if_sis.c revision 139809
1303980Sngie/*
2303980Sngie * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
3303980Sngie * Copyright (c) 1997, 1998, 1999
4303980Sngie *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
5303980Sngie *
6303980Sngie * Redistribution and use in source and binary forms, with or without
7303980Sngie * modification, are permitted provided that the following conditions
8303980Sngie * are met:
9303980Sngie * 1. Redistributions of source code must retain the above copyright
10303980Sngie *    notice, this list of conditions and the following disclaimer.
11303980Sngie * 2. Redistributions in binary form must reproduce the above copyright
12303980Sngie *    notice, this list of conditions and the following disclaimer in the
13303980Sngie *    documentation and/or other materials provided with the distribution.
14303980Sngie * 3. All advertising materials mentioning features or use of this software
15303980Sngie *    must display the following acknowledgement:
16303980Sngie *	This product includes software developed by Bill Paul.
17303980Sngie * 4. Neither the name of the author nor the names of any co-contributors
18303980Sngie *    may be used to endorse or promote products derived from this software
19303980Sngie *    without specific prior written permission.
20303980Sngie *
21303980Sngie * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22303980Sngie * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23303980Sngie * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24303980Sngie * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25303980Sngie * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26303980Sngie * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27303980Sngie * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28303980Sngie * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29303980Sngie * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30303980Sngie * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31303980Sngie * THE POSSIBILITY OF SUCH DAMAGE.
32303980Sngie */
33303980Sngie
34303980Sngie#include <sys/cdefs.h>
35303980Sngie__FBSDID("$FreeBSD: head/sys/pci/if_sis.c 139809 2005-01-07 00:01:43Z phk $");
36303980Sngie
37303980Sngie/*
38303980Sngie * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
39303980Sngie * available from http://www.sis.com.tw.
40303980Sngie *
41303980Sngie * This driver also supports the NatSemi DP83815. Datasheets are
42303980Sngie * available from http://www.national.com.
43303980Sngie *
44303980Sngie * Written by Bill Paul <wpaul@ee.columbia.edu>
45303980Sngie * Electrical Engineering Department
46303980Sngie * Columbia University, New York City
47303980Sngie */
48303980Sngie/*
49303980Sngie * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50303980Sngie * simple TX and RX descriptors of 3 longwords in size. The receiver
51303980Sngie * has a single perfect filter entry for the station address and a
52303980Sngie * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53303980Sngie * transceiver while the 7016 requires an external transceiver chip.
54303980Sngie * Both chips offer the standard bit-bang MII interface as well as
55303980Sngie * an enchanced PHY interface which simplifies accessing MII registers.
56303980Sngie *
57303980Sngie * The only downside to this chipset is that RX descriptors must be
58303980Sngie * longword aligned.
59303980Sngie */
60303980Sngie
61303980Sngie#include <sys/param.h>
62303980Sngie#include <sys/systm.h>
63303980Sngie#include <sys/sockio.h>
64303980Sngie#include <sys/mbuf.h>
65303980Sngie#include <sys/malloc.h>
66303980Sngie#include <sys/kernel.h>
67303980Sngie#include <sys/module.h>
68303980Sngie#include <sys/socket.h>
69303980Sngie#include <sys/sysctl.h>
70303980Sngie
71303980Sngie#include <net/if.h>
72303980Sngie#include <net/if_arp.h>
73303980Sngie#include <net/ethernet.h>
74303980Sngie#include <net/if_dl.h>
75303980Sngie#include <net/if_media.h>
76303980Sngie#include <net/if_types.h>
77303980Sngie#include <net/if_vlan_var.h>
78303980Sngie
79303980Sngie#include <net/bpf.h>
80303980Sngie
81303980Sngie#include <machine/bus_pio.h>
82303980Sngie#include <machine/bus_memio.h>
83303980Sngie#include <machine/bus.h>
84303980Sngie#include <machine/resource.h>
85303980Sngie#include <sys/bus.h>
86303980Sngie#include <sys/rman.h>
87303980Sngie
88303980Sngie#include <dev/mii/mii.h>
89303980Sngie#include <dev/mii/miivar.h>
90303980Sngie
91303980Sngie#include <dev/pci/pcireg.h>
92303980Sngie#include <dev/pci/pcivar.h>
93303980Sngie
94303980Sngie#define SIS_USEIOSPACE
95303980Sngie
96303980Sngie#include <pci/if_sisreg.h>
97303980Sngie
98303980SngieMODULE_DEPEND(sis, pci, 1, 1, 1);
99303980SngieMODULE_DEPEND(sis, ether, 1, 1, 1);
100303980SngieMODULE_DEPEND(sis, miibus, 1, 1, 1);
101303980Sngie
102303980Sngie/* "controller miibus0" required.  See GENERIC if you get errors here. */
103303980Sngie#include "miibus_if.h"
104303980Sngie
105303980Sngie/*
106303980Sngie * Various supported device vendors/types and their names.
107303980Sngie */
108303980Sngiestatic struct sis_type sis_devs[] = {
109303980Sngie	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
110303980Sngie	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
111303980Sngie	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
112303980Sngie	{ 0, 0, NULL }
113303980Sngie};
114303980Sngie
115303980Sngiestatic int sis_detach(device_t);
116303980Sngiestatic void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
117303980Sngiestatic int sis_ifmedia_upd(struct ifnet *);
118303980Sngiestatic void sis_init(void *);
119303980Sngiestatic void sis_initl(struct sis_softc *);
120303980Sngiestatic void sis_intr(void *);
121303980Sngiestatic int sis_ioctl(struct ifnet *, u_long, caddr_t);
122303980Sngiestatic int sis_newbuf(struct sis_softc *, struct sis_desc *, struct mbuf *);
123303980Sngiestatic void sis_start(struct ifnet *);
124303980Sngiestatic void sis_startl(struct ifnet *);
125303980Sngiestatic void sis_stop(struct sis_softc *);
126303980Sngiestatic void sis_watchdog(struct ifnet *);
127303980Sngie
128303980Sngie#ifdef SIS_USEIOSPACE
129303980Sngie#define SIS_RES			SYS_RES_IOPORT
130303980Sngie#define SIS_RID			SIS_PCI_LOIO
131303980Sngie#else
132303980Sngie#define SIS_RES			SYS_RES_MEMORY
133303980Sngie#define SIS_RID			SIS_PCI_LOMEM
134303980Sngie#endif
135303980Sngie
136303980Sngie#define SIS_SETBIT(sc, reg, x)				\
137303980Sngie	CSR_WRITE_4(sc, reg,				\
138303980Sngie		CSR_READ_4(sc, reg) | (x))
139303980Sngie
140303980Sngie#define SIS_CLRBIT(sc, reg, x)				\
141303980Sngie	CSR_WRITE_4(sc, reg,				\
142303980Sngie		CSR_READ_4(sc, reg) & ~(x))
143303980Sngie
144303980Sngie#define SIO_SET(x)					\
145303980Sngie	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
146303980Sngie
147303980Sngie#define SIO_CLR(x)					\
148303980Sngie	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
149303980Sngie
150303980Sngiestatic void
151303980Sngiesis_dma_map_desc_next(void *arg, bus_dma_segment_t *segs, int nseg, int error)
152303980Sngie{
153303980Sngie	struct sis_desc	*r;
154303980Sngie
155303980Sngie	r = arg;
156303980Sngie	r->sis_next = segs->ds_addr;
157303980Sngie}
158303980Sngie
159303980Sngiestatic void
160303980Sngiesis_dma_map_desc_ptr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
161303980Sngie{
162303980Sngie	struct sis_desc	*r;
163303980Sngie
164303980Sngie	r = arg;
165303980Sngie	r->sis_ptr = segs->ds_addr;
166303980Sngie}
167303980Sngie
168303980Sngiestatic void
169303980Sngiesis_dma_map_ring(void *arg, bus_dma_segment_t *segs, int nseg, int error)
170303980Sngie{
171303980Sngie	u_int32_t *p;
172303980Sngie
173303980Sngie	p = arg;
174303980Sngie	*p = segs->ds_addr;
175303980Sngie}
176303980Sngie
177303980Sngie/*
178303980Sngie * Routine to reverse the bits in a word. Stolen almost
179303980Sngie * verbatim from /usr/games/fortune.
