if_sis.c revision 195049
1/*-
2 * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
3 * Copyright (c) 1997, 1998, 1999
4 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/dev/sis/if_sis.c 195049 2009-06-26 11:45:06Z rwatson $");
36
37/*
38 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
39 * available from http://www.sis.com.tw.
40 *
41 * This driver also supports the NatSemi DP83815. Datasheets are
42 * available from http://www.national.com.
43 *
44 * Written by Bill Paul <wpaul@ee.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48/*
49 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50 * simple TX and RX descriptors of 3 longwords in size. The receiver
51 * has a single perfect filter entry for the station address and a
52 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53 * transceiver while the 7016 requires an external transceiver chip.
54 * Both chips offer the standard bit-bang MII interface as well as
55 * an enchanced PHY interface which simplifies accessing MII registers.
56 *
57 * The only downside to this chipset is that RX descriptors must be
58 * longword aligned.
59 */
60
61#ifdef HAVE_KERNEL_OPTION_HEADERS
62#include "opt_device_polling.h"
63#endif
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/sockio.h>
68#include <sys/mbuf.h>
69#include <sys/malloc.h>
70#include <sys/kernel.h>
71#include <sys/module.h>
72#include <sys/socket.h>
73
74#include <net/if.h>
75#include <net/if_arp.h>
76#include <net/ethernet.h>
77#include <net/if_dl.h>
78#include <net/if_media.h>
79#include <net/if_types.h>
80#include <net/if_vlan_var.h>
81
82#include <net/bpf.h>
83
84#include <machine/bus.h>
85#include <machine/resource.h>
86#include <sys/bus.h>
87#include <sys/rman.h>
88
89#include <dev/mii/mii.h>
90#include <dev/mii/miivar.h>
91
92#include <dev/pci/pcireg.h>
93#include <dev/pci/pcivar.h>
94
95#define SIS_USEIOSPACE
96
97#include <dev/sis/if_sisreg.h>
98
99MODULE_DEPEND(sis, pci, 1, 1, 1);
100MODULE_DEPEND(sis, ether, 1, 1, 1);
101MODULE_DEPEND(sis, miibus, 1, 1, 1);
102
103/* "device miibus" required.  See GENERIC if you get errors here. */
104#include "miibus_if.h"
105
106#define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
107#define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
108#define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
109
110/*
111 * register space access macros
112 */
113#define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
114
115#define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
116
117#define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
118
119/*
120 * Various supported device vendors/types and their names.
121 */
122static struct sis_type sis_devs[] = {
123	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
124	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
125	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
126	{ 0, 0, NULL }
127};
128
129static int sis_detach(device_t);
130static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
131static int sis_ifmedia_upd(struct ifnet *);
132static void sis_init(void *);
133static void sis_initl(struct sis_softc *);
134static void sis_intr(void *);
135static int sis_ioctl(struct ifnet *, u_long, caddr_t);
136static int sis_newbuf(struct sis_softc *, struct sis_desc *, struct mbuf *);
137static void sis_start(struct ifnet *);
138static void sis_startl(struct ifnet *);
139static void sis_stop(struct sis_softc *);
140static void sis_watchdog(struct sis_softc *);
141
142
143static struct resource_spec sis_res_spec[] = {
144#ifdef SIS_USEIOSPACE
145	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
146#else
147	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
148#endif
149	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
150	{ -1, 0 }
151};
152
153#define SIS_SETBIT(sc, reg, x)				\
154	CSR_WRITE_4(sc, reg,				\
155		CSR_READ_4(sc, reg) | (x))
156
157#define SIS_CLRBIT(sc, reg, x)				\
158	CSR_WRITE_4(sc, reg,				\
159		CSR_READ_4(sc, reg) & ~(x))
160
161#define SIO_SET(x)					\
162	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
163
164#define SIO_CLR(x)					\
165	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
166
167static void
168sis_dma_map_desc_next(void *arg, bus_dma_segment_t *segs, int nseg, int error)
169{
170	struct sis_desc	*r;
171
172	r = arg;
173	r->sis_next = segs->ds_addr;
174}
175
176static void
177sis_dma_map_desc_ptr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
178{
179	struct sis_desc	*r;
180
181	r = arg;
182	r->sis_ptr = segs->ds_addr;
183}
184
185static void
186sis_dma_map_ring(void *arg, bus_dma_segment_t *segs, int nseg, int error)
187{
188	u_int32_t *p;
189
190	p = arg;
191	*p = segs->ds_addr;
192}
193
194/*
195 * Routine to reverse the bits in a word. Stolen almost
196 * verbatim from /usr/games/fortune.
197 */
198static uint16_t
199sis_reverse(uint16_t n)
200{
201	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
202	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
203	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
204	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
205
206	return(n);
207}
208
209static void
210sis_delay(struct sis_softc *sc)
211{
212	int			idx;
213
214	for (idx = (300 / 33) + 1; idx > 0; idx--)
215		CSR_READ_4(sc, SIS_CSR);
216}
217
218static void
219sis_eeprom_idle(struct sis_softc *sc)
220{
221	int		i;
222
223	SIO_SET(SIS_EECTL_CSEL);
224	sis_delay(sc);
225	SIO_SET(SIS_EECTL_CLK);
226	sis_delay(sc);
227
228	for (i = 0; i < 25; i++) {
229		SIO_CLR(SIS_EECTL_CLK);
230		sis_delay(sc);
231		SIO_SET(SIS_EECTL_CLK);
232		sis_delay(sc);
233	}
234
235	SIO_CLR(SIS_EECTL_CLK);
236	sis_delay(sc);
237	SIO_CLR(SIS_EECTL_CSEL);
238	sis_delay(sc);
239	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
240}
241
242/*
243 * Send a read command and address to the EEPROM, check for ACK.
244 */
245static void
246sis_eeprom_putbyte(struct sis_softc *sc, int addr)
247{
248	int		d, i;
249
250	d = addr | SIS_EECMD_READ;
251
252	/*
253	 * Feed in each bit and stobe the clock.
254	 */
255	for (i = 0x400; i; i >>= 1) {
256		if (d & i) {
257			SIO_SET(SIS_EECTL_DIN);
258		} else {
259			SIO_CLR(SIS_EECTL_DIN);
260		}
261		sis_delay(sc);
262		SIO_SET(SIS_EECTL_CLK);
263		sis_delay(sc);
264		SIO_CLR(SIS_EECTL_CLK);
265		sis_delay(sc);
266	}
267}
268
269/*
270 * Read a word of data stored in the EEPROM at address 'addr.'
271 */
272static void
273sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
274{
275	int		i;
276	u_int16_t		word = 0;
277
278	/* Force EEPROM to idle state. */
279	sis_eeprom_idle(sc);
280
281	/* Enter EEPROM access mode. */
282	sis_delay(sc);
283	SIO_CLR(SIS_EECTL_CLK);
284	sis_delay(sc);
285	SIO_SET(SIS_EECTL_CSEL);
286	sis_delay(sc);
287
288	/*
289	 * Send address of word we want to read.
290	 */
291	sis_eeprom_putbyte(sc, addr);
292
293	/*
294	 * Start reading bits from EEPROM.
295	 */
296	for (i = 0x8000; i; i >>= 1) {
297		SIO_SET(SIS_EECTL_CLK);
298		sis_delay(sc);
299		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
300			word |= i;
301		sis_delay(sc);
302		SIO_CLR(SIS_EECTL_CLK);
303		sis_delay(sc);
304	}
305
306	/* Turn off EEPROM access mode. */
307	sis_eeprom_idle(sc);
308
309	*dest = word;
310}
311
312/*
313 * Read a sequence of words from the EEPROM.
