if_sis.c revision 112880
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/pci/if_sis.c 112880 2003-03-31 20:22:00Z jhb $
33 */
34
35/*
36 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
37 * available from http://www.sis.com.tw.
38 *
39 * This driver also supports the NatSemi DP83815. Datasheets are
40 * available from http://www.national.com.
41 *
42 * Written by Bill Paul <wpaul@ee.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47/*
48 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
49 * simple TX and RX descriptors of 3 longwords in size. The receiver
50 * has a single perfect filter entry for the station address and a
51 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
52 * transceiver while the 7016 requires an external transceiver chip.
53 * Both chips offer the standard bit-bang MII interface as well as
54 * an enchanced PHY interface which simplifies accessing MII registers.
55 *
56 * The only downside to this chipset is that RX descriptors must be
57 * longword aligned.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/sockio.h>
63#include <sys/mbuf.h>
64#include <sys/malloc.h>
65#include <sys/kernel.h>
66#include <sys/socket.h>
67#include <sys/sysctl.h>
68
69#include <net/if.h>
70#include <net/if_arp.h>
71#include <net/ethernet.h>
72#include <net/if_dl.h>
73#include <net/if_media.h>
74#include <net/if_types.h>
75#include <net/if_vlan_var.h>
76
77#include <net/bpf.h>
78
79#include <machine/bus_pio.h>
80#include <machine/bus_memio.h>
81#include <machine/bus.h>
82#include <machine/resource.h>
83#include <sys/bus.h>
84#include <sys/rman.h>
85
86#include <dev/mii/mii.h>
87#include <dev/mii/miivar.h>
88
89#include <pci/pcireg.h>
90#include <pci/pcivar.h>
91
92#define SIS_USEIOSPACE
93
94#include <pci/if_sisreg.h>
95
96MODULE_DEPEND(sis, miibus, 1, 1, 1);
97
98/* "controller miibus0" required.  See GENERIC if you get errors here. */
99#include "miibus_if.h"
100
101#ifndef lint
102static const char rcsid[] =
103  "$FreeBSD: head/sys/pci/if_sis.c 112880 2003-03-31 20:22:00Z jhb $";
104#endif
105
106/*
107 * Various supported device vendors/types and their names.
108 */
109static struct sis_type sis_devs[] = {
110	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
111	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
112	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP83815 10/100BaseTX" },
113	{ 0, 0, NULL }
114};
115
116static int sis_probe		(device_t);
117static int sis_attach		(device_t);
118static int sis_detach		(device_t);
119
120static int sis_newbuf		(struct sis_softc *,
121					struct sis_desc *, struct mbuf *);
122static int sis_encap		(struct sis_softc *,
123					struct mbuf *, u_int32_t *);
124static void sis_rxeof		(struct sis_softc *);
125static void sis_rxeoc		(struct sis_softc *);
126static void sis_txeof		(struct sis_softc *);
127static void sis_intr		(void *);
128static void sis_tick		(void *);
129static void sis_start		(struct ifnet *);
130static int sis_ioctl		(struct ifnet *, u_long, caddr_t);
131static void sis_init		(void *);
132static void sis_stop		(struct sis_softc *);
133static void sis_watchdog		(struct ifnet *);
134static void sis_shutdown		(device_t);
135static int sis_ifmedia_upd	(struct ifnet *);
136static void sis_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
137
138static u_int16_t sis_reverse	(u_int16_t);
139static void sis_delay		(struct sis_softc *);
140static void sis_eeprom_idle	(struct sis_softc *);
141static void sis_eeprom_putbyte	(struct sis_softc *, int);
142static void sis_eeprom_getword	(struct sis_softc *, int, u_int16_t *);
143static void sis_read_eeprom	(struct sis_softc *, caddr_t, int, int, int);
144#ifdef __i386__
145static void sis_read_cmos	(struct sis_softc *, device_t, caddr_t,
146							int, int);
147static void sis_read_mac	(struct sis_softc *, device_t, caddr_t);
148static device_t sis_find_bridge	(device_t);
149#endif
150
151static void sis_mii_sync	(struct sis_softc *);
152static void sis_mii_send	(struct sis_softc *, u_int32_t, int);
153static int sis_mii_readreg	(struct sis_softc *, struct sis_mii_frame *);
