if_sis.c revision 122689
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/pci/if_sis.c 122689 2003-11-14 19:00:32Z sam $");
35
36/*
37 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
38 * available from http://www.sis.com.tw.
39 *
40 * This driver also supports the NatSemi DP83815. Datasheets are
41 * available from http://www.national.com.
42 *
43 * Written by Bill Paul <wpaul@ee.columbia.edu>
44 * Electrical Engineering Department
45 * Columbia University, New York City
46 */
47/*
48 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
49 * simple TX and RX descriptors of 3 longwords in size. The receiver
50 * has a single perfect filter entry for the station address and a
51 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
52 * transceiver while the 7016 requires an external transceiver chip.
53 * Both chips offer the standard bit-bang MII interface as well as
54 * an enchanced PHY interface which simplifies accessing MII registers.
55 *
56 * The only downside to this chipset is that RX descriptors must be
57 * longword aligned.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/sockio.h>
63#include <sys/mbuf.h>
64#include <sys/malloc.h>
65#include <sys/kernel.h>
66#include <sys/socket.h>
67#include <sys/sysctl.h>
68
69#include <net/if.h>
70#include <net/if_arp.h>
71#include <net/ethernet.h>
72#include <net/if_dl.h>
73#include <net/if_media.h>
74#include <net/if_types.h>
75#include <net/if_vlan_var.h>
76
77#include <net/bpf.h>
78
79#include <machine/bus_pio.h>
80#include <machine/bus_memio.h>
81#include <machine/bus.h>
82#include <machine/resource.h>
83#include <sys/bus.h>
84#include <sys/rman.h>
85
86#include <dev/mii/mii.h>
87#include <dev/mii/miivar.h>
88
89#include <dev/pci/pcireg.h>
90#include <dev/pci/pcivar.h>
91
92#define SIS_USEIOSPACE
93
94#include <pci/if_sisreg.h>
95
96MODULE_DEPEND(sis, pci, 1, 1, 1);
97MODULE_DEPEND(sis, ether, 1, 1, 1);
98MODULE_DEPEND(sis, miibus, 1, 1, 1);
99
100/* "controller miibus0" required.  See GENERIC if you get errors here. */
101#include "miibus_if.h"
102
103/*
104 * Various supported device vendors/types and their names.
105 */
106static struct sis_type sis_devs[] = {
107	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
108	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
109	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
110	{ 0, 0, NULL }
111};
112
113static int sis_probe		(device_t);
114static int sis_attach		(device_t);
115static int sis_detach		(device_t);
116
117static int sis_newbuf		(struct sis_softc *,
118					struct sis_desc *, struct mbuf *);
119static int sis_encap		(struct sis_softc *,
120					struct mbuf **, u_int32_t *);
121static void sis_rxeof		(struct sis_softc *);
122static void sis_rxeoc		(struct sis_softc *);
123static void sis_txeof		(struct sis_softc *);
124static void sis_intr		(void *);
125static void sis_tick		(void *);
126static void sis_start		(struct ifnet *);
127static int sis_ioctl		(struct ifnet *, u_long, caddr_t);
128static void sis_init		(void *);
129static void sis_stop		(struct sis_softc *);
130static void sis_watchdog		(struct ifnet *);
131static void sis_shutdown		(device_t);
132static int sis_ifmedia_upd	(struct ifnet *);
133static void sis_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
134
135static u_int16_t sis_reverse	(u_int16_t);
136static void sis_delay		(struct sis_softc *);
137static void sis_eeprom_idle	(struct sis_softc *);
138static void sis_eeprom_putbyte	(struct sis_softc *, int);
139static void sis_eeprom_getword	(struct sis_softc *, int, u_int16_t *);
140static void sis_read_eeprom	(struct sis_softc *, caddr_t, int, int, int);
141#ifdef __i386__
142static void sis_read_cmos	(struct sis_softc *, device_t, caddr_t,
143							int, int);
144static void sis_read_mac	(struct sis_softc *, device_t, caddr_t);
145static device_t sis_find_bridge	(device_t);
146#endif
147
148static void sis_mii_sync	(struct sis_softc *);
149static void sis_mii_send	(struct sis_softc *, u_int32_t, int);
150static int sis_mii_readreg	(struct sis_softc *, struct sis_mii_frame *);
151static int sis_mii_writereg	(struct sis_softc *, struct sis_mii_frame *);
152static int sis_miibus_readreg	(device_t, int, int);
153static int sis_miibus_writereg	(device_t, int, int, int);
154static void sis_miibus_statchg	(device_t);
155
156static void sis_setmulti_sis	(struct sis_softc *);
157static void sis_setmulti_ns	(struct sis_softc *);
158static u_int32_t sis_mchash	(struct sis_softc *, caddr_t);
159static void sis_reset		(struct sis_softc *);
160static int sis_list_rx_init	(struct sis_softc *);
161static int sis_list_tx_init	(struct sis_softc *);
162
163static void sis_dma_map_desc_ptr	(void *, bus_dma_segment_t *, int, int);
164static void sis_dma_map_desc_next	(void *, bus_dma_segment_t *, int, int);
165static void sis_dma_map_ring		(void *, bus_dma_segment_t *, int, int);
166#ifdef SIS_USEIOSPACE
167#define SIS_RES			SYS_RES_IOPORT
168#define SIS_RID			SIS_PCI_LOIO
169#else
170#define SIS_RES			SYS_RES_MEMORY
171#define SIS_RID			SIS_PCI_LOMEM
172#endif
173
174static device_method_t sis_methods[] = {
175	/* Device interface */
176	DEVMETHOD(device_probe,		sis_probe),
177	DEVMETHOD(device_attach,	sis_attach),
178	DEVMETHOD(device_detach,	sis_detach),
179	DEVMETHOD(device_shutdown,	sis_shutdown),
180
181	/* bus interface */
182	DEVMETHOD(bus_print_child,	bus_generic_print_child),
183	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
184
185	/* MII interface */
186	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
187	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
188	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
189
190	{ 0, 0 }
191};
192
193static driver_t sis_driver = {
194	"sis",
195	sis_methods,
196	sizeof(struct sis_softc)
197};
198
199static devclass_t sis_devclass;
200
201DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
202DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
203
204#define SIS_SETBIT(sc, reg, x)				\
205	CSR_WRITE_4(sc, reg,				\
206		CSR_READ_4(sc, reg) | (x))
207
208#define SIS_CLRBIT(sc, reg, x)				\
209	CSR_WRITE_4(sc, reg,				\
210		CSR_READ_4(sc, reg) & ~(x))
211
212#define SIO_SET(x)					\
213	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
214
215#define SIO_CLR(x)					\
216	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
217
218static void
219sis_dma_map_desc_next(arg, segs, nseg, error)
220	void *arg;
221	bus_dma_segment_t *segs;
222	int nseg, error;
223{
224	struct sis_desc	*r;
225
226	r = arg;
227	r->sis_next = segs->ds_addr;
228
229	return;
230}
231
232static void
233sis_dma_map_desc_ptr(arg, segs, nseg, error)
234	void *arg;
235	bus_dma_segment_t *segs;
236	int nseg, error;
237{
238	struct sis_desc	*r;
239
240	r = arg;
241	r->sis_ptr = segs->ds_addr;
242
243	return;
244}
245
246static void
247sis_dma_map_ring(arg, segs, nseg, error)
248	void *arg;
249	bus_dma_segment_t *segs;
250	int nseg, error;
251{
252	u_int32_t *p;
253
254	p = arg;
255	*p = segs->ds_addr;
256
257	return;
258}
259
260/*
261 * Routine to reverse the bits in a word. Stolen almost
262 * verbatim from /usr/games/fortune.
263 */
264static u_int16_t
265sis_reverse(n)
266	u_int16_t		n;
267{
268	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
269	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
270	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
271	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
272
273	return(n);
274}
275
276static void
277sis_delay(sc)
278	struct sis_softc	*sc;
279{
280	int			idx;
281
282	for (idx = (300 / 33) + 1; idx > 0; idx--)
283		CSR_READ_4(sc, SIS_CSR);
284
285	return;
286}
287
288static void
289sis_eeprom_idle(sc)
290	struct sis_softc	*sc;
291{
292	register int		i;
293
294	SIO_SET(SIS_EECTL_CSEL);
295	sis_delay(sc);
296	SIO_SET(SIS_EECTL_CLK);
297	sis_delay(sc);
298
299	for (i = 0; i < 25; i++) {
300		SIO_CLR(SIS_EECTL_CLK);
301		sis_delay(sc);
302		SIO_SET(SIS_EECTL_CLK);
303		sis_delay(sc);
304	}
305
306	SIO_CLR(SIS_EECTL_CLK);
307	sis_delay(sc);
308	SIO_CLR(SIS_EECTL_CSEL);
309	sis_delay(sc);
310	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
311
312	return;
313}
314
315/*
316 * Send a read command and address to the EEPROM, check for ACK.
