 *
282 *	mp	Holds the mount point.  mp may or may not be busied.
283 *		allocvp makes no changes to mp.
284 *
285 *	dvp	Holds the parent union_node to the one we wish to create.
286 *		XXX may only be used to traverse an uncopied lowervp-based
287 *		tree?  XXX
288 *
289 *		dvp may or may not be locked.  allocvp makes no changes
290 *		to dvp.
291 *
292 *	upperdvp Holds the parent vnode to uppervp, generally used along
293 *		with path component information to create a shadow of
294 *		lowervp when uppervp does not exist.
295 *
296 *		upperdvp is referenced but unlocked on entry, and will be
297 *		dereferenced on return.
298 *
299 *	uppervp	Holds the new uppervp vnode to be stored in the
300 *		union_node we are allocating.  uppervp is referenced but
301 *		not locked, and will be dereferenced on return.
302 *
303 *	lowervp	Holds the new lowervp vnode to be stored in the
304 *		union_node we are allocating.  uppervp is referenced but
305 *		not locked, and will be dereferenced on return.
306 *
307 *	cnp	Holds path component information to be coupled with
308 *		lowervp and upperdvp to allow unionfs to create an uppervp
309 *		later on.  Only used if lowervp is valid.  The conents
310 *		of cnp is only valid for the duration of the call.
311 *
312 *	docache	Determine whether this node should be entered in the
313 *		cache or whether it should be destroyed as soon as possible.
314 *
315 * all union_nodes are maintained on a singly-linked
316 * list.  new nodes are only allocated when they cannot
317 * be found on this list.  entries on the list are
318 * removed when the vfs reclaim entry is called.
319 *
320 * a single lock is kept for the entire list.  this is
321 * needed because the getnewvnode() function can block
322 * waiting for a vnode to become free, in which case there
323 * may be more than one process trying to get the same
324 * vnode.  this lock is only taken if we are going to
325 * call getnewvnode, since the kernel itself is single-threaded.
326 *
327 * if an entry is found on the list, then call vget() to
328 * take a reference.  this is done because there may be
329 * zero references to it and so it needs to removed from
330 * the vnode free list.
331 */
332
333int
334union_allocvp(vpp, mp, dvp, upperdvp, cnp, uppervp, lowervp, docache)
335	struct vnode **vpp;
336	struct mount *mp;
337	struct vnode *dvp;		/* parent union vnode */
338	struct vnode *upperdvp;		/* parent vnode of uppervp */
339	struct componentname *cnp;	/* may be null */
340	struct vnode *uppervp;		/* may be null */
341	struct vnode *lowervp;		/* may be null */
342	int docache;
343{
344	int error;
345	struct union_node *un = 0;
346	struct vnode *xlowervp = NULLVP;
347	struct union_mount *um = MOUNTTOUNIONMOUNT(mp);
348	struct proc *p = (cnp) ? cnp->cn_proc : curproc;
349	int hash = 0;
350	int vflag;
351	int try;
352
353	if (uppervp == NULLVP && lowervp == NULLVP)
354		panic("union: unidentifiable allocation");
355
356	if (uppervp && lowervp && (uppervp->v_type != lowervp->v_type)) {
357		xlowervp = lowervp;
358		lowervp = NULLVP;
359	}
360
361	/* detect the root vnode (and aliases) */
362	vflag = 0;
363	if ((uppervp == um->um_uppervp) &&
364	    ((lowervp == NULLVP) || lowervp == um->um_lowervp)) {
365		if (lowervp == NULLVP) {
366			lowervp = um->um_lowervp;
367			if (lowervp != NULLVP)
368				VREF(lowervp);
369		}
370		vflag = VROOT;
371	}
372
373loop:
374	if (!docache) {
375		un = 0;
376	} else for (try = 0; try < 3; try++) {
377		switch (try) {
378		case 0:
379			if (lowervp == NULLVP)
380				continue;
381			hash = UNION_HASH(uppervp, lowervp);
382			break;
383
384		case 1:
385			if (uppervp == NULLVP)
386				continue;
387			hash = UNION_HASH(uppervp, NULLVP);
388			break;
389
390		case 2:
391			if (lowervp == NULLVP)
392				continue;
393			hash = UNION_HASH(NULLVP, lowervp);
394			break;
395		}
396
397		while (union_list_lock(hash))
398			continue;
399
400		for (un = unhead[hash].lh_first; un != 0;
401					un = un->un_cache.le_next) {
402			if ((un->un_lowervp == lowervp ||
403			     un->un_lowervp == NULLVP) &&
404			    (un->un_uppervp == uppervp ||
405			     un->un_uppervp == NULLVP) &&
406			    (UNIONTOV(un)->v_mount == mp)) {
407				if (vget(UNIONTOV(un), 0,
408				    cnp ? cnp->cn_proc : NULL)) {
409					union_list_unlock(hash);
410					goto loop;
411				}
412				break;
413			}
414		}
415
416		union_list_unlock(hash);
417
418		if (un)
419			break;
420	}
421
422	if (un) {
423		/*
424		 * Obtain a lock on the union_node.  Everything is unlocked
425		 * except for dvp, so check that case.  If they match, our
426		 * new un is already locked.  Otherwise we have to lock our
427		 * new un.
