null_vnops.c revision 140783
1/*-
2 * Copyright (c) 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * John Heidemann of the UCLA Ficus project.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
33 *
34 * Ancestors:
35 *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
36 *	...and...
37 *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
38 *
39 * $FreeBSD: head/sys/fs/nullfs/null_vnops.c 140783 2005-01-25 00:42:16Z phk $
40 */
41
42/*
43 * Null Layer
44 *
45 * (See mount_nullfs(8) for more information.)
46 *
47 * The null layer duplicates a portion of the filesystem
48 * name space under a new name.  In this respect, it is
49 * similar to the loopback filesystem.  It differs from
50 * the loopback fs in two respects:  it is implemented using
51 * a stackable layers techniques, and its "null-node"s stack above
52 * all lower-layer vnodes, not just over directory vnodes.
53 *
54 * The null layer has two purposes.  First, it serves as a demonstration
55 * of layering by proving a layer which does nothing.  (It actually
56 * does everything the loopback filesystem does, which is slightly
57 * more than nothing.)  Second, the null layer can serve as a prototype
58 * layer.  Since it provides all necessary layer framework,
59 * new filesystem layers can be created very easily be starting
60 * with a null layer.
61 *
62 * The remainder of this man page examines the null layer as a basis
63 * for constructing new layers.
64 *
65 *
66 * INSTANTIATING NEW NULL LAYERS
67 *
68 * New null layers are created with mount_nullfs(8).
69 * Mount_nullfs(8) takes two arguments, the pathname
70 * of the lower vfs (target-pn) and the pathname where the null
71 * layer will appear in the namespace (alias-pn).  After
72 * the null layer is put into place, the contents
73 * of target-pn subtree will be aliased under alias-pn.
74 *
75 *
76 * OPERATION OF A NULL LAYER
77 *
78 * The null layer is the minimum filesystem layer,
79 * simply bypassing all possible operations to the lower layer
80 * for processing there.  The majority of its activity centers
81 * on the bypass routine, through which nearly all vnode operations
82 * pass.
83 *
84 * The bypass routine accepts arbitrary vnode operations for
85 * handling by the lower layer.  It begins by examing vnode
86 * operation arguments and replacing any null-nodes by their
87 * lower-layer equivlants.  It then invokes the operation
88 * on the lower layer.  Finally, it replaces the null-nodes
89 * in the arguments and, if a vnode is return by the operation,
90 * stacks a null-node on top of the returned vnode.
91 *
92 * Although bypass handles most operations, vop_getattr, vop_lock,
93 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
94 * bypassed. Vop_getattr must change the fsid being returned.
95 * Vop_lock and vop_unlock must handle any locking for the
96 * current vnode as well as pass the lock request down.
97 * Vop_inactive and vop_reclaim are not bypassed so that
98 * they can handle freeing null-layer specific data. Vop_print
99 * is not bypassed to avoid excessive debugging information.
100 * Also, certain vnode operations change the locking state within
101 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
102 * and symlink). Ideally these operations should not change the
103 * lock state, but should be changed to let the caller of the
104 * function unlock them. Otherwise all intermediate vnode layers
105 * (such as union, umapfs, etc) must catch these functions to do
106 * the necessary locking at their layer.
107 *
108 *
109 * INSTANTIATING VNODE STACKS
110 *
111 * Mounting associates the null layer with a lower layer,
112 * effect stacking two VFSes.  Vnode stacks are instead
113 * created on demand as files are accessed.
114 *
115 * The initial mount creates a single vnode stack for the
116 * root of the new null layer.  All other vnode stacks
117 * are created as a result of vnode operations on
118 * this or other null vnode stacks.
119 *
120 * New vnode stacks come into existance as a result of
121 * an operation which returns a vnode.
122 * The bypass routine stacks a null-node above the new
123 * vnode before returning it to the caller.
124 *
125 * For example, imagine mounting a null layer with
126 * "mount_nullfs /usr/include /dev/layer/null".
127 * Changing directory to /dev/layer/null will assign
128 * the root null-node (which was created when the null layer was mounted).
