null_vnops.c revision 140165
1/*-
2 * Copyright (c) 1992, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * John Heidemann of the UCLA Ficus project.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
33 *
34 * Ancestors:
35 *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
36 *	...and...
37 *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
38 *
39 * $FreeBSD: head/sys/fs/nullfs/null_vnops.c 140165 2005-01-13 07:53:01Z phk $
40 */
41
42/*
43 * Null Layer
44 *
45 * (See mount_nullfs(8) for more information.)
46 *
47 * The null layer duplicates a portion of the filesystem
48 * name space under a new name.  In this respect, it is
49 * similar to the loopback filesystem.  It differs from
50 * the loopback fs in two respects:  it is implemented using
51 * a stackable layers techniques, and its "null-node"s stack above
52 * all lower-layer vnodes, not just over directory vnodes.
53 *
54 * The null layer has two purposes.  First, it serves as a demonstration
55 * of layering by proving a layer which does nothing.  (It actually
56 * does everything the loopback filesystem does, which is slightly
57 * more than nothing.)  Second, the null layer can serve as a prototype
58 * layer.  Since it provides all necessary layer framework,
59 * new filesystem layers can be created very easily be starting
60 * with a null layer.
61 *
62 * The remainder of this man page examines the null layer as a basis
63 * for constructing new layers.
64 *
65 *
66 * INSTANTIATING NEW NULL LAYERS
67 *
68 * New null layers are created with mount_nullfs(8).
69 * Mount_nullfs(8) takes two arguments, the pathname
70 * of the lower vfs (target-pn) and the pathname where the null
71 * layer will appear in the namespace (alias-pn).  After
72 * the null layer is put into place, the contents
73 * of target-pn subtree will be aliased under alias-pn.
74 *
75 *
76 * OPERATION OF A NULL LAYER
77 *
78 * The null layer is the minimum filesystem layer,
79 * simply bypassing all possible operations to the lower layer
80 * for processing there.  The majority of its activity centers
81 * on the bypass routine, through which nearly all vnode operations
82 * pass.
83 *
84 * The bypass routine accepts arbitrary vnode operations for
85 * handling by the lower layer.  It begins by examing vnode
86 * operation arguments and replacing any null-nodes by their
87 * lower-layer equivlants.  It then invokes the operation
88 * on the lower layer.  Finally, it replaces the null-nodes
89 * in the arguments and, if a vnode is return by the operation,
90 * stacks a null-node on top of the returned vnode.
91 *
92 * Although bypass handles most operations, vop_getattr, vop_lock,
93 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
94 * bypassed. Vop_getattr must change the fsid being returned.
95 * Vop_lock and vop_unlock must handle any locking for the
96 * current vnode as well as pass the lock request down.
97 * Vop_inactive and vop_reclaim are not bypassed so that
98 * they can handle freeing null-layer specific data. Vop_print
99 * is not bypassed to avoid excessive debugging information.
100 * Also, certain vnode operations change the locking state within
101 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
102 * and symlink). Ideally these operations should not change the
103 * lock state, but should be changed to let the caller of the
104 * function unlock them. Otherwise all intermediate vnode layers
105 * (such as union, umapfs, etc) must catch these functions to do
106 * the necessary locking at their layer.
107 *
108 *
109 * INSTANTIATING VNODE STACKS
110 *
111 * Mounting associates the null layer with a lower layer,
112 * effect stacking two VFSes.  Vnode stacks are instead
113 * created on demand as files are accessed.
114 *
115 * The initial mount creates a single vnode stack for the
116 * root of the new null layer.  All other vnode stacks
117 * are created as a result of vnode operations on
118 * this or other null vnode stacks.
119 *
120 * New vnode stacks come into existance as a result of
121 * an operation which returns a vnode.
122 * The bypass routine stacks a null-node above the new
123 * vnode before returning it to the caller.
124 *
125 * For example, imagine mounting a null layer with
126 * "mount_nullfs /usr/include /dev/layer/null".
127 * Changing directory to /dev/layer/null will assign
128 * the root null-node (which was created when the null layer was mounted).