428		 *
429		 * A potential deadlock situation occurs when we are holding
430		 * one lock while trying to get another.  We must follow
431		 * strict ordering rules to avoid it.  We try to locate dvp
432		 * by scanning up from un_vnode, since the most likely
433		 * scenario is un being under dvp.
434		 */
435
436		if (dvp && un->un_vnode != dvp) {
437			struct vnode *scan = un->un_vnode;
438
439			do {
440				scan = VTOUNION(scan)->un_pvp;
441			} while (scan && scan->v_tag == VT_UNION && scan != dvp);
442			if (scan != dvp) {
443				/*
444				 * our new un is above dvp (we never saw dvp
445				 * while moving up the tree).
446				 */
447				VREF(dvp);
448				VOP_UNLOCK(dvp, 0, p);
449				error = vn_lock(un->un_vnode, LK_EXCLUSIVE, p);
450				vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, p);
451				vrele(dvp);
452			} else {
453				/*
454				 * our new un is under dvp
455				 */
456				error = vn_lock(un->un_vnode, LK_EXCLUSIVE, p);
457			}
458		} else if (dvp == NULLVP) {
459			/*
460			 * dvp is NULL, we need to lock un.
461			 */
462			error = vn_lock(un->un_vnode, LK_EXCLUSIVE, p);
463		} else {
464			/*
465			 * dvp == un->un_vnode, we are already locked.
466			 */
467			error = 0;
468		}
469
470		if (error)
471			goto loop;
472
473		/*
474		 * At this point, the union_node is locked and referenced.
475		 *
476		 * uppervp is locked and referenced or NULL, lowervp is
477		 * referenced or NULL.
478		 */
479		UDEBUG(("Modify existing un %p vn %p upper %p(refs %d) -> %p(refs %d)\n",
480			un, un->un_vnode, un->un_uppervp,
481			(un->un_uppervp ? un->un_uppervp->v_usecount : -99),
482			uppervp,
483			(uppervp ? uppervp->v_usecount : -99)
484		));
485
486		if (uppervp != un->un_uppervp) {
487			KASSERT(uppervp == NULL || uppervp->v_usecount > 0, ("union_allocvp: too few refs %d (at least 1 required) on uppervp", uppervp->v_usecount));
488			union_newupper(un, uppervp);
489		} else if (uppervp) {
490			KASSERT(uppervp->v_usecount > 1, ("union_allocvp: too few refs %d (at least 2 required) on uppervp", uppervp->v_usecount));
491			vrele(uppervp);
492		}
493
494		/*
495		 * Save information about the lower layer.
496		 * This needs to keep track of pathname
497		 * and directory information which union_vn_create
498		 * might need.
499		 */
500		if (lowervp != un->un_lowervp) {
501			union_newlower(un, lowervp);
502			if (cnp && (lowervp != NULLVP)) {
503				un->un_path = malloc(cnp->cn_namelen+1,
504						M_TEMP, M_WAITOK);
505				bcopy(cnp->cn_nameptr, un->un_path,
506						cnp->cn_namelen);
507				un->un_path[cnp->cn_namelen] = '\0';
508			}
509		} else if (lowervp) {
510			vrele(lowervp);
511		}
512
513		/*
514		 * and upperdvp
515		 */
516		if (upperdvp != un->un_dirvp) {
517			if (un->un_dirvp)
518				vrele(un->un_dirvp);
519			un->un_dirvp = upperdvp;
520		} else if (upperdvp) {
521			vrele(upperdvp);
522		}
523
524		*vpp = UNIONTOV(un);
525		return (0);
526	}
527
528	if (docache) {
529		/*
530		 * otherwise lock the vp list while we call getnewvnode
531		 * since that can block.
532		 */
533		hash = UNION_HASH(uppervp, lowervp);
534
535		if (union_list_lock(hash))
536			goto loop;
537	}
538
539	/*
540	 * Create new node rather then replace old node
541	 */
542
543	error = getnewvnode(VT_UNION, mp, union_vnodeop_p, vpp);
544	if (error) {
545		/*
546		 * If an error occurs clear out vnodes.
