null_vnops.c revision 193172
1/*-
2 * Copyright (c) 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * John Heidemann of the UCLA Ficus project.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
33 *
34 * Ancestors:
35 *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
36 *	...and...
37 *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
38 *
39 * $FreeBSD: head/sys/fs/nullfs/null_vnops.c 193172 2009-05-31 14:52:45Z kib $
40 */
41
42/*
43 * Null Layer
44 *
45 * (See mount_nullfs(8) for more information.)
46 *
47 * The null layer duplicates a portion of the filesystem
48 * name space under a new name.  In this respect, it is
49 * similar to the loopback filesystem.  It differs from
50 * the loopback fs in two respects:  it is implemented using
51 * a stackable layers techniques, and its "null-node"s stack above
52 * all lower-layer vnodes, not just over directory vnodes.
53 *
54 * The null layer has two purposes.  First, it serves as a demonstration
55 * of layering by proving a layer which does nothing.  (It actually
56 * does everything the loopback filesystem does, which is slightly
57 * more than nothing.)  Second, the null layer can serve as a prototype
58 * layer.  Since it provides all necessary layer framework,
59 * new filesystem layers can be created very easily be starting
60 * with a null layer.
61 *
62 * The remainder of this man page examines the null layer as a basis
63 * for constructing new layers.
64 *
65 *
66 * INSTANTIATING NEW NULL LAYERS
67 *
68 * New null layers are created with mount_nullfs(8).
69 * Mount_nullfs(8) takes two arguments, the pathname
70 * of the lower vfs (target-pn) and the pathname where the null
71 * layer will appear in the namespace (alias-pn).  After
72 * the null layer is put into place, the contents
73 * of target-pn subtree will be aliased under alias-pn.
74 *
75 *
76 * OPERATION OF A NULL LAYER
77 *
78 * The null layer is the minimum filesystem layer,
79 * simply bypassing all possible operations to the lower layer
80 * for processing there.  The majority of its activity centers
81 * on the bypass routine, through which nearly all vnode operations
82 * pass.
83 *
84 * The bypass routine accepts arbitrary vnode operations for
85 * handling by the lower layer.  It begins by examing vnode
86 * operation arguments and replacing any null-nodes by their
87 * lower-layer equivlants.  It then invokes the operation
88 * on the lower layer.  Finally, it replaces the null-nodes
89 * in the arguments and, if a vnode is return by the operation,
90 * stacks a null-node on top of the returned vnode.
91 *
92 * Although bypass handles most operations, vop_getattr, vop_lock,
93 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
94 * bypassed. Vop_getattr must change the fsid being returned.
95 * Vop_lock and vop_unlock must handle any locking for the
96 * current vnode as well as pass the lock request down.
97 * Vop_inactive and vop_reclaim are not bypassed so that
98 * they can handle freeing null-layer specific data. Vop_print
99 * is not bypassed to avoid excessive debugging information.
100 * Also, certain vnode operations change the locking state within
101 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
102 * and symlink). Ideally these operations should not change the
103 * lock state, but should be changed to let the caller of the
104 * function unlock them. Otherwise all intermediate vnode layers
105 * (such as union, umapfs, etc) must catch these functions to do
106 * the necessary locking at their layer.
107 *
108 *
109 * INSTANTIATING VNODE STACKS
110 *
111 * Mounting associates the null layer with a lower layer,
112 * effect stacking two VFSes.  Vnode stacks are instead
113 * created on demand as files are accessed.
114 *
115 * The initial mount creates a single vnode stack for the
116 * root of the new null layer.  All other vnode stacks
117 * are created as a result of vnode operations on
118 * this or other null vnode stacks.
119 *
120 * New vnode stacks come into existance as a result of
121 * an operation which returns a vnode.
122 * The bypass routine stacks a null-node above the new
123 * vnode before returning it to the caller.
124 *
125 * For example, imagine mounting a null layer with
126 * "mount_nullfs /usr/include /dev/layer/null".
127 * Changing directory to /dev/layer/null will assign
128 * the root null-node (which was created when the null layer was mounted).