314 */
315static void
316sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
317{
318	int			i;
319	u_int16_t		word = 0, *ptr;
320
321	for (i = 0; i < cnt; i++) {
322		sis_eeprom_getword(sc, off + i, &word);
323		ptr = (u_int16_t *)(dest + (i * 2));
324		if (swap)
325			*ptr = ntohs(word);
326		else
327			*ptr = word;
328	}
329}
330
331#if defined(__i386__) || defined(__amd64__)
332static device_t
333sis_find_bridge(device_t dev)
334{
335	devclass_t		pci_devclass;
336	device_t		*pci_devices;
337	int			pci_count = 0;
338	device_t		*pci_children;
339	int			pci_childcount = 0;
340	device_t		*busp, *childp;
341	device_t		child = NULL;
342	int			i, j;
343
344	if ((pci_devclass = devclass_find("pci")) == NULL)
345		return(NULL);
346
347	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
348
349	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
350		if (device_get_children(*busp, &pci_children, &pci_childcount))
351			continue;
352		for (j = 0, childp = pci_children;
353		    j < pci_childcount; j++, childp++) {
354			if (pci_get_vendor(*childp) == SIS_VENDORID &&
355			    pci_get_device(*childp) == 0x0008) {
356				child = *childp;
357				free(pci_children, M_TEMP);
358				goto done;
359			}
360		}
361		free(pci_children, M_TEMP);
362	}
363
364done:
365	free(pci_devices, M_TEMP);
366	return(child);
367}
368
369static void
370sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
371{
372	device_t		bridge;
373	u_int8_t		reg;
374	int			i;
375	bus_space_tag_t		btag;
376
377	bridge = sis_find_bridge(dev);
378	if (bridge == NULL)
379		return;
380	reg = pci_read_config(bridge, 0x48, 1);
381	pci_write_config(bridge, 0x48, reg|0x40, 1);
382
383	/* XXX */
384#if defined(__i386__)
385	btag = I386_BUS_SPACE_IO;
386#elif defined(__amd64__)
387	btag = AMD64_BUS_SPACE_IO;
388#endif
389
390	for (i = 0; i < cnt; i++) {
391		bus_space_write_1(btag, 0x0, 0x70, i + off);
392		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
393	}
394
395	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
396	return;
397}
398
399static void
400sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
401{
402	u_int32_t		filtsave, csrsave;
403
404	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
405	csrsave = CSR_READ_4(sc, SIS_CSR);
406
407	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
408	CSR_WRITE_4(sc, SIS_CSR, 0);
409
410	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
411
412	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
413	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
414	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
415	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
416	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
417	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
418
419	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
420	CSR_WRITE_4(sc, SIS_CSR, csrsave);
421	return;
422}
423#endif
424
425/*
426 * Sync the PHYs by setting data bit and strobing the clock 32 times.
427 */
428static void
429sis_mii_sync(struct sis_softc *sc)
430{
431	int		i;
432
433 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
434
435 	for (i = 0; i < 32; i++) {
436 		SIO_SET(SIS_MII_CLK);
437 		DELAY(1);
438 		SIO_CLR(SIS_MII_CLK);
439 		DELAY(1);
440 	}
441}
442
443/*
444 * Clock a series of bits through the MII.
445 */
446static void
447sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
448{
449	int			i;
450
451	SIO_CLR(SIS_MII_CLK);
452
453	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
454		if (bits & i) {
455			SIO_SET(SIS_MII_DATA);
456		} else {
457			SIO_CLR(SIS_MII_DATA);
458		}
459		DELAY(1);
460		SIO_CLR(SIS_MII_CLK);
461		DELAY(1);
462		SIO_SET(SIS_MII_CLK);
463	}
464}
465
466/*
467 * Read an PHY register through the MII.
468 */
469static int
470sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
471{
472	int			i, ack;
473
474	/*
475	 * Set up frame for RX.
476	 */
477	frame->mii_stdelim = SIS_MII_STARTDELIM;
478	frame->mii_opcode = SIS_MII_READOP;
479	frame->mii_turnaround = 0;
480	frame->mii_data = 0;
481
482	/*
483 	 * Turn on data xmit.
484	 */
485	SIO_SET(SIS_MII_DIR);
486
487	sis_mii_sync(sc);
488
489	/*
490	 * Send command/address info.
491	 */
492	sis_mii_send(sc, frame->mii_stdelim, 2);
493	sis_mii_send(sc, frame->mii_opcode, 2);
494	sis_mii_send(sc, frame->mii_phyaddr, 5);
495	sis_mii_send(sc, frame->mii_regaddr, 5);
496
497	/* Idle bit */
498	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
499	DELAY(1);
500	SIO_SET(SIS_MII_CLK);
501	DELAY(1);
502
503	/* Turn off xmit. */
504	SIO_CLR(SIS_MII_DIR);
505
506	/* Check for ack */
507	SIO_CLR(SIS_MII_CLK);
508	DELAY(1);
509	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
510	SIO_SET(SIS_MII_CLK);
511	DELAY(1);
512
513	/*
514	 * Now try reading data bits. If the ack failed, we still
515	 * need to clock through 16 cycles to keep the PHY(s) in sync.
516	 */
517	if (ack) {
518		for(i = 0; i < 16; i++) {
519			SIO_CLR(SIS_MII_CLK);
520			DELAY(1);
521			SIO_SET(SIS_MII_CLK);
522			DELAY(1);
523		}
524		goto fail;
525	}
526
527	for (i = 0x8000; i; i >>= 1) {
528		SIO_CLR(SIS_MII_CLK);
529		DELAY(1);
530		if (!ack) {
531			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
532				frame->mii_data |= i;
533			DELAY(1);
534		}
535		SIO_SET(SIS_MII_CLK);
536		DELAY(1);
537	}
538
539fail:
540
541	SIO_CLR(SIS_MII_CLK);
542	DELAY(1);
543	SIO_SET(SIS_MII_CLK);
544	DELAY(1);
545
546	if (ack)
547		return(1);
548	return(0);
549}
550
551/*
552 * Write to a PHY register through the MII.
553 */
554static int
555sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
556{
557
558 	/*
559 	 * Set up frame for TX.
560 	 */
561
562 	frame->mii_stdelim = SIS_MII_STARTDELIM;
563 	frame->mii_opcode = SIS_MII_WRITEOP;
564 	frame->mii_turnaround = SIS_MII_TURNAROUND;
565
566 	/*
567  	 * Turn on data output.
568 	 */
569 	SIO_SET(SIS_MII_DIR);
570
571 	sis_mii_sync(sc);
572
573 	sis_mii_send(sc, frame->mii_stdelim, 2);
574 	sis_mii_send(sc, frame->mii_opcode, 2);
575 	sis_mii_send(sc, frame->mii_phyaddr, 5);
576 	sis_mii_send(sc, frame->mii_regaddr, 5);
577 	sis_mii_send(sc, frame->mii_turnaround, 2);
578 	sis_mii_send(sc, frame->mii_data, 16);
579
580 	/* Idle bit. */
581 	SIO_SET(SIS_MII_CLK);
582 	DELAY(1);
583 	SIO_CLR(SIS_MII_CLK);
584 	DELAY(1);
585
586 	/*
587 	 * Turn off xmit.
588 	 */
589 	SIO_CLR(SIS_MII_DIR);
590
591 	return(0);
592}
593
594static int
595sis_miibus_readreg(device_t dev, int phy, int reg)
596{
597	struct sis_softc	*sc;
598	struct sis_mii_frame    frame;
599
600	sc = device_get_softc(dev);
601
602	if (sc->sis_type == SIS_TYPE_83815) {
603		if (phy != 0)
604			return(0);
605		/*
606		 * The NatSemi chip can take a while after
607		 * a reset to come ready, during which the BMSR
608		 * returns a value of 0. This is *never* supposed
609		 * to happen: some of the BMSR bits are meant to
610		 * be hardwired in the on position, and this can
611		 * confuse the miibus code a bit during the probe
612		 * and attach phase. So we make an effort to check
613		 * for this condition and wait for it to clear.
614		 */
615		if (!CSR_READ_4(sc, NS_BMSR))
616			DELAY(1000);
617		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
618	}
619
620	/*
621	 * Chipsets < SIS_635 seem not to be able to read/write
622	 * through mdio. Use the enhanced PHY access register
623	 * again for them.
624	 */
625	if (sc->sis_type == SIS_TYPE_900 &&
626	    sc->sis_rev < SIS_REV_635) {
627		int i, val = 0;
628
629		if (phy != 0)
630			return(0);
631
632		CSR_WRITE_4(sc, SIS_PHYCTL,
633		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
634		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
635
636		for (i = 0; i < SIS_TIMEOUT; i++) {
637			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
638				break;
639		}
640
641		if (i == SIS_TIMEOUT) {
642			device_printf(sc->sis_dev, "PHY failed to come ready\n");
643			return(0);
644		}
645
646		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
647
648		if (val == 0xFFFF)
649			return(0);
650
651		return(val);
652	} else {
653		bzero((char *)&frame, sizeof(frame));
654
655		frame.mii_phyaddr = phy;
656		frame.mii_regaddr = reg;
657		sis_mii_readreg(sc, &frame);
658
659		return(frame.mii_data);
660	}
661}
662
663static int
664sis_miibus_writereg(device_t dev, int phy, int reg, int data)
665{
666	struct sis_softc	*sc;
667	struct sis_mii_frame	frame;
668
669	sc = device_get_softc(dev);
670
671	if (sc->sis_type == SIS_TYPE_83815) {
672		if (phy != 0)
673			return(0);
674		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
675		return(0);
676	}
677
678	/*
679	 * Chipsets < SIS_635 seem not to be able to read/write
680	 * through mdio. Use the enhanced PHY access register
681	 * again for them.