317 */
318static void
319sis_eeprom_putbyte(sc, addr)
320	struct sis_softc	*sc;
321	int			addr;
322{
323	register int		d, i;
324
325	d = addr | SIS_EECMD_READ;
326
327	/*
328	 * Feed in each bit and stobe the clock.
329	 */
330	for (i = 0x400; i; i >>= 1) {
331		if (d & i) {
332			SIO_SET(SIS_EECTL_DIN);
333		} else {
334			SIO_CLR(SIS_EECTL_DIN);
335		}
336		sis_delay(sc);
337		SIO_SET(SIS_EECTL_CLK);
338		sis_delay(sc);
339		SIO_CLR(SIS_EECTL_CLK);
340		sis_delay(sc);
341	}
342
343	return;
344}
345
346/*
347 * Read a word of data stored in the EEPROM at address 'addr.'
348 */
349static void
350sis_eeprom_getword(sc, addr, dest)
351	struct sis_softc	*sc;
352	int			addr;
353	u_int16_t		*dest;
354{
355	register int		i;
356	u_int16_t		word = 0;
357
358	/* Force EEPROM to idle state. */
359	sis_eeprom_idle(sc);
360
361	/* Enter EEPROM access mode. */
362	sis_delay(sc);
363	SIO_CLR(SIS_EECTL_CLK);
364	sis_delay(sc);
365	SIO_SET(SIS_EECTL_CSEL);
366	sis_delay(sc);
367
368	/*
369	 * Send address of word we want to read.
370	 */
371	sis_eeprom_putbyte(sc, addr);
372
373	/*
374	 * Start reading bits from EEPROM.
375	 */
376	for (i = 0x8000; i; i >>= 1) {
377		SIO_SET(SIS_EECTL_CLK);
378		sis_delay(sc);
379		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
380			word |= i;
381		sis_delay(sc);
382		SIO_CLR(SIS_EECTL_CLK);
383		sis_delay(sc);
384	}
385
386	/* Turn off EEPROM access mode. */
387	sis_eeprom_idle(sc);
388
389	*dest = word;
390
391	return;
392}
393
394/*
395 * Read a sequence of words from the EEPROM.
396 */
397static void
398sis_read_eeprom(sc, dest, off, cnt, swap)
399	struct sis_softc	*sc;
400	caddr_t			dest;
401	int			off;
402	int			cnt;
403	int			swap;
404{
405	int			i;
406	u_int16_t		word = 0, *ptr;
407
408	for (i = 0; i < cnt; i++) {
409		sis_eeprom_getword(sc, off + i, &word);
410		ptr = (u_int16_t *)(dest + (i * 2));
411		if (swap)
412			*ptr = ntohs(word);
413		else
414			*ptr = word;
415	}
416
417	return;
418}
419
420#ifdef __i386__
421static device_t
422sis_find_bridge(dev)
423	device_t		dev;
424{
425	devclass_t		pci_devclass;
426	device_t		*pci_devices;
427	int			pci_count = 0;
428	device_t		*pci_children;
429	int			pci_childcount = 0;
430	device_t		*busp, *childp;
431	device_t		child = NULL;
432	int			i, j;
433
434	if ((pci_devclass = devclass_find("pci")) == NULL)
435		return(NULL);
436
437	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
438
439	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
440		pci_childcount = 0;
441		device_get_children(*busp, &pci_children, &pci_childcount);
442		for (j = 0, childp = pci_children;
443		    j < pci_childcount; j++, childp++) {
444			if (pci_get_vendor(*childp) == SIS_VENDORID &&
445			    pci_get_device(*childp) == 0x0008) {
446				child = *childp;
447				goto done;
448			}
449		}
450	}
451
452done:
453	free(pci_devices, M_TEMP);
454	free(pci_children, M_TEMP);
455	return(child);
456}
457
458static void
459sis_read_cmos(sc, dev, dest, off, cnt)
460	struct sis_softc	*sc;
461	device_t		dev;
462	caddr_t			dest;
463	int			off;
464	int			cnt;
465{
466	device_t		bridge;
467	u_int8_t		reg;
468	int			i;
469	bus_space_tag_t		btag;
470
471	bridge = sis_find_bridge(dev);
472	if (bridge == NULL)
473		return;
474	reg = pci_read_config(bridge, 0x48, 1);
475	pci_write_config(bridge, 0x48, reg|0x40, 1);
476
477	/* XXX */
478	btag = I386_BUS_SPACE_IO;
479
480	for (i = 0; i < cnt; i++) {
481		bus_space_write_1(btag, 0x0, 0x70, i + off);
482		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
483	}
484
485	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
486	return;
487}
488
489static void
490sis_read_mac(sc, dev, dest)
491	struct sis_softc	*sc;
492	device_t		dev;
493	caddr_t			dest;
494{
495	u_int32_t		filtsave, csrsave;
496
497	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
498	csrsave = CSR_READ_4(sc, SIS_CSR);
499
500	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
501	CSR_WRITE_4(sc, SIS_CSR, 0);
502
503	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
504
505	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
506	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
507	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
508	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
509	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
510	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
511
512	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
513	CSR_WRITE_4(sc, SIS_CSR, csrsave);
514	return;
515}
516#endif
517
518/*
519 * Sync the PHYs by setting data bit and strobing the clock 32 times.
520 */
521static void sis_mii_sync(sc)
522	struct sis_softc	*sc;
523{
524	register int		i;
525
526 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
527
528 	for (i = 0; i < 32; i++) {
529 		SIO_SET(SIS_MII_CLK);
530 		DELAY(1);
531 		SIO_CLR(SIS_MII_CLK);
532 		DELAY(1);
533 	}
534
535 	return;
536}
537
538/*
539 * Clock a series of bits through the MII.
540 */
541static void sis_mii_send(sc, bits, cnt)
542	struct sis_softc	*sc;
543	u_int32_t		bits;
544	int			cnt;
545{
546	int			i;
547
548	SIO_CLR(SIS_MII_CLK);
549
550	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
551		if (bits & i) {
552			SIO_SET(SIS_MII_DATA);
553		} else {
554			SIO_CLR(SIS_MII_DATA);
555		}
556		DELAY(1);
557		SIO_CLR(SIS_MII_CLK);
558		DELAY(1);
559		SIO_SET(SIS_MII_CLK);
560	}
561}
562
563/*
564 * Read an PHY register through the MII.
565 */
566static int sis_mii_readreg(sc, frame)
567	struct sis_softc	*sc;
568	struct sis_mii_frame	*frame;
569
570{
571	int			i, ack, s;
572
573	s = splimp();
574
575	/*
576	 * Set up frame for RX.
577	 */
578	frame->mii_stdelim = SIS_MII_STARTDELIM;
579	frame->mii_opcode = SIS_MII_READOP;
580	frame->mii_turnaround = 0;
581	frame->mii_data = 0;
582
583	/*
584 	 * Turn on data xmit.
585	 */
586	SIO_SET(SIS_MII_DIR);
587
588	sis_mii_sync(sc);
589
590	/*
591	 * Send command/address info.
592	 */
593	sis_mii_send(sc, frame->mii_stdelim, 2);
594	sis_mii_send(sc, frame->mii_opcode, 2);
595	sis_mii_send(sc, frame->mii_phyaddr, 5);
596	sis_mii_send(sc, frame->mii_regaddr, 5);
597
598	/* Idle bit */
599	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
600	DELAY(1);
601	SIO_SET(SIS_MII_CLK);
602	DELAY(1);
603
604	/* Turn off xmit. */
605	SIO_CLR(SIS_MII_DIR);
606
607	/* Check for ack */
608	SIO_CLR(SIS_MII_CLK);
609	DELAY(1);
610	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
611	SIO_SET(SIS_MII_CLK);
612	DELAY(1);
613
614	/*
615	 * Now try reading data bits. If the ack failed, we still
616	 * need to clock through 16 cycles to keep the PHY(s) in sync.
617	 */
618	if (ack) {
619		for(i = 0; i < 16; i++) {
620			SIO_CLR(SIS_MII_CLK);
621			DELAY(1);
622			SIO_SET(SIS_MII_CLK);
623			DELAY(1);
624		}
625		goto fail;
626	}
627
628	for (i = 0x8000; i; i >>= 1) {
629		SIO_CLR(SIS_MII_CLK);
630		DELAY(1);
631		if (!ack) {
632			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
633				frame->mii_data |= i;
634			DELAY(1);
635		}
636		SIO_SET(SIS_MII_CLK);
637		DELAY(1);
638	}
639
640fail:
641
642	SIO_CLR(SIS_MII_CLK);
643	DELAY(1);
644	SIO_SET(SIS_MII_CLK);
645	DELAY(1);
646
647	splx(s);
648
649	if (ack)
650		return(1);
651	return(0);
652}
653
654/*
655 * Write to a PHY register through the MII.
