if_sis.c revision 119785
1274958Sdim/*
2274958Sdim * Copyright (c) 1997, 1998, 1999
3274958Sdim *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4274958Sdim *
5274958Sdim * Redistribution and use in source and binary forms, with or without
6274958Sdim * modification, are permitted provided that the following conditions
7274958Sdim * are met:
8274958Sdim * 1. Redistributions of source code must retain the above copyright
9274958Sdim *    notice, this list of conditions and the following disclaimer.
10274958Sdim * 2. Redistributions in binary form must reproduce the above copyright
11274958Sdim *    notice, this list of conditions and the following disclaimer in the
12274958Sdim *    documentation and/or other materials provided with the distribution.
13280031Sdim * 3. All advertising materials mentioning features or use of this software
14296417Sdim *    must display the following acknowledgement:
15274958Sdim *	This product includes software developed by Bill Paul.
16274958Sdim * 4. Neither the name of the author nor the names of any co-contributors
17274958Sdim *    may be used to endorse or promote products derived from this software
18274958Sdim *    without specific prior written permission.
19274958Sdim *
20274958Sdim * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21274958Sdim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22274958Sdim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23274958Sdim * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24274958Sdim * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25314564Sdim * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26314564Sdim * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27274958Sdim * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28274958Sdim * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29327952Sdim * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30327952Sdim * THE POSSIBILITY OF SUCH DAMAGE.
31274958Sdim */
32274958Sdim
33274958Sdim/*
34274958Sdim * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
35341825Sdim * available from http://www.sis.com.tw.
36280031Sdim *
37280031Sdim * This driver also supports the NatSemi DP83815. Datasheets are
38296417Sdim * available from http://www.national.com.
39280031Sdim *
40274958Sdim * Written by Bill Paul <wpaul@ee.columbia.edu>
41274958Sdim * Electrical Engineering Department
42274958Sdim * Columbia University, New York City
43274958Sdim */
44
45/*
46 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
47 * simple TX and RX descriptors of 3 longwords in size. The receiver
48 * has a single perfect filter entry for the station address and a
49 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
50 * transceiver while the 7016 requires an external transceiver chip.
51 * Both chips offer the standard bit-bang MII interface as well as
52 * an enchanced PHY interface which simplifies accessing MII registers.
53 *
54 * The only downside to this chipset is that RX descriptors must be
55 * longword aligned.
56 */
57
58#include <sys/cdefs.h>
59__FBSDID("$FreeBSD: head/sys/pci/if_sis.c 119785 2003-09-05 22:33:44Z sam $");
60
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/sockio.h>
64#include <sys/mbuf.h>
65#include <sys/malloc.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/sysctl.h>
69
70#include <net/if.h>
71#include <net/if_arp.h>
72#include <net/ethernet.h>
73#include <net/if_dl.h>
74#include <net/if_media.h>
75#include <net/if_types.h>
76#include <net/if_vlan_var.h>
77
78#include <net/bpf.h>
79
80#include <machine/bus_pio.h>
81#include <machine/bus_memio.h>
82#include <machine/bus.h>
83#include <machine/resource.h>
84#include <sys/bus.h>
85#include <sys/rman.h>
86
87#include <dev/mii/mii.h>
88#include <dev/mii/miivar.h>
89
90#include <dev/pci/pcireg.h>
91#include <dev/pci/pcivar.h>
92
93#define SIS_USEIOSPACE
94
95#include <pci/if_sisreg.h>
96
97MODULE_DEPEND(sis, pci, 1, 1, 1);
98MODULE_DEPEND(sis, ether, 1, 1, 1);
99MODULE_DEPEND(sis, miibus, 1, 1, 1);
100
101/* "controller miibus0" required.  See GENERIC if you get errors here. */
102#include "miibus_if.h"
103
104/*
105 * Various supported device vendors/types and their names.
106 */
107static struct sis_type sis_devs[] = {
108	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
109	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
110	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
111	{ 0, 0, NULL }
112};
113
114static int sis_probe		(device_t);
115static int sis_attach		(device_t);
116static int sis_detach		(device_t);
117
118static int sis_newbuf		(struct sis_softc *,
119					struct sis_desc *, struct mbuf *);
120static int sis_encap		(struct sis_softc *,
121					struct mbuf *, u_int32_t *);
122static void sis_rxeof		(struct sis_softc *);
123static void sis_rxeoc		(struct sis_softc *);
124static void sis_txeof		(struct sis_softc *);
125static void sis_intr		(void *);
126static void sis_tick		(void *);
127static void sis_start		(struct ifnet *);
128static int sis_ioctl		(struct ifnet *, u_long, caddr_t);
129static void sis_init		(void *);
130static void sis_stop		(struct sis_softc *);
131static void sis_watchdog		(struct ifnet *);
132static void sis_shutdown		(device_t);
133static int sis_ifmedia_upd	(struct ifnet *);
134static void sis_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
135
136static u_int16_t sis_reverse	(u_int16_t);
137static void sis_delay		(struct sis_softc *);
138static void sis_eeprom_idle	(struct sis_softc *);
139static void sis_eeprom_putbyte	(struct sis_softc *, int);
140static void sis_eeprom_getword	(struct sis_softc *, int, u_int16_t *);
141static void sis_read_eeprom	(struct sis_softc *, caddr_t, int, int, int);
142#ifdef __i386__
143static void sis_read_cmos	(struct sis_softc *, device_t, caddr_t,
144							int, int);
145static void sis_read_mac	(struct sis_softc *, device_t, caddr_t);
146static device_t sis_find_bridge	(device_t);
147#endif
148
149static void sis_mii_sync	(struct sis_softc *);
150static void sis_mii_send	(struct sis_softc *, u_int32_t, int);
151static int sis_mii_readreg	(struct sis_softc *, struct sis_mii_frame *);
152static int sis_mii_writereg	(struct sis_softc *, struct sis_mii_frame *);
153static int sis_miibus_readreg	(device_t, int, int);
154static int sis_miibus_writereg	(device_t, int, int, int);
155static void sis_miibus_statchg	(device_t);
156
157static void sis_setmulti_sis	(struct sis_softc *);
158static void sis_setmulti_ns	(struct sis_softc *);
159static u_int32_t sis_crc	(struct sis_softc *, caddr_t);
160static void sis_reset		(struct sis_softc *);
161static int sis_list_rx_init	(struct sis_softc *);
162static int sis_list_tx_init	(struct sis_softc *);
163
164static void sis_dma_map_desc_ptr	(void *, bus_dma_segment_t *, int, int);
165static void sis_dma_map_desc_next	(void *, bus_dma_segment_t *, int, int);
166static void sis_dma_map_ring		(void *, bus_dma_segment_t *, int, int);
167#ifdef SIS_USEIOSPACE
168#define SIS_RES			SYS_RES_IOPORT
169#define SIS_RID			SIS_PCI_LOIO
170#else
171#define SIS_RES			SYS_RES_MEMORY
172#define SIS_RID			SIS_PCI_LOMEM
173#endif
174
175static device_method_t sis_methods[] = {
176	/* Device interface */
177	DEVMETHOD(device_probe,		sis_probe),
178	DEVMETHOD(device_attach,	sis_attach),
179	DEVMETHOD(device_detach,	sis_detach),
180	DEVMETHOD(device_shutdown,	sis_shutdown),
181
182	/* bus interface */
183	DEVMETHOD(bus_print_child,	bus_generic_print_child),
184	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
185
186	/* MII interface */
187	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
188	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
189	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
190
191	{ 0, 0 }
192};
193
194static driver_t sis_driver = {
195	"sis",
196	sis_methods,
197	sizeof(struct sis_softc)
198};
199
200static devclass_t sis_devclass;
201
202DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
203DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
204
205#define SIS_SETBIT(sc, reg, x)				\
206	CSR_WRITE_4(sc, reg,				\
207		CSR_READ_4(sc, reg) | (x))
208
209#define SIS_CLRBIT(sc, reg, x)				\
210	CSR_WRITE_4(sc, reg,				\
211		CSR_READ_4(sc, reg) & ~(x))
212
213#define SIO_SET(x)					\
214	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
215
216#define SIO_CLR(x)					\
217	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
218
219static void
220sis_dma_map_desc_next(arg, segs, nseg, error)
221	void *arg;
222	bus_dma_segment_t *segs;
223	int nseg, error;
224{
225	struct sis_desc	*r;
226
227	r = arg;
228	r->sis_next = segs->ds_addr;
229
230	return;
231}
232
233static void
234sis_dma_map_desc_ptr(arg, segs, nseg, error)
235	void *arg;
236	bus_dma_segment_t *segs;
237	int nseg, error;
238{
239	struct sis_desc	*r;
240
241	r = arg;
242	r->sis_ptr = segs->ds_addr;
243
244	return;
245}
246
247static void
248sis_dma_map_ring(arg, segs, nseg, error)
249	void *arg;
250	bus_dma_segment_t *segs;
251	int nseg, error;
252{
253	u_int32_t *p;
254
255	p = arg;
256	*p = segs->ds_addr;
257
258	return;
259}
260
261/*
262 * Routine to reverse the bits in a word. Stolen almost
263 * verbatim from /usr/games/fortune.