682	 */
683	if (sc->sis_type == SIS_TYPE_900 &&
684	    sc->sis_rev < SIS_REV_635) {
685		int i;
686
687		if (phy != 0)
688			return(0);
689
690		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
691		    (reg << 6) | SIS_PHYOP_WRITE);
692		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
693
694		for (i = 0; i < SIS_TIMEOUT; i++) {
695			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
696				break;
697		}
698
699		if (i == SIS_TIMEOUT)
700			device_printf(sc->sis_dev, "PHY failed to come ready\n");
701	} else {
702		bzero((char *)&frame, sizeof(frame));
703
704		frame.mii_phyaddr = phy;
705		frame.mii_regaddr = reg;
706		frame.mii_data = data;
707		sis_mii_writereg(sc, &frame);
708	}
709	return(0);
710}
711
712static void
713sis_miibus_statchg(device_t dev)
714{
715	struct sis_softc	*sc;
716
717	sc = device_get_softc(dev);
718	SIS_LOCK_ASSERT(sc);
719	sis_initl(sc);
720}
721
722static uint32_t
723sis_mchash(struct sis_softc *sc, const uint8_t *addr)
724{
725	uint32_t		crc;
726
727	/* Compute CRC for the address value. */
728	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
729
730	/*
731	 * return the filter bit position
732	 *
733	 * The NatSemi chip has a 512-bit filter, which is
734	 * different than the SiS, so we special-case it.
735	 */
736	if (sc->sis_type == SIS_TYPE_83815)
737		return (crc >> 23);
738	else if (sc->sis_rev >= SIS_REV_635 ||
739	    sc->sis_rev == SIS_REV_900B)
740		return (crc >> 24);
741	else
742		return (crc >> 25);
743}
744
745static void
746sis_setmulti_ns(struct sis_softc *sc)
747{
748	struct ifnet		*ifp;
749	struct ifmultiaddr	*ifma;
750	u_int32_t		h = 0, i, filtsave;
751	int			bit, index;
752
753	ifp = sc->sis_ifp;
754
755	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
756		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
757		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
758		return;
759	}
760
761	/*
762	 * We have to explicitly enable the multicast hash table
763	 * on the NatSemi chip if we want to use it, which we do.
764	 */
765	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
766	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
767
768	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
769
770	/* first, zot all the existing hash bits */
771	for (i = 0; i < 32; i++) {
772		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
773		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
774	}
775
776	if_maddr_rlock(ifp);
777	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
778		if (ifma->ifma_addr->sa_family != AF_LINK)
779			continue;
780		h = sis_mchash(sc,
781		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
782		index = h >> 3;
783		bit = h & 0x1F;
784		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
785		if (bit > 0xF)
786			bit -= 0x10;
787		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
788	}
789	if_maddr_runlock(ifp);
790
791	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
792
793	return;
794}
795
796static void
797sis_setmulti_sis(struct sis_softc *sc)
798{
799	struct ifnet		*ifp;
800	struct ifmultiaddr	*ifma;
801	u_int32_t		h, i, n, ctl;
802	u_int16_t		hashes[16];
803
804	ifp = sc->sis_ifp;
805
806	/* hash table size */
807	if (sc->sis_rev >= SIS_REV_635 ||
808	    sc->sis_rev == SIS_REV_900B)
809		n = 16;
810	else
811		n = 8;
812
813	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
814
815	if (ifp->if_flags & IFF_BROADCAST)
816		ctl |= SIS_RXFILTCTL_BROAD;
817
818	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
819		ctl |= SIS_RXFILTCTL_ALLMULTI;
820		if (ifp->if_flags & IFF_PROMISC)
821			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
822		for (i = 0; i < n; i++)
823			hashes[i] = ~0;
824	} else {
825		for (i = 0; i < n; i++)
826			hashes[i] = 0;
827		i = 0;
828		if_maddr_rlock(ifp);
829		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
830			if (ifma->ifma_addr->sa_family != AF_LINK)
831			continue;
832			h = sis_mchash(sc,
833			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
834			hashes[h >> 4] |= 1 << (h & 0xf);
835			i++;
836		}
837		if_maddr_runlock(ifp);
838		if (i > n) {
839			ctl |= SIS_RXFILTCTL_ALLMULTI;
840			for (i = 0; i < n; i++)
841				hashes[i] = ~0;
842		}
843	}
844
845	for (i = 0; i < n; i++) {
846		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
847		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
848	}
849
850	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
851}
852
853static void
854sis_reset(struct sis_softc *sc)
855{
856	int		i;
857
858	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
859
860	for (i = 0; i < SIS_TIMEOUT; i++) {
861		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
862			break;
863	}
864
865	if (i == SIS_TIMEOUT)
866		device_printf(sc->sis_dev, "reset never completed\n");
867
868	/* Wait a little while for the chip to get its brains in order. */
869	DELAY(1000);
870
871	/*
872	 * If this is a NetSemi chip, make sure to clear
873	 * PME mode.
874	 */
875	if (sc->sis_type == SIS_TYPE_83815) {
876		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
877		CSR_WRITE_4(sc, NS_CLKRUN, 0);
878	}
879
880        return;
881}
882
883/*
884 * Probe for an SiS chip. Check the PCI vendor and device
885 * IDs against our list and return a device name if we find a match.
886 */
887static int
888sis_probe(device_t dev)
889{
890	struct sis_type		*t;
891
892	t = sis_devs;
893
894	while(t->sis_name != NULL) {
895		if ((pci_get_vendor(dev) == t->sis_vid) &&
896		    (pci_get_device(dev) == t->sis_did)) {
897			device_set_desc(dev, t->sis_name);
898			return (BUS_PROBE_DEFAULT);
899		}
900		t++;
901	}
902
903	return(ENXIO);
904}
905
906/*
907 * Attach the interface. Allocate softc structures, do ifmedia
908 * setup and ethernet/BPF attach.
909 */
910static int
911sis_attach(device_t dev)
912{
913	u_char			eaddr[ETHER_ADDR_LEN];
914	struct sis_softc	*sc;
915	struct ifnet		*ifp;
916	int			error = 0, waittime = 0;
917
918	waittime = 0;
919	sc = device_get_softc(dev);
920
921	sc->sis_dev = dev;
922
923	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
924	    MTX_DEF);
925	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
926
927	if (pci_get_device(dev) == SIS_DEVICEID_900)
928		sc->sis_type = SIS_TYPE_900;
929	if (pci_get_device(dev) == SIS_DEVICEID_7016)
930		sc->sis_type = SIS_TYPE_7016;
931	if (pci_get_vendor(dev) == NS_VENDORID)
932		sc->sis_type = SIS_TYPE_83815;
933
934	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
935	/*
936	 * Map control/status registers.
937	 */
938	pci_enable_busmaster(dev);
939
940	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
941	if (error) {
942		device_printf(dev, "couldn't allocate resources\n");
943		goto fail;
944	}
945
946	/* Reset the adapter. */
947	sis_reset(sc);
948
949	if (sc->sis_type == SIS_TYPE_900 &&
950            (sc->sis_rev == SIS_REV_635 ||
951            sc->sis_rev == SIS_REV_900B)) {
952		SIO_SET(SIS_CFG_RND_CNT);
953		SIO_SET(SIS_CFG_PERR_DETECT);
954	}
955
956	/*
957	 * Get station address from the EEPROM.
958	 */
959	switch (pci_get_vendor(dev)) {
960	case NS_VENDORID:
961		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
962
963		/* We can't update the device description, so spew */
964		if (sc->sis_srr == NS_SRR_15C)
965			device_printf(dev, "Silicon Revision: DP83815C\n");
966		else if (sc->sis_srr == NS_SRR_15D)
967			device_printf(dev, "Silicon Revision: DP83815D\n");
968		else if (sc->sis_srr == NS_SRR_16A)
969			device_printf(dev, "Silicon Revision: DP83816A\n");
970		else
971			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
972
973		/*
974		 * Reading the MAC address out of the EEPROM on
975		 * the NatSemi chip takes a bit more work than
976		 * you'd expect. The address spans 4 16-bit words,
977		 * with the first word containing only a single bit.