129 * Now consider opening "sys".  A vop_lookup would be
130 * done on the root null-node.  This operation would bypass through
131 * to the lower layer which would return a vnode representing
132 * the UFS "sys".  Null_bypass then builds a null-node
133 * aliasing the UFS "sys" and returns this to the caller.
134 * Later operations on the null-node "sys" will repeat this
135 * process when constructing other vnode stacks.
136 *
137 *
138 * CREATING OTHER FILE SYSTEM LAYERS
139 *
140 * One of the easiest ways to construct new filesystem layers is to make
141 * a copy of the null layer, rename all files and variables, and
142 * then begin modifing the copy.  Sed can be used to easily rename
143 * all variables.
144 *
145 * The umap layer is an example of a layer descended from the
146 * null layer.
147 *
148 *
149 * INVOKING OPERATIONS ON LOWER LAYERS
150 *
151 * There are two techniques to invoke operations on a lower layer
152 * when the operation cannot be completely bypassed.  Each method
153 * is appropriate in different situations.  In both cases,
154 * it is the responsibility of the aliasing layer to make
155 * the operation arguments "correct" for the lower layer
156 * by mapping a vnode arguments to the lower layer.
157 *
158 * The first approach is to call the aliasing layer's bypass routine.
159 * This method is most suitable when you wish to invoke the operation
160 * currently being handled on the lower layer.  It has the advantage
161 * that the bypass routine already must do argument mapping.
162 * An example of this is null_getattrs in the null layer.
163 *
164 * A second approach is to directly invoke vnode operations on
165 * the lower layer with the VOP_OPERATIONNAME interface.
166 * The advantage of this method is that it is easy to invoke
167 * arbitrary operations on the lower layer.  The disadvantage
168 * is that vnode arguments must be manualy mapped.
169 *
170 */
171
172#include <sys/param.h>
173#include <sys/systm.h>
174#include <sys/conf.h>
175#include <sys/kernel.h>
176#include <sys/lock.h>
177#include <sys/malloc.h>
178#include <sys/mount.h>
179#include <sys/mutex.h>
180#include <sys/namei.h>
181#include <sys/sysctl.h>
182#include <sys/vnode.h>
183
184#include <fs/nullfs/null.h>
185
186#include <vm/vm.h>
187#include <vm/vm_extern.h>
188#include <vm/vm_object.h>
189#include <vm/vnode_pager.h>
190
191static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
192SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
193	&null_bug_bypass, 0, "");
194
195static vop_access_t	null_access;
196static vop_createvobject_t	null_createvobject;
197static vop_destroyvobject_t	null_destroyvobject;
198static vop_getattr_t	null_getattr;
199static vop_getvobject_t	null_getvobject;
200static vop_inactive_t	null_inactive;
201static vop_islocked_t	null_islocked;
202static vop_lock_t	null_lock;
203static vop_lookup_t	null_lookup;
204static vop_print_t	null_print;
205static vop_reclaim_t	null_reclaim;
206static vop_rename_t	null_rename;
207static vop_setattr_t	null_setattr;
208static vop_unlock_t	null_unlock;
209
210/*
211 * This is the 10-Apr-92 bypass routine.
212 *    This version has been optimized for speed, throwing away some
213 * safety checks.  It should still always work, but it's not as
214 * robust to programmer errors.
215 *
216 * In general, we map all vnodes going down and unmap them on the way back.
217 * As an exception to this, vnodes can be marked "unmapped" by setting
218 * the Nth bit in operation's vdesc_flags.
219 *
220 * Also, some BSD vnode operations have the side effect of vrele'ing
221 * their arguments.  With stacking, the reference counts are held
222 * by the upper node, not the lower one, so we must handle these
223 * side-effects here.  This is not of concern in Sun-derived systems
224 * since there are no such side-effects.
225 *
226 * This makes the following assumptions:
227 * - only one returned vpp
228 * - no INOUT vpp's (Sun's vop_open has one of these)
229 * - the vnode operation vector of the first vnode should be used
230 *   to determine what implementation of the op should be invoked
231 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
232 *   problems on rmdir'ing mount points and renaming?)