129 * Now consider opening "sys".  A vop_lookup would be
130 * done on the root null-node.  This operation would bypass through
131 * to the lower layer which would return a vnode representing
132 * the UFS "sys".  Null_bypass then builds a null-node
133 * aliasing the UFS "sys" and returns this to the caller.
134 * Later operations on the null-node "sys" will repeat this
135 * process when constructing other vnode stacks.
136 *
137 *
138 * CREATING OTHER FILE SYSTEM LAYERS
139 *
140 * One of the easiest ways to construct new filesystem layers is to make
141 * a copy of the null layer, rename all files and variables, and
142 * then begin modifing the copy.  Sed can be used to easily rename
143 * all variables.
144 *
145 * The umap layer is an example of a layer descended from the
146 * null layer.
147 *
148 *
149 * INVOKING OPERATIONS ON LOWER LAYERS
150 *
151 * There are two techniques to invoke operations on a lower layer
152 * when the operation cannot be completely bypassed.  Each method
153 * is appropriate in different situations.  In both cases,
154 * it is the responsibility of the aliasing layer to make
155 * the operation arguments "correct" for the lower layer
156 * by mapping a vnode arguments to the lower layer.
157 *
158 * The first approach is to call the aliasing layer's bypass routine.
159 * This method is most suitable when you wish to invoke the operation
160 * currently being handled on the lower layer.  It has the advantage
161 * that the bypass routine already must do argument mapping.
162 * An example of this is null_getattrs in the null layer.
163 *
164 * A second approach is to directly invoke vnode operations on
165 * the lower layer with the VOP_OPERATIONNAME interface.
166 * The advantage of this method is that it is easy to invoke
167 * arbitrary operations on the lower layer.  The disadvantage
168 * is that vnode arguments must be manualy mapped.
169 *
170 */
171
172#include <sys/param.h>
173#include <sys/systm.h>
174#include <sys/conf.h>
175#include <sys/kernel.h>
176#include <sys/lock.h>
177#include <sys/malloc.h>
178#include <sys/mount.h>
179#include <sys/mutex.h>
180#include <sys/namei.h>
181#include <sys/sysctl.h>
182#include <sys/vnode.h>
183
184#include <fs/nullfs/null.h>
185
186#include <vm/vm.h>
187#include <vm/vm_extern.h>
188#include <vm/vm_object.h>
189#include <vm/vnode_pager.h>
190
191static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
192SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
193	&null_bug_bypass, 0, "");
194
195/*
196 * This is the 10-Apr-92 bypass routine.
197 *    This version has been optimized for speed, throwing away some
198 * safety checks.  It should still always work, but it's not as
199 * robust to programmer errors.
200 *
201 * In general, we map all vnodes going down and unmap them on the way back.
202 * As an exception to this, vnodes can be marked "unmapped" by setting
203 * the Nth bit in operation's vdesc_flags.
204 *
205 * Also, some BSD vnode operations have the side effect of vrele'ing
206 * their arguments.  With stacking, the reference counts are held
207 * by the upper node, not the lower one, so we must handle these
208 * side-effects here.  This is not of concern in Sun-derived systems
209 * since there are no such side-effects.
210 *
211 * This makes the following assumptions:
212 * - only one returned vpp
213 * - no INOUT vpp's (Sun's vop_open has one of these)
214 * - the vnode operation vector of the first vnode should be used
215 *   to determine what implementation of the op should be invoked
216 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
217 *   problems on rmdir'ing mount points and renaming?)
218 */
219int
220null_bypass(struct vop_generic_args *ap)
221{
222	struct vnode **this_vp_p;
223	int error;
224	struct vnode *old_vps[VDESC_MAX_VPS];
225	struct vnode **vps_p[VDESC_MAX_VPS];
226	struct vnode ***vppp;
227	struct vnodeop_desc *descp = ap->a_desc;
228	int reles, i;
229
230	if (null_bug_bypass)
231		printf ("null_bypass: %s\n", descp->vdesc_name);
232
233#ifdef DIAGNOSTIC
234	/*
235	 * We require at least one vp.
236	 */
237	if (descp->vdesc_vp_offsets == NULL ||
238	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
239		panic ("null_bypass: no vp's in map");
240#endif
241
242	/*
243	 * Map the vnodes going in.