978		 * You have to shift everything over one bit to
979		 * get it aligned properly. Also, the bits are
980		 * stored backwards (the LSB is really the MSB,
981		 * and so on) so you have to reverse them in order
982		 * to get the MAC address into the form we want.
983		 * Why? Who the hell knows.
984		 */
985		{
986			u_int16_t		tmp[4];
987
988			sis_read_eeprom(sc, (caddr_t)&tmp,
989			    NS_EE_NODEADDR, 4, 0);
990
991			/* Shift everything over one bit. */
992			tmp[3] = tmp[3] >> 1;
993			tmp[3] |= tmp[2] << 15;
994			tmp[2] = tmp[2] >> 1;
995			tmp[2] |= tmp[1] << 15;
996			tmp[1] = tmp[1] >> 1;
997			tmp[1] |= tmp[0] << 15;
998
999			/* Now reverse all the bits. */
1000			tmp[3] = sis_reverse(tmp[3]);
1001			tmp[2] = sis_reverse(tmp[2]);
1002			tmp[1] = sis_reverse(tmp[1]);
1003
1004			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1005		}
1006		break;
1007	case SIS_VENDORID:
1008	default:
1009#if defined(__i386__) || defined(__amd64__)
1010		/*
1011		 * If this is a SiS 630E chipset with an embedded
1012		 * SiS 900 controller, we have to read the MAC address
1013		 * from the APC CMOS RAM. Our method for doing this
1014		 * is very ugly since we have to reach out and grab
1015		 * ahold of hardware for which we cannot properly
1016		 * allocate resources. This code is only compiled on
1017		 * the i386 architecture since the SiS 630E chipset
1018		 * is for x86 motherboards only. Note that there are
1019		 * a lot of magic numbers in this hack. These are
1020		 * taken from SiS's Linux driver. I'd like to replace
1021		 * them with proper symbolic definitions, but that
1022		 * requires some datasheets that I don't have access
1023		 * to at the moment.
1024		 */
1025		if (sc->sis_rev == SIS_REV_630S ||
1026		    sc->sis_rev == SIS_REV_630E ||
1027		    sc->sis_rev == SIS_REV_630EA1)
1028			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1029
1030		else if (sc->sis_rev == SIS_REV_635 ||
1031			 sc->sis_rev == SIS_REV_630ET)
1032			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1033		else if (sc->sis_rev == SIS_REV_96x) {
1034			/* Allow to read EEPROM from LAN. It is shared
1035			 * between a 1394 controller and the NIC and each
1036			 * time we access it, we need to set SIS_EECMD_REQ.
1037			 */
1038			SIO_SET(SIS_EECMD_REQ);
1039			for (waittime = 0; waittime < SIS_TIMEOUT;
1040			    waittime++) {
1041				/* Force EEPROM to idle state. */
1042				sis_eeprom_idle(sc);
1043				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1044					sis_read_eeprom(sc, (caddr_t)&eaddr,
1045					    SIS_EE_NODEADDR, 3, 0);
1046					break;
1047				}
1048				DELAY(1);
1049			}
1050			/*
1051			 * Set SIS_EECTL_CLK to high, so a other master
1052			 * can operate on the i2c bus.
1053			 */
1054			SIO_SET(SIS_EECTL_CLK);
1055			/* Refuse EEPROM access by LAN */
1056			SIO_SET(SIS_EECMD_DONE);
1057		} else
1058#endif
1059			sis_read_eeprom(sc, (caddr_t)&eaddr,
1060			    SIS_EE_NODEADDR, 3, 0);
1061		break;
1062	}
1063
1064	/*
1065	 * Allocate the parent bus DMA tag appropriate for PCI.
1066	 */
1067#define SIS_NSEG_NEW 32
1068	 error = bus_dma_tag_create(NULL,	/* parent */
1069			1, 0,			/* alignment, boundary */
1070			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1071			BUS_SPACE_MAXADDR,	/* highaddr */
1072			NULL, NULL,		/* filter, filterarg */
1073			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1074			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1075			BUS_DMA_ALLOCNOW,	/* flags */
1076			NULL, NULL,		/* lockfunc, lockarg */
1077			&sc->sis_parent_tag);
1078	if (error)
1079		goto fail;
1080
1081	/*
1082	 * Now allocate a tag for the DMA descriptor lists and a chunk
1083	 * of DMA-able memory based on the tag.  Also obtain the physical
1084	 * addresses of the RX and TX ring, which we'll need later.
1085	 * All of our lists are allocated as a contiguous block
1086	 * of memory.
1087	 */
1088	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1089			1, 0,			/* alignment, boundary */
1090			BUS_SPACE_MAXADDR,	/* lowaddr */
1091			BUS_SPACE_MAXADDR,	/* highaddr */
1092			NULL, NULL,		/* filter, filterarg */
1093			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1094			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1095			0,			/* flags */
1096			busdma_lock_mutex,	/* lockfunc */
1097			&Giant,			/* lockarg */
1098			&sc->sis_rx_tag);
1099	if (error)
1100		goto fail;
1101
1102	error = bus_dmamem_alloc(sc->sis_rx_tag,
1103	    (void **)&sc->sis_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1104	    &sc->sis_rx_dmamap);
1105
1106	if (error) {
1107		device_printf(dev, "no memory for rx list buffers!\n");
1108		bus_dma_tag_destroy(sc->sis_rx_tag);
1109		sc->sis_rx_tag = NULL;
1110		goto fail;
1111	}
1112
1113	error = bus_dmamap_load(sc->sis_rx_tag,
1114	    sc->sis_rx_dmamap, &(sc->sis_rx_list[0]),
1115	    sizeof(struct sis_desc), sis_dma_map_ring,
1116	    &sc->sis_rx_paddr, 0);
1117
1118	if (error) {
1119		device_printf(dev, "cannot get address of the rx ring!\n");
1120		bus_dmamem_free(sc->sis_rx_tag,
1121		    sc->sis_rx_list, sc->sis_rx_dmamap);
1122		bus_dma_tag_destroy(sc->sis_rx_tag);
1123		sc->sis_rx_tag = NULL;
1124		goto fail;
1125	}
1126
1127	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1128			1, 0,			/* alignment, boundary */
1129			BUS_SPACE_MAXADDR,	/* lowaddr */
1130			BUS_SPACE_MAXADDR,	/* highaddr */
1131			NULL, NULL,		/* filter, filterarg */
1132			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1133			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1134			0,			/* flags */
1135			busdma_lock_mutex,	/* lockfunc */
1136			&Giant,			/* lockarg */
1137			&sc->sis_tx_tag);
1138	if (error)
1139		goto fail;
1140
1141	error = bus_dmamem_alloc(sc->sis_tx_tag,
1142	    (void **)&sc->sis_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1143	    &sc->sis_tx_dmamap);
1144
1145	if (error) {
1146		device_printf(dev, "no memory for tx list buffers!\n");
1147		bus_dma_tag_destroy(sc->sis_tx_tag);
1148		sc->sis_tx_tag = NULL;
1149		goto fail;
1150	}
1151
1152	error = bus_dmamap_load(sc->sis_tx_tag,
1153	    sc->sis_tx_dmamap, &(sc->sis_tx_list[0]),
1154	    sizeof(struct sis_desc), sis_dma_map_ring,
1155	    &sc->sis_tx_paddr, 0);
1156
1157	if (error) {
1158		device_printf(dev, "cannot get address of the tx ring!\n");
1159		bus_dmamem_free(sc->sis_tx_tag,
1160		    sc->sis_tx_list, sc->sis_tx_dmamap);
1161		bus_dma_tag_destroy(sc->sis_tx_tag);
1162		sc->sis_tx_tag = NULL;
1163		goto fail;
1164	}
1165
1166	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1167			1, 0,			/* alignment, boundary */
1168			BUS_SPACE_MAXADDR,	/* lowaddr */
1169			BUS_SPACE_MAXADDR,	/* highaddr */
1170			NULL, NULL,		/* filter, filterarg */
1171			MCLBYTES, 1,		/* maxsize,nsegments */
1172			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1173			0,			/* flags */
1174			busdma_lock_mutex,	/* lockfunc */
1175			&Giant,			/* lockarg */
1176			&sc->sis_tag);
1177	if (error)
1178		goto fail;
1179
1180	/*
1181	 * Obtain the physical addresses of the RX and TX
1182	 * rings which we'll need later in the init routine.