233 */
234int
235null_bypass(ap)
236	struct vop_generic_args /* {
237		struct vnodeop_desc *a_desc;
238		<other random data follows, presumably>
239	} */ *ap;
240{
241	register struct vnode **this_vp_p;
242	int error;
243	struct vnode *old_vps[VDESC_MAX_VPS];
244	struct vnode **vps_p[VDESC_MAX_VPS];
245	struct vnode ***vppp;
246	struct vnodeop_desc *descp = ap->a_desc;
247	int reles, i;
248
249	if (null_bug_bypass)
250		printf ("null_bypass: %s\n", descp->vdesc_name);
251
252#ifdef DIAGNOSTIC
253	/*
254	 * We require at least one vp.
255	 */
256	if (descp->vdesc_vp_offsets == NULL ||
257	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
258		panic ("null_bypass: no vp's in map");
259#endif
260
261	/*
262	 * Map the vnodes going in.
263	 * Later, we'll invoke the operation based on
264	 * the first mapped vnode's operation vector.
265	 */
266	reles = descp->vdesc_flags;
267	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
268		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
269			break;   /* bail out at end of list */
270		vps_p[i] = this_vp_p =
271			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
272		/*
273		 * We're not guaranteed that any but the first vnode
274		 * are of our type.  Check for and don't map any
275		 * that aren't.  (We must always map first vp or vclean fails.)
276		 */
277		if (i && (*this_vp_p == NULLVP ||
278		    (*this_vp_p)->v_op != &null_vnodeops)) {
279			old_vps[i] = NULLVP;
280		} else {
281			old_vps[i] = *this_vp_p;
282			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
283			/*
284			 * XXX - Several operations have the side effect
285			 * of vrele'ing their vp's.  We must account for
286			 * that.  (This should go away in the future.)
287			 */
288			if (reles & VDESC_VP0_WILLRELE)
289				VREF(*this_vp_p);
290		}
291
292	}
293
294	/*
295	 * Call the operation on the lower layer
296	 * with the modified argument structure.
297	 */
298	if (vps_p[0] && *vps_p[0])
299		error = VCALL(ap);
300	else {
301		printf("null_bypass: no map for %s\n", descp->vdesc_name);
302		error = EINVAL;
303	}
304
305	/*
306	 * Maintain the illusion of call-by-value
307	 * by restoring vnodes in the argument structure
308	 * to their original value.
309	 */
310	reles = descp->vdesc_flags;
311	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
312		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
313			break;   /* bail out at end of list */
314		if (old_vps[i]) {
315			*(vps_p[i]) = old_vps[i];
316#if 0
317			if (reles & VDESC_VP0_WILLUNLOCK)
318				VOP_UNLOCK(*(vps_p[i]), LK_THISLAYER, curthread);
319#endif
320			if (reles & VDESC_VP0_WILLRELE)
321				vrele(*(vps_p[i]));
322		}
323	}
324
325	/*
326	 * Map the possible out-going vpp
327	 * (Assumes that the lower layer always returns
328	 * a VREF'ed vpp unless it gets an error.)
329	 */
330	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
331	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
332	    !error) {
333		/*
334		 * XXX - even though some ops have vpp returned vp's,
335		 * several ops actually vrele this before returning.
336		 * We must avoid these ops.
337		 * (This should go away when these ops are regularized.)
338		 */
339		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
340			goto out;
341		vppp = VOPARG_OFFSETTO(struct vnode***,
342				 descp->vdesc_vpp_offset,ap);
343		if (*vppp)
344			error = null_nodeget(old_vps[0]->v_mount, **vppp, *vppp);
345	}
346
347 out:
348	return (error);
349}
350
351/*
352 * We have to carry on the locking protocol on the null layer vnodes
353 * as we progress through the tree. We also have to enforce read-only
354 * if this layer is mounted read-only.