154static int sis_mii_writereg	(struct sis_softc *, struct sis_mii_frame *);
155static int sis_miibus_readreg	(device_t, int, int);
156static int sis_miibus_writereg	(device_t, int, int, int);
157static void sis_miibus_statchg	(device_t);
158
159static void sis_setmulti_sis	(struct sis_softc *);
160static void sis_setmulti_ns	(struct sis_softc *);
161static u_int32_t sis_crc	(struct sis_softc *, caddr_t);
162static void sis_reset		(struct sis_softc *);
163static int sis_list_rx_init	(struct sis_softc *);
164static int sis_list_tx_init	(struct sis_softc *);
165
166static void sis_dma_map_desc_ptr	(void *, bus_dma_segment_t *, int, int);
167static void sis_dma_map_desc_next	(void *, bus_dma_segment_t *, int, int);
168static void sis_dma_map_ring		(void *, bus_dma_segment_t *, int, int);
169#ifdef SIS_USEIOSPACE
170#define SIS_RES			SYS_RES_IOPORT
171#define SIS_RID			SIS_PCI_LOIO
172#else
173#define SIS_RES			SYS_RES_MEMORY
174#define SIS_RID			SIS_PCI_LOMEM
175#endif
176
177static device_method_t sis_methods[] = {
178	/* Device interface */
179	DEVMETHOD(device_probe,		sis_probe),
180	DEVMETHOD(device_attach,	sis_attach),
181	DEVMETHOD(device_detach,	sis_detach),
182	DEVMETHOD(device_shutdown,	sis_shutdown),
183
184	/* bus interface */
185	DEVMETHOD(bus_print_child,	bus_generic_print_child),
186	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
187
188	/* MII interface */
189	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
190	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
191	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
192
193	{ 0, 0 }
194};
195
196static driver_t sis_driver = {
197	"sis",
198	sis_methods,
199	sizeof(struct sis_softc)
200};
201
202static devclass_t sis_devclass;
203
204DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
205DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
206
207#define SIS_SETBIT(sc, reg, x)				\
208	CSR_WRITE_4(sc, reg,				\
209		CSR_READ_4(sc, reg) | (x))
210
211#define SIS_CLRBIT(sc, reg, x)				\
212	CSR_WRITE_4(sc, reg,				\
213		CSR_READ_4(sc, reg) & ~(x))
214
215#define SIO_SET(x)					\
216	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
217
218#define SIO_CLR(x)					\
219	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
220
221static void
222sis_dma_map_desc_next(arg, segs, nseg, error)
223	void *arg;
224	bus_dma_segment_t *segs;
225	int nseg, error;
226{
227	struct sis_desc	*r;
228
229	r = arg;
230	r->sis_next = segs->ds_addr;
231
232	return;
233}
234
235static void
236sis_dma_map_desc_ptr(arg, segs, nseg, error)
237	void *arg;
238	bus_dma_segment_t *segs;
239	int nseg, error;
240{
241	struct sis_desc	*r;
242
243	r = arg;
244	r->sis_ptr = segs->ds_addr;
245
246	return;
247}
248
249static void
250sis_dma_map_ring(arg, segs, nseg, error)
251	void *arg;
252	bus_dma_segment_t *segs;
253	int nseg, error;
254{
255	u_int32_t *p;
256
257	p = arg;
258	*p = segs->ds_addr;
259
260	return;
261}
262
263/*
264 * Routine to reverse the bits in a word. Stolen almost
265 * verbatim from /usr/games/fortune.
266 */
267static u_int16_t
268sis_reverse(n)
269	u_int16_t		n;
270{
271	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
272	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
273	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
274	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
275
276	return(n);
277}
278
279static void
280sis_delay(sc)
281	struct sis_softc	*sc;
282{
283	int			idx;
284
285	for (idx = (300 / 33) + 1; idx > 0; idx--)
286		CSR_READ_4(sc, SIS_CSR);
287
288	return;
289}
290
291static void
292sis_eeprom_idle(sc)
293	struct sis_softc	*sc;
294{
295	register int		i;
296
297	SIO_SET(SIS_EECTL_CSEL);
298	sis_delay(sc);
299	SIO_SET(SIS_EECTL_CLK);
300	sis_delay(sc);
301
302	for (i = 0; i < 25; i++) {
303		SIO_CLR(SIS_EECTL_CLK);
304		sis_delay(sc);
305		SIO_SET(SIS_EECTL_CLK);
306		sis_delay(sc);
307	}
308
309	SIO_CLR(SIS_EECTL_CLK);
310	sis_delay(sc);
311	SIO_CLR(SIS_EECTL_CSEL);
312	sis_delay(sc);
313	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
314
315	return;
316}
317
318/*
319 * Send a read command and address to the EEPROM, check for ACK.