1183	 */
1184
1185	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1186	if (ifp == NULL) {
1187		device_printf(dev, "can not if_alloc()\n");
1188		error = ENOSPC;
1189		goto fail;
1190	}
1191	ifp->if_softc = sc;
1192	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1193	ifp->if_mtu = ETHERMTU;
1194	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1195	ifp->if_ioctl = sis_ioctl;
1196	ifp->if_start = sis_start;
1197	ifp->if_init = sis_init;
1198	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1199	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1200	IFQ_SET_READY(&ifp->if_snd);
1201
1202	/*
1203	 * Do MII setup.
1204	 */
1205	if (mii_phy_probe(dev, &sc->sis_miibus,
1206	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1207		device_printf(dev, "MII without any PHY!\n");
1208		error = ENXIO;
1209		goto fail;
1210	}
1211
1212	/*
1213	 * Call MI attach routine.
1214	 */
1215	ether_ifattach(ifp, eaddr);
1216
1217	/*
1218	 * Tell the upper layer(s) we support long frames.
1219	 */
1220	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1221	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1222	ifp->if_capenable = ifp->if_capabilities;
1223#ifdef DEVICE_POLLING
1224	ifp->if_capabilities |= IFCAP_POLLING;
1225#endif
1226
1227	/* Hook interrupt last to avoid having to lock softc */
1228	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1229	    NULL, sis_intr, sc, &sc->sis_intrhand);
1230
1231	if (error) {
1232		device_printf(dev, "couldn't set up irq\n");
1233		ether_ifdetach(ifp);
1234		goto fail;
1235	}
1236
1237fail:
1238	if (error)
1239		sis_detach(dev);
1240
1241	return(error);
1242}
1243
1244/*
1245 * Shutdown hardware and free up resources. This can be called any
1246 * time after the mutex has been initialized. It is called in both
1247 * the error case in attach and the normal detach case so it needs
1248 * to be careful about only freeing resources that have actually been
1249 * allocated.
1250 */
1251static int
1252sis_detach(device_t dev)
1253{
1254	struct sis_softc	*sc;
1255	struct ifnet		*ifp;
1256
1257	sc = device_get_softc(dev);
1258	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1259	ifp = sc->sis_ifp;
1260
1261#ifdef DEVICE_POLLING
1262	if (ifp->if_capenable & IFCAP_POLLING)
1263		ether_poll_deregister(ifp);
1264#endif
1265
1266	/* These should only be active if attach succeeded. */
1267	if (device_is_attached(dev)) {
1268		SIS_LOCK(sc);
1269		sis_reset(sc);
1270		sis_stop(sc);
1271		SIS_UNLOCK(sc);
1272		callout_drain(&sc->sis_stat_ch);
1273		ether_ifdetach(ifp);
1274	}
1275	if (sc->sis_miibus)
1276		device_delete_child(dev, sc->sis_miibus);
1277	bus_generic_detach(dev);
1278
1279	if (sc->sis_intrhand)
1280		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1281	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1282
1283	if (ifp)
1284		if_free(ifp);
1285
1286	if (sc->sis_rx_tag) {
1287		bus_dmamap_unload(sc->sis_rx_tag,
1288		    sc->sis_rx_dmamap);
1289		bus_dmamem_free(sc->sis_rx_tag,
1290		    sc->sis_rx_list, sc->sis_rx_dmamap);
1291		bus_dma_tag_destroy(sc->sis_rx_tag);
1292	}
1293	if (sc->sis_tx_tag) {
1294		bus_dmamap_unload(sc->sis_tx_tag,
1295		    sc->sis_tx_dmamap);
1296		bus_dmamem_free(sc->sis_tx_tag,
1297		    sc->sis_tx_list, sc->sis_tx_dmamap);
1298		bus_dma_tag_destroy(sc->sis_tx_tag);
1299	}
1300	if (sc->sis_parent_tag)
1301		bus_dma_tag_destroy(sc->sis_parent_tag);
1302	if (sc->sis_tag)
1303		bus_dma_tag_destroy(sc->sis_tag);
1304
1305	mtx_destroy(&sc->sis_mtx);
1306
1307	return(0);
1308}
1309
1310/*
1311 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1312 * we arrange the descriptors in a closed ring, so that the last descriptor
1313 * points back to the first.
1314 */
1315static int
1316sis_ring_init(struct sis_softc *sc)
1317{
1318	int i, error;
1319	struct sis_desc *dp;
1320
1321	dp = &sc->sis_tx_list[0];
1322	for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
1323		if (i == (SIS_TX_LIST_CNT - 1))
1324			dp->sis_nextdesc = &sc->sis_tx_list[0];
1325		else
1326			dp->sis_nextdesc = dp + 1;
1327		bus_dmamap_load(sc->sis_tx_tag,
1328		    sc->sis_tx_dmamap,
1329		    dp->sis_nextdesc, sizeof(struct sis_desc),
1330		    sis_dma_map_desc_next, dp, 0);
1331		dp->sis_mbuf = NULL;
1332		dp->sis_ptr = 0;
1333		dp->sis_ctl = 0;
1334	}
1335
1336	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1337
1338	bus_dmamap_sync(sc->sis_tx_tag,
1339	    sc->sis_tx_dmamap, BUS_DMASYNC_PREWRITE);
1340
1341	dp = &sc->sis_rx_list[0];
1342	for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
1343		error = sis_newbuf(sc, dp, NULL);
1344		if (error)
1345			return(error);
1346		if (i == (SIS_RX_LIST_CNT - 1))
1347			dp->sis_nextdesc = &sc->sis_rx_list[0];
1348		else
1349			dp->sis_nextdesc = dp + 1;
1350		bus_dmamap_load(sc->sis_rx_tag,
1351		    sc->sis_rx_dmamap,
1352		    dp->sis_nextdesc, sizeof(struct sis_desc),
1353		    sis_dma_map_desc_next, dp, 0);
1354		}
1355
1356	bus_dmamap_sync(sc->sis_rx_tag,
1357	    sc->sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1358
1359	sc->sis_rx_pdsc = &sc->sis_rx_list[0];
1360
1361	return(0);
1362}
1363
1364/*
1365 * Initialize an RX descriptor and attach an MBUF cluster.
1366 */
1367static int
1368sis_newbuf(struct sis_softc *sc, struct sis_desc *c, struct mbuf *m)
1369{
1370
1371	if (c == NULL)
1372		return(EINVAL);
1373
1374	if (m == NULL) {
1375		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1376		if (m == NULL)
1377			return(ENOBUFS);
1378	} else
1379		m->m_data = m->m_ext.ext_buf;
1380
1381	c->sis_mbuf = m;
1382	c->sis_ctl = SIS_RXLEN;
1383
1384	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1385	bus_dmamap_load(sc->sis_tag, c->sis_map,
1386	    mtod(m, void *), MCLBYTES,
1387	    sis_dma_map_desc_ptr, c, 0);
1388	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREREAD);
1389
1390	return(0);
1391}
1392
1393/*
1394 * A frame has been uploaded: pass the resulting mbuf chain up to
1395 * the higher level protocols.
1396 */
1397static int
1398sis_rxeof(struct sis_softc *sc)
1399{
1400	struct mbuf		*m, *m0;
1401	struct ifnet		*ifp;
1402	struct sis_desc		*cur_rx;
1403	int			total_len = 0, rx_npkts = 0;
1404	u_int32_t		rxstat;
1405
1406	SIS_LOCK_ASSERT(sc);
1407
1408	ifp = sc->sis_ifp;
1409
1410	for(cur_rx = sc->sis_rx_pdsc; SIS_OWNDESC(cur_rx);
1411	    cur_rx = cur_rx->sis_nextdesc) {
1412
1413#ifdef DEVICE_POLLING
1414		if (ifp->if_capenable & IFCAP_POLLING) {
1415			if (sc->rxcycles <= 0)
1416				break;
1417			sc->rxcycles--;
1418		}
1419#endif
1420		rxstat = cur_rx->sis_rxstat;
1421		bus_dmamap_sync(sc->sis_tag,
1422		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1423		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1424		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1425		m = cur_rx->sis_mbuf;
1426		cur_rx->sis_mbuf = NULL;
1427		total_len = SIS_RXBYTES(cur_rx);
1428
1429		/*
1430		 * If an error occurs, update stats, clear the
1431		 * status word and leave the mbuf cluster in place:
1432		 * it should simply get re-used next time this descriptor
1433	 	 * comes up in the ring.