656 */
657static int sis_mii_writereg(sc, frame)
658	struct sis_softc	*sc;
659	struct sis_mii_frame	*frame;
660
661{
662	int			s;
663
664	 s = splimp();
665 	/*
666 	 * Set up frame for TX.
667 	 */
668
669 	frame->mii_stdelim = SIS_MII_STARTDELIM;
670 	frame->mii_opcode = SIS_MII_WRITEOP;
671 	frame->mii_turnaround = SIS_MII_TURNAROUND;
672
673 	/*
674  	 * Turn on data output.
675 	 */
676 	SIO_SET(SIS_MII_DIR);
677
678 	sis_mii_sync(sc);
679
680 	sis_mii_send(sc, frame->mii_stdelim, 2);
681 	sis_mii_send(sc, frame->mii_opcode, 2);
682 	sis_mii_send(sc, frame->mii_phyaddr, 5);
683 	sis_mii_send(sc, frame->mii_regaddr, 5);
684 	sis_mii_send(sc, frame->mii_turnaround, 2);
685 	sis_mii_send(sc, frame->mii_data, 16);
686
687 	/* Idle bit. */
688 	SIO_SET(SIS_MII_CLK);
689 	DELAY(1);
690 	SIO_CLR(SIS_MII_CLK);
691 	DELAY(1);
692
693 	/*
694 	 * Turn off xmit.
695 	 */
696 	SIO_CLR(SIS_MII_DIR);
697
698 	splx(s);
699
700 	return(0);
701}
702
703static int
704sis_miibus_readreg(dev, phy, reg)
705	device_t		dev;
706	int			phy, reg;
707{
708	struct sis_softc	*sc;
709	struct sis_mii_frame    frame;
710
711	sc = device_get_softc(dev);
712
713	if (sc->sis_type == SIS_TYPE_83815) {
714		if (phy != 0)
715			return(0);
716		/*
717		 * The NatSemi chip can take a while after
718		 * a reset to come ready, during which the BMSR
719		 * returns a value of 0. This is *never* supposed
720		 * to happen: some of the BMSR bits are meant to
721		 * be hardwired in the on position, and this can
722		 * confuse the miibus code a bit during the probe
723		 * and attach phase. So we make an effort to check
724		 * for this condition and wait for it to clear.
725		 */
726		if (!CSR_READ_4(sc, NS_BMSR))
727			DELAY(1000);
728		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
729	}
730
731	/*
732	 * Chipsets < SIS_635 seem not to be able to read/write
733	 * through mdio. Use the enhanced PHY access register
734	 * again for them.
735	 */
736	if (sc->sis_type == SIS_TYPE_900 &&
737	    sc->sis_rev < SIS_REV_635) {
738		int i, val = 0;
739
740		if (phy != 0)
741			return(0);
742
743		CSR_WRITE_4(sc, SIS_PHYCTL,
744		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
745		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
746
747		for (i = 0; i < SIS_TIMEOUT; i++) {
748			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
749				break;
750		}
751
752		if (i == SIS_TIMEOUT) {
753			printf("sis%d: PHY failed to come ready\n",
754			    sc->sis_unit);
755			return(0);
756		}
757
758		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
759
760		if (val == 0xFFFF)
761			return(0);
762
763		return(val);
764	} else {
765		bzero((char *)&frame, sizeof(frame));
766
767		frame.mii_phyaddr = phy;
768		frame.mii_regaddr = reg;
769		sis_mii_readreg(sc, &frame);
770
771		return(frame.mii_data);
772	}
773}
774
775static int
776sis_miibus_writereg(dev, phy, reg, data)
777	device_t		dev;
778	int			phy, reg, data;
779{
780	struct sis_softc	*sc;
781	struct sis_mii_frame	frame;
782
783	sc = device_get_softc(dev);
784
785	if (sc->sis_type == SIS_TYPE_83815) {
786		if (phy != 0)
787			return(0);
788		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
789		return(0);
790	}
791
792	/*
793	 * Chipsets < SIS_635 seem not to be able to read/write
794	 * through mdio. Use the enhanced PHY access register
795	 * again for them.
796	 */
797	if (sc->sis_type == SIS_TYPE_900 &&
798	    sc->sis_rev < SIS_REV_635) {
799		int i;
800
801		if (phy != 0)
802			return(0);
803
804		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
805		    (reg << 6) | SIS_PHYOP_WRITE);
806		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
807
808		for (i = 0; i < SIS_TIMEOUT; i++) {
809			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
810				break;
811		}
812
813		if (i == SIS_TIMEOUT)
814			printf("sis%d: PHY failed to come ready\n",
815			    sc->sis_unit);
816	} else {
817		bzero((char *)&frame, sizeof(frame));
818
819		frame.mii_phyaddr = phy;
820		frame.mii_regaddr = reg;
821		frame.mii_data = data;
822		sis_mii_writereg(sc, &frame);
823	}
824	return(0);
825}
826
827static void
828sis_miibus_statchg(dev)
829	device_t		dev;
830{
831	struct sis_softc	*sc;
832
833	sc = device_get_softc(dev);
834	sis_init(sc);
835
836	return;
837}
838
839static u_int32_t
840sis_mchash(sc, addr)
841	struct sis_softc	*sc;
842	caddr_t			addr;
843{
844	u_int32_t		crc, carry;
845	int			idx, bit;
846	u_int8_t		data;
847
848	/* Compute CRC for the address value. */
849	crc = 0xFFFFFFFF; /* initial value */
850
851	for (idx = 0; idx < 6; idx++) {
852		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
853			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
854			crc <<= 1;
855			if (carry)
856				crc = (crc ^ 0x04c11db6) | carry;
857		}
858	}
859
860	/*
861	 * return the filter bit position
862	 *
863	 * The NatSemi chip has a 512-bit filter, which is
864	 * different than the SiS, so we special-case it.
865	 */
866	if (sc->sis_type == SIS_TYPE_83815)
867		return (crc >> 23);
868	else if (sc->sis_rev >= SIS_REV_635 ||
869	    sc->sis_rev == SIS_REV_900B)
870		return (crc >> 24);
871	else
872		return (crc >> 25);
873}
874
875static void
876sis_setmulti_ns(sc)
877	struct sis_softc	*sc;
878{
879	struct ifnet		*ifp;
880	struct ifmultiaddr	*ifma;
881	u_int32_t		h = 0, i, filtsave;
882	int			bit, index;
883
884	ifp = &sc->arpcom.ac_if;
885
886	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
887		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
888		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
889		return;
890	}
891
892	/*
893	 * We have to explicitly enable the multicast hash table
894	 * on the NatSemi chip if we want to use it, which we do.
895	 */
896	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
897	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
898
899	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
900
901	/* first, zot all the existing hash bits */
902	for (i = 0; i < 32; i++) {
903		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
904		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
905	}
906
907	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
908		if (ifma->ifma_addr->sa_family != AF_LINK)
909			continue;
910		h = sis_mchash(sc,
911		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
912		index = h >> 3;
913		bit = h & 0x1F;
914		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
915		if (bit > 0xF)
916			bit -= 0x10;
917		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
918	}
919
920	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
921
922	return;
923}
924
925static void
926sis_setmulti_sis(sc)
927	struct sis_softc	*sc;
928{
929	struct ifnet		*ifp;
930	struct ifmultiaddr	*ifma;
931	u_int32_t		h, i, n, ctl;
932	u_int16_t		hashes[16];
933
934	ifp = &sc->arpcom.ac_if;
935
936	/* hash table size */
937	if (sc->sis_rev >= SIS_REV_635 ||
938	    sc->sis_rev == SIS_REV_900B)
939		n = 16;
940	else
941		n = 8;
942
943	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
944
945	if (ifp->if_flags & IFF_BROADCAST)
946		ctl |= SIS_RXFILTCTL_BROAD;
947
948	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
949		ctl |= SIS_RXFILTCTL_ALLMULTI;
950		if (ifp->if_flags & IFF_PROMISC)
951			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
952		for (i = 0; i < n; i++)
953			hashes[i] = ~0;
954	} else {
955		for (i = 0; i < n; i++)
956			hashes[i] = 0;
957		i = 0;
958		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
959			if (ifma->ifma_addr->sa_family != AF_LINK)
960			continue;
961			h = sis_mchash(sc,
962			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
963			hashes[h >> 4] |= 1 << (h & 0xf);
964			i++;
965		}
966		if (i > n) {
967			ctl |= SIS_RXFILTCTL_ALLMULTI;
968			for (i = 0; i < n; i++)
969				hashes[i] = ~0;
970		}
971	}
972
973	for (i = 0; i < n; i++) {
974		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
975		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
976	}
977
978	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
979}
980
981static void
982sis_reset(sc)
983	struct sis_softc	*sc;
984{
985	register int		i;
986
987	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
988
989	for (i = 0; i < SIS_TIMEOUT; i++) {
990		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
991			break;
992	}
993
994	if (i == SIS_TIMEOUT)
995		printf("sis%d: reset never completed\n", sc->sis_unit);
996
997	/* Wait a little while for the chip to get its brains in order. */
998	DELAY(1000);
999
1000	/*
1001	 * If this is a NetSemi chip, make sure to clear
1002	 * PME mode.