129 * Now consider opening "sys".  A vop_lookup would be
130 * done on the root null-node.  This operation would bypass through
131 * to the lower layer which would return a vnode representing
132 * the UFS "sys".  Null_bypass then builds a null-node
133 * aliasing the UFS "sys" and returns this to the caller.
134 * Later operations on the null-node "sys" will repeat this
135 * process when constructing other vnode stacks.
136 *
137 *
138 * CREATING OTHER FILE SYSTEM LAYERS
139 *
140 * One of the easiest ways to construct new filesystem layers is to make
141 * a copy of the null layer, rename all files and variables, and
142 * then begin modifing the copy.  Sed can be used to easily rename
143 * all variables.
144 *
145 * The umap layer is an example of a layer descended from the
146 * null layer.
147 *
148 *
149 * INVOKING OPERATIONS ON LOWER LAYERS
150 *
151 * There are two techniques to invoke operations on a lower layer
152 * when the operation cannot be completely bypassed.  Each method
153 * is appropriate in different situations.  In both cases,
154 * it is the responsibility of the aliasing layer to make
155 * the operation arguments "correct" for the lower layer
156 * by mapping a vnode arguments to the lower layer.
157 *
158 * The first approach is to call the aliasing layer's bypass routine.
159 * This method is most suitable when you wish to invoke the operation
160 * currently being handled on the lower layer.  It has the advantage
161 * that the bypass routine already must do argument mapping.
162 * An example of this is null_getattrs in the null layer.
163 *
164 * A second approach is to directly invoke vnode operations on
165 * the lower layer with the VOP_OPERATIONNAME interface.
166 * The advantage of this method is that it is easy to invoke
167 * arbitrary operations on the lower layer.  The disadvantage
168 * is that vnode arguments must be manualy mapped.
169 *
170 */
171
172#include <sys/param.h>
173#include <sys/systm.h>
174#include <sys/conf.h>
175#include <sys/kernel.h>
176#include <sys/lock.h>
177#include <sys/malloc.h>
178#include <sys/mount.h>
179#include <sys/mutex.h>
180#include <sys/namei.h>
181#include <sys/sysctl.h>
182#include <sys/vnode.h>
183
184#include <fs/nullfs/null.h>
185
186#include <vm/vm.h>
187#include <vm/vm_extern.h>
188#include <vm/vm_object.h>
189#include <vm/vnode_pager.h>
190
191static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
192SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
193	&null_bug_bypass, 0, "");
194
195/*
196 * This is the 10-Apr-92 bypass routine.
197 *    This version has been optimized for speed, throwing away some
198 * safety checks.  It should still always work, but it's not as
199 * robust to programmer errors.
200 *
201 * In general, we map all vnodes going down and unmap them on the way back.
202 * As an exception to this, vnodes can be marked "unmapped" by setting
203 * the Nth bit in operation's vdesc_flags.
204 *
205 * Also, some BSD vnode operations have the side effect of vrele'ing
206 * their arguments.  With stacking, the reference counts are held
207 * by the upper node, not the lower one, so we must handle these
208 * side-effects here.  This is not of concern in Sun-derived systems
209 * since there are no such side-effects.
210 *
211 * This makes the following assumptions:
212 * - only one returned vpp
213 * - no INOUT vpp's (Sun's vop_open has one of these)
214 * - the vnode operation vector of the first vnode should be used
215 *   to determine what implementation of the op should be invoked
216 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
217 *   problems on rmdir'ing mount points and renaming?)
218 */
219int
220null_bypass(struct vop_generic_args *ap)
221{
222	struct vnode **this_vp_p;
223	int error;
224	struct vnode *old_vps[VDESC_MAX_VPS];
225	struct vnode **vps_p[VDESC_MAX_VPS];
226	struct vnode ***vppp;
227	struct vnodeop_desc *descp = ap->a_desc;
228	int reles, i;
229
230	if (null_bug_bypass)
231		printf ("null_bypass: %s\n", descp->vdesc_name);
232
233#ifdef DIAGNOSTIC
234	/*
235	 * We require at least one vp.