355 */
356static int
357null_lookup(ap)
358	struct vop_lookup_args /* {
359		struct vnode * a_dvp;
360		struct vnode ** a_vpp;
361		struct componentname * a_cnp;
362	} */ *ap;
363{
364	struct componentname *cnp = ap->a_cnp;
365	struct vnode *dvp = ap->a_dvp;
366	struct thread *td = cnp->cn_thread;
367	int flags = cnp->cn_flags;
368	struct vnode *vp, *ldvp, *lvp;
369	int error;
370
371	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
372	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
373		return (EROFS);
374	/*
375	 * Although it is possible to call null_bypass(), we'll do
376	 * a direct call to reduce overhead
377	 */
378	ldvp = NULLVPTOLOWERVP(dvp);
379	vp = lvp = NULL;
380	error = VOP_LOOKUP(ldvp, &lvp, cnp);
381	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
382	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
383	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
384		error = EROFS;
385
386	/*
387	 * Rely only on the PDIRUNLOCK flag which should be carefully
388	 * tracked by underlying filesystem.
389	 */
390	if ((cnp->cn_flags & PDIRUNLOCK) && dvp->v_vnlock != ldvp->v_vnlock)
391		VOP_UNLOCK(dvp, LK_THISLAYER, td);
392	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
393		if (ldvp == lvp) {
394			*ap->a_vpp = dvp;
395			VREF(dvp);
396			vrele(lvp);
397		} else {
398			error = null_nodeget(dvp->v_mount, lvp, &vp);
399			if (error) {
400				/* XXX Cleanup needed... */
401				panic("null_nodeget failed");
402			}
403			*ap->a_vpp = vp;
404		}
405	}
406	return (error);
407}
408
409/*
410 * Setattr call. Disallow write attempts if the layer is mounted read-only.
411 */
412static int
413null_setattr(ap)
414	struct vop_setattr_args /* {
415		struct vnodeop_desc *a_desc;
416		struct vnode *a_vp;
417		struct vattr *a_vap;
418		struct ucred *a_cred;
419		struct thread *a_td;
420	} */ *ap;
421{
422	struct vnode *vp = ap->a_vp;
423	struct vattr *vap = ap->a_vap;
424
425  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
426	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
427	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
428	    (vp->v_mount->mnt_flag & MNT_RDONLY))
429		return (EROFS);
430	if (vap->va_size != VNOVAL) {
431 		switch (vp->v_type) {
432 		case VDIR:
433 			return (EISDIR);
434 		case VCHR:
435 		case VBLK:
436 		case VSOCK:
437 		case VFIFO:
438			if (vap->va_flags != VNOVAL)
439				return (EOPNOTSUPP);
440			return (0);
441		case VREG:
442		case VLNK:
443 		default:
444			/*
445			 * Disallow write attempts if the filesystem is
446			 * mounted read-only.
447			 */
448			if (vp->v_mount->mnt_flag & MNT_RDONLY)
449				return (EROFS);
450		}
451	}
452
453	return (null_bypass((struct vop_generic_args *)ap));
454}
455
456/*
457 *  We handle getattr only to change the fsid.
458 */
459static int
460null_getattr(ap)
461	struct vop_getattr_args /* {
462		struct vnode *a_vp;
463		struct vattr *a_vap;
464		struct ucred *a_cred;
465		struct thread *a_td;
466	} */ *ap;
467{
468	int error;
469
470	if ((error = null_bypass((struct vop_generic_args *)ap)) != 0)
471		return (error);
472
473	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
474	return (0);
475}
476
477/*
478 * Handle to disallow write access if mounted read-only.
479 */
480static int
481null_access(ap)
482	struct vop_access_args /* {
483		struct vnode *a_vp;
484		int  a_mode;
485		struct ucred *a_cred;
486		struct thread *a_td;
487	} */ *ap;
488{
489	struct vnode *vp = ap->a_vp;
490	mode_t mode = ap->a_mode;
491
492	/*
493	 * Disallow write attempts on read-only layers;
494	 * unless the file is a socket, fifo, or a block or
495	 * character device resident on the filesystem.
496	 */
497	if (mode & VWRITE) {
498		switch (vp->v_type) {
499		case VDIR:
500		case VLNK:
501		case VREG:
502			if (vp->v_mount->mnt_flag & MNT_RDONLY)
503				return (EROFS);
504			break;
505		default:
506			break;
507		}
508	}
509	return (null_bypass((struct vop_generic_args *)ap));
510}
511
512/*
513 * We handle this to eliminate null FS to lower FS
514 * file moving. Don't know why we don't allow this,
515 * possibly we should.