244	 * Later, we'll invoke the operation based on
245	 * the first mapped vnode's operation vector.
246	 */
247	reles = descp->vdesc_flags;
248	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
249		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
250			break;   /* bail out at end of list */
251		vps_p[i] = this_vp_p =
252			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
253		/*
254		 * We're not guaranteed that any but the first vnode
255		 * are of our type.  Check for and don't map any
256		 * that aren't.  (We must always map first vp or vclean fails.)
257		 */
258		if (i && (*this_vp_p == NULLVP ||
259		    (*this_vp_p)->v_op != &null_vnodeops)) {
260			old_vps[i] = NULLVP;
261		} else {
262			old_vps[i] = *this_vp_p;
263			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
264			/*
265			 * XXX - Several operations have the side effect
266			 * of vrele'ing their vp's.  We must account for
267			 * that.  (This should go away in the future.)
268			 */
269			if (reles & VDESC_VP0_WILLRELE)
270				VREF(*this_vp_p);
271		}
272
273	}
274
275	/*
276	 * Call the operation on the lower layer
277	 * with the modified argument structure.
278	 */
279	if (vps_p[0] && *vps_p[0])
280		error = VCALL(ap);
281	else {
282		printf("null_bypass: no map for %s\n", descp->vdesc_name);
283		error = EINVAL;
284	}
285
286	/*
287	 * Maintain the illusion of call-by-value
288	 * by restoring vnodes in the argument structure
289	 * to their original value.
290	 */
291	reles = descp->vdesc_flags;
292	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
293		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
294			break;   /* bail out at end of list */
295		if (old_vps[i]) {
296			*(vps_p[i]) = old_vps[i];
297#if 0
298			if (reles & VDESC_VP0_WILLUNLOCK)
299				VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread);
300#endif
301			if (reles & VDESC_VP0_WILLRELE)
302				vrele(*(vps_p[i]));
303		}
304	}
305
306	/*
307	 * Map the possible out-going vpp
308	 * (Assumes that the lower layer always returns
309	 * a VREF'ed vpp unless it gets an error.)
310	 */
311	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
312	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
313	    !error) {
314		/*
315		 * XXX - even though some ops have vpp returned vp's,
316		 * several ops actually vrele this before returning.
317		 * We must avoid these ops.
318		 * (This should go away when these ops are regularized.)
319		 */
320		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
321			goto out;
322		vppp = VOPARG_OFFSETTO(struct vnode***,
323				 descp->vdesc_vpp_offset,ap);
324		if (*vppp)
325			error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
326	}
327
328 out:
329	return (error);
330}
331
332static int
333null_close(struct vop_close_args *ap)
334{
335	int retval;
336	struct vnode *vp;
337
338	vp = ap->a_vp;
339	retval = null_bypass(&ap->a_gen);
340	if (retval == 0)
341		vp->v_object = NULL;
342	return (retval);
343}
344
345/*
346 * We have to carry on the locking protocol on the null layer vnodes
347 * as we progress through the tree. We also have to enforce read-only
348 * if this layer is mounted read-only.
349 */
350static int
351null_lookup(struct vop_lookup_args *ap)
352{
353	struct componentname *cnp = ap->a_cnp;
354	struct vnode *dvp = ap->a_dvp;
355	struct thread *td = cnp->cn_thread;
356	int flags = cnp->cn_flags;
357	struct vnode *vp, *ldvp, *lvp;
358	int error;
359
360	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
361	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
362		return (EROFS);
363	/*
364	 * Although it is possible to call null_bypass(), we'll do
365	 * a direct call to reduce overhead
366	 */
367	ldvp = NULLVPTOLOWERVP(dvp);
368	vp = lvp = NULL;
369	error = VOP_LOOKUP(ldvp, &lvp, cnp);
370	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
371	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
372	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
373		error = EROFS;
374
375	/*
376	 * Rely only on the PDIRUNLOCK flag which should be carefully
377	 * tracked by underlying filesystem.