547		 */
548		if (lowervp)
549			vrele(lowervp);
550		if (uppervp)
551			vrele(uppervp);
552		if (upperdvp)
553			vrele(upperdvp);
554		*vpp = NULL;
555		goto out;
556	}
557
558	MALLOC((*vpp)->v_data, void *, sizeof(struct union_node),
559		M_TEMP, M_WAITOK);
560
561	(*vpp)->v_flag |= vflag;
562	if (uppervp)
563		(*vpp)->v_type = uppervp->v_type;
564	else
565		(*vpp)->v_type = lowervp->v_type;
566
567	un = VTOUNION(*vpp);
568	bzero(un, sizeof(*un));
569
570	lockinit(&un->un_lock, PVFS, "unlock", 0, 0);
571	vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY, p);
572
573	un->un_vnode = *vpp;
574	un->un_uppervp = uppervp;
575	un->un_uppersz = VNOVAL;
576	un->un_lowervp = lowervp;
577	un->un_lowersz = VNOVAL;
578	un->un_dirvp = upperdvp;
579	un->un_pvp = dvp;		/* only parent dir in new allocation */
580	if (dvp != NULLVP)
581		VREF(dvp);
582	un->un_dircache = 0;
583	un->un_openl = 0;
584
585	if (cnp && (lowervp != NULLVP)) {
586		un->un_path = malloc(cnp->cn_namelen+1, M_TEMP, M_WAITOK);
587		bcopy(cnp->cn_nameptr, un->un_path, cnp->cn_namelen);
588		un->un_path[cnp->cn_namelen] = '\0';
589	} else {
590		un->un_path = 0;
591		un->un_dirvp = NULL;
592	}
593
594	if (docache) {
595		LIST_INSERT_HEAD(&unhead[hash], un, un_cache);
596		un->un_flags |= UN_CACHED;
597	}
598
599out:
600	if (xlowervp)
601		vrele(xlowervp);
602
603	if (docache)
604		union_list_unlock(hash);
605
606	return (error);
607}
608
609int
610union_freevp(vp)
611	struct vnode *vp;
612{
613	struct union_node *un = VTOUNION(vp);
614
615	if (un->un_flags & UN_CACHED) {
616		un->un_flags &= ~UN_CACHED;
617		LIST_REMOVE(un, un_cache);
618	}
619
620	if (un->un_pvp != NULLVP) {
621		vrele(un->un_pvp);
622		un->un_pvp = NULL;
623	}
624	if (un->un_uppervp != NULLVP) {
625		vrele(un->un_uppervp);
626		un->un_uppervp = NULL;
627	}
628	if (un->un_lowervp != NULLVP) {
629		vrele(un->un_lowervp);
630		un->un_lowervp = NULL;
631	}
632	if (un->un_dirvp != NULLVP) {
633		vrele(un->un_dirvp);
634		un->un_dirvp = NULL;
635	}
636	if (un->un_path) {
637		free(un->un_path, M_TEMP);
638		un->un_path = NULL;
639	}
640
641	FREE(vp->v_data, M_TEMP);
642	vp->v_data = 0;
643
644	return (0);
645}
646
647/*
648 * copyfile.  copy the vnode (fvp) to the vnode (tvp)
649 * using a sequence of reads and writes.  both (fvp)
650 * and (tvp) are locked on entry and exit.
651 *
652 * fvp and tvp are both exclusive locked on call, but their refcount's
653 * haven't been bumped at all.
654 */
655static int
656union_copyfile(fvp, tvp, cred, p)
657	struct vnode *fvp;
658	struct vnode *tvp;
659	struct ucred *cred;
660	struct proc *p;
661{
662	char *buf;
663	struct uio uio;
664	struct iovec iov;
665	int error = 0;
666
667	/*
668	 * strategy:
669	 * allocate a buffer of size MAXBSIZE.
670	 * loop doing reads and writes, keeping track
671	 * of the current uio offset.
672	 * give up at the first sign of trouble.
673	 */
674
675	bzero(&uio, sizeof(uio));
676
677	uio.uio_procp = p;
678	uio.uio_segflg = UIO_SYSSPACE;
679	uio.uio_offset = 0;
680
681	VOP_LEASE(fvp, p, cred, LEASE_READ);
682	VOP_LEASE(tvp, p, cred, LEASE_WRITE);
683
684	buf = malloc(MAXBSIZE, M_TEMP, M_WAITOK);
685
686	/* ugly loop follows... */
687	do {
688		off_t offset = uio.uio_offset;
689		int count;
690		int bufoffset;
691
692		/*
693		 * Setup for big read
694		 */
695		uio.uio_iov = &iov;
696		uio.uio_iovcnt = 1;
697		iov.iov_base = buf;
698		iov.iov_len = MAXBSIZE;
699		uio.uio_resid = iov.iov_len;
700		uio.uio_rw = UIO_READ;
701
702		if ((error = VOP_READ(fvp, &uio, 0, cred)) != 0)
703			break;
704
705		/*
706		 * Get bytes read, handle read eof case and setup for
707		 * write loop
708		 */
709		if ((count = MAXBSIZE - uio.uio_resid) == 0)
710			break;
711		bufoffset = 0;
712
713		/*
714		 * Write until an error occurs or our buffer has been
715		 * exhausted, then update the offset for the next read.