236	 */
237	if (descp->vdesc_vp_offsets == NULL ||
238	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
239		panic ("null_bypass: no vp's in map");
240#endif
241
242	/*
243	 * Map the vnodes going in.
244	 * Later, we'll invoke the operation based on
245	 * the first mapped vnode's operation vector.
246	 */
247	reles = descp->vdesc_flags;
248	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
249		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
250			break;   /* bail out at end of list */
251		vps_p[i] = this_vp_p =
252			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
253		/*
254		 * We're not guaranteed that any but the first vnode
255		 * are of our type.  Check for and don't map any
256		 * that aren't.  (We must always map first vp or vclean fails.)
257		 */
258		if (i && (*this_vp_p == NULLVP ||
259		    (*this_vp_p)->v_op != &null_vnodeops)) {
260			old_vps[i] = NULLVP;
261		} else {
262			old_vps[i] = *this_vp_p;
263			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
264			/*
265			 * XXX - Several operations have the side effect
266			 * of vrele'ing their vp's.  We must account for
267			 * that.  (This should go away in the future.)
268			 */
269			if (reles & VDESC_VP0_WILLRELE)
270				VREF(*this_vp_p);
271		}
272
273	}
274
275	/*
276	 * Call the operation on the lower layer
277	 * with the modified argument structure.
278	 */
279	if (vps_p[0] && *vps_p[0])
280		error = VCALL(ap);
281	else {
282		printf("null_bypass: no map for %s\n", descp->vdesc_name);
283		error = EINVAL;
284	}
285
286	/*
287	 * Maintain the illusion of call-by-value
288	 * by restoring vnodes in the argument structure
289	 * to their original value.
290	 */
291	reles = descp->vdesc_flags;
292	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
293		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
294			break;   /* bail out at end of list */
295		if (old_vps[i]) {
296			*(vps_p[i]) = old_vps[i];
297#if 0
298			if (reles & VDESC_VP0_WILLUNLOCK)
299				VOP_UNLOCK(*(vps_p[i]), 0);
300#endif
301			if (reles & VDESC_VP0_WILLRELE)
302				vrele(*(vps_p[i]));
303		}
304	}
305
306	/*
307	 * Map the possible out-going vpp
308	 * (Assumes that the lower layer always returns
309	 * a VREF'ed vpp unless it gets an error.)
310	 */
311	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
312	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
313	    !error) {
314		/*
315		 * XXX - even though some ops have vpp returned vp's,
316		 * several ops actually vrele this before returning.
317		 * We must avoid these ops.
318		 * (This should go away when these ops are regularized.)
319		 */
320		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
321			goto out;
322		vppp = VOPARG_OFFSETTO(struct vnode***,
323				 descp->vdesc_vpp_offset,ap);
324		if (*vppp)
325			error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
326	}
327
328 out:
329	return (error);
330}
331
332/*
333 * We have to carry on the locking protocol on the null layer vnodes
334 * as we progress through the tree. We also have to enforce read-only
335 * if this layer is mounted read-only.
336 */
337static int
338null_lookup(struct vop_lookup_args *ap)
339{
340	struct componentname *cnp = ap->a_cnp;
341	struct vnode *dvp = ap->a_dvp;
342	int flags = cnp->cn_flags;
343	struct vnode *vp, *ldvp, *lvp;
344	int error;
345
346	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
347	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
348		return (EROFS);
349	/*
350	 * Although it is possible to call null_bypass(), we'll do
351	 * a direct call to reduce overhead
352	 */
353	ldvp = NULLVPTOLOWERVP(dvp);
354	vp = lvp = NULL;
355	error = VOP_LOOKUP(ldvp, &lvp, cnp);
356	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
357	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
358	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
359		error = EROFS;
360
361	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
362		if (ldvp == lvp) {
363			*ap->a_vpp = dvp;
364			VREF(dvp);
365			vrele(lvp);
366		} else {
367			error = null_nodeget(dvp->v_mount, lvp, &vp);
368			if (error)
369				vput(lvp);
370			else
371				*ap->a_vpp = vp;
372		}
373	}
374	return (error);
375}
376
377static int
378null_open(struct vop_open_args *ap)
379{
380	int retval;
381	struct vnode *vp, *ldvp;
382
383	vp = ap->a_vp;
384	ldvp = NULLVPTOLOWERVP(vp);
385	retval = null_bypass(&ap->a_gen);
386	if (retval == 0)
387		vp->v_object = ldvp->v_object;
388	return (retval);
389}
390
391/*
392 * Setattr call. Disallow write attempts if the layer is mounted read-only.