320 */
321static void
322sis_eeprom_putbyte(sc, addr)
323	struct sis_softc	*sc;
324	int			addr;
325{
326	register int		d, i;
327
328	d = addr | SIS_EECMD_READ;
329
330	/*
331	 * Feed in each bit and stobe the clock.
332	 */
333	for (i = 0x400; i; i >>= 1) {
334		if (d & i) {
335			SIO_SET(SIS_EECTL_DIN);
336		} else {
337			SIO_CLR(SIS_EECTL_DIN);
338		}
339		sis_delay(sc);
340		SIO_SET(SIS_EECTL_CLK);
341		sis_delay(sc);
342		SIO_CLR(SIS_EECTL_CLK);
343		sis_delay(sc);
344	}
345
346	return;
347}
348
349/*
350 * Read a word of data stored in the EEPROM at address 'addr.'
351 */
352static void
353sis_eeprom_getword(sc, addr, dest)
354	struct sis_softc	*sc;
355	int			addr;
356	u_int16_t		*dest;
357{
358	register int		i;
359	u_int16_t		word = 0;
360
361	/* Force EEPROM to idle state. */
362	sis_eeprom_idle(sc);
363
364	/* Enter EEPROM access mode. */
365	sis_delay(sc);
366	SIO_CLR(SIS_EECTL_CLK);
367	sis_delay(sc);
368	SIO_SET(SIS_EECTL_CSEL);
369	sis_delay(sc);
370
371	/*
372	 * Send address of word we want to read.
373	 */
374	sis_eeprom_putbyte(sc, addr);
375
376	/*
377	 * Start reading bits from EEPROM.
378	 */
379	for (i = 0x8000; i; i >>= 1) {
380		SIO_SET(SIS_EECTL_CLK);
381		sis_delay(sc);
382		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
383			word |= i;
384		sis_delay(sc);
385		SIO_CLR(SIS_EECTL_CLK);
386		sis_delay(sc);
387	}
388
389	/* Turn off EEPROM access mode. */
390	sis_eeprom_idle(sc);
391
392	*dest = word;
393
394	return;
395}
396
397/*
398 * Read a sequence of words from the EEPROM.
399 */
400static void
401sis_read_eeprom(sc, dest, off, cnt, swap)
402	struct sis_softc	*sc;
403	caddr_t			dest;
404	int			off;
405	int			cnt;
406	int			swap;
407{
408	int			i;
409	u_int16_t		word = 0, *ptr;
410
411	for (i = 0; i < cnt; i++) {
412		sis_eeprom_getword(sc, off + i, &word);
413		ptr = (u_int16_t *)(dest + (i * 2));
414		if (swap)
415			*ptr = ntohs(word);
416		else
417			*ptr = word;
418	}
419
420	return;
421}
422
423#ifdef __i386__
424static device_t
425sis_find_bridge(dev)
426	device_t		dev;
427{
428	devclass_t		pci_devclass;
429	device_t		*pci_devices;
430	int			pci_count = 0;
431	device_t		*pci_children;
432	int			pci_childcount = 0;
433	device_t		*busp, *childp;
434	device_t		child = NULL;
435	int			i, j;
436
437	if ((pci_devclass = devclass_find("pci")) == NULL)
438		return(NULL);
439
440	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
441
442	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
443		pci_childcount = 0;
444		device_get_children(*busp, &pci_children, &pci_childcount);
445		for (j = 0, childp = pci_children;
446		    j < pci_childcount; j++, childp++) {
447			if (pci_get_vendor(*childp) == SIS_VENDORID &&
448			    pci_get_device(*childp) == 0x0008) {
449				child = *childp;
450				goto done;
451			}
452		}
453	}
454
455done:
456	free(pci_devices, M_TEMP);
457	free(pci_children, M_TEMP);
458	return(child);
459}
460
461static void
462sis_read_cmos(sc, dev, dest, off, cnt)
463	struct sis_softc	*sc;
464	device_t		dev;
465	caddr_t			dest;
466	int			off;
467	int			cnt;
468{
469	device_t		bridge;
470	u_int8_t		reg;
471	int			i;
472	bus_space_tag_t		btag;
473
474	bridge = sis_find_bridge(dev);
475	if (bridge == NULL)
476		return;
477	reg = pci_read_config(bridge, 0x48, 1);