716		 */
717		while (bufoffset < count) {
718			uio.uio_iov = &iov;
719			uio.uio_iovcnt = 1;
720			iov.iov_base = buf + bufoffset;
721			iov.iov_len = count - bufoffset;
722			uio.uio_offset = offset + bufoffset;
723			uio.uio_rw = UIO_WRITE;
724			uio.uio_resid = iov.iov_len;
725
726			if ((error = VOP_WRITE(tvp, &uio, 0, cred)) != 0)
727				break;
728			bufoffset += (count - bufoffset) - uio.uio_resid;
729		}
730		uio.uio_offset = offset + bufoffset;
731	} while (error == 0);
732
733	free(buf, M_TEMP);
734	return (error);
735}
736
737/*
738 *
739 * un's vnode is assumed to be locked on entry and remains locked on exit.
740 */
741
742int
743union_copyup(un, docopy, cred, p)
744	struct union_node *un;
745	int docopy;
746	struct ucred *cred;
747	struct proc *p;
748{
749	int error;
750	struct vnode *lvp, *uvp;
751
752	/*
753	 * If the user does not have read permission, the vnode should not
754	 * be copied to upper layer.
755	 */
756	vn_lock(un->un_lowervp, LK_EXCLUSIVE | LK_RETRY, p);
757	error = VOP_ACCESS(un->un_lowervp, VREAD, cred, p);
758	VOP_UNLOCK(un->un_lowervp, 0, p);
759	if (error)
760		return (error);
761
762	error = union_vn_create(&uvp, un, p);
763	if (error)
764		return (error);
765
766	lvp = un->un_lowervp;
767
768	KASSERT(uvp->v_usecount > 0, ("copy: uvp refcount 0: %d", uvp->v_usecount));
769	if (docopy) {
770		/*
771		 * XX - should not ignore errors
772		 * from VOP_CLOSE
773		 */
774		vn_lock(lvp, LK_EXCLUSIVE | LK_RETRY, p);
775		error = VOP_OPEN(lvp, FREAD, cred, p);
776		if (error == 0 && vn_canvmio(lvp) == TRUE)
777			error = vfs_object_create(lvp, p, cred);
778		if (error == 0) {
779			error = union_copyfile(lvp, uvp, cred, p);
780			VOP_UNLOCK(lvp, 0, p);
781			(void) VOP_CLOSE(lvp, FREAD, cred, p);
782		}
783		if (error == 0)
784			UDEBUG(("union: copied up %s\n", un->un_path));
785
786	}
787	VOP_UNLOCK(uvp, 0, p);
788	union_newupper(un, uvp);
789	KASSERT(uvp->v_usecount > 0, ("copy: uvp refcount 0: %d", uvp->v_usecount));
790	union_vn_close(uvp, FWRITE, cred, p);
791	KASSERT(uvp->v_usecount > 0, ("copy: uvp refcount 0: %d", uvp->v_usecount));
792	/*
793	 * Subsequent IOs will go to the top layer, so
794	 * call close on the lower vnode and open on the
795	 * upper vnode to ensure that the filesystem keeps
796	 * its references counts right.  This doesn't do
797	 * the right thing with (cred) and (FREAD) though.
798	 * Ignoring error returns is not right, either.
799	 */
800	if (error == 0) {
801		int i;
802
803		for (i = 0; i < un->un_openl; i++) {
804			(void) VOP_CLOSE(lvp, FREAD, cred, p);
805			(void) VOP_OPEN(uvp, FREAD, cred, p);
806		}
807		if (un->un_openl) {
808			if (vn_canvmio(uvp) == TRUE)
809				error = vfs_object_create(uvp, p, cred);
810		}
811		un->un_openl = 0;
812	}
813
814	return (error);
815
816}
817
818/*
819 *	union_relookup:
820 *
821 *	dvp should be locked on entry and will be locked on return.  No
822 *	net change in the ref count will occur.
823 *
824 *	If an error is returned, *vpp will be invalid, otherwise it
825 *	will hold a locked, referenced vnode.  If *vpp == dvp then
826 *	remember that only one exclusive lock is held.