516 */
517static int
518null_rename(ap)
519	struct vop_rename_args /* {
520		struct vnode *a_fdvp;
521		struct vnode *a_fvp;
522		struct componentname *a_fcnp;
523		struct vnode *a_tdvp;
524		struct vnode *a_tvp;
525		struct componentname *a_tcnp;
526	} */ *ap;
527{
528	struct vnode *tdvp = ap->a_tdvp;
529	struct vnode *fvp = ap->a_fvp;
530	struct vnode *fdvp = ap->a_fdvp;
531	struct vnode *tvp = ap->a_tvp;
532
533	/* Check for cross-device rename. */
534	if ((fvp->v_mount != tdvp->v_mount) ||
535	    (tvp && (fvp->v_mount != tvp->v_mount))) {
536		if (tdvp == tvp)
537			vrele(tdvp);
538		else
539			vput(tdvp);
540		if (tvp)
541			vput(tvp);
542		vrele(fdvp);
543		vrele(fvp);
544		return (EXDEV);
545	}
546
547	return (null_bypass((struct vop_generic_args *)ap));
548}
549
550/*
551 * We need to process our own vnode lock and then clear the
552 * interlock flag as it applies only to our vnode, not the
553 * vnodes below us on the stack.
554 */
555static int
556null_lock(ap)
557	struct vop_lock_args /* {
558		struct vnode *a_vp;
559		int a_flags;
560		struct thread *a_td;
561	} */ *ap;
562{
563	struct vnode *vp = ap->a_vp;
564	int flags = ap->a_flags;
565	struct thread *td = ap->a_td;
566	struct vnode *lvp;
567	int error;
568	struct null_node *nn;
569
570	if (flags & LK_THISLAYER) {
571		if (vp->v_vnlock != NULL) {
572			/* lock is shared across layers */
573			if (flags & LK_INTERLOCK)
574				mtx_unlock(&vp->v_interlock);
575			return 0;
576		}
577		error = lockmgr(&vp->v_lock, flags & ~LK_THISLAYER,
578		    &vp->v_interlock, td);
579		return (error);
580	}
581
582	if (vp->v_vnlock != NULL) {
583		/*
584		 * The lower level has exported a struct lock to us. Use
585		 * it so that all vnodes in the stack lock and unlock
586		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
587		 * decommissions the lock - just because our vnode is
588		 * going away doesn't mean the struct lock below us is.
589		 * LK_EXCLUSIVE is fine.
590		 */
591		if ((flags & LK_INTERLOCK) == 0) {
592			VI_LOCK(vp);
593			flags |= LK_INTERLOCK;
594		}
595		nn = VTONULL(vp);
596		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
597			NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
598			/*
599			 * Emulate lock draining by waiting for all other
600			 * pending locks to complete.  Afterwards the
601			 * lockmgr call might block, but no other threads
602			 * will attempt to use this nullfs vnode due to the
603			 * VI_XLOCK flag.
604			 */
605			while (nn->null_pending_locks > 0) {
606				nn->null_drain_wakeup = 1;
607				msleep(&nn->null_pending_locks,
608				       VI_MTX(vp),
609				       PVFS,
610				       "nuldr", 0);
611			}
612			error = lockmgr(vp->v_vnlock,
613					(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
614					VI_MTX(vp), td);
615			return error;
616		}
617		nn->null_pending_locks++;
618		error = lockmgr(vp->v_vnlock, flags, &vp->v_interlock, td);
619		VI_LOCK(vp);
620		/*
621		 * If we're called from vrele then v_usecount can have been 0
622		 * and another process might have initiated a recycle
623		 * operation.  When that happens, just back out.
