null_vnops.c revision 22597
1/*
2 * Copyright (c) 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * John Heidemann of the UCLA Ficus project.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
37 *
38 * Ancestors:
39 *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
40 *	$Id: null_vnops.c,v 1.13 1997/02/10 02:13:30 dyson Exp $
41 *	...and...
42 *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
43 *
44 * $FreeBSD: head/sys/fs/nullfs/null_vnops.c 22597 1997-02-12 14:55:01Z mpp $
45 */
46
47/*
48 * Null Layer
49 *
50 * (See mount_null(8) for more information.)
51 *
52 * The null layer duplicates a portion of the file system
53 * name space under a new name.  In this respect, it is
54 * similar to the loopback file system.  It differs from
55 * the loopback fs in two respects:  it is implemented using
56 * a stackable layers techniques, and it's "null-node"s stack above
57 * all lower-layer vnodes, not just over directory vnodes.
58 *
59 * The null layer has two purposes.  First, it serves as a demonstration
60 * of layering by proving a layer which does nothing.  (It actually
61 * does everything the loopback file system does, which is slightly
62 * more than nothing.)  Second, the null layer can serve as a prototype
63 * layer.  Since it provides all necessary layer framework,
64 * new file system layers can be created very easily be starting
65 * with a null layer.
66 *
67 * The remainder of this man page examines the null layer as a basis
68 * for constructing new layers.
69 *
70 *
71 * INSTANTIATING NEW NULL LAYERS
72 *
73 * New null layers are created with mount_null(8).
74 * Mount_null(8) takes two arguments, the pathname
75 * of the lower vfs (target-pn) and the pathname where the null
76 * layer will appear in the namespace (alias-pn).  After
77 * the null layer is put into place, the contents
78 * of target-pn subtree will be aliased under alias-pn.
79 *
80 *
81 * OPERATION OF A NULL LAYER
82 *
83 * The null layer is the minimum file system layer,
84 * simply bypassing all possible operations to the lower layer
85 * for processing there.  The majority of its activity centers
86 * on the bypass routine, though which nearly all vnode operations
87 * pass.
88 *
89 * The bypass routine accepts arbitrary vnode operations for
90 * handling by the lower layer.  It begins by examing vnode
91 * operation arguments and replacing any null-nodes by their
92 * lower-layer equivlants.  It then invokes the operation
93 * on the lower layer.  Finally, it replaces the null-nodes
94 * in the arguments and, if a vnode is return by the operation,
95 * stacks a null-node on top of the returned vnode.
96 *
97 * Although bypass handles most operations, vop_getattr, vop_lock,
98 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
99 * bypassed. Vop_getattr must change the fsid being returned.
100 * Vop_lock and vop_unlock must handle any locking for the
101 * current vnode as well as pass the lock request down.
102 * Vop_inactive and vop_reclaim are not bypassed so that
103 * they can handle freeing null-layer specific data. Vop_print
104 * is not bypassed to avoid excessive debugging information.
105 * Also, certain vnode operations change the locking state within
106 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
107 * and symlink). Ideally these operations should not change the
108 * lock state, but should be changed to let the caller of the
109 * function unlock them. Otherwise all intermediate vnode layers
110 * (such as union, umapfs, etc) must catch these functions to do
111 * the necessary locking at their layer.
112 *
113 *
114 * INSTANTIATING VNODE STACKS
115 *
116 * Mounting associates the null layer with a lower layer,
117 * effect stacking two VFSes.  Vnode stacks are instead
118 * created on demand as files are accessed.
119 *
120 * The initial mount creates a single vnode stack for the
121 * root of the new null layer.  All other vnode stacks
122 * are created as a result of vnode operations on
123 * this or other null vnode stacks.
124 *
125 * New vnode stacks come into existance as a result of
126 * an operation which returns a vnode.
127 * The bypass routine stacks a null-node above the new
128 * vnode before returning it to the caller.
129 *
130 * For example, imagine mounting a null layer with
131 * "mount_null /usr/include /dev/layer/null".
132 * Changing directory to /dev/layer/null will assign
133 * the root null-node (which was created when the null layer was mounted).