264 */
265static u_int16_t
266sis_reverse(n)
267	u_int16_t		n;
268{
269	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
270	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
271	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
272	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
273
274	return(n);
275}
276
277static void
278sis_delay(sc)
279	struct sis_softc	*sc;
280{
281	int			idx;
282
283	for (idx = (300 / 33) + 1; idx > 0; idx--)
284		CSR_READ_4(sc, SIS_CSR);
285
286	return;
287}
288
289static void
290sis_eeprom_idle(sc)
291	struct sis_softc	*sc;
292{
293	register int		i;
294
295	SIO_SET(SIS_EECTL_CSEL);
296	sis_delay(sc);
297	SIO_SET(SIS_EECTL_CLK);
298	sis_delay(sc);
299
300	for (i = 0; i < 25; i++) {
301		SIO_CLR(SIS_EECTL_CLK);
302		sis_delay(sc);
303		SIO_SET(SIS_EECTL_CLK);
304		sis_delay(sc);
305	}
306
307	SIO_CLR(SIS_EECTL_CLK);
308	sis_delay(sc);
309	SIO_CLR(SIS_EECTL_CSEL);
310	sis_delay(sc);
311	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
312
313	return;
314}
315
316/*
317 * Send a read command and address to the EEPROM, check for ACK.
318 */
319static void
320sis_eeprom_putbyte(sc, addr)
321	struct sis_softc	*sc;
322	int			addr;
323{
324	register int		d, i;
325
326	d = addr | SIS_EECMD_READ;
327
328	/*
329	 * Feed in each bit and stobe the clock.
330	 */
331	for (i = 0x400; i; i >>= 1) {
332		if (d & i) {
333			SIO_SET(SIS_EECTL_DIN);
334		} else {
335			SIO_CLR(SIS_EECTL_DIN);
336		}
337		sis_delay(sc);
338		SIO_SET(SIS_EECTL_CLK);
339		sis_delay(sc);
340		SIO_CLR(SIS_EECTL_CLK);
341		sis_delay(sc);
342	}
343
344	return;
345}
346
347/*
348 * Read a word of data stored in the EEPROM at address 'addr.'
349 */
350static void
351sis_eeprom_getword(sc, addr, dest)
352	struct sis_softc	*sc;
353	int			addr;
354	u_int16_t		*dest;
355{
356	register int		i;
357	u_int16_t		word = 0;
358
359	/* Force EEPROM to idle state. */
360	sis_eeprom_idle(sc);
361
362	/* Enter EEPROM access mode. */
363	sis_delay(sc);
364	SIO_CLR(SIS_EECTL_CLK);
365	sis_delay(sc);
366	SIO_SET(SIS_EECTL_CSEL);
367	sis_delay(sc);
368
369	/*
370	 * Send address of word we want to read.
371	 */
372	sis_eeprom_putbyte(sc, addr);
373
374	/*
375	 * Start reading bits from EEPROM.
376	 */
377	for (i = 0x8000; i; i >>= 1) {
378		SIO_SET(SIS_EECTL_CLK);
379		sis_delay(sc);
380		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
381			word |= i;
382		sis_delay(sc);
383		SIO_CLR(SIS_EECTL_CLK);
384		sis_delay(sc);
385	}
386
387	/* Turn off EEPROM access mode. */
388	sis_eeprom_idle(sc);
389
390	*dest = word;
391
392	return;
393}
394
395/*
396 * Read a sequence of words from the EEPROM.
397 */
398static void
399sis_read_eeprom(sc, dest, off, cnt, swap)
400	struct sis_softc	*sc;
401	caddr_t			dest;
402	int			off;
403	int			cnt;
404	int			swap;
405{
406	int			i;
407	u_int16_t		word = 0, *ptr;
408
409	for (i = 0; i < cnt; i++) {
410		sis_eeprom_getword(sc, off + i, &word);
411		ptr = (u_int16_t *)(dest + (i * 2));
412		if (swap)
413			*ptr = ntohs(word);
414		else
415			*ptr = word;
416	}
417
418	return;
419}
420
421#ifdef __i386__
422static device_t
423sis_find_bridge(dev)
424	device_t		dev;
425{
426	devclass_t		pci_devclass;
427	device_t		*pci_devices;
428	int			pci_count = 0;
429	device_t		*pci_children;
430	int			pci_childcount = 0;
431	device_t		*busp, *childp;
432	device_t		child = NULL;
433	int			i, j;
434
435	if ((pci_devclass = devclass_find("pci")) == NULL)
436		return(NULL);
437
438	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
439
440	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
441		pci_childcount = 0;
442		device_get_children(*busp, &pci_children, &pci_childcount);
443		for (j = 0, childp = pci_children;
444		    j < pci_childcount; j++, childp++) {
445			if (pci_get_vendor(*childp) == SIS_VENDORID &&
446			    pci_get_device(*childp) == 0x0008) {
447				child = *childp;
448				goto done;
449			}
450		}
451	}
452
453done:
454	free(pci_devices, M_TEMP);
455	free(pci_children, M_TEMP);
456	return(child);
457}
458
459static void
460sis_read_cmos(sc, dev, dest, off, cnt)
461	struct sis_softc	*sc;
462	device_t		dev;
463	caddr_t			dest;
464	int			off;
465	int			cnt;
466{
467	device_t		bridge;
468	u_int8_t		reg;
469	int			i;
470	bus_space_tag_t		btag;
471
472	bridge = sis_find_bridge(dev);
473	if (bridge == NULL)
474		return;
475	reg = pci_read_config(bridge, 0x48, 1);
476	pci_write_config(bridge, 0x48, reg|0x40, 1);
477
478	/* XXX */
479	btag = I386_BUS_SPACE_IO;
480
481	for (i = 0; i < cnt; i++) {
482		bus_space_write_1(btag, 0x0, 0x70, i + off);
483		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
484	}
485
486	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
487	return;
488}
489
490static void
491sis_read_mac(sc, dev, dest)
492	struct sis_softc	*sc;
493	device_t		dev;
494	caddr_t			dest;
495{
496	u_int32_t		filtsave, csrsave;
497
498	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
499	csrsave = CSR_READ_4(sc, SIS_CSR);
500
501	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
502	CSR_WRITE_4(sc, SIS_CSR, 0);
503
504	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
505
506	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
507	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
508	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
509	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
510	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
511	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
512
513	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
514	CSR_WRITE_4(sc, SIS_CSR, csrsave);
515	return;
516}
517#endif
518
519/*
520 * Sync the PHYs by setting data bit and strobing the clock 32 times.
521 */
522static void sis_mii_sync(sc)
523	struct sis_softc	*sc;
524{
525	register int		i;
526
527 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
528
529 	for (i = 0; i < 32; i++) {
530 		SIO_SET(SIS_MII_CLK);
531 		DELAY(1);
532 		SIO_CLR(SIS_MII_CLK);
533 		DELAY(1);
534 	}
535
536 	return;
537}
538
539/*
540 * Clock a series of bits through the MII.
541 */
542static void sis_mii_send(sc, bits, cnt)
543	struct sis_softc	*sc;
544	u_int32_t		bits;
545	int			cnt;
546{
547	int			i;
548
549	SIO_CLR(SIS_MII_CLK);
550
551	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
552		if (bits & i) {
553			SIO_SET(SIS_MII_DATA);
554		} else {
555			SIO_CLR(SIS_MII_DATA);
556		}
557		DELAY(1);
558		SIO_CLR(SIS_MII_CLK);
559		DELAY(1);
560		SIO_SET(SIS_MII_CLK);
561	}
562}
563
564/*
565 * Read an PHY register through the MII.
566 */
567static int sis_mii_readreg(sc, frame)
568	struct sis_softc	*sc;
569	struct sis_mii_frame	*frame;
570
571{
572	int			i, ack, s;
573
574	s = splimp();
575
576	/*
577	 * Set up frame for RX.
578	 */
579	frame->mii_stdelim = SIS_MII_STARTDELIM;
580	frame->mii_opcode = SIS_MII_READOP;
581	frame->mii_turnaround = 0;
582	frame->mii_data = 0;
583
584	/*
585 	 * Turn on data xmit.
586	 */
587	SIO_SET(SIS_MII_DIR);
588
589	sis_mii_sync(sc);
590
591	/*
592	 * Send command/address info.
593	 */
594	sis_mii_send(sc, frame->mii_stdelim, 2);
595	sis_mii_send(sc, frame->mii_opcode, 2);
596	sis_mii_send(sc, frame->mii_phyaddr, 5);
597	sis_mii_send(sc, frame->mii_regaddr, 5);
598
599	/* Idle bit */
600	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
601	DELAY(1);
602	SIO_SET(SIS_MII_CLK);
603	DELAY(1);
604
605	/* Turn off xmit. */
606	SIO_CLR(SIS_MII_DIR);
607
608	/* Check for ack */
609	SIO_CLR(SIS_MII_CLK);
610	DELAY(1);
611	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
612	SIO_SET(SIS_MII_CLK);
613	DELAY(1);
614
615	/*
616	 * Now try reading data bits. If the ack failed, we still
617	 * need to clock through 16 cycles to keep the PHY(s) in sync.