1434		 */
1435		if ((ifp->if_capenable & IFCAP_VLAN_MTU) != 0 &&
1436		    total_len <= (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN -
1437		    ETHER_CRC_LEN))
1438			rxstat &= ~SIS_RXSTAT_GIANT;
1439		if (SIS_RXSTAT_ERROR(rxstat) != 0) {
1440			ifp->if_ierrors++;
1441			if (rxstat & SIS_RXSTAT_COLL)
1442				ifp->if_collisions++;
1443			sis_newbuf(sc, cur_rx, m);
1444			continue;
1445		}
1446
1447		/* No errors; receive the packet. */
1448#ifdef __NO_STRICT_ALIGNMENT
1449		/*
1450		 * On architectures without alignment problems we try to
1451		 * allocate a new buffer for the receive ring, and pass up
1452		 * the one where the packet is already, saving the expensive
1453		 * copy done in m_devget().
1454		 * If we are on an architecture with alignment problems, or
1455		 * if the allocation fails, then use m_devget and leave the
1456		 * existing buffer in the receive ring.
1457		 */
1458		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1459			m->m_pkthdr.len = m->m_len = total_len;
1460		else
1461#endif
1462		{
1463			m0 = m_devget(mtod(m, char *), total_len,
1464				ETHER_ALIGN, ifp, NULL);
1465			sis_newbuf(sc, cur_rx, m);
1466			if (m0 == NULL) {
1467				ifp->if_ierrors++;
1468				continue;
1469			}
1470			m = m0;
1471		}
1472
1473		ifp->if_ipackets++;
1474		m->m_pkthdr.rcvif = ifp;
1475
1476		SIS_UNLOCK(sc);
1477		(*ifp->if_input)(ifp, m);
1478		SIS_LOCK(sc);
1479		rx_npkts++;
1480	}
1481
1482	sc->sis_rx_pdsc = cur_rx;
1483	return (rx_npkts);
1484}
1485
1486static void
1487sis_rxeoc(struct sis_softc *sc)
1488{
1489
1490	SIS_LOCK_ASSERT(sc);
1491	sis_rxeof(sc);
1492	sis_initl(sc);
1493}
1494
1495/*
1496 * A frame was downloaded to the chip. It's safe for us to clean up
1497 * the list buffers.
1498 */
1499
1500static void
1501sis_txeof(struct sis_softc *sc)
1502{
1503	struct ifnet		*ifp;
1504	u_int32_t		idx;
1505
1506	SIS_LOCK_ASSERT(sc);
1507	ifp = sc->sis_ifp;
1508
1509	/*
1510	 * Go through our tx list and free mbufs for those
1511	 * frames that have been transmitted.
1512	 */
1513	for (idx = sc->sis_tx_cons; sc->sis_tx_cnt > 0;
1514	    sc->sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1515		struct sis_desc *cur_tx = &sc->sis_tx_list[idx];
1516
1517		if (SIS_OWNDESC(cur_tx))
1518			break;
1519
1520		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1521			continue;
1522
1523		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1524			ifp->if_oerrors++;
1525			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1526				ifp->if_collisions++;
1527			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1528				ifp->if_collisions++;
1529		}
1530
1531		ifp->if_collisions +=
1532		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1533
1534		ifp->if_opackets++;
1535		if (cur_tx->sis_mbuf != NULL) {
1536			m_freem(cur_tx->sis_mbuf);
1537			cur_tx->sis_mbuf = NULL;
1538			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1539			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1540		}
1541	}
1542
1543	if (idx != sc->sis_tx_cons) {
1544		/* we freed up some buffers */
1545		sc->sis_tx_cons = idx;
1546		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1547	}
1548
1549	sc->sis_watchdog_timer = (sc->sis_tx_cnt == 0) ? 0 : 5;
1550
1551	return;
1552}
1553
1554static void
1555sis_tick(void *xsc)
1556{
1557	struct sis_softc	*sc;
1558	struct mii_data		*mii;
1559	struct ifnet		*ifp;
1560
1561	sc = xsc;
1562	SIS_LOCK_ASSERT(sc);
1563	sc->in_tick = 1;
1564	ifp = sc->sis_ifp;
1565
1566	mii = device_get_softc(sc->sis_miibus);
1567	mii_tick(mii);
1568
1569	sis_watchdog(sc);
1570
1571	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1572	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1573		sc->sis_link++;
1574		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1575			sis_startl(ifp);
1576	}
1577
1578	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1579	sc->in_tick = 0;
1580}
1581
1582#ifdef DEVICE_POLLING
1583static poll_handler_t sis_poll;
1584
1585static int
1586sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1587{
1588	struct	sis_softc *sc = ifp->if_softc;
1589	int rx_npkts = 0;
1590
1591	SIS_LOCK(sc);
1592	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1593		SIS_UNLOCK(sc);
1594		return (rx_npkts);
1595	}
1596
1597	/*
1598	 * On the sis, reading the status register also clears it.
1599	 * So before returning to intr mode we must make sure that all
1600	 * possible pending sources of interrupts have been served.
1601	 * In practice this means run to completion the *eof routines,
1602	 * and then call the interrupt routine
1603	 */
1604	sc->rxcycles = count;
1605	rx_npkts = sis_rxeof(sc);
1606	sis_txeof(sc);
1607	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1608		sis_startl(ifp);
1609
1610	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1611		u_int32_t	status;
1612
1613		/* Reading the ISR register clears all interrupts. */
1614		status = CSR_READ_4(sc, SIS_ISR);
1615
1616		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1617			sis_rxeoc(sc);
1618
1619		if (status & (SIS_ISR_RX_IDLE))
1620			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1621
1622		if (status & SIS_ISR_SYSERR) {
1623			sis_reset(sc);
1624			sis_initl(sc);
1625		}
1626	}
1627
1628	SIS_UNLOCK(sc);
1629	return (rx_npkts);
1630}
1631#endif /* DEVICE_POLLING */
1632
1633static void
1634sis_intr(void *arg)
1635{
1636	struct sis_softc	*sc;
1637	struct ifnet		*ifp;
1638	u_int32_t		status;
1639
1640	sc = arg;
1641	ifp = sc->sis_ifp;
1642
1643	if (sc->sis_stopped)	/* Most likely shared interrupt */
1644		return;
1645
1646	SIS_LOCK(sc);
1647#ifdef DEVICE_POLLING
1648	if (ifp->if_capenable & IFCAP_POLLING) {
1649		SIS_UNLOCK(sc);
1650		return;
1651	}
1652#endif
1653
1654	/* Disable interrupts. */
1655	CSR_WRITE_4(sc, SIS_IER, 0);
1656
1657	for (;;) {
1658		SIS_LOCK_ASSERT(sc);
1659		/* Reading the ISR register clears all interrupts. */
1660		status = CSR_READ_4(sc, SIS_ISR);
1661
1662		if ((status & SIS_INTRS) == 0)
1663			break;
1664
1665		if (status &
1666		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1667		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1668			sis_txeof(sc);
1669
1670		if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK |
1671		    SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE))
1672			sis_rxeof(sc);
1673
1674		if (status & SIS_ISR_RX_OFLOW)
1675			sis_rxeoc(sc);
1676
1677		if (status & (SIS_ISR_RX_IDLE))
1678			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1679
1680		if (status & SIS_ISR_SYSERR) {
1681			sis_reset(sc);
1682			sis_initl(sc);
1683		}
1684	}
1685
1686	/* Re-enable interrupts. */
1687	CSR_WRITE_4(sc, SIS_IER, 1);
1688
1689	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1690		sis_startl(ifp);
1691
1692	SIS_UNLOCK(sc);
1693}
1694
1695/*
1696 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1697 * pointers to the fragment pointers.
1698 */
1699static int
1700sis_encap(struct sis_softc *sc, struct mbuf **m_head, uint32_t *txidx)
1701{
1702	struct sis_desc		*f = NULL;
1703	struct mbuf		*m;
1704	int			frag, cur, cnt = 0, chainlen = 0;
1705
1706	/*
1707	 * If there's no way we can send any packets, return now.