134 * Now consider opening "sys".  A vop_lookup would be
135 * done on the root null-node.  This operation would bypass through
136 * to the lower layer which would return a vnode representing
137 * the UFS "sys".  Null_bypass then builds a null-node
138 * aliasing the UFS "sys" and returns this to the caller.
139 * Later operations on the null-node "sys" will repeat this
140 * process when constructing other vnode stacks.
141 *
142 *
143 * CREATING OTHER FILE SYSTEM LAYERS
144 *
145 * One of the easiest ways to construct new file system layers is to make
146 * a copy of the null layer, rename all files and variables, and
147 * then begin modifing the copy.  Sed can be used to easily rename
148 * all variables.
149 *
150 * The umap layer is an example of a layer descended from the
151 * null layer.
152 *
153 *
154 * INVOKING OPERATIONS ON LOWER LAYERS
155 *
156 * There are two techniques to invoke operations on a lower layer
157 * when the operation cannot be completely bypassed.  Each method
158 * is appropriate in different situations.  In both cases,
159 * it is the responsibility of the aliasing layer to make
160 * the operation arguments "correct" for the lower layer
161 * by mapping an vnode arguments to the lower layer.
162 *
163 * The first approach is to call the aliasing layer's bypass routine.
164 * This method is most suitable when you wish to invoke the operation
165 * currently being hanldled on the lower layer.  It has the advantage
166 * that the bypass routine already must do argument mapping.
167 * An example of this is null_getattrs in the null layer.
168 *
169 * A second approach is to directly invoked vnode operations on
170 * the lower layer with the VOP_OPERATIONNAME interface.
171 * The advantage of this method is that it is easy to invoke
172 * arbitrary operations on the lower layer.  The disadvantage
173 * is that vnodes arguments must be manualy mapped.
174 *
175 */
176
177#include <sys/param.h>
178#include <sys/systm.h>
179#include <sys/kernel.h>
180#include <sys/sysctl.h>
181#include <sys/proc.h>
182#include <sys/time.h>
183#include <sys/types.h>
184#include <sys/vnode.h>
185#include <sys/mount.h>
186#include <sys/namei.h>
187#include <sys/malloc.h>
188#include <sys/buf.h>
189#include <miscfs/nullfs/null.h>
190
191static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
192SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
193	&null_bug_bypass, 0, "");
194
195static int	null_access __P((struct vop_access_args *ap));
196int		null_bypass __P((struct vop_generic_args *ap));
197static int	null_bwrite __P((struct vop_bwrite_args *ap));
198static int	null_getattr __P((struct vop_getattr_args *ap));
199static int	null_inactive __P((struct vop_inactive_args *ap));
200static int	null_lock __P((struct vop_lock_args *ap));
201static int	null_lookup __P((struct vop_lookup_args *ap));
202static int	null_print __P((struct vop_print_args *ap));
203static int	null_reclaim __P((struct vop_reclaim_args *ap));
204static int	null_setattr __P((struct vop_setattr_args *ap));
205static int	null_strategy __P((struct vop_strategy_args *ap));
206static int	null_unlock __P((struct vop_unlock_args *ap));
207
208/*
209 * This is the 10-Apr-92 bypass routine.
210 *    This version has been optimized for speed, throwing away some
211 * safety checks.  It should still always work, but it's not as
212 * robust to programmer errors.
213 *    Define SAFETY to include some error checking code.
214 *
215 * In general, we map all vnodes going down and unmap them on the way back.
216 * As an exception to this, vnodes can be marked "unmapped" by setting
217 * the Nth bit in operation's vdesc_flags.
218 *
219 * Also, some BSD vnode operations have the side effect of vrele'ing
220 * their arguments.  With stacking, the reference counts are held
221 * by the upper node, not the lower one, so we must handle these
222 * side-effects here.  This is not of concern in Sun-derived systems
223 * since there are no such side-effects.
224 *
225 * This makes the following assumptions:
226 * - only one returned vpp
227 * - no INOUT vpp's (Sun's vop_open has one of these)
228 * - the vnode operation vector of the first vnode should be used
229 *   to determine what implementation of the op should be invoked
230 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
231 *   problems on rmdir'ing mount points and renaming?)