618	 */
619	if (ack) {
620		for(i = 0; i < 16; i++) {
621			SIO_CLR(SIS_MII_CLK);
622			DELAY(1);
623			SIO_SET(SIS_MII_CLK);
624			DELAY(1);
625		}
626		goto fail;
627	}
628
629	for (i = 0x8000; i; i >>= 1) {
630		SIO_CLR(SIS_MII_CLK);
631		DELAY(1);
632		if (!ack) {
633			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
634				frame->mii_data |= i;
635			DELAY(1);
636		}
637		SIO_SET(SIS_MII_CLK);
638		DELAY(1);
639	}
640
641fail:
642
643	SIO_CLR(SIS_MII_CLK);
644	DELAY(1);
645	SIO_SET(SIS_MII_CLK);
646	DELAY(1);
647
648	splx(s);
649
650	if (ack)
651		return(1);
652	return(0);
653}
654
655/*
656 * Write to a PHY register through the MII.
657 */
658static int sis_mii_writereg(sc, frame)
659	struct sis_softc	*sc;
660	struct sis_mii_frame	*frame;
661
662{
663	int			s;
664
665	 s = splimp();
666 	/*
667 	 * Set up frame for TX.
668 	 */
669
670 	frame->mii_stdelim = SIS_MII_STARTDELIM;
671 	frame->mii_opcode = SIS_MII_WRITEOP;
672 	frame->mii_turnaround = SIS_MII_TURNAROUND;
673
674 	/*
675  	 * Turn on data output.
676 	 */
677 	SIO_SET(SIS_MII_DIR);
678
679 	sis_mii_sync(sc);
680
681 	sis_mii_send(sc, frame->mii_stdelim, 2);
682 	sis_mii_send(sc, frame->mii_opcode, 2);
683 	sis_mii_send(sc, frame->mii_phyaddr, 5);
684 	sis_mii_send(sc, frame->mii_regaddr, 5);
685 	sis_mii_send(sc, frame->mii_turnaround, 2);
686 	sis_mii_send(sc, frame->mii_data, 16);
687
688 	/* Idle bit. */
689 	SIO_SET(SIS_MII_CLK);
690 	DELAY(1);
691 	SIO_CLR(SIS_MII_CLK);
692 	DELAY(1);
693
694 	/*
695 	 * Turn off xmit.
696 	 */
697 	SIO_CLR(SIS_MII_DIR);
698
699 	splx(s);
700
701 	return(0);
702}
703
704static int
705sis_miibus_readreg(dev, phy, reg)
706	device_t		dev;
707	int			phy, reg;
708{
709	struct sis_softc	*sc;
710	struct sis_mii_frame    frame;
711
712	sc = device_get_softc(dev);
713
714	if (sc->sis_type == SIS_TYPE_83815) {
715		if (phy != 0)
716			return(0);
717		/*
718		 * The NatSemi chip can take a while after
719		 * a reset to come ready, during which the BMSR
720		 * returns a value of 0. This is *never* supposed
721		 * to happen: some of the BMSR bits are meant to
722		 * be hardwired in the on position, and this can
723		 * confuse the miibus code a bit during the probe
724		 * and attach phase. So we make an effort to check
725		 * for this condition and wait for it to clear.
726		 */
727		if (!CSR_READ_4(sc, NS_BMSR))
728			DELAY(1000);
729		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
730	}
731
732	/*
733	 * Chipsets < SIS_635 seem not to be able to read/write
734	 * through mdio. Use the enhanced PHY access register
735	 * again for them.
736	 */
737	if (sc->sis_type == SIS_TYPE_900 &&
738	    sc->sis_rev < SIS_REV_635) {
739		int i, val = 0;
740
741		if (phy != 0)
742			return(0);
743
744		CSR_WRITE_4(sc, SIS_PHYCTL,
745		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
746		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
747
748		for (i = 0; i < SIS_TIMEOUT; i++) {
749			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
750				break;
751		}
752
753		if (i == SIS_TIMEOUT) {
754			printf("sis%d: PHY failed to come ready\n",
755			    sc->sis_unit);
756			return(0);
757		}
758
759		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
760
761		if (val == 0xFFFF)
762			return(0);
763
764		return(val);
765	} else {
766		bzero((char *)&frame, sizeof(frame));
767
768		frame.mii_phyaddr = phy;
769		frame.mii_regaddr = reg;
770		sis_mii_readreg(sc, &frame);
771
772		return(frame.mii_data);
773	}
774}
775
776static int
777sis_miibus_writereg(dev, phy, reg, data)
778	device_t		dev;
779	int			phy, reg, data;
780{
781	struct sis_softc	*sc;
782	struct sis_mii_frame	frame;
783
784	sc = device_get_softc(dev);
785
786	if (sc->sis_type == SIS_TYPE_83815) {
787		if (phy != 0)
788			return(0);
789		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
790		return(0);
791	}
792
793	/*
794	 * Chipsets < SIS_635 seem not to be able to read/write
795	 * through mdio. Use the enhanced PHY access register
796	 * again for them.
797	 */
798	if (sc->sis_type == SIS_TYPE_900 &&
799	    sc->sis_rev < SIS_REV_635) {
800		int i;
801
802		if (phy != 0)
803			return(0);
804
805		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
806		    (reg << 6) | SIS_PHYOP_WRITE);
807		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
808
809		for (i = 0; i < SIS_TIMEOUT; i++) {
810			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
811				break;
812		}
813
814		if (i == SIS_TIMEOUT)
815			printf("sis%d: PHY failed to come ready\n",
816			    sc->sis_unit);
817	} else {
818		bzero((char *)&frame, sizeof(frame));
819
820		frame.mii_phyaddr = phy;
821		frame.mii_regaddr = reg;
822		frame.mii_data = data;
823		sis_mii_writereg(sc, &frame);
824	}
825	return(0);
826}
827
828static void
829sis_miibus_statchg(dev)
830	device_t		dev;
831{
832	struct sis_softc	*sc;
833
834	sc = device_get_softc(dev);
835	sis_init(sc);
836
837	return;
838}
839
840static u_int32_t
841sis_crc(sc, addr)
842	struct sis_softc	*sc;
843	caddr_t			addr;
844{
845	u_int32_t		crc, carry;
846	int			i, j;
847	u_int8_t		c;
848
849	/* Compute CRC for the address value. */
850	crc = 0xFFFFFFFF; /* initial value */
851
852	for (i = 0; i < 6; i++) {
853		c = *(addr + i);
854		for (j = 0; j < 8; j++) {
855			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
856			crc <<= 1;
857			c >>= 1;
858			if (carry)
859				crc = (crc ^ 0x04c11db6) | carry;
860		}
861	}
862
863	/*
864	 * return the filter bit position
865	 *
866	 * The NatSemi chip has a 512-bit filter, which is
867	 * different than the SiS, so we special-case it.
868	 */
869	if (sc->sis_type == SIS_TYPE_83815)
870		return (crc >> 23);
871	else if (sc->sis_rev >= SIS_REV_635 ||
872	    sc->sis_rev == SIS_REV_900B)
873		return (crc >> 24);
874	else
875		return (crc >> 25);
876}
877
878static void
879sis_setmulti_ns(sc)
880	struct sis_softc	*sc;
881{
882	struct ifnet		*ifp;
883	struct ifmultiaddr	*ifma;
884	u_int32_t		h = 0, i, filtsave;
885	int			bit, index;
886
887	ifp = &sc->arpcom.ac_if;
888
889	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
890		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
891		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
892		return;
893	}
894
895	/*
896	 * We have to explicitly enable the multicast hash table
897	 * on the NatSemi chip if we want to use it, which we do.