827 */
828
829static int
830union_relookup(um, dvp, vpp, cnp, cn, path, pathlen)
831	struct union_mount *um;
832	struct vnode *dvp;
833	struct vnode **vpp;
834	struct componentname *cnp;
835	struct componentname *cn;
836	char *path;
837	int pathlen;
838{
839	int error;
840
841	/*
842	 * A new componentname structure must be faked up because
843	 * there is no way to know where the upper level cnp came
844	 * from or what it is being used for.  This must duplicate
845	 * some of the work done by NDINIT, some of the work done
846	 * by namei, some of the work done by lookup and some of
847	 * the work done by VOP_LOOKUP when given a CREATE flag.
848	 * Conclusion: Horrible.
849	 */
850	cn->cn_namelen = pathlen;
851	cn->cn_pnbuf = zalloc(namei_zone);
852	bcopy(path, cn->cn_pnbuf, cn->cn_namelen);
853	cn->cn_pnbuf[cn->cn_namelen] = '\0';
854
855	cn->cn_nameiop = CREATE;
856	cn->cn_flags = (LOCKPARENT|LOCKLEAF|HASBUF|SAVENAME|ISLASTCN);
857	cn->cn_proc = cnp->cn_proc;
858	if (um->um_op == UNMNT_ABOVE)
859		cn->cn_cred = cnp->cn_cred;
860	else
861		cn->cn_cred = um->um_cred;
862	cn->cn_nameptr = cn->cn_pnbuf;
863	cn->cn_consume = cnp->cn_consume;
864
865	VREF(dvp);
866	VOP_UNLOCK(dvp, 0, cnp->cn_proc);
867
868	/*
869	 * Pass dvp unlocked and referenced on call to relookup().
870	 *
871	 * If an error occurs, dvp will be returned unlocked and dereferenced.
872	 */
873
874	if ((error = relookup(dvp, vpp, cn)) != 0) {
875		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, cnp->cn_proc);
876		return(error);
877	}
878
879	/*
880	 * If no error occurs, dvp will be returned locked with the reference
881	 * left as before, and vpp will be returned referenced and locked.
882	 *
883	 * We want to return with dvp as it was passed to us, so we get
884	 * rid of our reference.
885	 */
886	vrele(dvp);
887	return (0);
888}
889
890/*
891 * Create a shadow directory in the upper layer.
892 * The new vnode is returned locked.
893 *
894 * (um) points to the union mount structure for access to the
895 * the mounting process's credentials.
896 * (dvp) is the directory in which to create the shadow directory,
897 * it is locked (but not ref'd) on entry and return.
898 * (cnp) is the componentname to be created.
899 * (vpp) is the returned newly created shadow directory, which
900 * is returned locked and ref'd
901 */
902int
903union_mkshadow(um, dvp, cnp, vpp)
904	struct union_mount *um;
905	struct vnode *dvp;
906	struct componentname *cnp;
907	struct vnode **vpp;
908{
909	int error;
910	struct vattr va;
911	struct proc *p = cnp->cn_proc;
912	struct componentname cn;
913
914	error = union_relookup(um, dvp, vpp, cnp, &cn,
915			cnp->cn_nameptr, cnp->cn_namelen);
916	if (error)
917		return (error);
918
919	if (*vpp) {
920		if (cn.cn_flags & HASBUF) {
921			zfree(namei_zone, cn.cn_pnbuf);
922			cn.cn_flags &= ~HASBUF;
923		}
924		if (dvp == *vpp)
925			vrele(*vpp);
926		else
927			vput(*vpp);
928		*vpp = NULLVP;
929		return (EEXIST);
930	}
931
932	/*
933	 * policy: when creating the shadow directory in the
934	 * upper layer, create it owned by the user who did
935	 * the mount, group from parent directory, and mode
936	 * 777 modified by umask (ie mostly identical to the
937	 * mkdir syscall).  (jsp, kb)
938	 */
939
940	VATTR_NULL(&va);
941	va.va_type = VDIR;
942	va.va_mode = um->um_cmode;
943
944	/* VOP_LEASE: dvp is locked */
945	VOP_LEASE(dvp, p, cn.cn_cred, LEASE_WRITE);
946
947	error = VOP_MKDIR(dvp, vpp, &cn, &va);
948	if (cn.cn_flags & HASBUF) {
949		zfree(namei_zone, cn.cn_pnbuf);
950		cn.cn_flags &= ~HASBUF;
951	}
952	/*vput(dvp);*/
953	return (error);
954}
955
956/*
957 * Create a whiteout entry in the upper layer.
958 *
959 * (um) points to the union mount structure for access to the
960 * the mounting process's credentials.
961 * (dvp) is the directory in which to create the whiteout.
962 * it is locked on entry and return.
963 * (cnp) is the componentname to be created.