180303980Sngie */
181303980Sngiestatic uint16_t
182303980Sngiesis_reverse(uint16_t n)
183303980Sngie{
184303980Sngie	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
185303980Sngie	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
186303980Sngie	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
187303980Sngie	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
188303980Sngie
189303980Sngie	return(n);
190303980Sngie}
191303980Sngie
192303980Sngiestatic void
193303980Sngiesis_delay(struct sis_softc *sc)
194303980Sngie{
195303980Sngie	int			idx;
196303980Sngie
197303980Sngie	for (idx = (300 / 33) + 1; idx > 0; idx--)
198303980Sngie		CSR_READ_4(sc, SIS_CSR);
199303980Sngie}
200303980Sngie
201303980Sngiestatic void
202303980Sngiesis_eeprom_idle(struct sis_softc *sc)
203303980Sngie{
204303980Sngie	int		i;
205303980Sngie
206303980Sngie	SIO_SET(SIS_EECTL_CSEL);
207303980Sngie	sis_delay(sc);
208303980Sngie	SIO_SET(SIS_EECTL_CLK);
209303980Sngie	sis_delay(sc);
210303980Sngie
211303980Sngie	for (i = 0; i < 25; i++) {
212303980Sngie		SIO_CLR(SIS_EECTL_CLK);
213303980Sngie		sis_delay(sc);
214303980Sngie		SIO_SET(SIS_EECTL_CLK);
215303980Sngie		sis_delay(sc);
216303980Sngie	}
217303980Sngie
218303980Sngie	SIO_CLR(SIS_EECTL_CLK);
219303980Sngie	sis_delay(sc);
220303980Sngie	SIO_CLR(SIS_EECTL_CSEL);
221303980Sngie	sis_delay(sc);
222303980Sngie	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
223303980Sngie}
224303980Sngie
225303980Sngie/*
226303980Sngie * Send a read command and address to the EEPROM, check for ACK.
227303980Sngie */
228303980Sngiestatic void
229303980Sngiesis_eeprom_putbyte(struct sis_softc *sc, int addr)
230303980Sngie{
231303980Sngie	int		d, i;
232303980Sngie
233303980Sngie	d = addr | SIS_EECMD_READ;
234303980Sngie
235303980Sngie	/*
236303980Sngie	 * Feed in each bit and stobe the clock.
237303980Sngie	 */
238303980Sngie	for (i = 0x400; i; i >>= 1) {
239303980Sngie		if (d & i) {
240303980Sngie			SIO_SET(SIS_EECTL_DIN);
241303980Sngie		} else {
242303980Sngie			SIO_CLR(SIS_EECTL_DIN);
243303980Sngie		}
244303980Sngie		sis_delay(sc);
245303980Sngie		SIO_SET(SIS_EECTL_CLK);
246303980Sngie		sis_delay(sc);
247303980Sngie		SIO_CLR(SIS_EECTL_CLK);
248303980Sngie		sis_delay(sc);
249303980Sngie	}
250303980Sngie}
251303980Sngie
252/*
253 * Read a word of data stored in the EEPROM at address 'addr.'
254 */
255static void
256sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
257{
258	int		i;
259	u_int16_t		word = 0;
260
261	/* Force EEPROM to idle state. */
262	sis_eeprom_idle(sc);
263
264	/* Enter EEPROM access mode. */
265	sis_delay(sc);
266	SIO_CLR(SIS_EECTL_CLK);
267	sis_delay(sc);
268	SIO_SET(SIS_EECTL_CSEL);
269	sis_delay(sc);
270
271	/*
272	 * Send address of word we want to read.
273	 */
274	sis_eeprom_putbyte(sc, addr);
275
276	/*
277	 * Start reading bits from EEPROM.
278	 */
279	for (i = 0x8000; i; i >>= 1) {
280		SIO_SET(SIS_EECTL_CLK);
281		sis_delay(sc);
282		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
283			word |= i;
284		sis_delay(sc);
285		SIO_CLR(SIS_EECTL_CLK);
286		sis_delay(sc);
287	}
288
289	/* Turn off EEPROM access mode. */
290	sis_eeprom_idle(sc);
291
292	*dest = word;
293}
294
295/*
296 * Read a sequence of words from the EEPROM.
297 */
298static void
299sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
300{
301	int			i;
302	u_int16_t		word = 0, *ptr;
303
304	for (i = 0; i < cnt; i++) {
305		sis_eeprom_getword(sc, off + i, &word);
306		ptr = (u_int16_t *)(dest + (i * 2));
307		if (swap)
308			*ptr = ntohs(word);
309		else
310			*ptr = word;
311	}
312}
313
314#ifdef __i386__
315static device_t
316sis_find_bridge(device_t dev)
317{
318	devclass_t		pci_devclass;
319	device_t		*pci_devices;
320	int			pci_count = 0;
321	device_t		*pci_children;
322	int			pci_childcount = 0;
323	device_t		*busp, *childp;
324	device_t		child = NULL;
325	int			i, j;
326
327	if ((pci_devclass = devclass_find("pci")) == NULL)
328		return(NULL);
329
330	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
331
332	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
333		pci_childcount = 0;
334		device_get_children(*busp, &pci_children, &pci_childcount);
335		for (j = 0, childp = pci_children;
336		    j < pci_childcount; j++, childp++) {
337			if (pci_get_vendor(*childp) == SIS_VENDORID &&
338			    pci_get_device(*childp) == 0x0008) {
339				child = *childp;
340				goto done;
341			}
342		}
343	}
344
345done:
346	free(pci_devices, M_TEMP);
347	free(pci_children, M_TEMP);
348	return(child);
349}
350
351static void
352sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
353{
354	device_t		bridge;
355	u_int8_t		reg;
356	int			i;
357	bus_space_tag_t		btag;
358
359	bridge = sis_find_bridge(dev);
360	if (bridge == NULL)
361		return;
362	reg = pci_read_config(bridge, 0x48, 1);
363	pci_write_config(bridge, 0x48, reg|0x40, 1);
364
365	/* XXX */
366	btag = I386_BUS_SPACE_IO;
367
368	for (i = 0; i < cnt; i++) {
369		bus_space_write_1(btag, 0x0, 0x70, i + off);
370		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
371	}
372
373	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
374	return;
375}
376
377static void
378sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
379{
380	u_int32_t		filtsave, csrsave;
381
382	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
383	csrsave = CSR_READ_4(sc, SIS_CSR);
384
385	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
386	CSR_WRITE_4(sc, SIS_CSR, 0);
387
388	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
389
390	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
391	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
392	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
393	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
394	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
395	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
396
397	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
398	CSR_WRITE_4(sc, SIS_CSR, csrsave);
399	return;
400}
401#endif
402
403/*
404 * Sync the PHYs by setting data bit and strobing the clock 32 times.
405 */
406static void
407sis_mii_sync(struct sis_softc *sc)
408{
409	int		i;
410
411 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
412
413 	for (i = 0; i < 32; i++) {
414 		SIO_SET(SIS_MII_CLK);
415 		DELAY(1);
416 		SIO_CLR(SIS_MII_CLK);
417 		DELAY(1);
418 	}
419}
420
421/*
422 * Clock a series of bits through the MII.
423 */
424static void
425sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
426{
427	int			i;
428
429	SIO_CLR(SIS_MII_CLK);
430
431	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
432		if (bits & i) {
433			SIO_SET(SIS_MII_DATA);
434		} else {
435			SIO_CLR(SIS_MII_DATA);
436		}
437		DELAY(1);
438		SIO_CLR(SIS_MII_CLK);
439		DELAY(1);
440		SIO_SET(SIS_MII_CLK);
441	}
442}
443
444/*
445 * Read an PHY register through the MII.
446 */
447static int
448sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
449{
450	int			i, ack, s;
451
452	s = splimp();
453
454	/*
455	 * Set up frame for RX.
456	 */
457	frame->mii_stdelim = SIS_MII_STARTDELIM;
458	frame->mii_opcode = SIS_MII_READOP;
459	frame->mii_turnaround = 0;
460	frame->mii_data = 0;
461
462	/*
463 	 * Turn on data xmit.
464	 */
465	SIO_SET(SIS_MII_DIR);
466
467	sis_mii_sync(sc);
468
469	/*
470	 * Send command/address info.
471	 */
472	sis_mii_send(sc, frame->mii_stdelim, 2);
473	sis_mii_send(sc, frame->mii_opcode, 2);
474	sis_mii_send(sc, frame->mii_phyaddr, 5);
475	sis_mii_send(sc, frame->mii_regaddr, 5);
476
477	/* Idle bit */
478	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
479	DELAY(1);
480	SIO_SET(SIS_MII_CLK);
481	DELAY(1);
482
483	/* Turn off xmit. */
484	SIO_CLR(SIS_MII_DIR);
485
486	/* Check for ack */
487	SIO_CLR(SIS_MII_CLK);
488	DELAY(1);
489	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
490	SIO_SET(SIS_MII_CLK);
491	DELAY(1);
492
493	/*
494	 * Now try reading data bits. If the ack failed, we still
495	 * need to clock through 16 cycles to keep the PHY(s) in sync.
496	 */
497	if (ack) {
498		for(i = 0; i < 16; i++) {
499			SIO_CLR(SIS_MII_CLK);
500			DELAY(1);
501			SIO_SET(SIS_MII_CLK);
502			DELAY(1);
503		}
504		goto fail;
505	}
506
507	for (i = 0x8000; i; i >>= 1) {
508		SIO_CLR(SIS_MII_CLK);
509		DELAY(1);
510		if (!ack) {
511			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
512				frame->mii_data |= i;
513			DELAY(1);
514		}
515		SIO_SET(SIS_MII_CLK);
516		DELAY(1);
517	}
518
519fail:
520
521	SIO_CLR(SIS_MII_CLK);
522	DELAY(1);
523	SIO_SET(SIS_MII_CLK);
524	DELAY(1);
525
526	splx(s);
527
528	if (ack)
529		return(1);
530	return(0);
531}
532
533/*
534 * Write to a PHY register through the MII.