232 */
233int
234null_bypass(ap)
235	struct vop_generic_args /* {
236		struct vnodeop_desc *a_desc;
237		<other random data follows, presumably>
238	} */ *ap;
239{
240	register struct vnode **this_vp_p;
241	int error;
242	struct vnode *old_vps[VDESC_MAX_VPS];
243	struct vnode **vps_p[VDESC_MAX_VPS];
244	struct vnode ***vppp;
245	struct vnodeop_desc *descp = ap->a_desc;
246	int reles, i;
247
248	if (null_bug_bypass)
249		printf ("null_bypass: %s\n", descp->vdesc_name);
250
251#ifdef SAFETY
252	/*
253	 * We require at least one vp.
254	 */
255	if (descp->vdesc_vp_offsets == NULL ||
256	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
257		panic ("null_bypass: no vp's in map.");
258#endif
259
260	/*
261	 * Map the vnodes going in.
262	 * Later, we'll invoke the operation based on
263	 * the first mapped vnode's operation vector.
264	 */
265	reles = descp->vdesc_flags;
266	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
267		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
268			break;   /* bail out at end of list */
269		vps_p[i] = this_vp_p =
270			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
271		/*
272		 * We're not guaranteed that any but the first vnode
273		 * are of our type.  Check for and don't map any
274		 * that aren't.  (We must always map first vp or vclean fails.)
275		 */
276		if (i && (*this_vp_p == NULL ||
277		    (*this_vp_p)->v_op != null_vnodeop_p)) {
278			old_vps[i] = NULL;
279		} else {
280			old_vps[i] = *this_vp_p;
281			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
282			/*
283			 * XXX - Several operations have the side effect
284			 * of vrele'ing their vp's.  We must account for
285			 * that.  (This should go away in the future.)
286			 */
287			if (reles & 1)
288				VREF(*this_vp_p);
289		}
290
291	}
292
293	/*
294	 * Call the operation on the lower layer
295	 * with the modified argument structure.
296	 */
297	error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
298
299	/*
300	 * Maintain the illusion of call-by-value
301	 * by restoring vnodes in the argument structure
302	 * to their original value.
303	 */
304	reles = descp->vdesc_flags;
305	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
306		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
307			break;   /* bail out at end of list */
308		if (old_vps[i]) {
309			*(vps_p[i]) = old_vps[i];
310			if (reles & 1)
311				vrele(*(vps_p[i]));
312		}
313	}
314
315	/*
316	 * Map the possible out-going vpp
317	 * (Assumes that the lower layer always returns
318	 * a VREF'ed vpp unless it gets an error.)
319	 */
320	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
321	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
322	    !error) {
323		/*
324		 * XXX - even though some ops have vpp returned vp's,
325		 * several ops actually vrele this before returning.
326		 * We must avoid these ops.
327		 * (This should go away when these ops are regularized.)
328		 */
329		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
330			goto out;
331		vppp = VOPARG_OFFSETTO(struct vnode***,
332				 descp->vdesc_vpp_offset,ap);
333		error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
334	}
335
336 out:
337	return (error);
338}
339
340/*
341 * We have to carry on the locking protocol on the null layer vnodes
342 * as we progress through the tree. We also have to enforce read-only
343 * if this layer is mounted read-only.
344 */
345static int
346null_lookup(ap)
347	struct vop_lookup_args /* {
348		struct vnode * a_dvp;
349		struct vnode ** a_vpp;
350		struct componentname * a_cnp;
351	} */ *ap;
352{
353	struct componentname *cnp = ap->a_cnp;
354	struct proc *p = cnp->cn_proc;
355	int flags = cnp->cn_flags;
356	struct vop_lock_args lockargs;
357	struct vop_unlock_args unlockargs;
358	struct vnode *dvp, *vp;
359	int error;
360
361	if ((flags & ISLASTCN) && (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
362	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
363		return (EROFS);
364	error = null_bypass(ap);
365	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
366	    (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
367	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
368		error = EROFS;
369	/*
370	 * We must do the same locking and unlocking at this layer as
371	 * is done in the layers below us. We could figure this out
372	 * based on the error return and the LASTCN, LOCKPARENT, and
373	 * LOCKLEAF flags. However, it is more expidient to just find
374	 * out the state of the lower level vnodes and set ours to the
375	 * same state.