378	 */
379	if ((cnp->cn_flags & PDIRUNLOCK) && dvp->v_vnlock != ldvp->v_vnlock)
380		VOP_UNLOCK(dvp, LK_THISLAYER, td);
381	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
382		if (ldvp == lvp) {
383			*ap->a_vpp = dvp;
384			VREF(dvp);
385			vrele(lvp);
386		} else {
387			error = null_nodeget(dvp->v_mount, lvp, &vp);
388			if (error) {
389				/* XXX Cleanup needed... */
390				panic("null_nodeget failed");
391			}
392			*ap->a_vpp = vp;
393		}
394	}
395	return (error);
396}
397
398static int
399null_open(struct vop_open_args *ap)
400{
401	int retval;
402	struct vnode *vp, *ldvp;
403
404	vp = ap->a_vp;
405	ldvp = NULLVPTOLOWERVP(vp);
406	retval = null_bypass(&ap->a_gen);
407	if (retval == 0)
408		vp->v_object = ldvp->v_object;
409	return (retval);
410}
411
412/*
413 * Setattr call. Disallow write attempts if the layer is mounted read-only.
414 */
415static int
416null_setattr(struct vop_setattr_args *ap)
417{
418	struct vnode *vp = ap->a_vp;
419	struct vattr *vap = ap->a_vap;
420
421  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
422	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
423	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
424	    (vp->v_mount->mnt_flag & MNT_RDONLY))
425		return (EROFS);
426	if (vap->va_size != VNOVAL) {
427 		switch (vp->v_type) {
428 		case VDIR:
429 			return (EISDIR);
430 		case VCHR:
431 		case VBLK:
432 		case VSOCK:
433 		case VFIFO:
434			if (vap->va_flags != VNOVAL)
435				return (EOPNOTSUPP);
436			return (0);
437		case VREG:
438		case VLNK:
439 		default:
440			/*
441			 * Disallow write attempts if the filesystem is
442			 * mounted read-only.
443			 */
444			if (vp->v_mount->mnt_flag & MNT_RDONLY)
445				return (EROFS);
446		}
447	}
448
449	return (null_bypass((struct vop_generic_args *)ap));
450}
451
452/*
453 *  We handle getattr only to change the fsid.
454 */
455static int
456null_getattr(struct vop_getattr_args *ap)
457{
458	int error;
459
460	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
461		return (error);
462
463	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
464	return (0);
465}
466
467/*
468 * Handle to disallow write access if mounted read-only.
469 */
470static int
471null_access(struct vop_access_args *ap)
472{
473	struct vnode *vp = ap->a_vp;
474	mode_t mode = ap->a_mode;
475
476	/*
477	 * Disallow write attempts on read-only layers;
478	 * unless the file is a socket, fifo, or a block or
479	 * character device resident on the filesystem.
480	 */
481	if (mode & VWRITE) {
482		switch (vp->v_type) {
483		case VDIR:
484		case VLNK:
485		case VREG:
486			if (vp->v_mount->mnt_flag & MNT_RDONLY)
487				return (EROFS);
488			break;
489		default:
490			break;
491		}
492	}
493	return (null_bypass((struct vop_generic_args *)ap));
494}
495
496/*
497 * We handle this to eliminate null FS to lower FS
498 * file moving. Don't know why we don't allow this,
499 * possibly we should.
500 */
501static int
502null_rename(struct vop_rename_args *ap)
503{
504	struct vnode *tdvp = ap->a_tdvp;
505	struct vnode *fvp = ap->a_fvp;
506	struct vnode *fdvp = ap->a_fdvp;
507	struct vnode *tvp = ap->a_tvp;
508
509	/* Check for cross-device rename. */
510	if ((fvp->v_mount != tdvp->v_mount) ||
511	    (tvp && (fvp->v_mount != tvp->v_mount))) {
512		if (tdvp == tvp)
513			vrele(tdvp);
514		else
515			vput(tdvp);
516		if (tvp)
517			vput(tvp);
518		vrele(fdvp);
519		vrele(fvp);
520		return (EXDEV);
521	}
522
523	return (null_bypass((struct vop_generic_args *)ap));
524}
525
526/*
527 * We need to process our own vnode lock and then clear the
528 * interlock flag as it applies only to our vnode, not the
529 * vnodes below us on the stack.