535 */
536static int
537sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
538{
539	int			s;
540
541	 s = splimp();
542 	/*
543 	 * Set up frame for TX.
544 	 */
545
546 	frame->mii_stdelim = SIS_MII_STARTDELIM;
547 	frame->mii_opcode = SIS_MII_WRITEOP;
548 	frame->mii_turnaround = SIS_MII_TURNAROUND;
549
550 	/*
551  	 * Turn on data output.
552 	 */
553 	SIO_SET(SIS_MII_DIR);
554
555 	sis_mii_sync(sc);
556
557 	sis_mii_send(sc, frame->mii_stdelim, 2);
558 	sis_mii_send(sc, frame->mii_opcode, 2);
559 	sis_mii_send(sc, frame->mii_phyaddr, 5);
560 	sis_mii_send(sc, frame->mii_regaddr, 5);
561 	sis_mii_send(sc, frame->mii_turnaround, 2);
562 	sis_mii_send(sc, frame->mii_data, 16);
563
564 	/* Idle bit. */
565 	SIO_SET(SIS_MII_CLK);
566 	DELAY(1);
567 	SIO_CLR(SIS_MII_CLK);
568 	DELAY(1);
569
570 	/*
571 	 * Turn off xmit.
572 	 */
573 	SIO_CLR(SIS_MII_DIR);
574
575 	splx(s);
576
577 	return(0);
578}
579
580static int
581sis_miibus_readreg(device_t dev, int phy, int reg)
582{
583	struct sis_softc	*sc;
584	struct sis_mii_frame    frame;
585
586	sc = device_get_softc(dev);
587
588	if (sc->sis_type == SIS_TYPE_83815) {
589		if (phy != 0)
590			return(0);
591		/*
592		 * The NatSemi chip can take a while after
593		 * a reset to come ready, during which the BMSR
594		 * returns a value of 0. This is *never* supposed
595		 * to happen: some of the BMSR bits are meant to
596		 * be hardwired in the on position, and this can
597		 * confuse the miibus code a bit during the probe
598		 * and attach phase. So we make an effort to check
599		 * for this condition and wait for it to clear.
600		 */
601		if (!CSR_READ_4(sc, NS_BMSR))
602			DELAY(1000);
603		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
604	}
605
606	/*
607	 * Chipsets < SIS_635 seem not to be able to read/write
608	 * through mdio. Use the enhanced PHY access register
609	 * again for them.
610	 */
611	if (sc->sis_type == SIS_TYPE_900 &&
612	    sc->sis_rev < SIS_REV_635) {
613		int i, val = 0;
614
615		if (phy != 0)
616			return(0);
617
618		CSR_WRITE_4(sc, SIS_PHYCTL,
619		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
620		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
621
622		for (i = 0; i < SIS_TIMEOUT; i++) {
623			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
624				break;
625		}
626
627		if (i == SIS_TIMEOUT) {
628			printf("sis%d: PHY failed to come ready\n",
629			    sc->sis_unit);
630			return(0);
631		}
632
633		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
634
635		if (val == 0xFFFF)
636			return(0);
637
638		return(val);
639	} else {
640		bzero((char *)&frame, sizeof(frame));
641
642		frame.mii_phyaddr = phy;
643		frame.mii_regaddr = reg;
644		sis_mii_readreg(sc, &frame);
645
646		return(frame.mii_data);
647	}
648}
649
650static int
651sis_miibus_writereg(device_t dev, int phy, int reg, int data)
652{
653	struct sis_softc	*sc;
654	struct sis_mii_frame	frame;
655
656	sc = device_get_softc(dev);
657
658	if (sc->sis_type == SIS_TYPE_83815) {
659		if (phy != 0)
660			return(0);
661		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
662		return(0);
663	}
664
665	/*
666	 * Chipsets < SIS_635 seem not to be able to read/write
667	 * through mdio. Use the enhanced PHY access register
668	 * again for them.
669	 */
670	if (sc->sis_type == SIS_TYPE_900 &&
671	    sc->sis_rev < SIS_REV_635) {
672		int i;
673
674		if (phy != 0)
675			return(0);
676
677		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
678		    (reg << 6) | SIS_PHYOP_WRITE);
679		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
680
681		for (i = 0; i < SIS_TIMEOUT; i++) {
682			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
683				break;
684		}
685
686		if (i == SIS_TIMEOUT)
687			printf("sis%d: PHY failed to come ready\n",
688			    sc->sis_unit);
689	} else {
690		bzero((char *)&frame, sizeof(frame));
691
692		frame.mii_phyaddr = phy;
693		frame.mii_regaddr = reg;
694		frame.mii_data = data;
695		sis_mii_writereg(sc, &frame);
696	}
697	return(0);
698}
699
700static void
701sis_miibus_statchg(device_t dev)
702{
703	struct sis_softc	*sc;
704
705	sc = device_get_softc(dev);
706	SIS_LOCK_ASSERT(sc);
707	sis_initl(sc);
708}
709
710static uint32_t
711sis_mchash(struct sis_softc *sc, const uint8_t *addr)
712{
713	uint32_t		crc;
714
715	/* Compute CRC for the address value. */
716	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
717
718	/*
719	 * return the filter bit position
720	 *
721	 * The NatSemi chip has a 512-bit filter, which is
722	 * different than the SiS, so we special-case it.
723	 */
724	if (sc->sis_type == SIS_TYPE_83815)
725		return (crc >> 23);
726	else if (sc->sis_rev >= SIS_REV_635 ||
727	    sc->sis_rev == SIS_REV_900B)
728		return (crc >> 24);
729	else
730		return (crc >> 25);
731}
732
733static void
734sis_setmulti_ns(struct sis_softc *sc)
735{
736	struct ifnet		*ifp;
737	struct ifmultiaddr	*ifma;
738	u_int32_t		h = 0, i, filtsave;
739	int			bit, index;
740
741	ifp = &sc->arpcom.ac_if;
742
743	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
744		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
745		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
746		return;
747	}
748
749	/*
750	 * We have to explicitly enable the multicast hash table
751	 * on the NatSemi chip if we want to use it, which we do.
752	 */
753	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
754	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
755
756	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
757
758	/* first, zot all the existing hash bits */
759	for (i = 0; i < 32; i++) {
760		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
761		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
762	}
763
764	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
765		if (ifma->ifma_addr->sa_family != AF_LINK)
766			continue;
767		h = sis_mchash(sc,
768		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
769		index = h >> 3;
770		bit = h & 0x1F;
771		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
772		if (bit > 0xF)
773			bit -= 0x10;
774		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
775	}
776
777	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
778
779	return;
780}
781
782static void
783sis_setmulti_sis(struct sis_softc *sc)
784{
785	struct ifnet		*ifp;
786	struct ifmultiaddr	*ifma;
787	u_int32_t		h, i, n, ctl;
788	u_int16_t		hashes[16];
789
790	ifp = &sc->arpcom.ac_if;
791
792	/* hash table size */
793	if (sc->sis_rev >= SIS_REV_635 ||
794	    sc->sis_rev == SIS_REV_900B)
795		n = 16;
796	else
797		n = 8;
798
799	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
800
801	if (ifp->if_flags & IFF_BROADCAST)
802		ctl |= SIS_RXFILTCTL_BROAD;
803
804	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
805		ctl |= SIS_RXFILTCTL_ALLMULTI;
806		if (ifp->if_flags & IFF_PROMISC)
807			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
808		for (i = 0; i < n; i++)
809			hashes[i] = ~0;
810	} else {
811		for (i = 0; i < n; i++)
812			hashes[i] = 0;
813		i = 0;
814		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
815			if (ifma->ifma_addr->sa_family != AF_LINK)
816			continue;
817			h = sis_mchash(sc,
818			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
819			hashes[h >> 4] |= 1 << (h & 0xf);
820			i++;
821		}
822		if (i > n) {
823			ctl |= SIS_RXFILTCTL_ALLMULTI;
824			for (i = 0; i < n; i++)
825				hashes[i] = ~0;
826		}
827	}
828
829	for (i = 0; i < n; i++) {
830		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
831		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
832	}
833
834	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
835}
836
837static void
838sis_reset(struct sis_softc *sc)
839{
840	int		i;
841
842	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
843
844	for (i = 0; i < SIS_TIMEOUT; i++) {
845		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
846			break;
847	}
848
849	if (i == SIS_TIMEOUT)
850		printf("sis%d: reset never completed\n", sc->sis_unit);
851
852	/* Wait a little while for the chip to get its brains in order. */
853	DELAY(1000);
854
855	/*
856	 * If this is a NetSemi chip, make sure to clear
857	 * PME mode.