898	 */
899	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
900	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
901
902	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
903
904	/* first, zot all the existing hash bits */
905	for (i = 0; i < 32; i++) {
906		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
907		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
908	}
909
910	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
911		if (ifma->ifma_addr->sa_family != AF_LINK)
912			continue;
913		h = sis_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
914		index = h >> 3;
915		bit = h & 0x1F;
916		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
917		if (bit > 0xF)
918			bit -= 0x10;
919		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
920	}
921
922	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
923
924	return;
925}
926
927static void
928sis_setmulti_sis(sc)
929	struct sis_softc	*sc;
930{
931	struct ifnet		*ifp;
932	struct ifmultiaddr	*ifma;
933	u_int32_t		h, i, n, ctl;
934	u_int16_t		hashes[16];
935
936	ifp = &sc->arpcom.ac_if;
937
938	/* hash table size */
939	if (sc->sis_rev >= SIS_REV_635 ||
940	    sc->sis_rev == SIS_REV_900B)
941		n = 16;
942	else
943		n = 8;
944
945	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
946
947	if (ifp->if_flags & IFF_BROADCAST)
948		ctl |= SIS_RXFILTCTL_BROAD;
949
950	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
951		ctl |= SIS_RXFILTCTL_ALLMULTI;
952		if (ifp->if_flags & IFF_PROMISC)
953			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
954		for (i = 0; i < n; i++)
955			hashes[i] = ~0;
956	} else {
957		for (i = 0; i < n; i++)
958			hashes[i] = 0;
959		i = 0;
960		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
961			if (ifma->ifma_addr->sa_family != AF_LINK)
962			continue;
963			h = sis_crc(sc,
964			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
965			hashes[h >> 4] |= 1 << (h & 0xf);
966			i++;
967		}
968		if (i > n) {
969			ctl |= SIS_RXFILTCTL_ALLMULTI;
970			for (i = 0; i < n; i++)
971				hashes[i] = ~0;
972		}
973	}
974
975	for (i = 0; i < n; i++) {
976		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
977		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
978	}
979
980	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
981}
982
983static void
984sis_reset(sc)
985	struct sis_softc	*sc;
986{
987	register int		i;
988
989	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
990
991	for (i = 0; i < SIS_TIMEOUT; i++) {
992		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
993			break;
994	}
995
996	if (i == SIS_TIMEOUT)
997		printf("sis%d: reset never completed\n", sc->sis_unit);
998
999	/* Wait a little while for the chip to get its brains in order. */
1000	DELAY(1000);
1001
1002	/*
1003	 * If this is a NetSemi chip, make sure to clear
1004	 * PME mode.
1005	 */
1006	if (sc->sis_type == SIS_TYPE_83815) {
1007		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
1008		CSR_WRITE_4(sc, NS_CLKRUN, 0);
1009	}
1010
1011        return;
1012}
1013
1014/*
1015 * Probe for an SiS chip. Check the PCI vendor and device
1016 * IDs against our list and return a device name if we find a match.
1017 */
1018static int
1019sis_probe(dev)
1020	device_t		dev;
1021{
1022	struct sis_type		*t;
1023
1024	t = sis_devs;
1025
1026	while(t->sis_name != NULL) {
1027		if ((pci_get_vendor(dev) == t->sis_vid) &&
1028		    (pci_get_device(dev) == t->sis_did)) {
1029			device_set_desc(dev, t->sis_name);
1030			return(0);
1031		}
1032		t++;
1033	}
1034
1035	return(ENXIO);
1036}
1037
1038/*
1039 * Attach the interface. Allocate softc structures, do ifmedia
1040 * setup and ethernet/BPF attach.
1041 */
1042static int
1043sis_attach(dev)
1044	device_t		dev;
1045{
1046	u_char			eaddr[ETHER_ADDR_LEN];
1047	struct sis_softc	*sc;
1048	struct ifnet		*ifp;
1049	int			unit, error = 0, rid, waittime = 0;
1050
1051	waittime = 0;
1052	sc = device_get_softc(dev);
1053	unit = device_get_unit(dev);
1054
1055	sc->sis_self = dev;
1056
1057	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1058	    MTX_DEF | MTX_RECURSE);
1059
1060	if (pci_get_device(dev) == SIS_DEVICEID_900)
1061		sc->sis_type = SIS_TYPE_900;
1062	if (pci_get_device(dev) == SIS_DEVICEID_7016)
1063		sc->sis_type = SIS_TYPE_7016;
1064	if (pci_get_vendor(dev) == NS_VENDORID)
1065		sc->sis_type = SIS_TYPE_83815;
1066
1067	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
1068#ifndef BURN_BRIDGES
1069	/*
1070	 * Handle power management nonsense.
1071	 */
1072	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1073		u_int32_t		iobase, membase, irq;
1074
1075		/* Save important PCI config data. */
1076		iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
1077		membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
1078		irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
1079
1080		/* Reset the power state. */
1081		printf("sis%d: chip is in D%d power mode "
1082		    "-- setting to D0\n", unit,
1083		    pci_get_powerstate(dev));
1084		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1085
1086		/* Restore PCI config data. */
1087		pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
1088		pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
1089		pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
1090	}
1091#endif
1092	/*
1093	 * Map control/status registers.
1094	 */
1095	pci_enable_busmaster(dev);
1096
1097	rid = SIS_RID;
1098	sc->sis_res = bus_alloc_resource(dev, SIS_RES, &rid,
1099	    0, ~0, 1, RF_ACTIVE);
1100
1101	if (sc->sis_res == NULL) {
1102		printf("sis%d: couldn't map ports/memory\n", unit);
1103		error = ENXIO;
1104		goto fail;
1105	}
1106
1107	sc->sis_btag = rman_get_bustag(sc->sis_res);
1108	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1109
1110	/* Allocate interrupt */
1111	rid = 0;
1112	sc->sis_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1113	    RF_SHAREABLE | RF_ACTIVE);
1114
1115	if (sc->sis_irq == NULL) {
1116		printf("sis%d: couldn't map interrupt\n", unit);
1117		error = ENXIO;
1118		goto fail;
1119	}
1120
1121	/* Reset the adapter. */
1122	sis_reset(sc);
1123
1124	if (sc->sis_type == SIS_TYPE_900 &&
1125            (sc->sis_rev == SIS_REV_635 ||
1126            sc->sis_rev == SIS_REV_900B)) {
1127		SIO_SET(SIS_CFG_RND_CNT);
1128		SIO_SET(SIS_CFG_PERR_DETECT);
1129	}
1130
1131	/*
1132	 * Get station address from the EEPROM.
1133	 */
1134	switch (pci_get_vendor(dev)) {
1135	case NS_VENDORID:
1136		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
1137
1138		/* We can't update the device description, so spew */
1139		if (sc->sis_srr == NS_SRR_15C)
1140			device_printf(dev, "Silicon Revision: DP83815C\n");
1141		else if (sc->sis_srr == NS_SRR_15D)
1142			device_printf(dev, "Silicon Revision: DP83815D\n");
1143		else if (sc->sis_srr == NS_SRR_16A)
1144			device_printf(dev, "Silicon Revision: DP83816A\n");
1145		else
1146			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
1147
1148		/*
1149		 * Reading the MAC address out of the EEPROM on
1150		 * the NatSemi chip takes a bit more work than
1151		 * you'd expect. The address spans 4 16-bit words,
1152		 * with the first word containing only a single bit.
1153		 * You have to shift everything over one bit to
1154		 * get it aligned properly. Also, the bits are
1155		 * stored backwards (the LSB is really the MSB,
1156		 * and so on) so you have to reverse them in order
1157		 * to get the MAC address into the form we want.
1158		 * Why? Who the hell knows.
1159		 */
1160		{
1161			u_int16_t		tmp[4];
1162
1163			sis_read_eeprom(sc, (caddr_t)&tmp,
1164			    NS_EE_NODEADDR, 4, 0);
1165
1166			/* Shift everything over one bit. */
1167			tmp[3] = tmp[3] >> 1;
1168			tmp[3] |= tmp[2] << 15;
1169			tmp[2] = tmp[2] >> 1;
1170			tmp[2] |= tmp[1] << 15;
1171			tmp[1] = tmp[1] >> 1;
1172			tmp[1] |= tmp[0] << 15;
1173
1174			/* Now reverse all the bits. */
1175			tmp[3] = sis_reverse(tmp[3]);
1176			tmp[2] = sis_reverse(tmp[2]);
1177			tmp[1] = sis_reverse(tmp[1]);
1178
1179			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1180		}
1181		break;
1182	case SIS_VENDORID:
1183	default:
1184#ifdef __i386__
1185		/*
1186		 * If this is a SiS 630E chipset with an embedded
1187		 * SiS 900 controller, we have to read the MAC address
1188		 * from the APC CMOS RAM. Our method for doing this
1189		 * is very ugly since we have to reach out and grab
1190		 * ahold of hardware for which we cannot properly
1191		 * allocate resources. This code is only compiled on
1192		 * the i386 architecture since the SiS 630E chipset
1193		 * is for x86 motherboards only. Note that there are
1194		 * a lot of magic numbers in this hack. These are
1195		 * taken from SiS's Linux driver. I'd like to replace
1196		 * them with proper symbolic definitions, but that
1197		 * requires some datasheets that I don't have access
1198		 * to at the moment.
1199		 */
1200		if (sc->sis_rev == SIS_REV_630S ||
1201		    sc->sis_rev == SIS_REV_630E ||
1202		    sc->sis_rev == SIS_REV_630EA1)
1203			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1204
1205		else if (sc->sis_rev == SIS_REV_635 ||
1206			 sc->sis_rev == SIS_REV_630ET)
1207			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1208		else if (sc->sis_rev == SIS_REV_96x) {
1209			/* Allow to read EEPROM from LAN. It is shared
1210			 * between a 1394 controller and the NIC and each
1211			 * time we access it, we need to set SIS_EECMD_REQ.