1708	 */
1709	if (SIS_TX_LIST_CNT - sc->sis_tx_cnt < 2)
1710		return (ENOBUFS);
1711
1712	/*
1713	 * Count the number of frags in this chain to see if
1714	 * we need to m_defrag.  Since the descriptor list is shared
1715	 * by all packets, we'll m_defrag long chains so that they
1716	 * do not use up the entire list, even if they would fit.
1717	 */
1718
1719	for (m = *m_head; m != NULL; m = m->m_next)
1720		chainlen++;
1721
1722	if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1723	    ((SIS_TX_LIST_CNT - (chainlen + sc->sis_tx_cnt)) < 2)) {
1724		m = m_defrag(*m_head, M_DONTWAIT);
1725		if (m == NULL)
1726			return (ENOBUFS);
1727		*m_head = m;
1728	}
1729
1730	/*
1731 	 * Start packing the mbufs in this chain into
1732	 * the fragment pointers. Stop when we run out
1733 	 * of fragments or hit the end of the mbuf chain.
1734	 */
1735	cur = frag = *txidx;
1736
1737	for (m = *m_head; m != NULL; m = m->m_next) {
1738		if (m->m_len != 0) {
1739			if ((SIS_TX_LIST_CNT -
1740			    (sc->sis_tx_cnt + cnt)) < 2)
1741				return(ENOBUFS);
1742			f = &sc->sis_tx_list[frag];
1743			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1744			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1745			bus_dmamap_load(sc->sis_tag, f->sis_map,
1746			    mtod(m, void *), m->m_len,
1747			    sis_dma_map_desc_ptr, f, 0);
1748			bus_dmamap_sync(sc->sis_tag,
1749			    f->sis_map, BUS_DMASYNC_PREREAD);
1750			if (cnt != 0)
1751				f->sis_ctl |= SIS_CMDSTS_OWN;
1752			cur = frag;
1753			SIS_INC(frag, SIS_TX_LIST_CNT);
1754			cnt++;
1755		}
1756	}
1757
1758	if (m != NULL)
1759		return(ENOBUFS);
1760
1761	sc->sis_tx_list[cur].sis_mbuf = *m_head;
1762	sc->sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1763	sc->sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1764	sc->sis_tx_cnt += cnt;
1765	*txidx = frag;
1766
1767	return(0);
1768}
1769
1770/*
1771 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1772 * to the mbuf data regions directly in the transmit lists. We also save a
1773 * copy of the pointers since the transmit list fragment pointers are
1774 * physical addresses.
1775 */
1776
1777static void
1778sis_start(struct ifnet *ifp)
1779{
1780	struct sis_softc	*sc;
1781
1782	sc = ifp->if_softc;
1783	SIS_LOCK(sc);
1784	sis_startl(ifp);
1785	SIS_UNLOCK(sc);
1786}
1787
1788static void
1789sis_startl(struct ifnet *ifp)
1790{
1791	struct sis_softc	*sc;
1792	struct mbuf		*m_head = NULL;
1793	u_int32_t		idx, queued = 0;
1794
1795	sc = ifp->if_softc;
1796
1797	SIS_LOCK_ASSERT(sc);
1798
1799	if (!sc->sis_link)
1800		return;
1801
1802	idx = sc->sis_tx_prod;
1803
1804	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1805		return;
1806
1807	while(sc->sis_tx_list[idx].sis_mbuf == NULL) {
1808		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1809		if (m_head == NULL)
1810			break;
1811
1812		if (sis_encap(sc, &m_head, &idx)) {
1813			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1814			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1815			break;
1816		}
1817
1818		queued++;
1819
1820		/*
1821		 * If there's a BPF listener, bounce a copy of this frame
1822		 * to him.
1823		 */
1824		BPF_MTAP(ifp, m_head);
1825
1826	}
1827
1828	if (queued) {
1829		/* Transmit */
1830		sc->sis_tx_prod = idx;
1831		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1832
1833		/*
1834		 * Set a timeout in case the chip goes out to lunch.
1835		 */
1836		sc->sis_watchdog_timer = 5;
1837	}
1838}
1839
1840static void
1841sis_init(void *xsc)
1842{
1843	struct sis_softc	*sc = xsc;
1844
1845	SIS_LOCK(sc);
1846	sis_initl(sc);
1847	SIS_UNLOCK(sc);
1848}
1849
1850static void
1851sis_initl(struct sis_softc *sc)
1852{
1853	struct ifnet		*ifp = sc->sis_ifp;
1854	struct mii_data		*mii;
1855
1856	SIS_LOCK_ASSERT(sc);
1857
1858	/*
1859	 * Cancel pending I/O and free all RX/TX buffers.
1860	 */
1861	sis_stop(sc);
1862	sc->sis_stopped = 0;
1863
1864#ifdef notyet
1865	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1866		/*
1867		 * Configure 400usec of interrupt holdoff.  This is based
1868		 * on emperical tests on a Soekris 4801.
1869 		 */
1870		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1871	}
1872#endif
1873
1874	mii = device_get_softc(sc->sis_miibus);
1875
1876	/* Set MAC address */
1877	if (sc->sis_type == SIS_TYPE_83815) {
1878		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1879		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1880		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[0]);
1881		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1882		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1883		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[1]);
1884		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1885		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1886		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[2]);
1887	} else {
1888		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1889		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1890		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[0]);
1891		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1892		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1893		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[1]);
1894		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1895		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1896		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[2]);
1897	}
1898
1899	/* Init circular TX/RX lists. */
1900	if (sis_ring_init(sc) != 0) {
1901		device_printf(sc->sis_dev,
1902		    "initialization failed: no memory for rx buffers\n");
1903		sis_stop(sc);
1904		return;
1905	}
1906
1907	/*
1908	 * Short Cable Receive Errors (MP21.E)
1909	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
1910	 * recommends the following register settings "for optimum
1911	 * performance." for rev 15C.  Set this also for 15D parts as
1912	 * they require it in practice.
1913	 */
1914	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
1915		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
1916		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
1917		/* set val for c2 */
1918		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
1919		/* load/kill c2 */
1920		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
1921		/* rais SD off, from 4 to c */
1922		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
1923		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
1924	}
1925
1926
1927	/*
1928	 * For the NatSemi chip, we have to explicitly enable the
1929	 * reception of ARP frames, as well as turn on the 'perfect
1930	 * match' filter where we store the station address, otherwise
1931	 * we won't receive unicasts meant for this host.
1932	 */
1933	if (sc->sis_type == SIS_TYPE_83815) {
1934		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1935		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1936	}
1937
1938	 /* If we want promiscuous mode, set the allframes bit. */
1939	if (ifp->if_flags & IFF_PROMISC) {
1940		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1941	} else {
1942		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1943	}
1944
1945	/*
1946	 * Set the capture broadcast bit to capture broadcast frames.
1947	 */
1948	if (ifp->if_flags & IFF_BROADCAST) {
1949		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1950	} else {
1951		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1952	}
1953
1954	/*
1955	 * Load the multicast filter.
1956	 */
1957	if (sc->sis_type == SIS_TYPE_83815)
1958		sis_setmulti_ns(sc);
1959	else
1960		sis_setmulti_sis(sc);
1961
1962	/* Turn the receive filter on */
1963	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1964
1965	/*
1966	 * Load the address of the RX and TX lists.
1967	 */
1968	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_rx_paddr);
1969	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_tx_paddr);
1970
1971	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1972	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1973	 * for TX/RX DMA should be no larger than 16 double words.
1974	 */
1975	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
1976		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1977	} else {
1978		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1979	}
1980
1981	/* Accept Long Packets for VLAN support */
1982	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1983
1984	/* Set TX configuration */
1985	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
1986		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1987	} else {
1988		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1989	}
1990
1991	/* Set full/half duplex mode. */
1992	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1993		SIS_SETBIT(sc, SIS_TX_CFG,
1994		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1995		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1996	} else {
1997		SIS_CLRBIT(sc, SIS_TX_CFG,
1998		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1999		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2000	}
2001
2002	if (sc->sis_type == SIS_TYPE_83816) {
2003		/*
2004		 * MPII03.D: Half Duplex Excessive Collisions.
2005		 * Also page 49 in 83816 manual
2006		 */
2007		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
2008	}
2009
2010	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
2011	     IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2012		uint32_t reg;
2013
2014		/*
2015		 * Short Cable Receive Errors (MP21.E)
2016		 */
2017		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2018		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
2019		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
2020		DELAY(100000);
2021		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
2022		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
2023			device_printf(sc->sis_dev,
2024			    "Applying short cable fix (reg=%x)\n", reg);
2025			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
2026			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
2027		}
2028		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2029	}
2030
2031	/*
2032	 * Enable interrupts.