393 */
394static int
395null_setattr(struct vop_setattr_args *ap)
396{
397	struct vnode *vp = ap->a_vp;
398	struct vattr *vap = ap->a_vap;
399
400  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
401	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
402	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
403	    (vp->v_mount->mnt_flag & MNT_RDONLY))
404		return (EROFS);
405	if (vap->va_size != VNOVAL) {
406 		switch (vp->v_type) {
407 		case VDIR:
408 			return (EISDIR);
409 		case VCHR:
410 		case VBLK:
411 		case VSOCK:
412 		case VFIFO:
413			if (vap->va_flags != VNOVAL)
414				return (EOPNOTSUPP);
415			return (0);
416		case VREG:
417		case VLNK:
418 		default:
419			/*
420			 * Disallow write attempts if the filesystem is
421			 * mounted read-only.
422			 */
423			if (vp->v_mount->mnt_flag & MNT_RDONLY)
424				return (EROFS);
425		}
426	}
427
428	return (null_bypass((struct vop_generic_args *)ap));
429}
430
431/*
432 *  We handle getattr only to change the fsid.
433 */
434static int
435null_getattr(struct vop_getattr_args *ap)
436{
437	int error;
438
439	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
440		return (error);
441
442	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
443	return (0);
444}
445
446/*
447 * Handle to disallow write access if mounted read-only.
448 */
449static int
450null_access(struct vop_access_args *ap)
451{
452	struct vnode *vp = ap->a_vp;
453	accmode_t accmode = ap->a_accmode;
454
455	/*
456	 * Disallow write attempts on read-only layers;
457	 * unless the file is a socket, fifo, or a block or
458	 * character device resident on the filesystem.
459	 */
460	if (accmode & VWRITE) {
461		switch (vp->v_type) {
462		case VDIR:
463		case VLNK:
464		case VREG:
465			if (vp->v_mount->mnt_flag & MNT_RDONLY)
466				return (EROFS);
467			break;
468		default:
469			break;
470		}
471	}
472	return (null_bypass((struct vop_generic_args *)ap));
473}
474
475static int
476null_accessx(struct vop_accessx_args *ap)
477{
478	struct vnode *vp = ap->a_vp;
479	accmode_t accmode = ap->a_accmode;
480
481	/*
482	 * Disallow write attempts on read-only layers;
483	 * unless the file is a socket, fifo, or a block or
484	 * character device resident on the filesystem.
485	 */
486	if (accmode & VWRITE) {
487		switch (vp->v_type) {
488		case VDIR:
489		case VLNK:
490		case VREG:
491			if (vp->v_mount->mnt_flag & MNT_RDONLY)
492				return (EROFS);
493			break;
494		default:
495			break;
496		}
497	}
498	return (null_bypass((struct vop_generic_args *)ap));
499}
500
501/*
502 * We handle this to eliminate null FS to lower FS
503 * file moving. Don't know why we don't allow this,
504 * possibly we should.
505 */
506static int
507null_rename(struct vop_rename_args *ap)
508{
509	struct vnode *tdvp = ap->a_tdvp;
510	struct vnode *fvp = ap->a_fvp;
511	struct vnode *fdvp = ap->a_fdvp;
512	struct vnode *tvp = ap->a_tvp;
513
514	/* Check for cross-device rename. */
515	if ((fvp->v_mount != tdvp->v_mount) ||
516	    (tvp && (fvp->v_mount != tvp->v_mount))) {
517		if (tdvp == tvp)
518			vrele(tdvp);
519		else
520			vput(tdvp);
521		if (tvp)
522			vput(tvp);
523		vrele(fdvp);
524		vrele(fvp);
525		return (EXDEV);
526	}
527
528	return (null_bypass((struct vop_generic_args *)ap));
529}
530
531/*
532 * We need to process our own vnode lock and then clear the
533 * interlock flag as it applies only to our vnode, not the
534 * vnodes below us on the stack.