1212			 */
1213			SIO_SET(SIS_EECMD_REQ);
1214			for (waittime = 0; waittime < SIS_TIMEOUT;
1215			    waittime++) {
1216				/* Force EEPROM to idle state. */
1217				sis_eeprom_idle(sc);
1218				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1219					sis_read_eeprom(sc, (caddr_t)&eaddr,
1220					    SIS_EE_NODEADDR, 3, 0);
1221					break;
1222				}
1223				DELAY(1);
1224			}
1225			/*
1226			 * Set SIS_EECTL_CLK to high, so a other master
1227			 * can operate on the i2c bus.
1228			 */
1229			SIO_SET(SIS_EECTL_CLK);
1230			/* Refuse EEPROM access by LAN */
1231			SIO_SET(SIS_EECMD_DONE);
1232		} else
1233#endif
1234			sis_read_eeprom(sc, (caddr_t)&eaddr,
1235			    SIS_EE_NODEADDR, 3, 0);
1236		break;
1237	}
1238
1239	/*
1240	 * A SiS chip was detected. Inform the world.
1241	 */
1242	printf("sis%d: Ethernet address: %6D\n", unit, eaddr, ":");
1243
1244	sc->sis_unit = unit;
1245	callout_init(&sc->sis_stat_ch, CALLOUT_MPSAFE);
1246	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1247
1248	/*
1249	 * Allocate the parent bus DMA tag appropriate for PCI.
1250	 */
1251#define SIS_NSEG_NEW 32
1252	 error = bus_dma_tag_create(NULL,	/* parent */
1253			1, 0,			/* alignment, boundary */
1254			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1255			BUS_SPACE_MAXADDR,	/* highaddr */
1256			NULL, NULL,		/* filter, filterarg */
1257			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1258			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1259			BUS_DMA_ALLOCNOW,	/* flags */
1260			NULL, NULL,		/* lockfunc, lockarg */
1261			&sc->sis_parent_tag);
1262	if (error)
1263		goto fail;
1264
1265	/*
1266	 * Now allocate a tag for the DMA descriptor lists and a chunk
1267	 * of DMA-able memory based on the tag.  Also obtain the physical
1268	 * addresses of the RX and TX ring, which we'll need later.
1269	 * All of our lists are allocated as a contiguous block
1270	 * of memory.
1271	 */
1272	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1273			1, 0,			/* alignment, boundary */
1274			BUS_SPACE_MAXADDR,	/* lowaddr */
1275			BUS_SPACE_MAXADDR,	/* highaddr */
1276			NULL, NULL,		/* filter, filterarg */
1277			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1278			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1279			0,			/* flags */
1280			busdma_lock_mutex,	/* lockfunc */
1281			&Giant,			/* lockarg */
1282			&sc->sis_ldata.sis_rx_tag);
1283	if (error)
1284		goto fail;
1285
1286	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1287	    (void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1288	    &sc->sis_ldata.sis_rx_dmamap);
1289
1290	if (error) {
1291		printf("sis%d: no memory for rx list buffers!\n", unit);
1292		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1293		sc->sis_ldata.sis_rx_tag = NULL;
1294		goto fail;
1295	}
1296
1297	error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1298	    sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
1299	    sizeof(struct sis_desc), sis_dma_map_ring,
1300	    &sc->sis_cdata.sis_rx_paddr, 0);
1301
1302	if (error) {
1303		printf("sis%d: cannot get address of the rx ring!\n", unit);
1304		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1305		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1306		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1307		sc->sis_ldata.sis_rx_tag = NULL;
1308		goto fail;
1309	}
1310
1311	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1312			1, 0,			/* alignment, boundary */
1313			BUS_SPACE_MAXADDR,	/* lowaddr */
1314			BUS_SPACE_MAXADDR,	/* highaddr */
1315			NULL, NULL,		/* filter, filterarg */
1316			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1317			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1318			0,			/* flags */
1319			busdma_lock_mutex,	/* lockfunc */
1320			&Giant,			/* lockarg */
1321			&sc->sis_ldata.sis_tx_tag);
1322	if (error)
1323		goto fail;
1324
1325	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1326	    (void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1327	    &sc->sis_ldata.sis_tx_dmamap);
1328
1329	if (error) {
1330		printf("sis%d: no memory for tx list buffers!\n", unit);
1331		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1332		sc->sis_ldata.sis_tx_tag = NULL;
1333		goto fail;
1334	}
1335
1336	error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1337	    sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
1338	    sizeof(struct sis_desc), sis_dma_map_ring,
1339	    &sc->sis_cdata.sis_tx_paddr, 0);
1340
1341	if (error) {
1342		printf("sis%d: cannot get address of the tx ring!\n", unit);
1343		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1344		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1345		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1346		sc->sis_ldata.sis_tx_tag = NULL;
1347		goto fail;
1348	}
1349
1350	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1351			1, 0,			/* alignment, boundary */
1352			BUS_SPACE_MAXADDR,	/* lowaddr */
1353			BUS_SPACE_MAXADDR,	/* highaddr */
1354			NULL, NULL,		/* filter, filterarg */
1355			MCLBYTES, 1,		/* maxsize,nsegments */
1356			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1357			0,			/* flags */
1358			busdma_lock_mutex,	/* lockfunc */
1359			&Giant,			/* lockarg */
1360			&sc->sis_tag);
1361	if (error)
1362		goto fail;
1363
1364	/*
1365	 * Obtain the physical addresses of the RX and TX
1366	 * rings which we'll need later in the init routine.
1367	 */
1368
1369	ifp = &sc->arpcom.ac_if;
1370	ifp->if_softc = sc;
1371	ifp->if_unit = unit;
1372	ifp->if_name = "sis";
1373	ifp->if_mtu = ETHERMTU;
1374	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1375	ifp->if_ioctl = sis_ioctl;
1376	ifp->if_output = ether_output;
1377	ifp->if_start = sis_start;
1378	ifp->if_watchdog = sis_watchdog;
1379	ifp->if_init = sis_init;
1380	ifp->if_baudrate = 10000000;
1381	ifp->if_snd.ifq_maxlen = SIS_TX_LIST_CNT - 1;
1382
1383	/*
1384	 * Do MII setup.
1385	 */
1386	if (mii_phy_probe(dev, &sc->sis_miibus,
1387	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1388		printf("sis%d: MII without any PHY!\n", sc->sis_unit);
1389		error = ENXIO;
1390		goto fail;
1391	}
1392
1393	/*
1394	 * Call MI attach routine.
1395	 */
1396	ether_ifattach(ifp, eaddr);
1397
1398	/*
1399	 * Tell the upper layer(s) we support long frames.
1400	 */
1401	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1402	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1403
1404	/* Hook interrupt last to avoid having to lock softc */
1405	error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET,
1406	    sis_intr, sc, &sc->sis_intrhand);
1407
1408	if (error) {
1409		printf("sis%d: couldn't set up irq\n", unit);
1410		ether_ifdetach(ifp);
1411		goto fail;
1412	}
1413
1414fail:
1415	if (error)
1416		sis_detach(dev);
1417
1418	return(error);
1419}
1420
1421/*
1422 * Shutdown hardware and free up resources. This can be called any
1423 * time after the mutex has been initialized. It is called in both
1424 * the error case in attach and the normal detach case so it needs
1425 * to be careful about only freeing resources that have actually been
1426 * allocated.
1427 */
1428static int
1429sis_detach(dev)
1430	device_t		dev;
1431{
1432	struct sis_softc	*sc;
1433	struct ifnet		*ifp;
1434
1435	sc = device_get_softc(dev);
1436	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1437	SIS_LOCK(sc);
1438	ifp = &sc->arpcom.ac_if;
1439
1440	/* These should only be active if attach succeeded. */
1441	if (device_is_attached(dev)) {
1442		sis_reset(sc);
1443		sis_stop(sc);
1444		ether_ifdetach(ifp);
1445	}
1446	if (sc->sis_miibus)
1447		device_delete_child(dev, sc->sis_miibus);
1448	bus_generic_detach(dev);
1449
1450	if (sc->sis_intrhand)
1451		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1452	if (sc->sis_irq)
1453		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1454	if (sc->sis_res)
1455		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1456
1457	if (sc->sis_ldata.sis_rx_tag) {
1458		bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1459		    sc->sis_ldata.sis_rx_dmamap);
1460		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1461		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1462		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1463	}
1464	if (sc->sis_ldata.sis_tx_tag) {
1465		bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1466		    sc->sis_ldata.sis_tx_dmamap);
1467		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1468		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1469		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1470	}
1471	if (sc->sis_parent_tag)
1472		bus_dma_tag_destroy(sc->sis_parent_tag);
1473	if (sc->sis_tag)
1474		bus_dma_tag_destroy(sc->sis_tag);
1475
1476	SIS_UNLOCK(sc);
1477	mtx_destroy(&sc->sis_mtx);
1478
1479	return(0);
1480}
1481
1482/*
1483 * Initialize the transmit descriptors.