478	pci_write_config(bridge, 0x48, reg|0x40, 1);
479
480	/* XXX */
481	btag = I386_BUS_SPACE_IO;
482
483	for (i = 0; i < cnt; i++) {
484		bus_space_write_1(btag, 0x0, 0x70, i + off);
485		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
486	}
487
488	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
489	return;
490}
491
492static void
493sis_read_mac(sc, dev, dest)
494	struct sis_softc	*sc;
495	device_t		dev;
496	caddr_t			dest;
497{
498	u_int32_t		filtsave, csrsave;
499
500	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
501	csrsave = CSR_READ_4(sc, SIS_CSR);
502
503	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
504	CSR_WRITE_4(sc, SIS_CSR, 0);
505
506	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
507
508	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
509	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
510	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
511	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
512	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
513	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
514
515	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
516	CSR_WRITE_4(sc, SIS_CSR, csrsave);
517	return;
518}
519#endif
520
521/*
522 * Sync the PHYs by setting data bit and strobing the clock 32 times.
523 */
524static void sis_mii_sync(sc)
525	struct sis_softc	*sc;
526{
527	register int		i;
528
529 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
530
531 	for (i = 0; i < 32; i++) {
532 		SIO_SET(SIS_MII_CLK);
533 		DELAY(1);
534 		SIO_CLR(SIS_MII_CLK);
535 		DELAY(1);
536 	}
537
538 	return;
539}
540
541/*
542 * Clock a series of bits through the MII.
543 */
544static void sis_mii_send(sc, bits, cnt)
545	struct sis_softc	*sc;
546	u_int32_t		bits;
547	int			cnt;
548{
549	int			i;
550
551	SIO_CLR(SIS_MII_CLK);
552
553	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
554		if (bits & i) {
555			SIO_SET(SIS_MII_DATA);
556		} else {
557			SIO_CLR(SIS_MII_DATA);
558		}
559		DELAY(1);
560		SIO_CLR(SIS_MII_CLK);
561		DELAY(1);
562		SIO_SET(SIS_MII_CLK);
563	}
564}
565
566/*
567 * Read an PHY register through the MII.
568 */
569static int sis_mii_readreg(sc, frame)
570	struct sis_softc	*sc;
571	struct sis_mii_frame	*frame;
572
573{
574	int			i, ack, s;
575
576	s = splimp();
577
578	/*
579	 * Set up frame for RX.
580	 */
581	frame->mii_stdelim = SIS_MII_STARTDELIM;
582	frame->mii_opcode = SIS_MII_READOP;
583	frame->mii_turnaround = 0;
584	frame->mii_data = 0;
585
586	/*
587 	 * Turn on data xmit.
588	 */
589	SIO_SET(SIS_MII_DIR);
590
591	sis_mii_sync(sc);
592
593	/*
594	 * Send command/address info.
595	 */
596	sis_mii_send(sc, frame->mii_stdelim, 2);
597	sis_mii_send(sc, frame->mii_opcode, 2);
598	sis_mii_send(sc, frame->mii_phyaddr, 5);
599	sis_mii_send(sc, frame->mii_regaddr, 5);
600
601	/* Idle bit */
602	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
603	DELAY(1);
604	SIO_SET(SIS_MII_CLK);
605	DELAY(1);
606
607	/* Turn off xmit. */
608	SIO_CLR(SIS_MII_DIR);
609
610	/* Check for ack */
611	SIO_CLR(SIS_MII_CLK);
612	DELAY(1);
613	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
614	SIO_SET(SIS_MII_CLK);
615	DELAY(1);
616
617	/*
618	 * Now try reading data bits. If the ack failed, we still
619	 * need to clock through 16 cycles to keep the PHY(s) in sync.