376	 */
377	dvp = ap->a_dvp;
378	vp = *ap->a_vpp;
379	if (dvp == vp)
380		return (error);
381	if (!VOP_ISLOCKED(dvp)) {
382		unlockargs.a_vp = dvp;
383		unlockargs.a_flags = 0;
384		unlockargs.a_p = p;
385		vop_nounlock(&unlockargs);
386	}
387	if (vp != NULL && VOP_ISLOCKED(vp)) {
388		lockargs.a_vp = vp;
389		lockargs.a_flags = LK_SHARED;
390		lockargs.a_p = p;
391		vop_nolock(&lockargs);
392	}
393	return (error);
394}
395
396/*
397 * Setattr call. Disallow write attempts if the layer is mounted read-only.
398 */
399int
400null_setattr(ap)
401	struct vop_setattr_args /* {
402		struct vnodeop_desc *a_desc;
403		struct vnode *a_vp;
404		struct vattr *a_vap;
405		struct ucred *a_cred;
406		struct proc *a_p;
407	} */ *ap;
408{
409	struct vnode *vp = ap->a_vp;
410	struct vattr *vap = ap->a_vap;
411
412  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
413	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
414	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
415	    (vp->v_mount->mnt_flag & MNT_RDONLY))
416		return (EROFS);
417	if (vap->va_size != VNOVAL) {
418 		switch (vp->v_type) {
419 		case VDIR:
420 			return (EISDIR);
421 		case VCHR:
422 		case VBLK:
423 		case VSOCK:
424 		case VFIFO:
425			return (0);
426		case VREG:
427		case VLNK:
428 		default:
429			/*
430			 * Disallow write attempts if the filesystem is
431			 * mounted read-only.
432			 */
433			if (vp->v_mount->mnt_flag & MNT_RDONLY)
434				return (EROFS);
435		}
436	}
437	return (null_bypass(ap));
438}
439
440/*
441 *  We handle getattr only to change the fsid.
442 */
443static int
444null_getattr(ap)
445	struct vop_getattr_args /* {
446		struct vnode *a_vp;
447		struct vattr *a_vap;
448		struct ucred *a_cred;
449		struct proc *a_p;
450	} */ *ap;
451{
452	int error;
453
454	if (error = null_bypass(ap))
455		return (error);
456	/* Requires that arguments be restored. */
457	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
458	return (0);
459}
460
461static int
462null_access(ap)
463	struct vop_access_args /* {
464		struct vnode *a_vp;
465		int  a_mode;
466		struct ucred *a_cred;
467		struct proc *a_p;
468	} */ *ap;
469{
470	struct vnode *vp = ap->a_vp;
471	mode_t mode = ap->a_mode;
472
473	/*
474	 * Disallow write attempts on read-only layers;
475	 * unless the file is a socket, fifo, or a block or
476	 * character device resident on the file system.
477	 */
478	if (mode & VWRITE) {
479		switch (vp->v_type) {
480		case VDIR:
481		case VLNK:
482		case VREG:
483			if (vp->v_mount->mnt_flag & MNT_RDONLY)
484				return (EROFS);
485			break;
486		}
487	}
488	return (null_bypass(ap));
489}
490
491/*
492 * We need to process our own vnode lock and then clear the
493 * interlock flag as it applies only to our vnode, not the
494 * vnodes below us on the stack.
495 */
496static int
497null_lock(ap)
498	struct vop_lock_args /* {
499		struct vnode *a_vp;
500		int a_flags;
501		struct proc *a_p;
502	} */ *ap;
503{
504
505	vop_nolock(ap);
506	if ((ap->a_flags & LK_TYPE_MASK) == LK_DRAIN)
507		return (0);
508	ap->a_flags &= ~LK_INTERLOCK;
509	return (null_bypass(ap));
510}
511
512/*
513 * We need to process our own vnode unlock and then clear the
514 * interlock flag as it applies only to our vnode, not the
515 * vnodes below us on the stack.