1484 */
1485static int
1486sis_list_tx_init(sc)
1487	struct sis_softc	*sc;
1488{
1489	struct sis_list_data	*ld;
1490	struct sis_ring_data	*cd;
1491	int			i, nexti;
1492
1493	cd = &sc->sis_cdata;
1494	ld = &sc->sis_ldata;
1495
1496	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1497		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1498			ld->sis_tx_list[i].sis_nextdesc =
1499			    &ld->sis_tx_list[nexti];
1500			bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1501			    sc->sis_ldata.sis_tx_dmamap,
1502			    &ld->sis_tx_list[nexti], sizeof(struct sis_desc),
1503			    sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
1504		ld->sis_tx_list[i].sis_mbuf = NULL;
1505		ld->sis_tx_list[i].sis_ptr = 0;
1506		ld->sis_tx_list[i].sis_ctl = 0;
1507	}
1508
1509	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1510
1511	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
1512	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1513
1514	return(0);
1515}
1516
1517/*
1518 * Initialize the RX descriptors and allocate mbufs for them. Note that
1519 * we arrange the descriptors in a closed ring, so that the last descriptor
1520 * points back to the first.
1521 */
1522static int
1523sis_list_rx_init(sc)
1524	struct sis_softc	*sc;
1525{
1526	struct sis_list_data	*ld;
1527	struct sis_ring_data	*cd;
1528	int			i,nexti;
1529
1530	ld = &sc->sis_ldata;
1531	cd = &sc->sis_cdata;
1532
1533	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1534		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1535			return(ENOBUFS);
1536		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1537			ld->sis_rx_list[i].sis_nextdesc =
1538			    &ld->sis_rx_list[nexti];
1539			bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1540			    sc->sis_ldata.sis_rx_dmamap,
1541			    &ld->sis_rx_list[nexti],
1542			    sizeof(struct sis_desc), sis_dma_map_desc_next,
1543			    &ld->sis_rx_list[i], 0);
1544		}
1545
1546	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
1547	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1548
1549	cd->sis_rx_prod = 0;
1550
1551	return(0);
1552}
1553
1554/*
1555 * Initialize an RX descriptor and attach an MBUF cluster.
1556 */
1557static int
1558sis_newbuf(sc, c, m)
1559	struct sis_softc	*sc;
1560	struct sis_desc		*c;
1561	struct mbuf		*m;
1562{
1563
1564	if (c == NULL)
1565		return(EINVAL);
1566
1567	if (m == NULL) {
1568		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1569		if (m == NULL)
1570			return(ENOBUFS);
1571	} else
1572		m->m_data = m->m_ext.ext_buf;
1573
1574	c->sis_mbuf = m;
1575	c->sis_ctl = SIS_RXLEN;
1576
1577	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1578	bus_dmamap_load(sc->sis_tag, c->sis_map,
1579	    mtod(m, void *), MCLBYTES,
1580	    sis_dma_map_desc_ptr, c, 0);
1581	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1582
1583	return(0);
1584}
1585
1586/*
1587 * A frame has been uploaded: pass the resulting mbuf chain up to
1588 * the higher level protocols.
1589 */
1590static void
1591sis_rxeof(sc)
1592	struct sis_softc	*sc;
1593{
1594        struct mbuf		*m;
1595        struct ifnet		*ifp;
1596	struct sis_desc		*cur_rx;
1597	int			i, total_len = 0;
1598	u_int32_t		rxstat;
1599
1600	ifp = &sc->arpcom.ac_if;
1601	i = sc->sis_cdata.sis_rx_prod;
1602
1603	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1604
1605#ifdef DEVICE_POLLING
1606		if (ifp->if_flags & IFF_POLLING) {
1607			if (sc->rxcycles <= 0)
1608				break;
1609			sc->rxcycles--;
1610		}
1611#endif /* DEVICE_POLLING */
1612		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1613		rxstat = cur_rx->sis_rxstat;
1614		bus_dmamap_sync(sc->sis_tag,
1615		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1616		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1617		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1618		m = cur_rx->sis_mbuf;
1619		cur_rx->sis_mbuf = NULL;
1620		total_len = SIS_RXBYTES(cur_rx);
1621		SIS_INC(i, SIS_RX_LIST_CNT);
1622
1623		/*
1624		 * If an error occurs, update stats, clear the
1625		 * status word and leave the mbuf cluster in place:
1626		 * it should simply get re-used next time this descriptor
1627	 	 * comes up in the ring.
1628		 */
1629		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1630			ifp->if_ierrors++;
1631			if (rxstat & SIS_RXSTAT_COLL)
1632				ifp->if_collisions++;
1633			sis_newbuf(sc, cur_rx, m);
1634			continue;
1635		}
1636
1637		/* No errors; receive the packet. */
1638#ifdef __i386__
1639		/*
1640		 * On the x86 we do not have alignment problems, so try to
1641		 * allocate a new buffer for the receive ring, and pass up
1642		 * the one where the packet is already, saving the expensive
1643		 * copy done in m_devget().
1644		 * If we are on an architecture with alignment problems, or
1645		 * if the allocation fails, then use m_devget and leave the
1646		 * existing buffer in the receive ring.
1647		 */
1648		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1649			m->m_pkthdr.len = m->m_len = total_len;
1650		else
1651#endif
1652		{
1653			struct mbuf		*m0;
1654			m0 = m_devget(mtod(m, char *), total_len,
1655				ETHER_ALIGN, ifp, NULL);
1656			sis_newbuf(sc, cur_rx, m);
1657			if (m0 == NULL) {
1658				ifp->if_ierrors++;
1659				continue;
1660			}
1661			m = m0;
1662		}
1663
1664		ifp->if_ipackets++;
1665		m->m_pkthdr.rcvif = ifp;
1666
1667		(*ifp->if_input)(ifp, m);
1668	}
1669
1670	sc->sis_cdata.sis_rx_prod = i;
1671
1672	return;
1673}
1674
1675static void
1676sis_rxeoc(sc)
1677	struct sis_softc	*sc;
1678{
1679	sis_rxeof(sc);
1680	sis_init(sc);
1681	return;
1682}
1683
1684/*
1685 * A frame was downloaded to the chip. It's safe for us to clean up
1686 * the list buffers.
1687 */
1688
1689static void
1690sis_txeof(sc)
1691	struct sis_softc	*sc;
1692{
1693	struct ifnet		*ifp;
1694	u_int32_t		idx;
1695
1696	ifp = &sc->arpcom.ac_if;
1697
1698	/*
1699	 * Go through our tx list and free mbufs for those
1700	 * frames that have been transmitted.
1701	 */
1702	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1703	    sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1704		struct sis_desc *cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1705
1706		if (SIS_OWNDESC(cur_tx))
1707			break;
1708
1709		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1710			continue;
1711
1712		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1713			ifp->if_oerrors++;
1714			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1715				ifp->if_collisions++;
1716			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1717				ifp->if_collisions++;
1718		}
1719
1720		ifp->if_collisions +=
1721		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1722
1723		ifp->if_opackets++;
1724		if (cur_tx->sis_mbuf != NULL) {
1725			m_freem(cur_tx->sis_mbuf);
1726			cur_tx->sis_mbuf = NULL;
1727			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1728			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1729		}
1730	}
1731
1732	if (idx != sc->sis_cdata.sis_tx_cons) {
1733		/* we freed up some buffers */
1734		sc->sis_cdata.sis_tx_cons = idx;
1735		ifp->if_flags &= ~IFF_OACTIVE;
1736	}
1737
1738	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1739
1740	return;
1741}
1742
1743static void
1744sis_tick(xsc)
1745	void			*xsc;
1746{
1747	struct sis_softc	*sc;
1748	struct mii_data		*mii;
1749	struct ifnet		*ifp;
1750
1751	sc = xsc;
1752	SIS_LOCK(sc);
1753	sc->in_tick = 1;
1754	ifp = &sc->arpcom.ac_if;
1755
1756	mii = device_get_softc(sc->sis_miibus);
1757	mii_tick(mii);
1758
1759	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1760	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1761		sc->sis_link++;
1762		if (ifp->if_snd.ifq_head != NULL)
1763			sis_start(ifp);
1764	}
1765
1766	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1767	sc->in_tick = 0;
1768	SIS_UNLOCK(sc);
1769
1770	return;
1771}
1772
1773#ifdef DEVICE_POLLING
1774static poll_handler_t sis_poll;
1775
1776static void
1777sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1778{
1779	struct	sis_softc *sc = ifp->if_softc;
1780
1781	SIS_LOCK(sc);
1782	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1783		CSR_WRITE_4(sc, SIS_IER, 1);
1784		goto done;
1785	}
1786
1787	/*
1788	 * On the sis, reading the status register also clears it.
1789	 * So before returning to intr mode we must make sure that all
1790	 * possible pending sources of interrupts have been served.