858	 */
859	if (sc->sis_type == SIS_TYPE_83815) {
860		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
861		CSR_WRITE_4(sc, NS_CLKRUN, 0);
862	}
863
864        return;
865}
866
867/*
868 * Probe for an SiS chip. Check the PCI vendor and device
869 * IDs against our list and return a device name if we find a match.
870 */
871static int
872sis_probe(device_t dev)
873{
874	struct sis_type		*t;
875
876	t = sis_devs;
877
878	while(t->sis_name != NULL) {
879		if ((pci_get_vendor(dev) == t->sis_vid) &&
880		    (pci_get_device(dev) == t->sis_did)) {
881			device_set_desc(dev, t->sis_name);
882			return(0);
883		}
884		t++;
885	}
886
887	return(ENXIO);
888}
889
890/*
891 * Attach the interface. Allocate softc structures, do ifmedia
892 * setup and ethernet/BPF attach.
893 */
894static int
895sis_attach(device_t dev)
896{
897	u_char			eaddr[ETHER_ADDR_LEN];
898	struct sis_softc	*sc;
899	struct ifnet		*ifp;
900	int			unit, error = 0, rid, waittime = 0;
901
902	waittime = 0;
903	sc = device_get_softc(dev);
904	unit = device_get_unit(dev);
905
906	sc->sis_self = dev;
907
908	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
909	    MTX_DEF | MTX_RECURSE);
910
911	if (pci_get_device(dev) == SIS_DEVICEID_900)
912		sc->sis_type = SIS_TYPE_900;
913	if (pci_get_device(dev) == SIS_DEVICEID_7016)
914		sc->sis_type = SIS_TYPE_7016;
915	if (pci_get_vendor(dev) == NS_VENDORID)
916		sc->sis_type = SIS_TYPE_83815;
917
918	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
919	/*
920	 * Map control/status registers.
921	 */
922	pci_enable_busmaster(dev);
923
924	rid = SIS_RID;
925	sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE);
926
927	if (sc->sis_res == NULL) {
928		printf("sis%d: couldn't map ports/memory\n", unit);
929		error = ENXIO;
930		goto fail;
931	}
932
933	sc->sis_btag = rman_get_bustag(sc->sis_res);
934	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
935
936	/* Allocate interrupt */
937	rid = 0;
938	sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
939	    RF_SHAREABLE | RF_ACTIVE);
940
941	if (sc->sis_irq == NULL) {
942		printf("sis%d: couldn't map interrupt\n", unit);
943		error = ENXIO;
944		goto fail;
945	}
946
947	/* Reset the adapter. */
948	sis_reset(sc);
949
950	if (sc->sis_type == SIS_TYPE_900 &&
951            (sc->sis_rev == SIS_REV_635 ||
952            sc->sis_rev == SIS_REV_900B)) {
953		SIO_SET(SIS_CFG_RND_CNT);
954		SIO_SET(SIS_CFG_PERR_DETECT);
955	}
956
957	/*
958	 * Get station address from the EEPROM.
959	 */
960	switch (pci_get_vendor(dev)) {
961	case NS_VENDORID:
962		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
963
964		/* We can't update the device description, so spew */
965		if (sc->sis_srr == NS_SRR_15C)
966			device_printf(dev, "Silicon Revision: DP83815C\n");
967		else if (sc->sis_srr == NS_SRR_15D)
968			device_printf(dev, "Silicon Revision: DP83815D\n");
969		else if (sc->sis_srr == NS_SRR_16A)
970			device_printf(dev, "Silicon Revision: DP83816A\n");
971		else
972			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
973
974		/*
975		 * Reading the MAC address out of the EEPROM on
976		 * the NatSemi chip takes a bit more work than
977		 * you'd expect. The address spans 4 16-bit words,
978		 * with the first word containing only a single bit.
979		 * You have to shift everything over one bit to
980		 * get it aligned properly. Also, the bits are
981		 * stored backwards (the LSB is really the MSB,
982		 * and so on) so you have to reverse them in order
983		 * to get the MAC address into the form we want.
984		 * Why? Who the hell knows.
985		 */
986		{
987			u_int16_t		tmp[4];
988
989			sis_read_eeprom(sc, (caddr_t)&tmp,
990			    NS_EE_NODEADDR, 4, 0);
991
992			/* Shift everything over one bit. */
993			tmp[3] = tmp[3] >> 1;
994			tmp[3] |= tmp[2] << 15;
995			tmp[2] = tmp[2] >> 1;
996			tmp[2] |= tmp[1] << 15;
997			tmp[1] = tmp[1] >> 1;
998			tmp[1] |= tmp[0] << 15;
999
1000			/* Now reverse all the bits. */
1001			tmp[3] = sis_reverse(tmp[3]);
1002			tmp[2] = sis_reverse(tmp[2]);
1003			tmp[1] = sis_reverse(tmp[1]);
1004
1005			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1006		}
1007		break;
1008	case SIS_VENDORID:
1009	default:
1010#ifdef __i386__
1011		/*
1012		 * If this is a SiS 630E chipset with an embedded
1013		 * SiS 900 controller, we have to read the MAC address
1014		 * from the APC CMOS RAM. Our method for doing this
1015		 * is very ugly since we have to reach out and grab
1016		 * ahold of hardware for which we cannot properly
1017		 * allocate resources. This code is only compiled on
1018		 * the i386 architecture since the SiS 630E chipset
1019		 * is for x86 motherboards only. Note that there are
1020		 * a lot of magic numbers in this hack. These are
1021		 * taken from SiS's Linux driver. I'd like to replace
1022		 * them with proper symbolic definitions, but that
1023		 * requires some datasheets that I don't have access
1024		 * to at the moment.
1025		 */
1026		if (sc->sis_rev == SIS_REV_630S ||
1027		    sc->sis_rev == SIS_REV_630E ||
1028		    sc->sis_rev == SIS_REV_630EA1)
1029			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1030
1031		else if (sc->sis_rev == SIS_REV_635 ||
1032			 sc->sis_rev == SIS_REV_630ET)
1033			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1034		else if (sc->sis_rev == SIS_REV_96x) {
1035			/* Allow to read EEPROM from LAN. It is shared
1036			 * between a 1394 controller and the NIC and each
1037			 * time we access it, we need to set SIS_EECMD_REQ.
1038			 */
1039			SIO_SET(SIS_EECMD_REQ);
1040			for (waittime = 0; waittime < SIS_TIMEOUT;
1041			    waittime++) {
1042				/* Force EEPROM to idle state. */
1043				sis_eeprom_idle(sc);
1044				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1045					sis_read_eeprom(sc, (caddr_t)&eaddr,
1046					    SIS_EE_NODEADDR, 3, 0);
1047					break;
1048				}
1049				DELAY(1);
1050			}
1051			/*
1052			 * Set SIS_EECTL_CLK to high, so a other master
1053			 * can operate on the i2c bus.
1054			 */
1055			SIO_SET(SIS_EECTL_CLK);
1056			/* Refuse EEPROM access by LAN */
1057			SIO_SET(SIS_EECMD_DONE);
1058		} else
1059#endif
1060			sis_read_eeprom(sc, (caddr_t)&eaddr,
1061			    SIS_EE_NODEADDR, 3, 0);
1062		break;
1063	}
1064
1065	sc->sis_unit = unit;
1066	if (debug_mpsafenet)
1067		callout_init(&sc->sis_stat_ch, CALLOUT_MPSAFE);
1068	else
1069		callout_init(&sc->sis_stat_ch, 0);
1070	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1071
1072	/*
1073	 * Allocate the parent bus DMA tag appropriate for PCI.
1074	 */
1075#define SIS_NSEG_NEW 32
1076	 error = bus_dma_tag_create(NULL,	/* parent */
1077			1, 0,			/* alignment, boundary */
1078			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1079			BUS_SPACE_MAXADDR,	/* highaddr */
1080			NULL, NULL,		/* filter, filterarg */
1081			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1082			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1083			BUS_DMA_ALLOCNOW,	/* flags */
1084			NULL, NULL,		/* lockfunc, lockarg */
1085			&sc->sis_parent_tag);
1086	if (error)
1087		goto fail;
1088
1089	/*
1090	 * Now allocate a tag for the DMA descriptor lists and a chunk
1091	 * of DMA-able memory based on the tag.  Also obtain the physical
1092	 * addresses of the RX and TX ring, which we'll need later.
1093	 * All of our lists are allocated as a contiguous block
1094	 * of memory.