516 */
517static int
518null_unlock(ap)
519	struct vop_unlock_args /* {
520		struct vnode *a_vp;
521		int a_flags;
522		struct proc *a_p;
523	} */ *ap;
524{
525	struct vnode *vp = ap->a_vp;
526
527	vop_nounlock(ap);
528	ap->a_flags &= ~LK_INTERLOCK;
529	return (null_bypass(ap));
530}
531
532static int
533null_inactive(ap)
534	struct vop_inactive_args /* {
535		struct vnode *a_vp;
536		struct proc *a_p;
537	} */ *ap;
538{
539	/*
540	 * Do nothing (and _don't_ bypass).
541	 * Wait to vrele lowervp until reclaim,
542	 * so that until then our null_node is in the
543	 * cache and reusable.
544	 *
545	 * NEEDSWORK: Someday, consider inactive'ing
546	 * the lowervp and then trying to reactivate it
547	 * with capabilities (v_id)
548	 * like they do in the name lookup cache code.
549	 * That's too much work for now.
550	 */
551	VOP_UNLOCK(ap->a_vp, 0, ap->a_p);
552	return (0);
553}
554
555static int
556null_reclaim(ap)
557	struct vop_reclaim_args /* {
558		struct vnode *a_vp;
559		struct proc *a_p;
560	} */ *ap;
561{
562	struct vnode *vp = ap->a_vp;
563	struct null_node *xp = VTONULL(vp);
564	struct vnode *lowervp = xp->null_lowervp;
565
566	/*
567	 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
568	 * so we can't call VOPs on ourself.
569	 */
570	/* After this assignment, this node will not be re-used. */
571	xp->null_lowervp = NULL;
572	LIST_REMOVE(xp, null_hash);
573	FREE(vp->v_data, M_TEMP);
574	vp->v_data = NULL;
575	vrele (lowervp);
576	return (0);
577}
578
579static int
580null_print(ap)
581	struct vop_print_args /* {
582		struct vnode *a_vp;
583	} */ *ap;
584{
585	register struct vnode *vp = ap->a_vp;
586	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
587	return (0);
588}
589
590/*
591 * XXX - vop_strategy must be hand coded because it has no
592 * vnode in its arguments.
593 * This goes away with a merged VM/buffer cache.
594 */
595static int
596null_strategy(ap)
597	struct vop_strategy_args /* {
598		struct buf *a_bp;
599	} */ *ap;
600{
601	struct buf *bp = ap->a_bp;
602	int error;
603	struct vnode *savedvp;
604
605	savedvp = bp->b_vp;
606	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
607
608	error = VOP_STRATEGY(bp);
609
610	bp->b_vp = savedvp;
611
612	return (error);
613}
614
615/*
616 * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
617 * vnode in its arguments.
618 * This goes away with a merged VM/buffer cache.
619 */
620static int
621null_bwrite(ap)
622	struct vop_bwrite_args /* {
623		struct buf *a_bp;
624	} */ *ap;
625{
626	struct buf *bp = ap->a_bp;
627	int error;
628	struct vnode *savedvp;
629
630	savedvp = bp->b_vp;
631	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
632
633	error = VOP_BWRITE(bp);
634
635	bp->b_vp = savedvp;
636
637	return (error);
638}
639
640/*
641 * Global vfs data structures
642 */
643vop_t **null_vnodeop_p;
644static struct vnodeopv_entry_desc null_vnodeop_entries[] = {
645	{ &vop_default_desc, (vop_t *)null_bypass },
646
647	{ &vop_lookup_desc, (vop_t *)null_lookup },
648	{ &vop_setattr_desc, (vop_t *)null_setattr },
649	{ &vop_getattr_desc, (vop_t *)null_getattr },
650	{ &vop_access_desc, (vop_t *)null_access },
651	{ &vop_lock_desc, (vop_t *)null_lock },
652	{ &vop_unlock_desc, (vop_t *)null_unlock },
653	{ &vop_inactive_desc, (vop_t *)null_inactive },
654	{ &vop_reclaim_desc, (vop_t *)null_reclaim },
655	{ &vop_print_desc, (vop_t *)null_print },
656
657	{ &vop_strategy_desc, (vop_t *)null_strategy },
658	{ &vop_bwrite_desc, (vop_t *)null_bwrite },
659
660	{ NULL, NULL }
661};
662static struct vnodeopv_desc null_vnodeop_opv_desc =
663	{ &null_vnodeop_p, null_vnodeop_entries };
664
665VNODEOP_SET(null_vnodeop_opv_desc);
666