1791	 * In practice this means run to completion the *eof routines,
1792	 * and then call the interrupt routine
1793	 */
1794	sc->rxcycles = count;
1795	sis_rxeof(sc);
1796	sis_txeof(sc);
1797	if (ifp->if_snd.ifq_head != NULL)
1798		sis_start(ifp);
1799
1800	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1801		u_int32_t	status;
1802
1803		/* Reading the ISR register clears all interrupts. */
1804		status = CSR_READ_4(sc, SIS_ISR);
1805
1806		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1807			sis_rxeoc(sc);
1808
1809		if (status & (SIS_ISR_RX_IDLE))
1810			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1811
1812		if (status & SIS_ISR_SYSERR) {
1813			sis_reset(sc);
1814			sis_init(sc);
1815		}
1816	}
1817done:
1818	SIS_UNLOCK(sc);
1819	return;
1820}
1821#endif /* DEVICE_POLLING */
1822
1823static void
1824sis_intr(arg)
1825	void			*arg;
1826{
1827	struct sis_softc	*sc;
1828	struct ifnet		*ifp;
1829	u_int32_t		status;
1830
1831	sc = arg;
1832	ifp = &sc->arpcom.ac_if;
1833
1834	SIS_LOCK(sc);
1835#ifdef DEVICE_POLLING
1836	if (ifp->if_flags & IFF_POLLING)
1837		goto done;
1838	if (ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
1839		CSR_WRITE_4(sc, SIS_IER, 0);
1840		goto done;
1841	}
1842#endif /* DEVICE_POLLING */
1843
1844	/* Supress unwanted interrupts */
1845	if (!(ifp->if_flags & IFF_UP)) {
1846		sis_stop(sc);
1847		goto done;
1848	}
1849
1850	/* Disable interrupts. */
1851	CSR_WRITE_4(sc, SIS_IER, 0);
1852
1853	for (;;) {
1854		/* Reading the ISR register clears all interrupts. */
1855		status = CSR_READ_4(sc, SIS_ISR);
1856
1857		if ((status & SIS_INTRS) == 0)
1858			break;
1859
1860		if (status &
1861		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1862		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1863			sis_txeof(sc);
1864
1865		if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
1866			sis_rxeof(sc);
1867
1868		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1869			sis_rxeoc(sc);
1870
1871		if (status & (SIS_ISR_RX_IDLE))
1872			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1873
1874		if (status & SIS_ISR_SYSERR) {
1875			sis_reset(sc);
1876			sis_init(sc);
1877		}
1878	}
1879
1880	/* Re-enable interrupts. */
1881	CSR_WRITE_4(sc, SIS_IER, 1);
1882
1883	if (ifp->if_snd.ifq_head != NULL)
1884		sis_start(ifp);
1885done:
1886	SIS_UNLOCK(sc);
1887
1888	return;
1889}
1890
1891/*
1892 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1893 * pointers to the fragment pointers.
1894 */
1895static int
1896sis_encap(sc, m_head, txidx)
1897	struct sis_softc	*sc;
1898	struct mbuf		*m_head;
1899	u_int32_t		*txidx;
1900{
1901	struct sis_desc		*f = NULL;
1902	struct mbuf		*m;
1903	int			frag, cur, cnt = 0, chainlen = 0;
1904
1905	/*
1906	 * If there's no way we can send any packets, return now.
1907	 */
1908	if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
1909		return (ENOBUFS);
1910
1911	/*
1912	 * Count the number of frags in this chain to see if
1913	 * we need to m_defrag.  Since the descriptor list is shared
1914	 * by all packets, we'll m_defrag long chains so that they
1915	 * do not use up the entire list, even if they would fit.
1916	 */
1917
1918	for (m = m_head; m != NULL; m = m->m_next)
1919		chainlen++;
1920
1921	if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1922	    ((SIS_TX_LIST_CNT - (chainlen + sc->sis_cdata.sis_tx_cnt)) < 2)) {
1923		m = m_defrag(m_head, M_DONTWAIT);
1924		if (m == NULL)
1925			return (ENOBUFS);
1926		m_head = m;
1927	}
1928
1929	/*
1930 	 * Start packing the mbufs in this chain into
1931	 * the fragment pointers. Stop when we run out
1932 	 * of fragments or hit the end of the mbuf chain.
1933	 */
1934	m = m_head;
1935	cur = frag = *txidx;
1936
1937	for (m = m_head; m != NULL; m = m->m_next) {
1938		if (m->m_len != 0) {
1939			if ((SIS_TX_LIST_CNT -
1940			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1941				return(ENOBUFS);
1942			f = &sc->sis_ldata.sis_tx_list[frag];
1943			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1944			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1945			bus_dmamap_load(sc->sis_tag, f->sis_map,
1946			    mtod(m, void *), m->m_len,
1947			    sis_dma_map_desc_ptr, f, 0);
1948			bus_dmamap_sync(sc->sis_tag,
1949			    f->sis_map, BUS_DMASYNC_PREREAD);
1950			if (cnt != 0)
1951				f->sis_ctl |= SIS_CMDSTS_OWN;
1952			cur = frag;
1953			SIS_INC(frag, SIS_TX_LIST_CNT);
1954			cnt++;
1955		}
1956	}
1957
1958	if (m != NULL)
1959		return(ENOBUFS);
1960
1961	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
1962	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1963	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1964	sc->sis_cdata.sis_tx_cnt += cnt;
1965	*txidx = frag;
1966
1967	return(0);
1968}
1969
1970/*
1971 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1972 * to the mbuf data regions directly in the transmit lists. We also save a
1973 * copy of the pointers since the transmit list fragment pointers are
1974 * physical addresses.
1975 */
1976
1977static void
1978sis_start(ifp)
1979	struct ifnet		*ifp;
1980{
1981	struct sis_softc	*sc;
1982	struct mbuf		*m_head = NULL;
1983	u_int32_t		idx;
1984
1985	sc = ifp->if_softc;
1986	SIS_LOCK(sc);
1987
1988	if (!sc->sis_link) {
1989		SIS_UNLOCK(sc);
1990		return;
1991	}
1992
1993	idx = sc->sis_cdata.sis_tx_prod;
1994
1995	if (ifp->if_flags & IFF_OACTIVE) {
1996		SIS_UNLOCK(sc);
1997		return;
1998	}
1999
2000	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
2001		IF_DEQUEUE(&ifp->if_snd, m_head);
2002		if (m_head == NULL)
2003			break;
2004
2005		if (sis_encap(sc, m_head, &idx)) {
2006			IF_PREPEND(&ifp->if_snd, m_head);
2007			ifp->if_flags |= IFF_OACTIVE;
2008			break;
2009		}
2010
2011		/*
2012		 * If there's a BPF listener, bounce a copy of this frame
2013		 * to him.
2014		 */
2015		BPF_MTAP(ifp, m_head);
2016
2017	}
2018
2019	/* Transmit */
2020	sc->sis_cdata.sis_tx_prod = idx;
2021	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
2022
2023	/*
2024	 * Set a timeout in case the chip goes out to lunch.
2025	 */
2026	ifp->if_timer = 5;
2027
2028	SIS_UNLOCK(sc);
2029
2030	return;
2031}
2032
2033static void
2034sis_init(xsc)
2035	void			*xsc;
2036{
2037	struct sis_softc	*sc = xsc;
2038	struct ifnet		*ifp = &sc->arpcom.ac_if;
2039	struct mii_data		*mii;
2040
2041	SIS_LOCK(sc);
2042
2043	/*
2044	 * Cancel pending I/O and free all RX/TX buffers.
2045	 */
2046	sis_stop(sc);
2047
2048#ifdef notyet
2049	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
2050		/*
2051		 * Configure 400usec of interrupt holdoff.  This is based
2052		 * on emperical tests on a Soekris 4801.
2053 		 */
2054		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
2055	}
2056#endif
2057
2058	mii = device_get_softc(sc->sis_miibus);
2059
2060	/* Set MAC address */
2061	if (sc->sis_type == SIS_TYPE_83815) {
2062		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
2063		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2064		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2065		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
2066		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2067		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2068		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
2069		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2070		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2071	} else {
2072		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
2073		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2074		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2075		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
2076		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2077		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2078		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
2079		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2080		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2081	}
2082
2083	/* Init circular RX list. */
2084	if (sis_list_rx_init(sc) == ENOBUFS) {
2085		printf("sis%d: initialization failed: no "
2086			"memory for rx buffers\n", sc->sis_unit);
2087		sis_stop(sc);
2088		SIS_UNLOCK(sc);
2089		return;
2090	}
2091
2092	/*
2093	 * Init tx descriptors.
2094	 */
2095	sis_list_tx_init(sc);
2096
2097	/*
2098	 * For the NatSemi chip, we have to explicitly enable the
2099	 * reception of ARP frames, as well as turn on the 'perfect
2100	 * match' filter where we store the station address, otherwise
2101	 * we won't receive unicasts meant for this host.
2102	 */
2103	if (sc->sis_type == SIS_TYPE_83815) {
2104		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
2105		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
2106	}
2107
2108	 /* If we want promiscuous mode, set the allframes bit. */
2109	if (ifp->if_flags & IFF_PROMISC) {
2110		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2111	} else {
2112		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2113	}
2114
2115	/*
2116	 * Set the capture broadcast bit to capture broadcast frames.
2117	 */
2118	if (ifp->if_flags & IFF_BROADCAST) {
2119		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2120	} else {
2121		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2122	}
2123
2124	/*
2125	 * Load the multicast filter.