964 */
965int
966union_mkwhiteout(um, dvp, cnp, path)
967	struct union_mount *um;
968	struct vnode *dvp;
969	struct componentname *cnp;
970	char *path;
971{
972	int error;
973	struct proc *p = cnp->cn_proc;
974	struct vnode *wvp;
975	struct componentname cn;
976
977	error = union_relookup(um, dvp, &wvp, cnp, &cn, path, strlen(path));
978	if (error)
979		return (error);
980
981	if (wvp) {
982		if (cn.cn_flags & HASBUF) {
983			zfree(namei_zone, cn.cn_pnbuf);
984			cn.cn_flags &= ~HASBUF;
985		}
986		if (wvp == dvp)
987			vrele(wvp);
988		else
989			vput(wvp);
990		return (EEXIST);
991	}
992
993	/* VOP_LEASE: dvp is locked */
994	VOP_LEASE(dvp, p, p->p_ucred, LEASE_WRITE);
995
996	error = VOP_WHITEOUT(dvp, &cn, CREATE);
997	if (cn.cn_flags & HASBUF) {
998		zfree(namei_zone, cn.cn_pnbuf);
999		cn.cn_flags &= ~HASBUF;
1000	}
1001	return (error);
1002}
1003
1004/*
1005 * union_vn_create: creates and opens a new shadow file
1006 * on the upper union layer.  this function is similar
1007 * in spirit to calling vn_open but it avoids calling namei().
1008 * the problem with calling namei is that a) it locks too many
1009 * things, and b) it doesn't start at the "right" directory,
1010 * whereas relookup is told where to start.
1011 *
1012 * On entry, the vnode associated with un is locked.  It remains locked
1013 * on return.
1014 *
1015 * If no error occurs, *vpp contains a locked referenced vnode for your
1016 * use.  If an error occurs *vpp iis undefined.
1017 */
1018static int
1019union_vn_create(vpp, un, p)
1020	struct vnode **vpp;
1021	struct union_node *un;
1022	struct proc *p;
1023{
1024	struct vnode *vp;
1025	struct ucred *cred = p->p_ucred;
1026	struct vattr vat;
1027	struct vattr *vap = &vat;
1028	int fmode = FFLAGS(O_WRONLY|O_CREAT|O_TRUNC|O_EXCL);
1029	int error;
1030	int cmode = UN_FILEMODE & ~p->p_fd->fd_cmask;
1031	struct componentname cn;
1032
1033	*vpp = NULLVP;
1034
1035	/*
1036	 * Build a new componentname structure (for the same
1037	 * reasons outlines in union_mkshadow).
1038	 * The difference here is that the file is owned by
1039	 * the current user, rather than by the person who
1040	 * did the mount, since the current user needs to be
1041	 * able to write the file (that's why it is being
1042	 * copied in the first place).
1043	 */
1044	cn.cn_namelen = strlen(un->un_path);
1045	cn.cn_pnbuf = zalloc(namei_zone);
1046	bcopy(un->un_path, cn.cn_pnbuf, cn.cn_namelen+1);
1047	cn.cn_nameiop = CREATE;
1048	cn.cn_flags = (LOCKPARENT|LOCKLEAF|HASBUF|SAVENAME|ISLASTCN);
1049	cn.cn_proc = p;
1050	cn.cn_cred = p->p_ucred;
1051	cn.cn_nameptr = cn.cn_pnbuf;
1052	cn.cn_consume = 0;
1053
1054	/*
1055	 * Pass dvp unlocked and referenced on call to relookup().
1056	 *
1057	 * If an error occurs, dvp will be returned unlocked and dereferenced.
1058	 */
1059	VREF(un->un_dirvp);
1060	error = relookup(un->un_dirvp, &vp, &cn);
1061	if (error)
1062		return (error);
1063
1064	/*
1065	 * If no error occurs, dvp will be returned locked with the reference
1066	 * left as before, and vpp will be returned referenced and locked.
1067	 */
1068	if (vp) {
1069		vput(un->un_dirvp);
1070		if (cn.cn_flags & HASBUF) {
1071			zfree(namei_zone, cn.cn_pnbuf);
1072			cn.cn_flags &= ~HASBUF;
1073		}
1074		if (vp == un->un_dirvp)
1075			vrele(vp);
1076		else
1077			vput(vp);
1078		return (EEXIST);
1079	}
1080
1081	/*
1082	 * Good - there was no race to create the file
1083	 * so go ahead and create it.  The permissions
1084	 * on the file will be 0666 modified by the
1085	 * current user's umask.  Access to the file, while
1086	 * it is unioned, will require access to the top *and*
1087	 * bottom files.  Access when not unioned will simply
1088	 * require access to the top-level file.
1089	 * TODO: confirm choice of access permissions.