1003	 */
1004	if (sc->sis_type == SIS_TYPE_83815) {
1005		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
1006		CSR_WRITE_4(sc, NS_CLKRUN, 0);
1007	}
1008
1009        return;
1010}
1011
1012/*
1013 * Probe for an SiS chip. Check the PCI vendor and device
1014 * IDs against our list and return a device name if we find a match.
1015 */
1016static int
1017sis_probe(dev)
1018	device_t		dev;
1019{
1020	struct sis_type		*t;
1021
1022	t = sis_devs;
1023
1024	while(t->sis_name != NULL) {
1025		if ((pci_get_vendor(dev) == t->sis_vid) &&
1026		    (pci_get_device(dev) == t->sis_did)) {
1027			device_set_desc(dev, t->sis_name);
1028			return(0);
1029		}
1030		t++;
1031	}
1032
1033	return(ENXIO);
1034}
1035
1036/*
1037 * Attach the interface. Allocate softc structures, do ifmedia
1038 * setup and ethernet/BPF attach.
1039 */
1040static int
1041sis_attach(dev)
1042	device_t		dev;
1043{
1044	u_char			eaddr[ETHER_ADDR_LEN];
1045	struct sis_softc	*sc;
1046	struct ifnet		*ifp;
1047	int			unit, error = 0, rid, waittime = 0;
1048
1049	waittime = 0;
1050	sc = device_get_softc(dev);
1051	unit = device_get_unit(dev);
1052
1053	sc->sis_self = dev;
1054
1055	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1056	    MTX_DEF | MTX_RECURSE);
1057
1058	if (pci_get_device(dev) == SIS_DEVICEID_900)
1059		sc->sis_type = SIS_TYPE_900;
1060	if (pci_get_device(dev) == SIS_DEVICEID_7016)
1061		sc->sis_type = SIS_TYPE_7016;
1062	if (pci_get_vendor(dev) == NS_VENDORID)
1063		sc->sis_type = SIS_TYPE_83815;
1064
1065	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
1066#ifndef BURN_BRIDGES
1067	/*
1068	 * Handle power management nonsense.
1069	 */
1070	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1071		u_int32_t		iobase, membase, irq;
1072
1073		/* Save important PCI config data. */
1074		iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
1075		membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
1076		irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
1077
1078		/* Reset the power state. */
1079		printf("sis%d: chip is in D%d power mode "
1080		    "-- setting to D0\n", unit,
1081		    pci_get_powerstate(dev));
1082		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1083
1084		/* Restore PCI config data. */
1085		pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
1086		pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
1087		pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
1088	}
1089#endif
1090	/*
1091	 * Map control/status registers.
1092	 */
1093	pci_enable_busmaster(dev);
1094
1095	rid = SIS_RID;
1096	sc->sis_res = bus_alloc_resource(dev, SIS_RES, &rid,
1097	    0, ~0, 1, RF_ACTIVE);
1098
1099	if (sc->sis_res == NULL) {
1100		printf("sis%d: couldn't map ports/memory\n", unit);
1101		error = ENXIO;
1102		goto fail;
1103	}
1104
1105	sc->sis_btag = rman_get_bustag(sc->sis_res);
1106	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1107
1108	/* Allocate interrupt */
1109	rid = 0;
1110	sc->sis_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1111	    RF_SHAREABLE | RF_ACTIVE);
1112
1113	if (sc->sis_irq == NULL) {
1114		printf("sis%d: couldn't map interrupt\n", unit);
1115		error = ENXIO;
1116		goto fail;
1117	}
1118
1119	/* Reset the adapter. */
1120	sis_reset(sc);
1121
1122	if (sc->sis_type == SIS_TYPE_900 &&
1123            (sc->sis_rev == SIS_REV_635 ||
1124            sc->sis_rev == SIS_REV_900B)) {
1125		SIO_SET(SIS_CFG_RND_CNT);
1126		SIO_SET(SIS_CFG_PERR_DETECT);
1127	}
1128
1129	/*
1130	 * Get station address from the EEPROM.
1131	 */
1132	switch (pci_get_vendor(dev)) {
1133	case NS_VENDORID:
1134		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
1135
1136		/* We can't update the device description, so spew */
1137		if (sc->sis_srr == NS_SRR_15C)
1138			device_printf(dev, "Silicon Revision: DP83815C\n");
1139		else if (sc->sis_srr == NS_SRR_15D)
1140			device_printf(dev, "Silicon Revision: DP83815D\n");
1141		else if (sc->sis_srr == NS_SRR_16A)
1142			device_printf(dev, "Silicon Revision: DP83816A\n");
1143		else
1144			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
1145
1146		/*
1147		 * Reading the MAC address out of the EEPROM on
1148		 * the NatSemi chip takes a bit more work than
1149		 * you'd expect. The address spans 4 16-bit words,
1150		 * with the first word containing only a single bit.
1151		 * You have to shift everything over one bit to
1152		 * get it aligned properly. Also, the bits are
1153		 * stored backwards (the LSB is really the MSB,
1154		 * and so on) so you have to reverse them in order
1155		 * to get the MAC address into the form we want.
1156		 * Why? Who the hell knows.
1157		 */
1158		{
1159			u_int16_t		tmp[4];
1160
1161			sis_read_eeprom(sc, (caddr_t)&tmp,
1162			    NS_EE_NODEADDR, 4, 0);
1163
1164			/* Shift everything over one bit. */
1165			tmp[3] = tmp[3] >> 1;
1166			tmp[3] |= tmp[2] << 15;
1167			tmp[2] = tmp[2] >> 1;
1168			tmp[2] |= tmp[1] << 15;
1169			tmp[1] = tmp[1] >> 1;
1170			tmp[1] |= tmp[0] << 15;
1171
1172			/* Now reverse all the bits. */
1173			tmp[3] = sis_reverse(tmp[3]);
1174			tmp[2] = sis_reverse(tmp[2]);
1175			tmp[1] = sis_reverse(tmp[1]);
1176
1177			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1178		}
1179		break;
1180	case SIS_VENDORID:
1181	default:
1182#ifdef __i386__
1183		/*
1184		 * If this is a SiS 630E chipset with an embedded
1185		 * SiS 900 controller, we have to read the MAC address
1186		 * from the APC CMOS RAM. Our method for doing this
1187		 * is very ugly since we have to reach out and grab
1188		 * ahold of hardware for which we cannot properly
1189		 * allocate resources. This code is only compiled on
1190		 * the i386 architecture since the SiS 630E chipset
1191		 * is for x86 motherboards only. Note that there are
1192		 * a lot of magic numbers in this hack. These are
1193		 * taken from SiS's Linux driver. I'd like to replace
1194		 * them with proper symbolic definitions, but that
1195		 * requires some datasheets that I don't have access
1196		 * to at the moment.
1197		 */
1198		if (sc->sis_rev == SIS_REV_630S ||
1199		    sc->sis_rev == SIS_REV_630E ||
1200		    sc->sis_rev == SIS_REV_630EA1)
1201			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1202
1203		else if (sc->sis_rev == SIS_REV_635 ||
1204			 sc->sis_rev == SIS_REV_630ET)
1205			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1206		else if (sc->sis_rev == SIS_REV_96x) {
1207			/* Allow to read EEPROM from LAN. It is shared
1208			 * between a 1394 controller and the NIC and each
1209			 * time we access it, we need to set SIS_EECMD_REQ.
1210			 */
1211			SIO_SET(SIS_EECMD_REQ);
1212			for (waittime = 0; waittime < SIS_TIMEOUT;
1213			    waittime++) {
1214				/* Force EEPROM to idle state. */
1215				sis_eeprom_idle(sc);
1216				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1217					sis_read_eeprom(sc, (caddr_t)&eaddr,
1218					    SIS_EE_NODEADDR, 3, 0);
1219					break;
1220				}
1221				DELAY(1);
1222			}
1223			/*
1224			 * Set SIS_EECTL_CLK to high, so a other master
1225			 * can operate on the i2c bus.
1226			 */
1227			SIO_SET(SIS_EECTL_CLK);
1228			/* Refuse EEPROM access by LAN */
1229			SIO_SET(SIS_EECMD_DONE);
1230		} else
1231#endif
1232			sis_read_eeprom(sc, (caddr_t)&eaddr,
1233			    SIS_EE_NODEADDR, 3, 0);
1234		break;
1235	}
1236
1237	/*
1238	 * A SiS chip was detected. Inform the world.