1095	 */
1096	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1097			1, 0,			/* alignment, boundary */
1098			BUS_SPACE_MAXADDR,	/* lowaddr */
1099			BUS_SPACE_MAXADDR,	/* highaddr */
1100			NULL, NULL,		/* filter, filterarg */
1101			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1102			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1103			0,			/* flags */
1104			busdma_lock_mutex,	/* lockfunc */
1105			&Giant,			/* lockarg */
1106			&sc->sis_rx_tag);
1107	if (error)
1108		goto fail;
1109
1110	error = bus_dmamem_alloc(sc->sis_rx_tag,
1111	    (void **)&sc->sis_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1112	    &sc->sis_rx_dmamap);
1113
1114	if (error) {
1115		printf("sis%d: no memory for rx list buffers!\n", unit);
1116		bus_dma_tag_destroy(sc->sis_rx_tag);
1117		sc->sis_rx_tag = NULL;
1118		goto fail;
1119	}
1120
1121	error = bus_dmamap_load(sc->sis_rx_tag,
1122	    sc->sis_rx_dmamap, &(sc->sis_rx_list[0]),
1123	    sizeof(struct sis_desc), sis_dma_map_ring,
1124	    &sc->sis_rx_paddr, 0);
1125
1126	if (error) {
1127		printf("sis%d: cannot get address of the rx ring!\n", unit);
1128		bus_dmamem_free(sc->sis_rx_tag,
1129		    sc->sis_rx_list, sc->sis_rx_dmamap);
1130		bus_dma_tag_destroy(sc->sis_rx_tag);
1131		sc->sis_rx_tag = NULL;
1132		goto fail;
1133	}
1134
1135	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1136			1, 0,			/* alignment, boundary */
1137			BUS_SPACE_MAXADDR,	/* lowaddr */
1138			BUS_SPACE_MAXADDR,	/* highaddr */
1139			NULL, NULL,		/* filter, filterarg */
1140			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1141			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1142			0,			/* flags */
1143			busdma_lock_mutex,	/* lockfunc */
1144			&Giant,			/* lockarg */
1145			&sc->sis_tx_tag);
1146	if (error)
1147		goto fail;
1148
1149	error = bus_dmamem_alloc(sc->sis_tx_tag,
1150	    (void **)&sc->sis_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1151	    &sc->sis_tx_dmamap);
1152
1153	if (error) {
1154		printf("sis%d: no memory for tx list buffers!\n", unit);
1155		bus_dma_tag_destroy(sc->sis_tx_tag);
1156		sc->sis_tx_tag = NULL;
1157		goto fail;
1158	}
1159
1160	error = bus_dmamap_load(sc->sis_tx_tag,
1161	    sc->sis_tx_dmamap, &(sc->sis_tx_list[0]),
1162	    sizeof(struct sis_desc), sis_dma_map_ring,
1163	    &sc->sis_tx_paddr, 0);
1164
1165	if (error) {
1166		printf("sis%d: cannot get address of the tx ring!\n", unit);
1167		bus_dmamem_free(sc->sis_tx_tag,
1168		    sc->sis_tx_list, sc->sis_tx_dmamap);
1169		bus_dma_tag_destroy(sc->sis_tx_tag);
1170		sc->sis_tx_tag = NULL;
1171		goto fail;
1172	}
1173
1174	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1175			1, 0,			/* alignment, boundary */
1176			BUS_SPACE_MAXADDR,	/* lowaddr */
1177			BUS_SPACE_MAXADDR,	/* highaddr */
1178			NULL, NULL,		/* filter, filterarg */
1179			MCLBYTES, 1,		/* maxsize,nsegments */
1180			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1181			0,			/* flags */
1182			busdma_lock_mutex,	/* lockfunc */
1183			&Giant,			/* lockarg */
1184			&sc->sis_tag);
1185	if (error)
1186		goto fail;
1187
1188	/*
1189	 * Obtain the physical addresses of the RX and TX
1190	 * rings which we'll need later in the init routine.
1191	 */
1192
1193	ifp = &sc->arpcom.ac_if;
1194	ifp->if_softc = sc;
1195	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1196	ifp->if_mtu = ETHERMTU;
1197	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1198	ifp->if_ioctl = sis_ioctl;
1199	ifp->if_start = sis_start;
1200	ifp->if_watchdog = sis_watchdog;
1201	ifp->if_init = sis_init;
1202	ifp->if_baudrate = 10000000;
1203	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1204	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1205	IFQ_SET_READY(&ifp->if_snd);
1206
1207	/*
1208	 * Do MII setup.
1209	 */
1210	if (mii_phy_probe(dev, &sc->sis_miibus,
1211	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1212		printf("sis%d: MII without any PHY!\n", sc->sis_unit);
1213		error = ENXIO;
1214		goto fail;
1215	}
1216
1217	/*
1218	 * Call MI attach routine.
1219	 */
1220	ether_ifattach(ifp, eaddr);
1221
1222	/*
1223	 * Tell the upper layer(s) we support long frames.
1224	 */
1225	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1226	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1227
1228#ifdef DEVICE_POLLING
1229	ifp->if_capabilities |= IFCAP_POLLING;
1230#endif
1231	ifp->if_capenable = ifp->if_capabilities;
1232
1233	/* Hook interrupt last to avoid having to lock softc */
1234	error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET | INTR_MPSAFE,
1235	    sis_intr, sc, &sc->sis_intrhand);
1236
1237	if (error) {
1238		printf("sis%d: couldn't set up irq\n", unit);
1239		ether_ifdetach(ifp);
1240		goto fail;
1241	}
1242
1243fail:
1244	if (error)
1245		sis_detach(dev);
1246
1247	return(error);
1248}
1249
1250/*
1251 * Shutdown hardware and free up resources. This can be called any
1252 * time after the mutex has been initialized. It is called in both
1253 * the error case in attach and the normal detach case so it needs
1254 * to be careful about only freeing resources that have actually been
1255 * allocated.
1256 */
1257static int
1258sis_detach(device_t dev)
1259{
1260	struct sis_softc	*sc;
1261	struct ifnet		*ifp;
1262
1263	sc = device_get_softc(dev);
1264	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1265	SIS_LOCK(sc);
1266	ifp = &sc->arpcom.ac_if;
1267
1268	/* These should only be active if attach succeeded. */
1269	if (device_is_attached(dev)) {
1270		sis_reset(sc);
1271		sis_stop(sc);
1272		ether_ifdetach(ifp);
1273	}
1274	if (sc->sis_miibus)
1275		device_delete_child(dev, sc->sis_miibus);
1276	bus_generic_detach(dev);
1277
1278	if (sc->sis_intrhand)
1279		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1280	if (sc->sis_irq)
1281		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1282	if (sc->sis_res)
1283		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1284
1285	if (sc->sis_rx_tag) {
1286		bus_dmamap_unload(sc->sis_rx_tag,
1287		    sc->sis_rx_dmamap);
1288		bus_dmamem_free(sc->sis_rx_tag,
1289		    sc->sis_rx_list, sc->sis_rx_dmamap);
1290		bus_dma_tag_destroy(sc->sis_rx_tag);
1291	}
1292	if (sc->sis_tx_tag) {
1293		bus_dmamap_unload(sc->sis_tx_tag,
1294		    sc->sis_tx_dmamap);
1295		bus_dmamem_free(sc->sis_tx_tag,
1296		    sc->sis_tx_list, sc->sis_tx_dmamap);
1297		bus_dma_tag_destroy(sc->sis_tx_tag);
1298	}
1299	if (sc->sis_parent_tag)
1300		bus_dma_tag_destroy(sc->sis_parent_tag);
1301	if (sc->sis_tag)
1302		bus_dma_tag_destroy(sc->sis_tag);
1303
1304	SIS_UNLOCK(sc);
1305	mtx_destroy(&sc->sis_mtx);
1306
1307	return(0);
1308}
1309
1310/*
1311 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1312 * we arrange the descriptors in a closed ring, so that the last descriptor
1313 * points back to the first.
1314 */
1315static int
1316sis_ring_init(struct sis_softc *sc)
1317{
1318	int i, error;
1319	struct sis_desc *dp;
1320
1321	dp = &sc->sis_tx_list[0];
1322	for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
1323		if (i == (SIS_TX_LIST_CNT - 1))
1324			dp->sis_nextdesc = &sc->sis_tx_list[0];
1325		else
1326			dp->sis_nextdesc = dp + 1;
1327		bus_dmamap_load(sc->sis_tx_tag,
1328		    sc->sis_tx_dmamap,
1329		    dp->sis_nextdesc, sizeof(struct sis_desc),
1330		    sis_dma_map_desc_next, dp, 0);
1331		dp->sis_mbuf = NULL;
1332		dp->sis_ptr = 0;
1333		dp->sis_ctl = 0;
1334	}
1335
1336	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1337
1338	bus_dmamap_sync(sc->sis_tx_tag,
1339	    sc->sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1340
1341	dp = &sc->sis_rx_list[0];
1342	for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
1343		error = sis_newbuf(sc, dp, NULL);
1344		if (error)
1345			return(error);
1346		if (i == (SIS_RX_LIST_CNT - 1))
1347			dp->sis_nextdesc = &sc->sis_rx_list[0];
1348		else
1349			dp->sis_nextdesc = dp + 1;
1350		bus_dmamap_load(sc->sis_rx_tag,
1351		    sc->sis_rx_dmamap,
1352		    dp->sis_nextdesc, sizeof(struct sis_desc),
1353		    sis_dma_map_desc_next, dp, 0);
1354		}
1355
1356	bus_dmamap_sync(sc->sis_rx_tag,
1357	    sc->sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1358
1359	sc->sis_rx_pdsc = &sc->sis_rx_list[0];
1360
1361	return(0);
1362}
1363
1364/*
1365 * Initialize an RX descriptor and attach an MBUF cluster.