530 */
531static int
532null_lock(struct vop_lock_args *ap)
533{
534	struct vnode *vp = ap->a_vp;
535	int flags = ap->a_flags;
536	struct thread *td = ap->a_td;
537	struct vnode *lvp;
538	int error;
539	struct null_node *nn;
540
541	if (flags & LK_THISLAYER) {
542		if (vp->v_vnlock != NULL) {
543			/* lock is shared across layers */
544			if (flags & LK_INTERLOCK)
545				mtx_unlock(&vp->v_interlock);
546			return 0;
547		}
548		error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
549		    &vp->v_interlock, td);
550		return (error);
551	}
552
553	if (vp->v_vnlock != NULL) {
554		/*
555		 * The lower level has exported a struct lock to us. Use
556		 * it so that all vnodes in the stack lock and unlock
557		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
558		 * decommissions the lock - just because our vnode is
559		 * going away doesn't mean the struct lock below us is.
560		 * LK_EXCLUSIVE is fine.
561		 */
562		if ((flags & LK_INTERLOCK) == 0) {
563			VI_LOCK(vp);
564			flags |= LK_INTERLOCK;
565		}
566		nn = VTONULL(vp);
567		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
568			NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
569			/*
570			 * Emulate lock draining by waiting for all other
571			 * pending locks to complete.  Afterwards the
572			 * lockmgr call might block, but no other threads
573			 * will attempt to use this nullfs vnode due to the
574			 * VI_XLOCK flag.
575			 */
576			while (nn->null_pending_locks > 0) {
577				nn->null_drain_wakeup = 1;
578				msleep(&nn->null_pending_locks,
579				       VI_MTX(vp),
580				       PVFS,
581				       "nuldr", 0);
582			}
583			error = lockmgr(vp->v_vnlock,
584					(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
585					VI_MTX(vp), td);
586			return error;
587		}
588		nn->null_pending_locks++;
589		error = lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td);
590		VI_LOCK(vp);
591		/*
592		 * If we're called from vrele then v_usecount can have been 0
593		 * and another process might have initiated a recycle
594		 * operation.  When that happens, just back out.
595		 */
596		if (error == 0 && (vp->v_iflag & VI_XLOCK) != 0 &&
597		    td != vp->v_vxthread) {
598			lockmgr(vp->v_vnlock,
599				(flags & ~LK_TYPE_MASK) | LK_RELEASE,
600				VI_MTX(vp), td);
601			VI_LOCK(vp);
602			error = ENOENT;
603		}
604		nn->null_pending_locks--;
605		/*
606		 * Wakeup the process draining the vnode after all
607		 * pending lock attempts has been failed.
608		 */
609		if (nn->null_pending_locks == 0 &&
610		    nn->null_drain_wakeup != 0) {
611			nn->null_drain_wakeup = 0;
612			wakeup(&nn->null_pending_locks);
613		}
614		if (error == ENOENT && (vp->v_iflag & VI_XLOCK) != 0 &&
615		    vp->v_vxthread != curthread) {
616			vp->v_iflag |= VI_XWANT;
617			msleep(vp, VI_MTX(vp), PINOD, "nulbo", 0);
618		}
619		VI_UNLOCK(vp);
620		return error;
621	} else {
622		/*
623		 * To prevent race conditions involving doing a lookup
624		 * on "..", we have to lock the lower node, then lock our
625		 * node. Most of the time it won't matter that we lock our
626		 * node (as any locking would need the lower one locked
627		 * first). But we can LK_DRAIN the upper lock as a step
628		 * towards decomissioning it.
629		 */
630		lvp = NULLVPTOLOWERVP(vp);
631		if (lvp == NULL)
632			return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td));
633		if (flags & LK_INTERLOCK) {
634			mtx_unlock(&vp->v_interlock);
635			flags &= ~LK_INTERLOCK;
636		}
637		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
638			error = VOP_LOCK(lvp,
639				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td);
640		} else
641			error = VOP_LOCK(lvp, flags, td);
642		if (error)
643			return (error);
644		error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td);
645		if (error)
646			VOP_UNLOCK(lvp, 0, td);
647		return (error);
648	}
649}
650
651/*
652 * We need to process our own vnode unlock and then clear the
653 * interlock flag as it applies only to our vnode, not the
654 * vnodes below us on the stack.