1239	 */
1240	printf("sis%d: Ethernet address: %6D\n", unit, eaddr, ":");
1241
1242	sc->sis_unit = unit;
1243	callout_init(&sc->sis_stat_ch, CALLOUT_MPSAFE);
1244	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1245
1246	/*
1247	 * Allocate the parent bus DMA tag appropriate for PCI.
1248	 */
1249#define SIS_NSEG_NEW 32
1250	 error = bus_dma_tag_create(NULL,	/* parent */
1251			1, 0,			/* alignment, boundary */
1252			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1253			BUS_SPACE_MAXADDR,	/* highaddr */
1254			NULL, NULL,		/* filter, filterarg */
1255			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1256			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1257			BUS_DMA_ALLOCNOW,	/* flags */
1258			NULL, NULL,		/* lockfunc, lockarg */
1259			&sc->sis_parent_tag);
1260	if (error)
1261		goto fail;
1262
1263	/*
1264	 * Now allocate a tag for the DMA descriptor lists and a chunk
1265	 * of DMA-able memory based on the tag.  Also obtain the physical
1266	 * addresses of the RX and TX ring, which we'll need later.
1267	 * All of our lists are allocated as a contiguous block
1268	 * of memory.
1269	 */
1270	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1271			1, 0,			/* alignment, boundary */
1272			BUS_SPACE_MAXADDR,	/* lowaddr */
1273			BUS_SPACE_MAXADDR,	/* highaddr */
1274			NULL, NULL,		/* filter, filterarg */
1275			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1276			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1277			0,			/* flags */
1278			busdma_lock_mutex,	/* lockfunc */
1279			&Giant,			/* lockarg */
1280			&sc->sis_ldata.sis_rx_tag);
1281	if (error)
1282		goto fail;
1283
1284	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1285	    (void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1286	    &sc->sis_ldata.sis_rx_dmamap);
1287
1288	if (error) {
1289		printf("sis%d: no memory for rx list buffers!\n", unit);
1290		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1291		sc->sis_ldata.sis_rx_tag = NULL;
1292		goto fail;
1293	}
1294
1295	error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1296	    sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
1297	    sizeof(struct sis_desc), sis_dma_map_ring,
1298	    &sc->sis_cdata.sis_rx_paddr, 0);
1299
1300	if (error) {
1301		printf("sis%d: cannot get address of the rx ring!\n", unit);
1302		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1303		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1304		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1305		sc->sis_ldata.sis_rx_tag = NULL;
1306		goto fail;
1307	}
1308
1309	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1310			1, 0,			/* alignment, boundary */
1311			BUS_SPACE_MAXADDR,	/* lowaddr */
1312			BUS_SPACE_MAXADDR,	/* highaddr */
1313			NULL, NULL,		/* filter, filterarg */
1314			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1315			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1316			0,			/* flags */
1317			busdma_lock_mutex,	/* lockfunc */
1318			&Giant,			/* lockarg */
1319			&sc->sis_ldata.sis_tx_tag);
1320	if (error)
1321		goto fail;
1322
1323	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1324	    (void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1325	    &sc->sis_ldata.sis_tx_dmamap);
1326
1327	if (error) {
1328		printf("sis%d: no memory for tx list buffers!\n", unit);
1329		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1330		sc->sis_ldata.sis_tx_tag = NULL;
1331		goto fail;
1332	}
1333
1334	error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1335	    sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
1336	    sizeof(struct sis_desc), sis_dma_map_ring,
1337	    &sc->sis_cdata.sis_tx_paddr, 0);
1338
1339	if (error) {
1340		printf("sis%d: cannot get address of the tx ring!\n", unit);
1341		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1342		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1343		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1344		sc->sis_ldata.sis_tx_tag = NULL;
1345		goto fail;
1346	}
1347
1348	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1349			1, 0,			/* alignment, boundary */
1350			BUS_SPACE_MAXADDR,	/* lowaddr */
1351			BUS_SPACE_MAXADDR,	/* highaddr */
1352			NULL, NULL,		/* filter, filterarg */
1353			MCLBYTES, 1,		/* maxsize,nsegments */
1354			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1355			0,			/* flags */
1356			busdma_lock_mutex,	/* lockfunc */
1357			&Giant,			/* lockarg */
1358			&sc->sis_tag);
1359	if (error)
1360		goto fail;
1361
1362	/*
1363	 * Obtain the physical addresses of the RX and TX
1364	 * rings which we'll need later in the init routine.
1365	 */
1366
1367	ifp = &sc->arpcom.ac_if;
1368	ifp->if_softc = sc;
1369	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1370	ifp->if_mtu = ETHERMTU;
1371	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1372	ifp->if_ioctl = sis_ioctl;
1373	ifp->if_output = ether_output;
1374	ifp->if_start = sis_start;
1375	ifp->if_watchdog = sis_watchdog;
1376	ifp->if_init = sis_init;
1377	ifp->if_baudrate = 10000000;
1378	ifp->if_snd.ifq_maxlen = SIS_TX_LIST_CNT - 1;
1379
1380	/*
1381	 * Do MII setup.
1382	 */
1383	if (mii_phy_probe(dev, &sc->sis_miibus,
1384	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1385		printf("sis%d: MII without any PHY!\n", sc->sis_unit);
1386		error = ENXIO;
1387		goto fail;
1388	}
1389
1390	/*
1391	 * Call MI attach routine.
1392	 */
1393	ether_ifattach(ifp, eaddr);
1394
1395	/*
1396	 * Tell the upper layer(s) we support long frames.
1397	 */
1398	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1399	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1400
1401	/* Hook interrupt last to avoid having to lock softc */
1402	error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET | INTR_MPSAFE,
1403	    sis_intr, sc, &sc->sis_intrhand);
1404
1405	if (error) {
1406		printf("sis%d: couldn't set up irq\n", unit);
1407		ether_ifdetach(ifp);
1408		goto fail;
1409	}
1410
1411fail:
1412	if (error)
1413		sis_detach(dev);
1414
1415	return(error);
1416}
1417
1418/*
1419 * Shutdown hardware and free up resources. This can be called any
1420 * time after the mutex has been initialized. It is called in both
1421 * the error case in attach and the normal detach case so it needs
1422 * to be careful about only freeing resources that have actually been
1423 * allocated.
1424 */
1425static int
1426sis_detach(dev)
1427	device_t		dev;
1428{
1429	struct sis_softc	*sc;
1430	struct ifnet		*ifp;
1431
1432	sc = device_get_softc(dev);
1433	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1434	SIS_LOCK(sc);
1435	ifp = &sc->arpcom.ac_if;
1436
1437	/* These should only be active if attach succeeded. */
1438	if (device_is_attached(dev)) {
1439		sis_reset(sc);
1440		sis_stop(sc);
1441		ether_ifdetach(ifp);
1442	}
1443	if (sc->sis_miibus)
1444		device_delete_child(dev, sc->sis_miibus);
1445	bus_generic_detach(dev);
1446
1447	if (sc->sis_intrhand)
1448		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1449	if (sc->sis_irq)
1450		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1451	if (sc->sis_res)
1452		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1453
1454	if (sc->sis_ldata.sis_rx_tag) {
1455		bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1456		    sc->sis_ldata.sis_rx_dmamap);
1457		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1458		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1459		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1460	}
1461	if (sc->sis_ldata.sis_tx_tag) {
1462		bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1463		    sc->sis_ldata.sis_tx_dmamap);
1464		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1465		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1466		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1467	}
1468	if (sc->sis_parent_tag)
1469		bus_dma_tag_destroy(sc->sis_parent_tag);
1470	if (sc->sis_tag)
1471		bus_dma_tag_destroy(sc->sis_tag);
1472
1473	SIS_UNLOCK(sc);
1474	mtx_destroy(&sc->sis_mtx);
1475
1476	return(0);
1477}
1478
1479/*
1480 * Initialize the transmit descriptors.
1481 */
1482static int
1483sis_list_tx_init(sc)
1484	struct sis_softc	*sc;
1485{
1486	struct sis_list_data	*ld;
1487	struct sis_ring_data	*cd;
1488	int			i, nexti;
1489
1490	cd = &sc->sis_cdata;
1491	ld = &sc->sis_ldata;
1492
1493	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1494		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1495			ld->sis_tx_list[i].sis_nextdesc =
1496			    &ld->sis_tx_list[nexti];
1497			bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1498			    sc->sis_ldata.sis_tx_dmamap,
1499			    &ld->sis_tx_list[nexti], sizeof(struct sis_desc),
1500			    sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
1501		ld->sis_tx_list[i].sis_mbuf = NULL;
1502		ld->sis_tx_list[i].sis_ptr = 0;
1503		ld->sis_tx_list[i].sis_ctl = 0;
1504	}
1505
1506	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1507
1508	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
1509	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1510
1511	return(0);
1512}
1513
1514/*
1515 * Initialize the RX descriptors and allocate mbufs for them. Note that
1516 * we arrange the descriptors in a closed ring, so that the last descriptor
1517 * points back to the first.