1366 */
1367static int
1368sis_newbuf(struct sis_softc *sc, struct sis_desc *c, struct mbuf *m)
1369{
1370
1371	if (c == NULL)
1372		return(EINVAL);
1373
1374	if (m == NULL) {
1375		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1376		if (m == NULL)
1377			return(ENOBUFS);
1378	} else
1379		m->m_data = m->m_ext.ext_buf;
1380
1381	c->sis_mbuf = m;
1382	c->sis_ctl = SIS_RXLEN;
1383
1384	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1385	bus_dmamap_load(sc->sis_tag, c->sis_map,
1386	    mtod(m, void *), MCLBYTES,
1387	    sis_dma_map_desc_ptr, c, 0);
1388	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1389
1390	return(0);
1391}
1392
1393/*
1394 * A frame has been uploaded: pass the resulting mbuf chain up to
1395 * the higher level protocols.
1396 */
1397static void
1398sis_rxeof(struct sis_softc *sc)
1399{
1400        struct mbuf		*m;
1401        struct ifnet		*ifp;
1402	struct sis_desc		*cur_rx;
1403	int			total_len = 0;
1404	u_int32_t		rxstat;
1405
1406	SIS_LOCK_ASSERT(sc);
1407
1408	ifp = &sc->arpcom.ac_if;
1409
1410	for(cur_rx = sc->sis_rx_pdsc; SIS_OWNDESC(cur_rx);
1411	    cur_rx = cur_rx->sis_nextdesc) {
1412
1413#ifdef DEVICE_POLLING
1414		if (ifp->if_flags & IFF_POLLING) {
1415			if (sc->rxcycles <= 0)
1416				break;
1417			sc->rxcycles--;
1418		}
1419#endif /* DEVICE_POLLING */
1420		rxstat = cur_rx->sis_rxstat;
1421		bus_dmamap_sync(sc->sis_tag,
1422		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1423		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1424		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1425		m = cur_rx->sis_mbuf;
1426		cur_rx->sis_mbuf = NULL;
1427		total_len = SIS_RXBYTES(cur_rx);
1428
1429		/*
1430		 * If an error occurs, update stats, clear the
1431		 * status word and leave the mbuf cluster in place:
1432		 * it should simply get re-used next time this descriptor
1433	 	 * comes up in the ring.
1434		 */
1435		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1436			ifp->if_ierrors++;
1437			if (rxstat & SIS_RXSTAT_COLL)
1438				ifp->if_collisions++;
1439			sis_newbuf(sc, cur_rx, m);
1440			continue;
1441		}
1442
1443		/* No errors; receive the packet. */
1444#ifdef __i386__
1445		/*
1446		 * On the x86 we do not have alignment problems, so try to
1447		 * allocate a new buffer for the receive ring, and pass up
1448		 * the one where the packet is already, saving the expensive
1449		 * copy done in m_devget().
1450		 * If we are on an architecture with alignment problems, or
1451		 * if the allocation fails, then use m_devget and leave the
1452		 * existing buffer in the receive ring.
1453		 */
1454		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1455			m->m_pkthdr.len = m->m_len = total_len;
1456		else
1457#endif
1458		{
1459			struct mbuf		*m0;
1460			m0 = m_devget(mtod(m, char *), total_len,
1461				ETHER_ALIGN, ifp, NULL);
1462			sis_newbuf(sc, cur_rx, m);
1463			if (m0 == NULL) {
1464				ifp->if_ierrors++;
1465				continue;
1466			}
1467			m = m0;
1468		}
1469
1470		ifp->if_ipackets++;
1471		m->m_pkthdr.rcvif = ifp;
1472
1473		SIS_UNLOCK(sc);
1474		(*ifp->if_input)(ifp, m);
1475		SIS_LOCK(sc);
1476	}
1477
1478	sc->sis_rx_pdsc = cur_rx;
1479}
1480
1481static void
1482sis_rxeoc(struct sis_softc *sc)
1483{
1484
1485	SIS_LOCK_ASSERT(sc);
1486	sis_rxeof(sc);
1487	sis_initl(sc);
1488}
1489
1490/*
1491 * A frame was downloaded to the chip. It's safe for us to clean up
1492 * the list buffers.
1493 */
1494
1495static void
1496sis_txeof(struct sis_softc *sc)
1497{
1498	struct ifnet		*ifp;
1499	u_int32_t		idx;
1500
1501	SIS_LOCK_ASSERT(sc);
1502	ifp = &sc->arpcom.ac_if;
1503
1504	/*
1505	 * Go through our tx list and free mbufs for those
1506	 * frames that have been transmitted.
1507	 */
1508	for (idx = sc->sis_tx_cons; sc->sis_tx_cnt > 0;
1509	    sc->sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1510		struct sis_desc *cur_tx = &sc->sis_tx_list[idx];
1511
1512		if (SIS_OWNDESC(cur_tx))
1513			break;
1514
1515		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1516			continue;
1517
1518		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1519			ifp->if_oerrors++;
1520			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1521				ifp->if_collisions++;
1522			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1523				ifp->if_collisions++;
1524		}
1525
1526		ifp->if_collisions +=
1527		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1528
1529		ifp->if_opackets++;
1530		if (cur_tx->sis_mbuf != NULL) {
1531			m_freem(cur_tx->sis_mbuf);
1532			cur_tx->sis_mbuf = NULL;
1533			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1534			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1535		}
1536	}
1537
1538	if (idx != sc->sis_tx_cons) {
1539		/* we freed up some buffers */
1540		sc->sis_tx_cons = idx;
1541		ifp->if_flags &= ~IFF_OACTIVE;
1542	}
1543
1544	ifp->if_timer = (sc->sis_tx_cnt == 0) ? 0 : 5;
1545
1546	return;
1547}
1548
1549static void
1550sis_tick(void *xsc)
1551{
1552	struct sis_softc	*sc;
1553	struct mii_data		*mii;
1554	struct ifnet		*ifp;
1555
1556	sc = xsc;
1557	SIS_LOCK(sc);
1558	sc->in_tick = 1;
1559	ifp = &sc->arpcom.ac_if;
1560
1561	mii = device_get_softc(sc->sis_miibus);
1562	mii_tick(mii);
1563
1564	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1565	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1566		sc->sis_link++;
1567		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1568			sis_startl(ifp);
1569	}
1570
1571	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1572	sc->in_tick = 0;
1573	SIS_UNLOCK(sc);
1574}
1575
1576#ifdef DEVICE_POLLING
1577static poll_handler_t sis_poll;
1578
1579static void
1580sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1581{
1582	struct	sis_softc *sc = ifp->if_softc;
1583
1584	SIS_LOCK(sc);
1585	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1586		ether_poll_deregister(ifp);
1587		cmd = POLL_DEREGISTER;
1588	}
1589	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1590		CSR_WRITE_4(sc, SIS_IER, 1);
1591		goto done;
1592	}
1593
1594	/*
1595	 * On the sis, reading the status register also clears it.
1596	 * So before returning to intr mode we must make sure that all
1597	 * possible pending sources of interrupts have been served.
1598	 * In practice this means run to completion the *eof routines,
1599	 * and then call the interrupt routine
1600	 */
1601	sc->rxcycles = count;
1602	sis_rxeof(sc);
1603	sis_txeof(sc);
1604	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1605		sis_startl(ifp);
1606
1607	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1608		u_int32_t	status;
1609
1610		/* Reading the ISR register clears all interrupts. */
1611		status = CSR_READ_4(sc, SIS_ISR);
1612
1613		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1614			sis_rxeoc(sc);
1615
1616		if (status & (SIS_ISR_RX_IDLE))
1617			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1618
1619		if (status & SIS_ISR_SYSERR) {
1620			sis_reset(sc);
1621			sis_initl(sc);
1622		}
1623	}
1624done:
1625	SIS_UNLOCK(sc);
1626}
1627#endif /* DEVICE_POLLING */
1628
1629static void
1630sis_intr(void *arg)
1631{
1632	struct sis_softc	*sc;
1633	struct ifnet		*ifp;
1634	u_int32_t		status;
1635
1636	sc = arg;
1637	ifp = &sc->arpcom.ac_if;
1638
1639	if (sc->sis_stopped)	/* Most likely shared interrupt */
1640		return;
1641
1642	SIS_LOCK(sc);
1643#ifdef DEVICE_POLLING
1644	if (ifp->if_flags & IFF_POLLING)
1645		goto done;
1646	if ((ifp->if_capenable & IFCAP_POLLING) &&
1647	    ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
1648		CSR_WRITE_4(sc, SIS_IER, 0);
1649		goto done;
1650	}
1651#endif /* DEVICE_POLLING */
1652
1653	/* Disable interrupts. */
1654	CSR_WRITE_4(sc, SIS_IER, 0);
1655
1656	for (;;) {
1657		SIS_LOCK_ASSERT(sc);
1658		/* Reading the ISR register clears all interrupts. */
1659		status = CSR_READ_4(sc, SIS_ISR);
1660
1661		if ((status & SIS_INTRS) == 0)
1662			break;
1663
1664		if (status &
1665		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1666		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1667			sis_txeof(sc);
1668
1669		if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
1670			sis_rxeof(sc);
1671
1672		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1673			sis_rxeoc(sc);
1674
1675		if (status & (SIS_ISR_RX_IDLE))
1676			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1677
1678		if (status & SIS_ISR_SYSERR) {
1679			sis_reset(sc);
1680			sis_initl(sc);
1681		}
1682	}
1683
1684	/* Re-enable interrupts. */
1685	CSR_WRITE_4(sc, SIS_IER, 1);
1686
1687	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1688		sis_startl(ifp);
1689
1690	SIS_UNLOCK(sc);
1691}
1692
1693/*
1694 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1695 * pointers to the fragment pointers.