620	 */
621	if (ack) {
622		for(i = 0; i < 16; i++) {
623			SIO_CLR(SIS_MII_CLK);
624			DELAY(1);
625			SIO_SET(SIS_MII_CLK);
626			DELAY(1);
627		}
628		goto fail;
629	}
630
631	for (i = 0x8000; i; i >>= 1) {
632		SIO_CLR(SIS_MII_CLK);
633		DELAY(1);
634		if (!ack) {
635			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
636				frame->mii_data |= i;
637			DELAY(1);
638		}
639		SIO_SET(SIS_MII_CLK);
640		DELAY(1);
641	}
642
643fail:
644
645	SIO_CLR(SIS_MII_CLK);
646	DELAY(1);
647	SIO_SET(SIS_MII_CLK);
648	DELAY(1);
649
650	splx(s);
651
652	if (ack)
653		return(1);
654	return(0);
655}
656
657/*
658 * Write to a PHY register through the MII.
659 */
660static int sis_mii_writereg(sc, frame)
661	struct sis_softc	*sc;
662	struct sis_mii_frame	*frame;
663
664{
665	int			s;
666
667	 s = splimp();
668 	/*
669 	 * Set up frame for TX.
670 	 */
671
672 	frame->mii_stdelim = SIS_MII_STARTDELIM;
673 	frame->mii_opcode = SIS_MII_WRITEOP;
674 	frame->mii_turnaround = SIS_MII_TURNAROUND;
675
676 	/*
677  	 * Turn on data output.
678 	 */
679 	SIO_SET(SIS_MII_DIR);
680
681 	sis_mii_sync(sc);
682
683 	sis_mii_send(sc, frame->mii_stdelim, 2);
684 	sis_mii_send(sc, frame->mii_opcode, 2);
685 	sis_mii_send(sc, frame->mii_phyaddr, 5);
686 	sis_mii_send(sc, frame->mii_regaddr, 5);
687 	sis_mii_send(sc, frame->mii_turnaround, 2);
688 	sis_mii_send(sc, frame->mii_data, 16);
689
690 	/* Idle bit. */
691 	SIO_SET(SIS_MII_CLK);
692 	DELAY(1);
693 	SIO_CLR(SIS_MII_CLK);
694 	DELAY(1);
695
696 	/*
697 	 * Turn off xmit.
698 	 */
699 	SIO_CLR(SIS_MII_DIR);
700
701 	splx(s);
702
703 	return(0);
704}
705
706static int
707sis_miibus_readreg(dev, phy, reg)
708	device_t		dev;
709	int			phy, reg;
710{
711	struct sis_softc	*sc;
712	struct sis_mii_frame    frame;
713
714	sc = device_get_softc(dev);
715
716	if (sc->sis_type == SIS_TYPE_83815) {
717		if (phy != 0)
718			return(0);
719		/*
720		 * The NatSemi chip can take a while after
721		 * a reset to come ready, during which the BMSR
722		 * returns a value of 0. This is *never* supposed
723		 * to happen: some of the BMSR bits are meant to
724		 * be hardwired in the on position, and this can
725		 * confuse the miibus code a bit during the probe
726		 * and attach phase. So we make an effort to check
727		 * for this condition and wait for it to clear.
728		 */
729		if (!CSR_READ_4(sc, NS_BMSR))
730			DELAY(1000);
731		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
732	}
733
734	/*
735	 * Chipsets < SIS_635 seem not to be able to read/write
736	 * through mdio. Use the enhanced PHY access register
737	 * again for them.
738	 */
739	if (sc->sis_type == SIS_TYPE_900 &&
740	    sc->sis_rev < SIS_REV_635) {
741		int i, val = 0;
742
743		if (phy != 0)
744			return(0);
745
746		CSR_WRITE_4(sc, SIS_PHYCTL,
747		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
748		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
749
750		for (i = 0; i < SIS_TIMEOUT; i++) {
751			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
752				break;
753		}
754
755		if (i == SIS_TIMEOUT) {
756			printf("sis%d: PHY failed to come ready\n",
757			    sc->sis_unit);
758			return(0);
759		}
760
761		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
762
763		if (val == 0xFFFF)
764			return(0);
765
766		return(val);
767	} else {
768		bzero((char *)&frame, sizeof(frame));
769
770		frame.mii_phyaddr = phy;
771		frame.mii_regaddr = reg;
772		sis_mii_readreg(sc, &frame);
773
774		return(frame.mii_data);
775	}
776}
777
778static int
779sis_miibus_writereg(dev, phy, reg, data)
780	device_t		dev;
781	int			phy, reg, data;
782{
783	struct sis_softc	*sc;
784	struct sis_mii_frame	frame;
785
786	sc = device_get_softc(dev);
787
788	if (sc->sis_type == SIS_TYPE_83815) {
789		if (phy != 0)
790			return(0);
791		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
792		return(0);
793	}
794
795	/*
796	 * Chipsets < SIS_635 seem not to be able to read/write
797	 * through mdio. Use the enhanced PHY access register
798	 * again for them.