1518 */
1519static int
1520sis_list_rx_init(sc)
1521	struct sis_softc	*sc;
1522{
1523	struct sis_list_data	*ld;
1524	struct sis_ring_data	*cd;
1525	int			i,nexti;
1526
1527	ld = &sc->sis_ldata;
1528	cd = &sc->sis_cdata;
1529
1530	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1531		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1532			return(ENOBUFS);
1533		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1534			ld->sis_rx_list[i].sis_nextdesc =
1535			    &ld->sis_rx_list[nexti];
1536			bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1537			    sc->sis_ldata.sis_rx_dmamap,
1538			    &ld->sis_rx_list[nexti],
1539			    sizeof(struct sis_desc), sis_dma_map_desc_next,
1540			    &ld->sis_rx_list[i], 0);
1541		}
1542
1543	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
1544	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1545
1546	cd->sis_rx_prod = 0;
1547
1548	return(0);
1549}
1550
1551/*
1552 * Initialize an RX descriptor and attach an MBUF cluster.
1553 */
1554static int
1555sis_newbuf(sc, c, m)
1556	struct sis_softc	*sc;
1557	struct sis_desc		*c;
1558	struct mbuf		*m;
1559{
1560
1561	if (c == NULL)
1562		return(EINVAL);
1563
1564	if (m == NULL) {
1565		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1566		if (m == NULL)
1567			return(ENOBUFS);
1568	} else
1569		m->m_data = m->m_ext.ext_buf;
1570
1571	c->sis_mbuf = m;
1572	c->sis_ctl = SIS_RXLEN;
1573
1574	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1575	bus_dmamap_load(sc->sis_tag, c->sis_map,
1576	    mtod(m, void *), MCLBYTES,
1577	    sis_dma_map_desc_ptr, c, 0);
1578	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1579
1580	return(0);
1581}
1582
1583/*
1584 * A frame has been uploaded: pass the resulting mbuf chain up to
1585 * the higher level protocols.
1586 */
1587static void
1588sis_rxeof(sc)
1589	struct sis_softc	*sc;
1590{
1591        struct mbuf		*m;
1592        struct ifnet		*ifp;
1593	struct sis_desc		*cur_rx;
1594	int			i, total_len = 0;
1595	u_int32_t		rxstat;
1596
1597	SIS_LOCK_ASSERT(sc);
1598
1599	ifp = &sc->arpcom.ac_if;
1600	i = sc->sis_cdata.sis_rx_prod;
1601
1602	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1603
1604#ifdef DEVICE_POLLING
1605		if (ifp->if_flags & IFF_POLLING) {
1606			if (sc->rxcycles <= 0)
1607				break;
1608			sc->rxcycles--;
1609		}
1610#endif /* DEVICE_POLLING */
1611		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1612		rxstat = cur_rx->sis_rxstat;
1613		bus_dmamap_sync(sc->sis_tag,
1614		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1615		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1616		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1617		m = cur_rx->sis_mbuf;
1618		cur_rx->sis_mbuf = NULL;
1619		total_len = SIS_RXBYTES(cur_rx);
1620		SIS_INC(i, SIS_RX_LIST_CNT);
1621
1622		/*
1623		 * If an error occurs, update stats, clear the
1624		 * status word and leave the mbuf cluster in place:
1625		 * it should simply get re-used next time this descriptor
1626	 	 * comes up in the ring.
1627		 */
1628		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1629			ifp->if_ierrors++;
1630			if (rxstat & SIS_RXSTAT_COLL)
1631				ifp->if_collisions++;
1632			sis_newbuf(sc, cur_rx, m);
1633			continue;
1634		}
1635
1636		/* No errors; receive the packet. */
1637#ifdef __i386__
1638		/*
1639		 * On the x86 we do not have alignment problems, so try to
1640		 * allocate a new buffer for the receive ring, and pass up
1641		 * the one where the packet is already, saving the expensive
1642		 * copy done in m_devget().
1643		 * If we are on an architecture with alignment problems, or
1644		 * if the allocation fails, then use m_devget and leave the
1645		 * existing buffer in the receive ring.
1646		 */
1647		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1648			m->m_pkthdr.len = m->m_len = total_len;
1649		else
1650#endif
1651		{
1652			struct mbuf		*m0;
1653			m0 = m_devget(mtod(m, char *), total_len,
1654				ETHER_ALIGN, ifp, NULL);
1655			sis_newbuf(sc, cur_rx, m);
1656			if (m0 == NULL) {
1657				ifp->if_ierrors++;
1658				continue;
1659			}
1660			m = m0;
1661		}
1662
1663		ifp->if_ipackets++;
1664		m->m_pkthdr.rcvif = ifp;
1665
1666		SIS_UNLOCK(sc);
1667		(*ifp->if_input)(ifp, m);
1668		SIS_LOCK(sc);
1669	}
1670
1671	sc->sis_cdata.sis_rx_prod = i;
1672
1673	return;
1674}
1675
1676static void
1677sis_rxeoc(sc)
1678	struct sis_softc	*sc;
1679{
1680	sis_rxeof(sc);
1681	sis_init(sc);
1682	return;
1683}
1684
1685/*
1686 * A frame was downloaded to the chip. It's safe for us to clean up
1687 * the list buffers.
1688 */
1689
1690static void
1691sis_txeof(sc)
1692	struct sis_softc	*sc;
1693{
1694	struct ifnet		*ifp;
1695	u_int32_t		idx;
1696
1697	ifp = &sc->arpcom.ac_if;
1698
1699	/*
1700	 * Go through our tx list and free mbufs for those
1701	 * frames that have been transmitted.
1702	 */
1703	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1704	    sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1705		struct sis_desc *cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1706
1707		if (SIS_OWNDESC(cur_tx))
1708			break;
1709
1710		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1711			continue;
1712
1713		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1714			ifp->if_oerrors++;
1715			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1716				ifp->if_collisions++;
1717			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1718				ifp->if_collisions++;
1719		}
1720
1721		ifp->if_collisions +=
1722		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1723
1724		ifp->if_opackets++;
1725		if (cur_tx->sis_mbuf != NULL) {
1726			m_freem(cur_tx->sis_mbuf);
1727			cur_tx->sis_mbuf = NULL;
1728			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1729			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1730		}
1731	}
1732
1733	if (idx != sc->sis_cdata.sis_tx_cons) {
1734		/* we freed up some buffers */
1735		sc->sis_cdata.sis_tx_cons = idx;
1736		ifp->if_flags &= ~IFF_OACTIVE;
1737	}
1738
1739	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1740
1741	return;
1742}
1743
1744static void
1745sis_tick(xsc)
1746	void			*xsc;
1747{
1748	struct sis_softc	*sc;
1749	struct mii_data		*mii;
1750	struct ifnet		*ifp;
1751
1752	sc = xsc;
1753	SIS_LOCK(sc);
1754	sc->in_tick = 1;
1755	ifp = &sc->arpcom.ac_if;
1756
1757	mii = device_get_softc(sc->sis_miibus);
1758	mii_tick(mii);
1759
1760	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1761	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1762		sc->sis_link++;
1763		if (ifp->if_snd.ifq_head != NULL)
1764			sis_start(ifp);
1765	}
1766
1767	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1768	sc->in_tick = 0;
1769	SIS_UNLOCK(sc);
1770
1771	return;
1772}
1773
1774#ifdef DEVICE_POLLING
1775static poll_handler_t sis_poll;
1776
1777static void
1778sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1779{
1780	struct	sis_softc *sc = ifp->if_softc;
1781
1782	SIS_LOCK(sc);
1783	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1784		CSR_WRITE_4(sc, SIS_IER, 1);
1785		goto done;
1786	}
1787
1788	/*
1789	 * On the sis, reading the status register also clears it.
1790	 * So before returning to intr mode we must make sure that all
1791	 * possible pending sources of interrupts have been served.