1090	 */
1091	VATTR_NULL(vap);
1092	vap->va_type = VREG;
1093	vap->va_mode = cmode;
1094	VOP_LEASE(un->un_dirvp, p, cred, LEASE_WRITE);
1095	error = VOP_CREATE(un->un_dirvp, &vp, &cn, vap);
1096	if (cn.cn_flags & HASBUF) {
1097		zfree(namei_zone, cn.cn_pnbuf);
1098		cn.cn_flags &= ~HASBUF;
1099	}
1100	vput(un->un_dirvp);
1101	if (error)
1102		return (error);
1103
1104	error = VOP_OPEN(vp, fmode, cred, p);
1105	if (error == 0 && vn_canvmio(vp) == TRUE)
1106		error = vfs_object_create(vp, p, cred);
1107	if (error) {
1108		vput(vp);
1109		return (error);
1110	}
1111	vp->v_writecount++;
1112	*vpp = vp;
1113	return (0);
1114}
1115
1116static int
1117union_vn_close(vp, fmode, cred, p)
1118	struct vnode *vp;
1119	int fmode;
1120	struct ucred *cred;
1121	struct proc *p;
1122{
1123
1124	if (fmode & FWRITE)
1125		--vp->v_writecount;
1126	return (VOP_CLOSE(vp, fmode, cred, p));
1127}
1128
1129#if 0
1130
1131/*
1132 *	union_removed_upper:
1133 *
1134 *	called with union_node unlocked. XXX
1135 */
1136
1137void
1138union_removed_upper(un)
1139	struct union_node *un;
1140{
1141	struct proc *p = curproc;	/* XXX */
1142	struct vnode **vpp;
1143
1144	/*
1145	 * Do not set the uppervp to NULLVP.  If lowervp is NULLVP,
1146	 * union node will have neither uppervp nor lowervp.  We remove
1147	 * the union node from cache, so that it will not be referrenced.
1148	 */
1149	union_newupper(un, NULLVP);
1150	if (un->un_dircache != 0) {
1151		for (vpp = un->un_dircache; *vpp != NULLVP; vpp++)
1152			vrele(*vpp);
1153		free(un->un_dircache, M_TEMP);
1154		un->un_dircache = 0;
1155	}
1156
1157	if (un->un_flags & UN_CACHED) {
1158		un->un_flags &= ~UN_CACHED;
1159		LIST_REMOVE(un, un_cache);
1160	}
1161}
1162
1163#endif
1164
1165/*
1166 * determine whether a whiteout is needed
1167 * during a remove/rmdir operation.
1168 */
1169int
1170union_dowhiteout(un, cred, p)
1171	struct union_node *un;
1172	struct ucred *cred;
1173	struct proc *p;
1174{
1175	struct vattr va;
1176
1177	if (un->un_lowervp != NULLVP)
1178		return (1);
1179
1180	if (VOP_GETATTR(un->un_uppervp, &va, cred, p) == 0 &&
1181	    (va.va_flags & OPAQUE))
1182		return (1);
1183
1184	return (0);
1185}
1186
1187static void
1188union_dircache_r(vp, vppp, cntp)
1189	struct vnode *vp;
1190	struct vnode ***vppp;
1191	int *cntp;
1192{
1193	struct union_node *un;
1194
1195	if (vp->v_op != union_vnodeop_p) {
1196		if (vppp) {
1197			VREF(vp);
1198			*(*vppp)++ = vp;
1199			if (--(*cntp) == 0)
1200				panic("union: dircache table too small");
1201		} else {
1202			(*cntp)++;
1203		}
1204
1205		return;
1206	}
1207
1208	un = VTOUNION(vp);
1209	if (un->un_uppervp != NULLVP)
1210		union_dircache_r(un->un_uppervp, vppp, cntp);
1211	if (un->un_lowervp != NULLVP)
1212		union_dircache_r(un->un_lowervp, vppp, cntp);
1213}
1214
1215struct vnode *
1216union_dircache(vp, p)
1217	struct vnode *vp;
1218	struct proc *p;
1219{
1220	int cnt;
1221	struct vnode *nvp;
1222	struct vnode **vpp;
1223	struct vnode **dircache;
1224	struct union_node *un;
1225	int error;
1226
1227	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1228	dircache = VTOUNION(vp)->un_dircache;
1229
1230	nvp = NULLVP;
1231
1232	if (dircache == NULL) {
1233		cnt = 0;
1234		union_dircache_r(vp, 0, &cnt);
1235		cnt++;
1236		dircache = malloc(cnt * sizeof(struct vnode *),
1237				M_TEMP, M_WAITOK);
1238		vpp = dircache;
1239		union_dircache_r(vp, &vpp, &cnt);
1240		*vpp = NULLVP;
1241		vpp = dircache + 1;
1242	} else {
1243		vpp = dircache;
1244		do {
1245			if (*vpp++ == VTOUNION(vp)->un_uppervp)
1246				break;
1247		} while (*vpp != NULLVP);
1248	}
1249
1250	if (*vpp == NULLVP)
1251		goto out;
1252
1253	/*vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY, p);*/
1254	UDEBUG(("ALLOCVP-3 %p ref %d\n", *vpp, (*vpp ? (*vpp)->v_usecount : -99)));
1255	VREF(*vpp);
1256	error = union_allocvp(&nvp, vp->v_mount, NULLVP, NULLVP, NULL, *vpp, NULLVP, 0);
1257	UDEBUG(("ALLOCVP-3B %p ref %d\n", nvp, (*vpp ? (*vpp)->v_usecount : -99)));
1258	if (error)
1259		goto out;
1260
1261	VTOUNION(vp)->un_dircache = 0;
1262	un = VTOUNION(nvp);
1263	un->un_dircache = dircache;
1264
1265out:
1266	VOP_UNLOCK(vp, 0, p);
1267	return (nvp);
1268}
1269
1270/*
1271 * Guarentee coherency with the VM cache by invalidating any clean VM pages
1272 * associated with this write and updating any dirty VM pages.  Since our
1273 * vnode is locked, other processes will not be able to read the pages in
1274 * again until after our write completes.