799	 */
800	if (sc->sis_type == SIS_TYPE_900 &&
801	    sc->sis_rev < SIS_REV_635) {
802		int i;
803
804		if (phy != 0)
805			return(0);
806
807		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
808		    (reg << 6) | SIS_PHYOP_WRITE);
809		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
810
811		for (i = 0; i < SIS_TIMEOUT; i++) {
812			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
813				break;
814		}
815
816		if (i == SIS_TIMEOUT)
817			printf("sis%d: PHY failed to come ready\n",
818			    sc->sis_unit);
819	} else {
820		bzero((char *)&frame, sizeof(frame));
821
822		frame.mii_phyaddr = phy;
823		frame.mii_regaddr = reg;
824		frame.mii_data = data;
825		sis_mii_writereg(sc, &frame);
826	}
827	return(0);
828}
829
830static void
831sis_miibus_statchg(dev)
832	device_t		dev;
833{
834	struct sis_softc	*sc;
835
836	sc = device_get_softc(dev);
837	sis_init(sc);
838
839	return;
840}
841
842static u_int32_t
843sis_crc(sc, addr)
844	struct sis_softc	*sc;
845	caddr_t			addr;
846{
847	u_int32_t		crc, carry;
848	int			i, j;
849	u_int8_t		c;
850
851	/* Compute CRC for the address value. */
852	crc = 0xFFFFFFFF; /* initial value */
853
854	for (i = 0; i < 6; i++) {
855		c = *(addr + i);
856		for (j = 0; j < 8; j++) {
857			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
858			crc <<= 1;
859			c >>= 1;
860			if (carry)
861				crc = (crc ^ 0x04c11db6) | carry;
862		}
863	}
864
865	/*
866	 * return the filter bit position
867	 *
868	 * The NatSemi chip has a 512-bit filter, which is
869	 * different than the SiS, so we special-case it.
870	 */
871	if (sc->sis_type == SIS_TYPE_83815)
872		return (crc >> 23);
873	else if (sc->sis_rev >= SIS_REV_635 ||
874	    sc->sis_rev == SIS_REV_900B)
875		return (crc >> 24);
876	else
877		return (crc >> 25);
878}
879
880static void
881sis_setmulti_ns(sc)
882	struct sis_softc	*sc;
883{
884	struct ifnet		*ifp;
885	struct ifmultiaddr	*ifma;
886	u_int32_t		h = 0, i, filtsave;
887	int			bit, index;
888
889	ifp = &sc->arpcom.ac_if;
890
891	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
892		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
893		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
894		return;
895	}
896
897	/*
898	 * We have to explicitly enable the multicast hash table
899	 * on the NatSemi chip if we want to use it, which we do.