1792	 * In practice this means run to completion the *eof routines,
1793	 * and then call the interrupt routine
1794	 */
1795	sc->rxcycles = count;
1796	sis_rxeof(sc);
1797	sis_txeof(sc);
1798	if (ifp->if_snd.ifq_head != NULL)
1799		sis_start(ifp);
1800
1801	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1802		u_int32_t	status;
1803
1804		/* Reading the ISR register clears all interrupts. */
1805		status = CSR_READ_4(sc, SIS_ISR);
1806
1807		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1808			sis_rxeoc(sc);
1809
1810		if (status & (SIS_ISR_RX_IDLE))
1811			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1812
1813		if (status & SIS_ISR_SYSERR) {
1814			sis_reset(sc);
1815			sis_init(sc);
1816		}
1817	}
1818done:
1819	SIS_UNLOCK(sc);
1820	return;
1821}
1822#endif /* DEVICE_POLLING */
1823
1824static void
1825sis_intr(arg)
1826	void			*arg;
1827{
1828	struct sis_softc	*sc;
1829	struct ifnet		*ifp;
1830	u_int32_t		status;
1831
1832	sc = arg;
1833	ifp = &sc->arpcom.ac_if;
1834
1835	SIS_LOCK(sc);
1836#ifdef DEVICE_POLLING
1837	if (ifp->if_flags & IFF_POLLING)
1838		goto done;
1839	if (ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
1840		CSR_WRITE_4(sc, SIS_IER, 0);
1841		goto done;
1842	}
1843#endif /* DEVICE_POLLING */
1844
1845	/* Supress unwanted interrupts */
1846	if (!(ifp->if_flags & IFF_UP)) {
1847		sis_stop(sc);
1848		goto done;
1849	}
1850
1851	/* Disable interrupts. */
1852	CSR_WRITE_4(sc, SIS_IER, 0);
1853
1854	for (;;) {
1855		/* Reading the ISR register clears all interrupts. */
1856		status = CSR_READ_4(sc, SIS_ISR);
1857
1858		if ((status & SIS_INTRS) == 0)
1859			break;
1860
1861		if (status &
1862		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1863		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1864			sis_txeof(sc);
1865
1866		if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
1867			sis_rxeof(sc);
1868
1869		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1870			sis_rxeoc(sc);
1871
1872		if (status & (SIS_ISR_RX_IDLE))
1873			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1874
1875		if (status & SIS_ISR_SYSERR) {
1876			sis_reset(sc);
1877			sis_init(sc);
1878		}
1879	}
1880
1881	/* Re-enable interrupts. */
1882	CSR_WRITE_4(sc, SIS_IER, 1);
1883
1884	if (ifp->if_snd.ifq_head != NULL)
1885		sis_start(ifp);
1886done:
1887	SIS_UNLOCK(sc);
1888
1889	return;
1890}
1891
1892/*
1893 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1894 * pointers to the fragment pointers.
1895 */
1896static int
1897sis_encap(sc, m_head, txidx)
1898	struct sis_softc	*sc;
1899	struct mbuf		**m_head;
1900	u_int32_t		*txidx;
1901{
1902	struct sis_desc		*f = NULL;
1903	struct mbuf		*m;
1904	int			frag, cur, cnt = 0, chainlen = 0;
1905
1906	/*
1907	 * If there's no way we can send any packets, return now.
1908	 */
1909	if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
1910		return (ENOBUFS);
1911
1912	/*
1913	 * Count the number of frags in this chain to see if
1914	 * we need to m_defrag.  Since the descriptor list is shared
1915	 * by all packets, we'll m_defrag long chains so that they
1916	 * do not use up the entire list, even if they would fit.
1917	 */
1918
1919	for (m = *m_head; m != NULL; m = m->m_next)
1920		chainlen++;
1921
1922	if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1923	    ((SIS_TX_LIST_CNT - (chainlen + sc->sis_cdata.sis_tx_cnt)) < 2)) {
1924		m = m_defrag(*m_head, M_DONTWAIT);
1925		if (m == NULL)
1926			return (ENOBUFS);
1927		*m_head = m;
1928	}
1929
1930	/*
1931 	 * Start packing the mbufs in this chain into
1932	 * the fragment pointers. Stop when we run out
1933 	 * of fragments or hit the end of the mbuf chain.
1934	 */
1935	cur = frag = *txidx;
1936
1937	for (m = *m_head; m != NULL; m = m->m_next) {
1938		if (m->m_len != 0) {
1939			if ((SIS_TX_LIST_CNT -
1940			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1941				return(ENOBUFS);
1942			f = &sc->sis_ldata.sis_tx_list[frag];
1943			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1944			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1945			bus_dmamap_load(sc->sis_tag, f->sis_map,
1946			    mtod(m, void *), m->m_len,
1947			    sis_dma_map_desc_ptr, f, 0);
1948			bus_dmamap_sync(sc->sis_tag,
1949			    f->sis_map, BUS_DMASYNC_PREREAD);
1950			if (cnt != 0)
1951				f->sis_ctl |= SIS_CMDSTS_OWN;
1952			cur = frag;
1953			SIS_INC(frag, SIS_TX_LIST_CNT);
1954			cnt++;
1955		}
1956	}
1957
1958	if (m != NULL)
1959		return(ENOBUFS);
1960
1961	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = *m_head;
1962	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1963	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1964	sc->sis_cdata.sis_tx_cnt += cnt;
1965	*txidx = frag;
1966
1967	return(0);
1968}
1969
1970/*
1971 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1972 * to the mbuf data regions directly in the transmit lists. We also save a
1973 * copy of the pointers since the transmit list fragment pointers are
1974 * physical addresses.
1975 */
1976
1977static void
1978sis_start(ifp)
1979	struct ifnet		*ifp;
1980{
1981	struct sis_softc	*sc;
1982	struct mbuf		*m_head = NULL;
1983	u_int32_t		idx;
1984
1985	sc = ifp->if_softc;
1986	SIS_LOCK(sc);
1987
1988	if (!sc->sis_link) {
1989		SIS_UNLOCK(sc);
1990		return;
1991	}
1992
1993	idx = sc->sis_cdata.sis_tx_prod;
1994
1995	if (ifp->if_flags & IFF_OACTIVE) {
1996		SIS_UNLOCK(sc);
1997		return;
1998	}
1999
2000	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
2001		IF_DEQUEUE(&ifp->if_snd, m_head);
2002		if (m_head == NULL)
2003			break;
2004
2005		if (sis_encap(sc, &m_head, &idx)) {
2006			IF_PREPEND(&ifp->if_snd, m_head);
2007			ifp->if_flags |= IFF_OACTIVE;
2008			break;
2009		}
2010
2011		/*
2012		 * If there's a BPF listener, bounce a copy of this frame
2013		 * to him.
2014		 */
2015		BPF_MTAP(ifp, m_head);
2016
2017	}
2018
2019	/* Transmit */
2020	sc->sis_cdata.sis_tx_prod = idx;
2021	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
2022
2023	/*
2024	 * Set a timeout in case the chip goes out to lunch.
2025	 */
2026	ifp->if_timer = 5;
2027
2028	SIS_UNLOCK(sc);
2029
2030	return;
2031}
2032
2033static void
2034sis_init(xsc)
2035	void			*xsc;
2036{
2037	struct sis_softc	*sc = xsc;
2038	struct ifnet		*ifp = &sc->arpcom.ac_if;
2039	struct mii_data		*mii;
2040
2041	SIS_LOCK(sc);
2042
2043	/*
2044	 * Cancel pending I/O and free all RX/TX buffers.
2045	 */
2046	sis_stop(sc);
2047
2048#ifdef notyet
2049	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
2050		/*
2051		 * Configure 400usec of interrupt holdoff.  This is based
2052		 * on emperical tests on a Soekris 4801.
2053 		 */
2054		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
2055	}
2056#endif
2057
2058	mii = device_get_softc(sc->sis_miibus);
2059
2060	/* Set MAC address */
2061	if (sc->sis_type == SIS_TYPE_83815) {
2062		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
2063		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2064		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2065		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
2066		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2067		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2068		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
2069		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2070		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2071	} else {
2072		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
2073		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2074		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2075		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
2076		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2077		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2078		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
2079		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2080		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2081	}
2082
2083	/* Init circular RX list. */
2084	if (sis_list_rx_init(sc) == ENOBUFS) {
2085		printf("sis%d: initialization failed: no "
2086			"memory for rx buffers\n", sc->sis_unit);
2087		sis_stop(sc);
2088		SIS_UNLOCK(sc);
2089		return;
2090	}
2091
2092	/*
2093	 * Init tx descriptors.
2094	 */
2095	sis_list_tx_init(sc);
2096
2097	/*
2098	 * For the NatSemi chip, we have to explicitly enable the
2099	 * reception of ARP frames, as well as turn on the 'perfect
2100	 * match' filter where we store the station address, otherwise
2101	 * we won't receive unicasts meant for this host.
2102	 */
2103	if (sc->sis_type == SIS_TYPE_83815) {
2104		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
2105		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
2106	}
2107
2108	 /* If we want promiscuous mode, set the allframes bit. */
2109	if (ifp->if_flags & IFF_PROMISC) {
2110		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2111	} else {
2112		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2113	}
2114
2115	/*
2116	 * Set the capture broadcast bit to capture broadcast frames.
2117	 */
2118	if (ifp->if_flags & IFF_BROADCAST) {
2119		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2120	} else {
2121		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2122	}
2123
2124	/*
2125	 * Load the multicast filter.
2126	 */
2127	if (sc->sis_type == SIS_TYPE_83815)
2128		sis_setmulti_ns(sc);
2129	else
2130		sis_setmulti_sis(sc);
2131
2132	/* Turn the receive filter on */
2133	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
2134
2135	/*
2136	 * Load the address of the RX and TX lists.