535 */
536static int
537null_lock(struct vop_lock1_args *ap)
538{
539	struct vnode *vp = ap->a_vp;
540	int flags = ap->a_flags;
541	struct null_node *nn;
542	struct vnode *lvp;
543	int error;
544
545
546	if ((flags & LK_INTERLOCK) == 0) {
547		VI_LOCK(vp);
548		ap->a_flags = flags |= LK_INTERLOCK;
549	}
550	nn = VTONULL(vp);
551	/*
552	 * If we're still active we must ask the lower layer to
553	 * lock as ffs has special lock considerations in it's
554	 * vop lock.
555	 */
556	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
557		VI_LOCK_FLAGS(lvp, MTX_DUPOK);
558		VI_UNLOCK(vp);
559		/*
560		 * We have to hold the vnode here to solve a potential
561		 * reclaim race.  If we're forcibly vgone'd while we
562		 * still have refs, a thread could be sleeping inside
563		 * the lowervp's vop_lock routine.  When we vgone we will
564		 * drop our last ref to the lowervp, which would allow it
565		 * to be reclaimed.  The lowervp could then be recycled,
566		 * in which case it is not legal to be sleeping in it's VOP.
567		 * We prevent it from being recycled by holding the vnode
568		 * here.
569		 */
570		vholdl(lvp);
571		error = VOP_LOCK(lvp, flags);
572
573		/*
574		 * We might have slept to get the lock and someone might have
575		 * clean our vnode already, switching vnode lock from one in
576		 * lowervp to v_lock in our own vnode structure.  Handle this
577		 * case by reacquiring correct lock in requested mode.
578		 */
579		if (VTONULL(vp) == NULL && error == 0) {
580			ap->a_flags &= ~(LK_TYPE_MASK | LK_INTERLOCK);
581			switch (flags & LK_TYPE_MASK) {
582			case LK_SHARED:
583				ap->a_flags |= LK_SHARED;
584				break;
585			case LK_UPGRADE:
586			case LK_EXCLUSIVE:
587				ap->a_flags |= LK_EXCLUSIVE;
588				break;
589			default:
590				panic("Unsupported lock request %d\n",
591				    ap->a_flags);
592			}
593			VOP_UNLOCK(lvp, 0);
594			error = vop_stdlock(ap);
595		}
596		vdrop(lvp);
597	} else
598		error = vop_stdlock(ap);
599
600	return (error);
601}
602
603/*
604 * We need to process our own vnode unlock and then clear the
605 * interlock flag as it applies only to our vnode, not the
606 * vnodes below us on the stack.
607 */
608static int
609null_unlock(struct vop_unlock_args *ap)
610{
611	struct vnode *vp = ap->a_vp;
612	int flags = ap->a_flags;
613	int mtxlkflag = 0;
614	struct null_node *nn;
615	struct vnode *lvp;
616	int error;
617
618	if ((flags & LK_INTERLOCK) != 0)
619		mtxlkflag = 1;
620	else if (mtx_owned(VI_MTX(vp)) == 0) {
621		VI_LOCK(vp);
622		mtxlkflag = 2;
623	}
624	nn = VTONULL(vp);
625	if (nn != NULL && (lvp = NULLVPTOLOWERVP(vp)) != NULL) {
626		VI_LOCK_FLAGS(lvp, MTX_DUPOK);
627		flags |= LK_INTERLOCK;
628		vholdl(lvp);
629		VI_UNLOCK(vp);
630		error = VOP_UNLOCK(lvp, flags);
631		vdrop(lvp);
632		if (mtxlkflag == 0)
633			VI_LOCK(vp);
634	} else {
635		if (mtxlkflag == 2)
636			VI_UNLOCK(vp);
637		error = vop_stdunlock(ap);
638	}
639
640	return (error);
641}
642
643/*
644 * There is no way to tell that someone issued remove/rmdir operation
645 * on the underlying filesystem. For now we just have to release lowervp
646 * as soon as possible.