655 */
656static int
657null_unlock(struct vop_unlock_args *ap)
658{
659	struct vnode *vp = ap->a_vp;
660	int flags = ap->a_flags;
661	struct thread *td = ap->a_td;
662	struct vnode *lvp;
663
664	if (vp->v_vnlock != NULL) {
665		if (flags & LK_THISLAYER)
666			return 0;	/* the lock is shared across layers */
667		flags &= ~LK_THISLAYER;
668		return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
669			&vp->v_interlock, td));
670	}
671	lvp = NULLVPTOLOWERVP(vp);
672	if (lvp == NULL)
673		return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
674	if ((flags & LK_THISLAYER) == 0) {
675		if (flags & LK_INTERLOCK) {
676			mtx_unlock(&vp->v_interlock);
677			flags &= ~LK_INTERLOCK;
678		}
679		VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td);
680	} else
681		flags &= ~LK_THISLAYER;
682	return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
683}
684
685static int
686null_islocked(struct vop_islocked_args *ap)
687{
688	struct vnode *vp = ap->a_vp;
689	struct thread *td = ap->a_td;
690
691	if (vp->v_vnlock != NULL)
692		return (lockstatus(vp->v_vnlock, td));
693	return (lockstatus(&vp->v_lock, td));
694}
695
696/*
697 * There is no way to tell that someone issued remove/rmdir operation
698 * on the underlying filesystem. For now we just have to release lowevrp
699 * as soon as possible.
700 *
701 * Note, we can't release any resources nor remove vnode from hash before
702 * appropriate VXLOCK stuff is is done because other process can find this
703 * vnode in hash during inactivation and may be sitting in vget() and waiting
704 * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
705 */
706static int
707null_inactive(struct vop_inactive_args *ap)
708{
709	struct vnode *vp = ap->a_vp;
710	struct thread *td = ap->a_td;
711
712	VOP_UNLOCK(vp, 0, td);
713
714	/*
715	 * If this is the last reference, then free up the vnode
716	 * so as not to tie up the lower vnodes.
717	 */
718	vrecycle(vp, NULL, td);
719
720	return (0);
721}
722
723/*
724 * Now, the VXLOCK is in force and we're free to destroy the null vnode.
725 */
726static int
727null_reclaim(struct vop_reclaim_args *ap)
728{
729	struct vnode *vp = ap->a_vp;
730	struct null_node *xp = VTONULL(vp);
731	struct vnode *lowervp = xp->null_lowervp;
732
733	if (lowervp) {
734		null_hashrem(xp);
735
736		vrele(lowervp);
737		vrele(lowervp);
738	}
739
740	vp->v_data = NULL;
741	vp->v_vnlock = &vp->v_lock;
742	FREE(xp, M_NULLFSNODE);
743
744	return (0);
745}
746
747static int
748null_print(struct vop_print_args *ap)
749{
750	struct vnode *vp = ap->a_vp;
751	printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
752	return (0);
753}
754
755/*
756 * We have nothing to destroy and this operation shouldn't be bypassed.
757 */
758static int
759null_destroyvobject(struct vop_destroyvobject_args *ap)
760{
761	struct vnode *vp = ap->a_vp;
762
763	vp->v_object = NULL;
764	return (0);
765}
766
767/*
768 * Global vfs data structures
769 */
770struct vop_vector null_vnodeops = {
771	.vop_bypass =		null_bypass,
772
773	.vop_access =		null_access,
774	.vop_bmap =		VOP_EOPNOTSUPP,
775	.vop_close =		null_close,
776	.vop_destroyvobject =	null_destroyvobject,
777	.vop_getattr =		null_getattr,
778	.vop_getwritemount =	vop_stdgetwritemount,
779	.vop_inactive =		null_inactive,
780	.vop_islocked =		null_islocked,
781	.vop_lock =		null_lock,
782	.vop_lookup =		null_lookup,
783	.vop_open =		null_open,
784	.vop_print =		null_print,
785	.vop_reclaim =		null_reclaim,
786	.vop_rename =		null_rename,
787	.vop_setattr =		null_setattr,
788	.vop_strategy =		VOP_EOPNOTSUPP,
789	.vop_unlock =		null_unlock,
790};
791