624		 */
625		if (error == 0 && (vp->v_iflag & VI_XLOCK) != 0 &&
626		    td != vp->v_vxthread) {
627			lockmgr(vp->v_vnlock,
628				(flags & ~LK_TYPE_MASK) | LK_RELEASE,
629				VI_MTX(vp), td);
630			VI_LOCK(vp);
631			error = ENOENT;
632		}
633		nn->null_pending_locks--;
634		/*
635		 * Wakeup the process draining the vnode after all
636		 * pending lock attempts has been failed.
637		 */
638		if (nn->null_pending_locks == 0 &&
639		    nn->null_drain_wakeup != 0) {
640			nn->null_drain_wakeup = 0;
641			wakeup(&nn->null_pending_locks);
642		}
643		if (error == ENOENT && (vp->v_iflag & VI_XLOCK) != 0 &&
644		    vp->v_vxthread != curthread) {
645			vp->v_iflag |= VI_XWANT;
646			msleep(vp, VI_MTX(vp), PINOD, "nulbo", 0);
647		}
648		VI_UNLOCK(vp);
649		return error;
650	} else {
651		/*
652		 * To prevent race conditions involving doing a lookup
653		 * on "..", we have to lock the lower node, then lock our
654		 * node. Most of the time it won't matter that we lock our
655		 * node (as any locking would need the lower one locked
656		 * first). But we can LK_DRAIN the upper lock as a step
657		 * towards decomissioning it.
658		 */
659		lvp = NULLVPTOLOWERVP(vp);
660		if (lvp == NULL)
661			return (lockmgr(&vp->v_lock, flags, &vp->v_interlock, td));
662		if (flags & LK_INTERLOCK) {
663			mtx_unlock(&vp->v_interlock);
664			flags &= ~LK_INTERLOCK;
665		}
666		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
667			error = VOP_LOCK(lvp,
668				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, td);
669		} else
670			error = VOP_LOCK(lvp, flags, td);
671		if (error)
672			return (error);
673		error = lockmgr(&vp->v_lock, flags, &vp->v_interlock, td);
674		if (error)
675			VOP_UNLOCK(lvp, 0, td);
676		return (error);
677	}
678}
679
680/*
681 * We need to process our own vnode unlock and then clear the
682 * interlock flag as it applies only to our vnode, not the
683 * vnodes below us on the stack.
684 */
685static int
686null_unlock(ap)
687	struct vop_unlock_args /* {
688		struct vnode *a_vp;
689		int a_flags;
690		struct thread *a_td;
691	} */ *ap;
692{
693	struct vnode *vp = ap->a_vp;
694	int flags = ap->a_flags;
695	struct thread *td = ap->a_td;
696	struct vnode *lvp;
697
698	if (vp->v_vnlock != NULL) {
699		if (flags & LK_THISLAYER)
700			return 0;	/* the lock is shared across layers */
701		flags &= ~LK_THISLAYER;
702		return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
703			&vp->v_interlock, td));
704	}
705	lvp = NULLVPTOLOWERVP(vp);
706	if (lvp == NULL)
707		return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
708	if ((flags & LK_THISLAYER) == 0) {
709		if (flags & LK_INTERLOCK) {
710			mtx_unlock(&vp->v_interlock);
711			flags &= ~LK_INTERLOCK;
712		}
713		VOP_UNLOCK(lvp, flags & ~LK_INTERLOCK, td);
714	} else
715		flags &= ~LK_THISLAYER;
716	return (lockmgr(&vp->v_lock, flags | LK_RELEASE, &vp->v_interlock, td));
717}
718
719static int
720null_islocked(ap)
721	struct vop_islocked_args /* {
722		struct vnode *a_vp;
723		struct thread *a_td;
724	} */ *ap;
725{
726	struct vnode *vp = ap->a_vp;
727	struct thread *td = ap->a_td;
728
729	if (vp->v_vnlock != NULL)
730		return (lockstatus(vp->v_vnlock, td));
731	return (lockstatus(&vp->v_lock, td));
732}
733
734/*
735 * There is no way to tell that someone issued remove/rmdir operation
736 * on the underlying filesystem. For now we just have to release lowevrp
737 * as soon as possible.
738 *
739 * Note, we can't release any resources nor remove vnode from hash before
740 * appropriate VXLOCK stuff is is done because other process can find this
741 * vnode in hash during inactivation and may be sitting in vget() and waiting
742 * for null_inactive to unlock vnode. Thus we will do all those in VOP_RECLAIM.