1696 */
1697static int
1698sis_encap(struct sis_softc *sc, struct mbuf **m_head, uint32_t *txidx)
1699{
1700	struct sis_desc		*f = NULL;
1701	struct mbuf		*m;
1702	int			frag, cur, cnt = 0, chainlen = 0;
1703
1704	/*
1705	 * If there's no way we can send any packets, return now.
1706	 */
1707	if (SIS_TX_LIST_CNT - sc->sis_tx_cnt < 2)
1708		return (ENOBUFS);
1709
1710	/*
1711	 * Count the number of frags in this chain to see if
1712	 * we need to m_defrag.  Since the descriptor list is shared
1713	 * by all packets, we'll m_defrag long chains so that they
1714	 * do not use up the entire list, even if they would fit.
1715	 */
1716
1717	for (m = *m_head; m != NULL; m = m->m_next)
1718		chainlen++;
1719
1720	if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1721	    ((SIS_TX_LIST_CNT - (chainlen + sc->sis_tx_cnt)) < 2)) {
1722		m = m_defrag(*m_head, M_DONTWAIT);
1723		if (m == NULL)
1724			return (ENOBUFS);
1725		*m_head = m;
1726	}
1727
1728	/*
1729 	 * Start packing the mbufs in this chain into
1730	 * the fragment pointers. Stop when we run out
1731 	 * of fragments or hit the end of the mbuf chain.
1732	 */
1733	cur = frag = *txidx;
1734
1735	for (m = *m_head; m != NULL; m = m->m_next) {
1736		if (m->m_len != 0) {
1737			if ((SIS_TX_LIST_CNT -
1738			    (sc->sis_tx_cnt + cnt)) < 2)
1739				return(ENOBUFS);
1740			f = &sc->sis_tx_list[frag];
1741			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1742			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1743			bus_dmamap_load(sc->sis_tag, f->sis_map,
1744			    mtod(m, void *), m->m_len,
1745			    sis_dma_map_desc_ptr, f, 0);
1746			bus_dmamap_sync(sc->sis_tag,
1747			    f->sis_map, BUS_DMASYNC_PREREAD);
1748			if (cnt != 0)
1749				f->sis_ctl |= SIS_CMDSTS_OWN;
1750			cur = frag;
1751			SIS_INC(frag, SIS_TX_LIST_CNT);
1752			cnt++;
1753		}
1754	}
1755
1756	if (m != NULL)
1757		return(ENOBUFS);
1758
1759	sc->sis_tx_list[cur].sis_mbuf = *m_head;
1760	sc->sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1761	sc->sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1762	sc->sis_tx_cnt += cnt;
1763	*txidx = frag;
1764
1765	return(0);
1766}
1767
1768/*
1769 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1770 * to the mbuf data regions directly in the transmit lists. We also save a
1771 * copy of the pointers since the transmit list fragment pointers are
1772 * physical addresses.
1773 */
1774
1775static void
1776sis_start(struct ifnet *ifp)
1777{
1778	struct sis_softc	*sc;
1779
1780	sc = ifp->if_softc;
1781	SIS_LOCK(sc);
1782	sis_startl(ifp);
1783	SIS_UNLOCK(sc);
1784}
1785
1786static void
1787sis_startl(struct ifnet *ifp)
1788{
1789	struct sis_softc	*sc;
1790	struct mbuf		*m_head = NULL;
1791	u_int32_t		idx, queued = 0;
1792
1793	sc = ifp->if_softc;
1794
1795	SIS_LOCK_ASSERT(sc);
1796
1797	if (!sc->sis_link)
1798		return;
1799
1800	idx = sc->sis_tx_prod;
1801
1802	if (ifp->if_flags & IFF_OACTIVE)
1803		return;
1804
1805	while(sc->sis_tx_list[idx].sis_mbuf == NULL) {
1806		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1807		if (m_head == NULL)
1808			break;
1809
1810		if (sis_encap(sc, &m_head, &idx)) {
1811			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1812			ifp->if_flags |= IFF_OACTIVE;
1813			break;
1814		}
1815
1816		queued++;
1817
1818		/*
1819		 * If there's a BPF listener, bounce a copy of this frame
1820		 * to him.
1821		 */
1822		BPF_MTAP(ifp, m_head);
1823
1824	}
1825
1826	if (queued) {
1827		/* Transmit */
1828		sc->sis_tx_prod = idx;
1829		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1830
1831		/*
1832		 * Set a timeout in case the chip goes out to lunch.
1833		 */
1834		ifp->if_timer = 5;
1835	}
1836}
1837
1838static void
1839sis_init(void *xsc)
1840{
1841	struct sis_softc	*sc = xsc;
1842
1843	SIS_LOCK(sc);
1844	sis_initl(sc);
1845	SIS_UNLOCK(sc);
1846}
1847
1848static void
1849sis_initl(struct sis_softc *sc)
1850{
1851	struct ifnet		*ifp = &sc->arpcom.ac_if;
1852	struct mii_data		*mii;
1853
1854	SIS_LOCK_ASSERT(sc);
1855
1856	/*
1857	 * Cancel pending I/O and free all RX/TX buffers.
1858	 */
1859	sis_stop(sc);
1860	sc->sis_stopped = 0;
1861
1862#ifdef notyet
1863	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1864		/*
1865		 * Configure 400usec of interrupt holdoff.  This is based
1866		 * on emperical tests on a Soekris 4801.
1867 		 */
1868		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1869	}
1870#endif
1871
1872	mii = device_get_softc(sc->sis_miibus);
1873
1874	/* Set MAC address */
1875	if (sc->sis_type == SIS_TYPE_83815) {
1876		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1877		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1878		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1879		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1880		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1881		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1882		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1883		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1884		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1885	} else {
1886		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1887		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1888		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1889		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1890		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1891		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1892		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1893		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1894		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1895	}
1896
1897	/* Init circular TX/RX lists. */
1898	if (sis_ring_init(sc) != 0) {
1899		printf("sis%d: initialization failed: no "
1900			"memory for rx buffers\n", sc->sis_unit);
1901		sis_stop(sc);
1902		return;
1903	}
1904
1905	/*
1906	 * Short Cable Receive Errors (MP21.E)
1907	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
1908	 * recommends the following register settings "for optimum
1909	 * performance." for rev 15C.  The driver from NS also sets
1910	 * the PHY_CR register for later versions.
1911	 */
1912	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
1913		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
1914		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
1915		if (sc->sis_srr == NS_SRR_15C) {
1916			/* set val for c2 */
1917			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
1918			/* load/kill c2 */
1919			CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
1920			/* rais SD off, from 4 to c */
1921			CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
1922		}
1923		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
1924	}
1925
1926
1927	/*
1928	 * For the NatSemi chip, we have to explicitly enable the
1929	 * reception of ARP frames, as well as turn on the 'perfect
1930	 * match' filter where we store the station address, otherwise
1931	 * we won't receive unicasts meant for this host.
1932	 */
1933	if (sc->sis_type == SIS_TYPE_83815) {
1934		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1935		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1936	}
1937
1938	 /* If we want promiscuous mode, set the allframes bit. */
1939	if (ifp->if_flags & IFF_PROMISC) {
1940		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1941	} else {
1942		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1943	}
1944
1945	/*
1946	 * Set the capture broadcast bit to capture broadcast frames.
1947	 */
1948	if (ifp->if_flags & IFF_BROADCAST) {
1949		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1950	} else {
1951		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1952	}
1953
1954	/*
1955	 * Load the multicast filter.