647 *
648 * Note, we can't release any resources nor remove vnode from hash before
649 * appropriate VXLOCK stuff is is done because other process can find this
650 * vnode in hash during inactivation and may be sitting in vget() and waiting
651 * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
652 */
653static int
654null_inactive(struct vop_inactive_args *ap)
655{
656	struct vnode *vp = ap->a_vp;
657	struct thread *td = ap->a_td;
658
659	vp->v_object = NULL;
660
661	/*
662	 * If this is the last reference, then free up the vnode
663	 * so as not to tie up the lower vnodes.
664	 */
665	vrecycle(vp, td);
666
667	return (0);
668}
669
670/*
671 * Now, the VXLOCK is in force and we're free to destroy the null vnode.
672 */
673static int
674null_reclaim(struct vop_reclaim_args *ap)
675{
676	struct vnode *vp = ap->a_vp;
677	struct null_node *xp = VTONULL(vp);
678	struct vnode *lowervp = xp->null_lowervp;
679
680	if (lowervp)
681		null_hashrem(xp);
682	/*
683	 * Use the interlock to protect the clearing of v_data to
684	 * prevent faults in null_lock().
685	 */
686	lockmgr(&vp->v_lock, LK_EXCLUSIVE, NULL);
687	VI_LOCK(vp);
688	vp->v_data = NULL;
689	vp->v_object = NULL;
690	vp->v_vnlock = &vp->v_lock;
691	VI_UNLOCK(vp);
692	if (lowervp)
693		vput(lowervp);
694	else
695		panic("null_reclaim: reclaiming a node with no lowervp");
696	free(xp, M_NULLFSNODE);
697
698	return (0);
699}
700
701static int
702null_print(struct vop_print_args *ap)
703{
704	struct vnode *vp = ap->a_vp;
705
706	printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
707	return (0);
708}
709
710/* ARGSUSED */
711static int
712null_getwritemount(struct vop_getwritemount_args *ap)
713{
714	struct null_node *xp;
715	struct vnode *lowervp;
716	struct vnode *vp;
717
718	vp = ap->a_vp;
719	VI_LOCK(vp);
720	xp = VTONULL(vp);
721	if (xp && (lowervp = xp->null_lowervp)) {
722		VI_LOCK_FLAGS(lowervp, MTX_DUPOK);
723		VI_UNLOCK(vp);
724		vholdl(lowervp);
725		VI_UNLOCK(lowervp);
726		VOP_GETWRITEMOUNT(lowervp, ap->a_mpp);
727		vdrop(lowervp);
728	} else {
729		VI_UNLOCK(vp);
730		*(ap->a_mpp) = NULL;
731	}
732	return (0);
733}
734
735static int
736null_vptofh(struct vop_vptofh_args *ap)
737{
738	struct vnode *lvp;
739
740	lvp = NULLVPTOLOWERVP(ap->a_vp);
741	return VOP_VPTOFH(lvp, ap->a_fhp);
742}
743
744/*
745 * Global vfs data structures
746 */
747struct vop_vector null_vnodeops = {
748	.vop_bypass =		null_bypass,
749	.vop_access =		null_access,
750	.vop_accessx =		null_accessx,
751	.vop_bmap =		VOP_EOPNOTSUPP,
752	.vop_getattr =		null_getattr,
753	.vop_getwritemount =	null_getwritemount,
754	.vop_inactive =		null_inactive,
755	.vop_islocked =		vop_stdislocked,
756	.vop_lock1 =		null_lock,
757	.vop_lookup =		null_lookup,
758	.vop_open =		null_open,
759	.vop_print =		null_print,
760	.vop_reclaim =		null_reclaim,
761	.vop_rename =		null_rename,
762	.vop_setattr =		null_setattr,
763	.vop_strategy =		VOP_EOPNOTSUPP,
764	.vop_unlock =		null_unlock,
765	.vop_vptocnp =		vop_stdvptocnp,
766	.vop_vptofh =		null_vptofh,
767};
768