2137	 */
2138	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
2139	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
2140
2141	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2142	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2143	 * for TX/RX DMA should be no larger than 16 double words.
2144	 */
2145	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2146		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2147	} else {
2148		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2149	}
2150
2151
2152	/* Accept Long Packets for VLAN support */
2153	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2154
2155	/* Set TX configuration */
2156	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
2157		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
2158	} else {
2159		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2160	}
2161
2162	/* Set full/half duplex mode. */
2163	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
2164		SIS_SETBIT(sc, SIS_TX_CFG,
2165		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2166		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2167	} else {
2168		SIS_CLRBIT(sc, SIS_TX_CFG,
2169		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2170		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2171	}
2172
2173	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
2174	     IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2175		uint32_t reg;
2176
2177		/*
2178		 * Some DP83815s experience problems when used with short
2179		 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
2180		 * sequence adjusts the DSP's signal attenuation to fix the
2181		 * problem.
2182		 */
2183		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2184
2185		reg = CSR_READ_4(sc, NS_PHY_DSPCFG);
2186		CSR_WRITE_4(sc, NS_PHY_DSPCFG, (reg & 0xfff) | 0x1000);
2187		DELAY(100);
2188		reg = CSR_READ_4(sc, NS_PHY_TDATA);
2189		if ((reg & 0x0080) == 0 || (reg & 0xff) >= 0xd8) {
2190			device_printf(sc->sis_self, "Applying short cable fix (reg=%x)\n", reg);
2191			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
2192			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
2193		}
2194		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2195	}
2196
2197	/*
2198	 * Enable interrupts.
2199	 */
2200	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2201#ifdef DEVICE_POLLING
2202	/*
2203	 * ... only enable interrupts if we are not polling, make sure
2204	 * they are off otherwise.
2205	 */
2206	if (ifp->if_flags & IFF_POLLING)
2207		CSR_WRITE_4(sc, SIS_IER, 0);
2208	else
2209#endif /* DEVICE_POLLING */
2210	CSR_WRITE_4(sc, SIS_IER, 1);
2211
2212	/* Enable receiver and transmitter. */
2213	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2214	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2215
2216#ifdef notdef
2217	mii_mediachg(mii);
2218#endif
2219
2220	/*
2221	 * Page 75 of the DP83815 manual recommends the
2222	 * following register settings "for optimum
2223	 * performance." Note however that at least three
2224	 * of the registers are listed as "reserved" in
2225	 * the register map, so who knows what they do.
2226	 */
2227	if (sc->sis_type == SIS_TYPE_83815) {
2228		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2229		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2230		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2231		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2232		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2233	}
2234
2235	ifp->if_flags |= IFF_RUNNING;
2236	ifp->if_flags &= ~IFF_OACTIVE;
2237
2238	if (!sc->in_tick)
2239		callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2240
2241	SIS_UNLOCK(sc);
2242
2243	return;
2244}
2245
2246/*
2247 * Set media options.
2248 */
2249static int
2250sis_ifmedia_upd(ifp)
2251	struct ifnet		*ifp;
2252{
2253	struct sis_softc	*sc;
2254	struct mii_data		*mii;
2255
2256	sc = ifp->if_softc;
2257
2258	mii = device_get_softc(sc->sis_miibus);
2259	sc->sis_link = 0;
2260	if (mii->mii_instance) {
2261		struct mii_softc	*miisc;
2262		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2263			mii_phy_reset(miisc);
2264	}
2265	mii_mediachg(mii);
2266
2267	return(0);
2268}
2269
2270/*
2271 * Report current media status.
2272 */
2273static void
2274sis_ifmedia_sts(ifp, ifmr)
2275	struct ifnet		*ifp;
2276	struct ifmediareq	*ifmr;
2277{
2278	struct sis_softc	*sc;
2279	struct mii_data		*mii;
2280
2281	sc = ifp->if_softc;
2282
2283	mii = device_get_softc(sc->sis_miibus);
2284	mii_pollstat(mii);
2285	ifmr->ifm_active = mii->mii_media_active;
2286	ifmr->ifm_status = mii->mii_media_status;
2287
2288	return;
2289}
2290
2291static int
2292sis_ioctl(ifp, command, data)
2293	struct ifnet		*ifp;
2294	u_long			command;
2295	caddr_t			data;
2296{
2297	struct sis_softc	*sc = ifp->if_softc;
2298	struct ifreq		*ifr = (struct ifreq *) data;
2299	struct mii_data		*mii;
2300	int			error = 0;
2301
2302	switch(command) {
2303	case SIOCSIFFLAGS:
2304		if (ifp->if_flags & IFF_UP) {
2305			sis_init(sc);
2306		} else {
2307			if (ifp->if_flags & IFF_RUNNING)
2308				sis_stop(sc);
2309		}
2310		error = 0;
2311		break;
2312	case SIOCADDMULTI:
2313	case SIOCDELMULTI:
2314		SIS_LOCK(sc);
2315		if (sc->sis_type == SIS_TYPE_83815)
2316			sis_setmulti_ns(sc);
2317		else
2318			sis_setmulti_sis(sc);
2319		SIS_UNLOCK(sc);
2320		error = 0;
2321		break;
2322	case SIOCGIFMEDIA:
2323	case SIOCSIFMEDIA:
2324		mii = device_get_softc(sc->sis_miibus);
2325		SIS_LOCK(sc);
2326		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2327		SIS_UNLOCK(sc);
2328		break;
2329	default:
2330		error = ether_ioctl(ifp, command, data);
2331		break;
2332	}
2333
2334	return(error);
2335}
2336
2337static void
2338sis_watchdog(ifp)
2339	struct ifnet		*ifp;
2340{
2341	struct sis_softc	*sc;
2342
2343	sc = ifp->if_softc;
2344
2345	SIS_LOCK(sc);
2346
2347	ifp->if_oerrors++;
2348	printf("sis%d: watchdog timeout\n", sc->sis_unit);
2349
2350	sis_stop(sc);
2351	sis_reset(sc);
2352	sis_init(sc);
2353
2354	if (ifp->if_snd.ifq_head != NULL)
2355		sis_start(ifp);
2356
2357	SIS_UNLOCK(sc);
2358
2359	return;
2360}
2361
2362/*
2363 * Stop the adapter and free any mbufs allocated to the
2364 * RX and TX lists.
2365 */
2366static void
2367sis_stop(sc)
2368	struct sis_softc	*sc;
2369{
2370	register int		i;
2371	struct ifnet		*ifp;
2372
2373	SIS_LOCK(sc);
2374	ifp = &sc->arpcom.ac_if;
2375	ifp->if_timer = 0;
2376
2377	callout_stop(&sc->sis_stat_ch);
2378
2379	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2380#ifdef DEVICE_POLLING
2381	ether_poll_deregister(ifp);
2382#endif
2383	CSR_WRITE_4(sc, SIS_IER, 0);
2384	CSR_WRITE_4(sc, SIS_IMR, 0);
2385	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2386	DELAY(1000);
2387	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2388	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2389
2390	sc->sis_link = 0;
2391
2392	/*
2393	 * Free data in the RX lists.
2394	 */
2395	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2396		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2397			bus_dmamap_unload(sc->sis_tag,
2398			    sc->sis_ldata.sis_rx_list[i].sis_map);
2399			bus_dmamap_destroy(sc->sis_tag,
2400			    sc->sis_ldata.sis_rx_list[i].sis_map);
2401			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2402			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2403		}
2404	}
2405	bzero(sc->sis_ldata.sis_rx_list,
2406		sizeof(sc->sis_ldata.sis_rx_list));
2407
2408	/*
2409	 * Free the TX list buffers.
2410	 */
2411	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2412		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2413			bus_dmamap_unload(sc->sis_tag,
2414			    sc->sis_ldata.sis_tx_list[i].sis_map);
2415			bus_dmamap_destroy(sc->sis_tag,
2416			    sc->sis_ldata.sis_tx_list[i].sis_map);
2417			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2418			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2419		}
2420	}
2421
2422	bzero(sc->sis_ldata.sis_tx_list,
2423		sizeof(sc->sis_ldata.sis_tx_list));
2424
2425	SIS_UNLOCK(sc);
2426
2427	return;
2428}
2429
2430/*
2431 * Stop all chip I/O so that the kernel's probe routines don't
2432 * get confused by errant DMAs when rebooting.
2433 */
2434static void
2435sis_shutdown(dev)
2436	device_t		dev;
2437{
2438	struct sis_softc	*sc;
2439
2440	sc = device_get_softc(dev);
2441	SIS_LOCK(sc);
2442	sis_reset(sc);
2443	sis_stop(sc);
2444	SIS_UNLOCK(sc);
2445
2446	return;
2447}
2448