1275 *
1276 * We also have to be coherent with reads, by flushing any pending dirty
1277 * pages prior to issuing the read.
1278 *
1279 * XXX this is somewhat of a hack at the moment.  To support this properly
1280 * we would have to be able to run VOP_READ and VOP_WRITE through the VM
1281 * cache.  Then we wouldn't need to worry about coherency.
1282 */
1283
1284void
1285union_vm_coherency(struct vnode *vp, struct uio *uio, int cleanfls)
1286{
1287	vm_object_t object;
1288	vm_pindex_t pstart;
1289	vm_pindex_t pend;
1290	int pgoff;
1291
1292	if ((object = vp->v_object) == NULL)
1293	    return;
1294
1295	pgoff = uio->uio_offset & PAGE_MASK;
1296	pstart = uio->uio_offset / PAGE_SIZE;
1297	pend = pstart + (uio->uio_resid + pgoff + PAGE_MASK) / PAGE_SIZE;
1298
1299	vm_object_page_clean(object, pstart, pend, OBJPC_SYNC);
1300	if (cleanfls)
1301		vm_object_page_remove(object, pstart, pend, TRUE);
1302}
1303
1304/*
1305 * Module glue to remove #ifdef UNION from vfs_syscalls.c
1306 */
1307static int
1308union_dircheck(struct proc *p, struct vnode **vp, struct file *fp)
1309{
1310	int error = 0;
1311
1312	if ((*vp)->v_op == union_vnodeop_p) {
1313		struct vnode *lvp;
1314
1315		lvp = union_dircache(*vp, p);
1316		if (lvp != NULLVP) {
1317			struct vattr va;
1318
1319			/*
1320			 * If the directory is opaque,
1321			 * then don't show lower entries
1322			 */
1323			error = VOP_GETATTR(*vp, &va, fp->f_cred, p);
1324			if (va.va_flags & OPAQUE) {
1325				vput(lvp);
1326				lvp = NULL;
1327			}
1328		}
1329
1330		if (lvp != NULLVP) {
1331			error = VOP_OPEN(lvp, FREAD, fp->f_cred, p);
1332			if (error == 0 && vn_canvmio(lvp) == TRUE)
1333				error = vfs_object_create(lvp, p, fp->f_cred);
1334			if (error) {
1335				vput(lvp);
1336				return (error);
1337			}
1338			VOP_UNLOCK(lvp, 0, p);
1339			fp->f_data = (caddr_t) lvp;
1340			fp->f_offset = 0;
1341			error = vn_close(*vp, FREAD, fp->f_cred, p);
1342			if (error)
1343				return (error);
1344			*vp = lvp;
1345			return -1;	/* goto unionread */
1346		}
1347	}
1348	return error;
1349}
1350
1351static int
1352union_modevent(module_t mod, int type, void *data)
1353{
1354	switch (type) {
1355	case MOD_LOAD:
1356		union_dircheckp = union_dircheck;
1357		break;
1358	case MOD_UNLOAD:
1359		union_dircheckp = NULL;
1360		break;
1361	default:
1362		break;
1363	}
1364	return 0;
1365}
1366
1367static moduledata_t union_mod = {
1368	"union_dircheck",
1369	union_modevent,
1370	NULL
1371};
1372
1373DECLARE_MODULE(union_dircheck, union_mod, SI_SUB_VFS, SI_ORDER_ANY);
1374