2033	 */
2034	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2035#ifdef DEVICE_POLLING
2036	/*
2037	 * ... only enable interrupts if we are not polling, make sure
2038	 * they are off otherwise.
2039	 */
2040	if (ifp->if_capenable & IFCAP_POLLING)
2041		CSR_WRITE_4(sc, SIS_IER, 0);
2042	else
2043#endif
2044	CSR_WRITE_4(sc, SIS_IER, 1);
2045
2046	/* Enable receiver and transmitter. */
2047	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2048	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2049
2050#ifdef notdef
2051	mii_mediachg(mii);
2052#endif
2053
2054	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2055	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2056
2057	if (!sc->in_tick)
2058		callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2059}
2060
2061/*
2062 * Set media options.
2063 */
2064static int
2065sis_ifmedia_upd(struct ifnet *ifp)
2066{
2067	struct sis_softc	*sc;
2068	struct mii_data		*mii;
2069
2070	sc = ifp->if_softc;
2071
2072	SIS_LOCK(sc);
2073	mii = device_get_softc(sc->sis_miibus);
2074	sc->sis_link = 0;
2075	if (mii->mii_instance) {
2076		struct mii_softc	*miisc;
2077		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2078			mii_phy_reset(miisc);
2079	}
2080	mii_mediachg(mii);
2081	SIS_UNLOCK(sc);
2082
2083	return(0);
2084}
2085
2086/*
2087 * Report current media status.
2088 */
2089static void
2090sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2091{
2092	struct sis_softc	*sc;
2093	struct mii_data		*mii;
2094
2095	sc = ifp->if_softc;
2096
2097	SIS_LOCK(sc);
2098	mii = device_get_softc(sc->sis_miibus);
2099	mii_pollstat(mii);
2100	SIS_UNLOCK(sc);
2101	ifmr->ifm_active = mii->mii_media_active;
2102	ifmr->ifm_status = mii->mii_media_status;
2103}
2104
2105static int
2106sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2107{
2108	struct sis_softc	*sc = ifp->if_softc;
2109	struct ifreq		*ifr = (struct ifreq *) data;
2110	struct mii_data		*mii;
2111	int			error = 0;
2112
2113	switch(command) {
2114	case SIOCSIFFLAGS:
2115		SIS_LOCK(sc);
2116		if (ifp->if_flags & IFF_UP) {
2117			sis_initl(sc);
2118		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2119			sis_stop(sc);
2120		}
2121		SIS_UNLOCK(sc);
2122		error = 0;
2123		break;
2124	case SIOCADDMULTI:
2125	case SIOCDELMULTI:
2126		SIS_LOCK(sc);
2127		if (sc->sis_type == SIS_TYPE_83815)
2128			sis_setmulti_ns(sc);
2129		else
2130			sis_setmulti_sis(sc);
2131		SIS_UNLOCK(sc);
2132		error = 0;
2133		break;
2134	case SIOCGIFMEDIA:
2135	case SIOCSIFMEDIA:
2136		mii = device_get_softc(sc->sis_miibus);
2137		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2138		break;
2139	case SIOCSIFCAP:
2140		/* ok, disable interrupts */
2141#ifdef DEVICE_POLLING
2142		if (ifr->ifr_reqcap & IFCAP_POLLING &&
2143		    !(ifp->if_capenable & IFCAP_POLLING)) {
2144			error = ether_poll_register(sis_poll, ifp);
2145			if (error)
2146				return(error);
2147			SIS_LOCK(sc);
2148			/* Disable interrupts */
2149			CSR_WRITE_4(sc, SIS_IER, 0);
2150			ifp->if_capenable |= IFCAP_POLLING;
2151			SIS_UNLOCK(sc);
2152			return (error);
2153
2154		}
2155		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
2156		    ifp->if_capenable & IFCAP_POLLING) {
2157			error = ether_poll_deregister(ifp);
2158			/* Enable interrupts. */
2159			SIS_LOCK(sc);
2160			CSR_WRITE_4(sc, SIS_IER, 1);
2161			ifp->if_capenable &= ~IFCAP_POLLING;
2162			SIS_UNLOCK(sc);
2163			return (error);
2164		}
2165#endif /* DEVICE_POLLING */
2166		break;
2167	default:
2168		error = ether_ioctl(ifp, command, data);
2169		break;
2170	}
2171
2172	return(error);
2173}
2174
2175static void
2176sis_watchdog(struct sis_softc *sc)
2177{
2178
2179	SIS_LOCK_ASSERT(sc);
2180	if (sc->sis_stopped) {
2181		SIS_UNLOCK(sc);
2182		return;
2183	}
2184
2185	if (sc->sis_watchdog_timer == 0 || --sc->sis_watchdog_timer >0)
2186		return;
2187
2188	device_printf(sc->sis_dev, "watchdog timeout\n");
2189	sc->sis_ifp->if_oerrors++;
2190
2191	sis_stop(sc);
2192	sis_reset(sc);
2193	sis_initl(sc);
2194
2195	if (!IFQ_DRV_IS_EMPTY(&sc->sis_ifp->if_snd))
2196		sis_startl(sc->sis_ifp);
2197}
2198
2199/*
2200 * Stop the adapter and free any mbufs allocated to the
2201 * RX and TX lists.
2202 */
2203static void
2204sis_stop(struct sis_softc *sc)
2205{
2206	int i;
2207	struct ifnet *ifp;
2208	struct sis_desc *dp;
2209
2210	if (sc->sis_stopped)
2211		return;
2212	SIS_LOCK_ASSERT(sc);
2213	ifp = sc->sis_ifp;
2214	sc->sis_watchdog_timer = 0;
2215
2216	callout_stop(&sc->sis_stat_ch);
2217
2218	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2219	CSR_WRITE_4(sc, SIS_IER, 0);
2220	CSR_WRITE_4(sc, SIS_IMR, 0);
2221	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2222	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2223	DELAY(1000);
2224	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2225	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2226
2227	sc->sis_link = 0;
2228
2229	/*
2230	 * Free data in the RX lists.
2231	 */
2232	dp = &sc->sis_rx_list[0];
2233	for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
2234		if (dp->sis_mbuf == NULL)
2235			continue;
2236		bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2237		bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2238		m_freem(dp->sis_mbuf);
2239		dp->sis_mbuf = NULL;
2240	}
2241	bzero(sc->sis_rx_list, SIS_RX_LIST_SZ);
2242
2243	/*
2244	 * Free the TX list buffers.
2245	 */
2246	dp = &sc->sis_tx_list[0];
2247	for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
2248		if (dp->sis_mbuf == NULL)
2249			continue;
2250		bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2251		bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2252		m_freem(dp->sis_mbuf);
2253		dp->sis_mbuf = NULL;
2254	}
2255
2256	bzero(sc->sis_tx_list, SIS_TX_LIST_SZ);
2257
2258	sc->sis_stopped = 1;
2259}
2260
2261/*
2262 * Stop all chip I/O so that the kernel's probe routines don't
2263 * get confused by errant DMAs when rebooting.
2264 */
2265static int
2266sis_shutdown(device_t dev)
2267{
2268	struct sis_softc	*sc;
2269
2270	sc = device_get_softc(dev);
2271	SIS_LOCK(sc);
2272	sis_reset(sc);
2273	sis_stop(sc);
2274	SIS_UNLOCK(sc);
2275	return (0);
2276}
2277
2278static device_method_t sis_methods[] = {
2279	/* Device interface */
2280	DEVMETHOD(device_probe,		sis_probe),
2281	DEVMETHOD(device_attach,	sis_attach),
2282	DEVMETHOD(device_detach,	sis_detach),
2283	DEVMETHOD(device_shutdown,	sis_shutdown),
2284
2285	/* bus interface */
2286	DEVMETHOD(bus_print_child,	bus_generic_print_child),
2287	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2288
2289	/* MII interface */
2290	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2291	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2292	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2293
2294	{ 0, 0 }
2295};
2296
2297static driver_t sis_driver = {
2298	"sis",
2299	sis_methods,
2300	sizeof(struct sis_softc)
2301};
2302
2303static devclass_t sis_devclass;
2304
2305DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2306DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2307