900	 */
901	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
902	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
903
904	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
905
906	/* first, zot all the existing hash bits */
907	for (i = 0; i < 32; i++) {
908		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
909		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
910	}
911
912	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
913		if (ifma->ifma_addr->sa_family != AF_LINK)
914			continue;
915		h = sis_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
916		index = h >> 3;
917		bit = h & 0x1F;
918		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
919		if (bit > 0xF)
920			bit -= 0x10;
921		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
922	}
923
924	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
925
926	return;
927}
928
929static void
930sis_setmulti_sis(sc)
931	struct sis_softc	*sc;
932{
933	struct ifnet		*ifp;
934	struct ifmultiaddr	*ifma;
935	u_int32_t		h, i, n, ctl;
936	u_int16_t		hashes[16];
937
938	ifp = &sc->arpcom.ac_if;
939
940	/* hash table size */
941	if (sc->sis_rev >= SIS_REV_635 ||
942	    sc->sis_rev == SIS_REV_900B)
943		n = 16;
944	else
945		n = 8;
946
947	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
948
949	if (ifp->if_flags & IFF_BROADCAST)
950		ctl |= SIS_RXFILTCTL_BROAD;
951
952	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
953		ctl |= SIS_RXFILTCTL_ALLMULTI;
954		if (ifp->if_flags & IFF_PROMISC)
955			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
956		for (i = 0; i < n; i++)
957			hashes[i] = ~0;
958	} else {
959		for (i = 0; i < n; i++)
960			hashes[i] = 0;
961		i = 0;
962		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
963			if (ifma->ifma_addr->sa_family != AF_LINK)
964			continue;
965			h = sis_crc(sc,
966			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
967			hashes[h >> 4] |= 1 << (h & 0xf);
968			i++;
969		}
970		if (i > n) {
971			ctl |= SIS_RXFILTCTL_ALLMULTI;
972			for (i = 0; i < n; i++)
973				hashes[i] = ~0;
974		}
975	}
976
977	for (i = 0; i < n; i++) {
978		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
979		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
980	}
981
982	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
983}
984
985static void
986sis_reset(sc)
987	struct sis_softc	*sc;
988{
989	register int		i;
990
991	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
992
993	for (i = 0; i < SIS_TIMEOUT; i++) {
994		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
995			break;
996	}
997
998	if (i == SIS_TIMEOUT)
999		printf("sis%d: reset never completed\n", sc->sis_unit);
1000
1001	/* Wait a little while for the chip to get its brains in order. */
1002	DELAY(1000);
1003
1004	/*
1005	 * If this is a NetSemi chip, make sure to clear
1006	 * PME mode.
1007	 */
1008	if (sc->sis_type == SIS_TYPE_83815) {
1009		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
1010		CSR_WRITE_4(sc, NS_CLKRUN, 0);
1011	}
1012
1013        return;
1014}
1015
1016/*
1017 * Probe for an SiS chip. Check the PCI vendor and device
1018 * IDs against our list and return a device name if we find a match.
1019 */
1020static int
1021sis_probe(dev)
1022	device_t		dev;
1023{
1024	struct sis_type		*t;
1025
1026	t = sis_devs;
1027
1028	while(t->sis_name != NULL) {
1029		if ((pci_get_vendor(dev) == t->sis_vid) &&
1030		    (pci_get_device(dev) == t->sis_did)) {
1031			device_set_desc(dev, t->sis_name);
1032			return(0);
1033		}
1034		t++;
1035	}
1036
1037	return(ENXIO);
1038}
1039
1040/*
1041 * Attach the interface. Allocate softc structures, do ifmedia
1042 * setup and ethernet/BPF attach.
1043 */
1044static int
1045sis_attach(dev)
1046	device_t		dev;
1047{
1048	u_char			eaddr[ETHER_ADDR_LEN];
1049	u_int32_t		command;
1050	struct sis_softc	*sc;
1051	struct ifnet		*ifp;
1052	int			unit, error = 0, rid, waittime = 0;
1053
1054	waittime = 0;
1055	sc = device_get_softc(dev);
1056	unit = device_get_unit(dev);
1057
1058	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1059	    MTX_DEF | MTX_RECURSE);
1060
1061	if (pci_get_device(dev) == SIS_DEVICEID_900)
1062		sc->sis_type = SIS_TYPE_900;
1063	if (pci_get_device(dev) == SIS_DEVICEID_7016)
1064		sc->sis_type = SIS_TYPE_7016;
1065	if (pci_get_vendor(dev) == NS_VENDORID)
1066		sc->sis_type = SIS_TYPE_83815;
1067
1068	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
1069
1070	/*
1071	 * Handle power management nonsense.
1072	 */
1073	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1074		u_int32_t		iobase, membase, irq;
1075
1076		/* Save important PCI config data. */
1077		iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
1078		membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
1079		irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
1080
1081		/* Reset the power state. */
1082		printf("sis%d: chip is in D%d power mode "
1083		    "-- setting to D0\n", unit,
1084		    pci_get_powerstate(dev));
1085		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1086
1087		/* Restore PCI config data. */
1088		pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
1089		pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
1090		pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
1091	}
1092
1093	/*
1094	 * Map control/status registers.