1956	 */
1957	if (sc->sis_type == SIS_TYPE_83815)
1958		sis_setmulti_ns(sc);
1959	else
1960		sis_setmulti_sis(sc);
1961
1962	/* Turn the receive filter on */
1963	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1964
1965	/*
1966	 * Load the address of the RX and TX lists.
1967	 */
1968	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_rx_paddr);
1969	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_tx_paddr);
1970
1971	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1972	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1973	 * for TX/RX DMA should be no larger than 16 double words.
1974	 */
1975	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
1976		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1977	} else {
1978		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1979	}
1980
1981	/* Accept Long Packets for VLAN support */
1982	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1983
1984	/* Set TX configuration */
1985	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
1986		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1987	} else {
1988		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1989	}
1990
1991	/* Set full/half duplex mode. */
1992	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1993		SIS_SETBIT(sc, SIS_TX_CFG,
1994		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1995		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1996	} else {
1997		SIS_CLRBIT(sc, SIS_TX_CFG,
1998		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1999		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2000	}
2001
2002	if (sc->sis_type == SIS_TYPE_83816) {
2003		/*
2004		 * MPII03.D: Half Duplex Excessive Collisions.
2005		 * Also page 49 in 83816 manual
2006		 */
2007		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
2008	}
2009
2010	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
2011	     IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2012		uint32_t reg;
2013
2014		/*
2015		 * Short Cable Receive Errors (MP21.E)
2016		 */
2017		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2018		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
2019		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
2020		DELAY(100000);
2021		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
2022		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
2023			device_printf(sc->sis_self,
2024			    "Applying short cable fix (reg=%x)\n", reg);
2025			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
2026			reg = CSR_READ_4(sc, NS_PHY_DSPCFG);
2027			SIS_SETBIT(sc, NS_PHY_DSPCFG, reg | 0x20);
2028		}
2029		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2030	}
2031
2032	/*
2033	 * Enable interrupts.
2034	 */
2035	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2036#ifdef DEVICE_POLLING
2037	/*
2038	 * ... only enable interrupts if we are not polling, make sure
2039	 * they are off otherwise.
2040	 */
2041	if (ifp->if_flags & IFF_POLLING)
2042		CSR_WRITE_4(sc, SIS_IER, 0);
2043	else
2044#endif /* DEVICE_POLLING */
2045	CSR_WRITE_4(sc, SIS_IER, 1);
2046
2047	/* Enable receiver and transmitter. */
2048	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2049	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2050
2051#ifdef notdef
2052	mii_mediachg(mii);
2053#endif
2054
2055	ifp->if_flags |= IFF_RUNNING;
2056	ifp->if_flags &= ~IFF_OACTIVE;
2057
2058	if (!sc->in_tick)
2059		callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2060}
2061
2062/*
2063 * Set media options.
2064 */
2065static int
2066sis_ifmedia_upd(struct ifnet *ifp)
2067{
2068	struct sis_softc	*sc;
2069	struct mii_data		*mii;
2070
2071	sc = ifp->if_softc;
2072
2073	mii = device_get_softc(sc->sis_miibus);
2074	sc->sis_link = 0;
2075	if (mii->mii_instance) {
2076		struct mii_softc	*miisc;
2077		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2078			mii_phy_reset(miisc);
2079	}
2080	mii_mediachg(mii);
2081
2082	return(0);
2083}
2084
2085/*
2086 * Report current media status.
2087 */
2088static void
2089sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2090{
2091	struct sis_softc	*sc;
2092	struct mii_data		*mii;
2093
2094	sc = ifp->if_softc;
2095
2096	mii = device_get_softc(sc->sis_miibus);
2097	mii_pollstat(mii);
2098	ifmr->ifm_active = mii->mii_media_active;
2099	ifmr->ifm_status = mii->mii_media_status;
2100}
2101
2102static int
2103sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2104{
2105	struct sis_softc	*sc = ifp->if_softc;
2106	struct ifreq		*ifr = (struct ifreq *) data;
2107	struct mii_data		*mii;
2108	int			error = 0;
2109
2110	switch(command) {
2111	case SIOCSIFFLAGS:
2112		if (ifp->if_flags & IFF_UP) {
2113			sis_init(sc);
2114		} else if (ifp->if_flags & IFF_RUNNING) {
2115			SIS_LOCK(sc);
2116			sis_stop(sc);
2117			SIS_UNLOCK(sc);
2118		}
2119		error = 0;
2120		break;
2121	case SIOCADDMULTI:
2122	case SIOCDELMULTI:
2123		SIS_LOCK(sc);
2124		if (sc->sis_type == SIS_TYPE_83815)
2125			sis_setmulti_ns(sc);
2126		else
2127			sis_setmulti_sis(sc);
2128		SIS_UNLOCK(sc);
2129		error = 0;
2130		break;
2131	case SIOCGIFMEDIA:
2132	case SIOCSIFMEDIA:
2133		mii = device_get_softc(sc->sis_miibus);
2134		SIS_LOCK(sc);
2135		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2136		SIS_UNLOCK(sc);
2137		break;
2138	case SIOCSIFCAP:
2139		ifp->if_capenable &= ~IFCAP_POLLING;
2140		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
2141		break;
2142	default:
2143		error = ether_ioctl(ifp, command, data);
2144		break;
2145	}
2146
2147	return(error);
2148}
2149
2150static void
2151sis_watchdog(struct ifnet *ifp)
2152{
2153	struct sis_softc *sc;
2154
2155	sc = ifp->if_softc;
2156
2157	SIS_LOCK(sc);
2158	if (sc->sis_stopped) {
2159		SIS_UNLOCK(sc);
2160		return;
2161	}
2162
2163	ifp->if_oerrors++;
2164	printf("sis%d: watchdog timeout\n", sc->sis_unit);
2165
2166	sis_stop(sc);
2167	sis_reset(sc);
2168	sis_initl(sc);
2169
2170	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2171		sis_startl(ifp);
2172
2173	SIS_UNLOCK(sc);
2174}
2175
2176/*
2177 * Stop the adapter and free any mbufs allocated to the
2178 * RX and TX lists.
2179 */
2180static void
2181sis_stop(struct sis_softc *sc)
2182{
2183	int i;
2184	struct ifnet *ifp;
2185	struct sis_desc *dp;
2186
2187	if (sc->sis_stopped)
2188		return;
2189	SIS_LOCK_ASSERT(sc);
2190	ifp = &sc->arpcom.ac_if;
2191	ifp->if_timer = 0;
2192
2193	callout_stop(&sc->sis_stat_ch);
2194
2195	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2196#ifdef DEVICE_POLLING
2197	ether_poll_deregister(ifp);
2198#endif
2199	CSR_WRITE_4(sc, SIS_IER, 0);
2200	CSR_WRITE_4(sc, SIS_IMR, 0);
2201	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2202	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2203	DELAY(1000);
2204	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2205	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2206
2207	sc->sis_link = 0;
2208
2209	/*
2210	 * Free data in the RX lists.
2211	 */
2212	dp = &sc->sis_rx_list[0];
2213	for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
2214		if (dp->sis_mbuf == NULL)
2215			continue;
2216		bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2217		bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2218		m_freem(dp->sis_mbuf);
2219		dp->sis_mbuf = NULL;
2220	}
2221	bzero(sc->sis_rx_list, SIS_RX_LIST_SZ);
2222
2223	/*
2224	 * Free the TX list buffers.
2225	 */
2226	dp = &sc->sis_tx_list[0];
2227	for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
2228		if (dp->sis_mbuf == NULL)
2229			continue;
2230		bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2231		bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2232		m_freem(dp->sis_mbuf);
2233		dp->sis_mbuf = NULL;
2234	}
2235
2236	bzero(sc->sis_tx_list, SIS_TX_LIST_SZ);
2237
2238	sc->sis_stopped = 1;
2239}
2240
2241/*
2242 * Stop all chip I/O so that the kernel's probe routines don't
2243 * get confused by errant DMAs when rebooting.
2244 */
2245static void
2246sis_shutdown(device_t dev)
2247{
2248	struct sis_softc	*sc;
2249
2250	sc = device_get_softc(dev);
2251	SIS_LOCK(sc);
2252	sis_reset(sc);
2253	sis_stop(sc);
2254	SIS_UNLOCK(sc);
2255}
2256
2257static device_method_t sis_methods[] = {
2258	/* Device interface */
2259	DEVMETHOD(device_probe,		sis_probe),
2260	DEVMETHOD(device_attach,	sis_attach),
2261	DEVMETHOD(device_detach,	sis_detach),
2262	DEVMETHOD(device_shutdown,	sis_shutdown),
2263
2264	/* bus interface */
2265	DEVMETHOD(bus_print_child,	bus_generic_print_child),
2266	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2267
2268	/* MII interface */
2269	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2270	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2271	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2272
2273	{ 0, 0 }
2274};
2275
2276static driver_t sis_driver = {
2277	"sis",
2278	sis_methods,
2279	sizeof(struct sis_softc)
2280};
2281
2282static devclass_t sis_devclass;
2283
2284DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2285DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2286