743 */
744static int
745null_inactive(ap)
746	struct vop_inactive_args /* {
747		struct vnode *a_vp;
748		struct thread *a_td;
749	} */ *ap;
750{
751	struct vnode *vp = ap->a_vp;
752	struct thread *td = ap->a_td;
753
754	VOP_UNLOCK(vp, 0, td);
755
756	/*
757	 * If this is the last reference, then free up the vnode
758	 * so as not to tie up the lower vnodes.
759	 */
760	vrecycle(vp, NULL, td);
761
762	return (0);
763}
764
765/*
766 * Now, the VXLOCK is in force and we're free to destroy the null vnode.
767 */
768static int
769null_reclaim(ap)
770	struct vop_reclaim_args /* {
771		struct vnode *a_vp;
772		struct thread *a_td;
773	} */ *ap;
774{
775	struct vnode *vp = ap->a_vp;
776	struct null_node *xp = VTONULL(vp);
777	struct vnode *lowervp = xp->null_lowervp;
778
779	if (lowervp) {
780		null_hashrem(xp);
781
782		vrele(lowervp);
783		vrele(lowervp);
784	}
785
786	vp->v_data = NULL;
787	vp->v_vnlock = &vp->v_lock;
788	FREE(xp, M_NULLFSNODE);
789
790	return (0);
791}
792
793static int
794null_print(ap)
795	struct vop_print_args /* {
796		struct vnode *a_vp;
797	} */ *ap;
798{
799	register struct vnode *vp = ap->a_vp;
800	printf("\tvp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
801	return (0);
802}
803
804/*
805 * Let an underlying filesystem do the work
806 */
807static int
808null_createvobject(ap)
809	struct vop_createvobject_args /* {
810		struct vnode *vp;
811		struct ucred *cred;
812		struct thread *td;
813	} */ *ap;
814{
815	struct vnode *vp = ap->a_vp;
816	struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
817	int error;
818
819	if (vp->v_type == VNON || lowervp == NULL)
820		return 0;
821	error = VOP_CREATEVOBJECT(lowervp, ap->a_cred, ap->a_td);
822	if (error)
823		return (error);
824	vp->v_vflag |= VV_OBJBUF;
825	return (0);
826}
827
828/*
829 * We have nothing to destroy and this operation shouldn't be bypassed.
830 */
831static int
832null_destroyvobject(ap)
833	struct vop_destroyvobject_args /* {
834		struct vnode *vp;
835	} */ *ap;
836{
837	struct vnode *vp = ap->a_vp;
838
839	vp->v_vflag &= ~VV_OBJBUF;
840	return (0);
841}
842
843static int
844null_getvobject(ap)
845	struct vop_getvobject_args /* {
846		struct vnode *vp;
847		struct vm_object **objpp;
848	} */ *ap;
849{
850	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
851
852	if (lvp == NULL)
853		return EINVAL;
854	return (VOP_GETVOBJECT(lvp, ap->a_objpp));
855}
856
857/*
858 * Global vfs data structures
859 */
860struct vop_vector null_vnodeops = {
861	.vop_bypass =		null_bypass,
862
863	.vop_access =		null_access,
864	.vop_bmap =		VOP_EOPNOTSUPP,
865	.vop_createvobject =	null_createvobject,
866	.vop_destroyvobject =	null_destroyvobject,
867	.vop_getattr =		null_getattr,
868	.vop_getvobject =	null_getvobject,
869	.vop_getwritemount =	vop_stdgetwritemount,
870	.vop_inactive =		null_inactive,
871	.vop_islocked =		null_islocked,
872	.vop_lock =		null_lock,
873	.vop_lookup =		null_lookup,
874	.vop_print =		null_print,
875	.vop_reclaim =		null_reclaim,
876	.vop_rename =		null_rename,
877	.vop_setattr =		null_setattr,
878	.vop_strategy =		VOP_EOPNOTSUPP,
879	.vop_unlock =		null_unlock,
880};
881