2126	 */
2127	if (sc->sis_type == SIS_TYPE_83815)
2128		sis_setmulti_ns(sc);
2129	else
2130		sis_setmulti_sis(sc);
2131
2132	/* Turn the receive filter on */
2133	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
2134
2135	/*
2136	 * Load the address of the RX and TX lists.
2137	 */
2138	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
2139	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
2140
2141	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2142	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2143	 * for TX/RX DMA should be no larger than 16 double words.
2144	 */
2145	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2146		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2147	} else {
2148		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2149	}
2150
2151
2152	/* Accept Long Packets for VLAN support */
2153	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2154
2155	/* Set TX configuration */
2156	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
2157		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
2158	} else {
2159		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2160	}
2161
2162	/* Set full/half duplex mode. */
2163	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
2164		SIS_SETBIT(sc, SIS_TX_CFG,
2165		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2166		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2167	} else {
2168		SIS_CLRBIT(sc, SIS_TX_CFG,
2169		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2170		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2171	}
2172
2173	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
2174	     IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2175		uint32_t reg;
2176
2177		/*
2178		 * Some DP83815s experience problems when used with short
2179		 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
2180		 * sequence adjusts the DSP's signal attenuation to fix the
2181		 * problem.
2182		 */
2183		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2184
2185		reg = CSR_READ_4(sc, NS_PHY_DSPCFG);
2186		CSR_WRITE_4(sc, NS_PHY_DSPCFG, (reg & 0xfff) | 0x1000);
2187		DELAY(100);
2188		reg = CSR_READ_4(sc, NS_PHY_TDATA);
2189		if ((reg & 0x0080) == 0 || (reg & 0xff) >= 0xd8) {
2190			device_printf(sc->sis_self, "Applying short cable fix (reg=%x)\n", reg);
2191			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
2192			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
2193		}
2194		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2195	}
2196
2197	/*
2198	 * Enable interrupts.
2199	 */
2200	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2201#ifdef DEVICE_POLLING
2202	/*
2203	 * ... only enable interrupts if we are not polling, make sure
2204	 * they are off otherwise.
2205	 */
2206	if (ifp->if_flags & IFF_POLLING)
2207		CSR_WRITE_4(sc, SIS_IER, 0);
2208	else
2209#endif /* DEVICE_POLLING */
2210	CSR_WRITE_4(sc, SIS_IER, 1);
2211
2212	/* Enable receiver and transmitter. */
2213	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2214	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2215
2216#ifdef notdef
2217	mii_mediachg(mii);
2218#endif
2219
2220	/*
2221	 * Page 75 of the DP83815 manual recommends the
2222	 * following register settings "for optimum
2223	 * performance." Note however that at least three
2224	 * of the registers are listed as "reserved" in
2225	 * the register map, so who knows what they do.
2226	 */
2227	if (sc->sis_type == SIS_TYPE_83815) {
2228		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2229		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2230		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2231		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2232		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2233	}
2234
2235	ifp->if_flags |= IFF_RUNNING;
2236	ifp->if_flags &= ~IFF_OACTIVE;
2237
2238	if (!sc->in_tick)
2239		callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2240
2241	SIS_UNLOCK(sc);
2242
2243	return;
2244}
2245
2246/*
2247 * Set media options.
2248 */
2249static int
2250sis_ifmedia_upd(ifp)
2251	struct ifnet		*ifp;
2252{
2253	struct sis_softc	*sc;
2254	struct mii_data		*mii;
2255
2256	sc = ifp->if_softc;
2257
2258	mii = device_get_softc(sc->sis_miibus);
2259	sc->sis_link = 0;
2260	if (mii->mii_instance) {
2261		struct mii_softc	*miisc;
2262		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2263			mii_phy_reset(miisc);
2264	}
2265	mii_mediachg(mii);
2266
2267	return(0);
2268}
2269
2270/*
2271 * Report current media status.
2272 */
2273static void
2274sis_ifmedia_sts(ifp, ifmr)
2275	struct ifnet		*ifp;
2276	struct ifmediareq	*ifmr;
2277{
2278	struct sis_softc	*sc;
2279	struct mii_data		*mii;
2280
2281	sc = ifp->if_softc;
2282
2283	mii = device_get_softc(sc->sis_miibus);
2284	mii_pollstat(mii);
2285	ifmr->ifm_active = mii->mii_media_active;
2286	ifmr->ifm_status = mii->mii_media_status;
2287
2288	return;
2289}
2290
2291static int
2292sis_ioctl(ifp, command, data)
2293	struct ifnet		*ifp;
2294	u_long			command;
2295	caddr_t			data;
2296{
2297	struct sis_softc	*sc = ifp->if_softc;
2298	struct ifreq		*ifr = (struct ifreq *) data;
2299	struct mii_data		*mii;
2300	int			error = 0;
2301
2302	switch(command) {
2303	case SIOCSIFFLAGS:
2304		if (ifp->if_flags & IFF_UP) {
2305			sis_init(sc);
2306		} else {
2307			if (ifp->if_flags & IFF_RUNNING)
2308				sis_stop(sc);
2309		}
2310		error = 0;
2311		break;
2312	case SIOCADDMULTI:
2313	case SIOCDELMULTI:
2314		SIS_LOCK(sc);
2315		if (sc->sis_type == SIS_TYPE_83815)
2316			sis_setmulti_ns(sc);
2317		else
2318			sis_setmulti_sis(sc);
2319		SIS_UNLOCK(sc);
2320		error = 0;
2321		break;
2322	case SIOCGIFMEDIA:
2323	case SIOCSIFMEDIA:
2324		mii = device_get_softc(sc->sis_miibus);
2325		SIS_LOCK(sc);
2326		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2327		SIS_UNLOCK(sc);
2328		break;
2329	default:
2330		error = ether_ioctl(ifp, command, data);
2331		break;
2332	}
2333
2334	return(error);
2335}
2336
2337static void
2338sis_watchdog(ifp)
2339	struct ifnet		*ifp;
2340{
2341	struct sis_softc	*sc;
2342
2343	sc = ifp->if_softc;
2344
2345	SIS_LOCK(sc);
2346
2347	ifp->if_oerrors++;
2348	printf("sis%d: watchdog timeout\n", sc->sis_unit);
2349
2350	sis_stop(sc);
2351	sis_reset(sc);
2352	sis_init(sc);
2353
2354	if (ifp->if_snd.ifq_head != NULL)
2355		sis_start(ifp);
2356
2357	SIS_UNLOCK(sc);
2358
2359	return;
2360}
2361
2362/*
2363 * Stop the adapter and free any mbufs allocated to the
2364 * RX and TX lists.
2365 */
2366static void
2367sis_stop(sc)
2368	struct sis_softc	*sc;
2369{
2370	register int		i;
2371	struct ifnet		*ifp;
2372
2373	SIS_LOCK(sc);
2374	ifp = &sc->arpcom.ac_if;
2375	ifp->if_timer = 0;
2376
2377	callout_stop(&sc->sis_stat_ch);
2378
2379	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2380#ifdef DEVICE_POLLING
2381	ether_poll_deregister(ifp);
2382#endif
2383	CSR_WRITE_4(sc, SIS_IER, 0);
2384	CSR_WRITE_4(sc, SIS_IMR, 0);
2385	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2386	DELAY(1000);
2387	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2388	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2389
2390	sc->sis_link = 0;
2391
2392	/*
2393	 * Free data in the RX lists.
2394	 */
2395	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2396		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2397			bus_dmamap_unload(sc->sis_tag,
2398			    sc->sis_ldata.sis_rx_list[i].sis_map);
2399			bus_dmamap_destroy(sc->sis_tag,
2400			    sc->sis_ldata.sis_rx_list[i].sis_map);
2401			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2402			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2403		}
2404	}
2405	bzero(sc->sis_ldata.sis_rx_list,
2406		sizeof(sc->sis_ldata.sis_rx_list));
2407
2408	/*
2409	 * Free the TX list buffers.
2410	 */
2411	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2412		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2413			bus_dmamap_unload(sc->sis_tag,
2414			    sc->sis_ldata.sis_tx_list[i].sis_map);
2415			bus_dmamap_destroy(sc->sis_tag,
2416			    sc->sis_ldata.sis_tx_list[i].sis_map);
2417			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2418			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2419		}
2420	}
2421
2422	bzero(sc->sis_ldata.sis_tx_list,
2423		sizeof(sc->sis_ldata.sis_tx_list));
2424
2425	SIS_UNLOCK(sc);
2426
2427	return;
2428}
2429
2430/*
2431 * Stop all chip I/O so that the kernel's probe routines don't
2432 * get confused by errant DMAs when rebooting.
2433 */
2434static void
2435sis_shutdown(dev)
2436	device_t		dev;
2437{
2438	struct sis_softc	*sc;
2439
2440	sc = device_get_softc(dev);
2441	SIS_LOCK(sc);
2442	sis_reset(sc);
2443	sis_stop(sc);
2444	SIS_UNLOCK(sc);
2445
2446	return;
2447}
2448