1095	 */
1096	pci_enable_busmaster(dev);
1097	pci_enable_io(dev, SYS_RES_IOPORT);
1098	pci_enable_io(dev, SYS_RES_MEMORY);
1099	command = pci_read_config(dev, PCIR_COMMAND, 4);
1100
1101#ifdef SIS_USEIOSPACE
1102	if (!(command & PCIM_CMD_PORTEN)) {
1103		printf("sis%d: failed to enable I/O ports!\n", unit);
1104		error = ENXIO;
1105		goto fail;
1106	}
1107#else
1108	if (!(command & PCIM_CMD_MEMEN)) {
1109		printf("sis%d: failed to enable memory mapping!\n", unit);
1110		error = ENXIO;
1111		goto fail;
1112	}
1113#endif
1114
1115	rid = SIS_RID;
1116	sc->sis_res = bus_alloc_resource(dev, SIS_RES, &rid,
1117	    0, ~0, 1, RF_ACTIVE);
1118
1119	if (sc->sis_res == NULL) {
1120		printf("sis%d: couldn't map ports/memory\n", unit);
1121		error = ENXIO;
1122		goto fail;
1123	}
1124
1125	sc->sis_btag = rman_get_bustag(sc->sis_res);
1126	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1127
1128	/* Allocate interrupt */
1129	rid = 0;
1130	sc->sis_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1131	    RF_SHAREABLE | RF_ACTIVE);
1132
1133	if (sc->sis_irq == NULL) {
1134		printf("sis%d: couldn't map interrupt\n", unit);
1135		error = ENXIO;
1136		goto fail;
1137	}
1138
1139	/* Reset the adapter. */
1140	sis_reset(sc);
1141
1142	if (sc->sis_type == SIS_TYPE_900 &&
1143            (sc->sis_rev == SIS_REV_635 ||
1144            sc->sis_rev == SIS_REV_900B)) {
1145		SIO_SET(SIS_CFG_RND_CNT);
1146		SIO_SET(SIS_CFG_PERR_DETECT);
1147	}
1148
1149	/*
1150	 * Get station address from the EEPROM.
1151	 */
1152	switch (pci_get_vendor(dev)) {
1153	case NS_VENDORID:
1154		/*
1155		 * Reading the MAC address out of the EEPROM on
1156		 * the NatSemi chip takes a bit more work than
1157		 * you'd expect. The address spans 4 16-bit words,
1158		 * with the first word containing only a single bit.
1159		 * You have to shift everything over one bit to
1160		 * get it aligned properly. Also, the bits are
1161		 * stored backwards (the LSB is really the MSB,
1162		 * and so on) so you have to reverse them in order
1163		 * to get the MAC address into the form we want.
1164		 * Why? Who the hell knows.
1165		 */
1166		{
1167			u_int16_t		tmp[4];
1168
1169			sis_read_eeprom(sc, (caddr_t)&tmp,
1170			    NS_EE_NODEADDR, 4, 0);
1171
1172			/* Shift everything over one bit. */
1173			tmp[3] = tmp[3] >> 1;
1174			tmp[3] |= tmp[2] << 15;
1175			tmp[2] = tmp[2] >> 1;
1176			tmp[2] |= tmp[1] << 15;
1177			tmp[1] = tmp[1] >> 1;
1178			tmp[1] |= tmp[0] << 15;
1179
1180			/* Now reverse all the bits. */
1181			tmp[3] = sis_reverse(tmp[3]);
1182			tmp[2] = sis_reverse(tmp[2]);
1183			tmp[1] = sis_reverse(tmp[1]);
1184
1185			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1186		}
1187		break;
1188	case SIS_VENDORID:
1189	default:
1190#ifdef __i386__
1191		/*
1192		 * If this is a SiS 630E chipset with an embedded
1193		 * SiS 900 controller, we have to read the MAC address
1194		 * from the APC CMOS RAM. Our method for doing this
1195		 * is very ugly since we have to reach out and grab
1196		 * ahold of hardware for which we cannot properly
1197		 * allocate resources. This code is only compiled on
1198		 * the i386 architecture since the SiS 630E chipset
1199		 * is for x86 motherboards only. Note that there are
1200		 * a lot of magic numbers in this hack. These are
1201		 * taken from SiS's Linux driver. I'd like to replace
1202		 * them with proper symbolic definitions, but that
1203		 * requires some datasheets that I don't have access
1204		 * to at the moment.
1205		 */
1206		if (sc->sis_rev == SIS_REV_630S ||
1207		    sc->sis_rev == SIS_REV_630E ||
1208		    sc->sis_rev == SIS_REV_630EA1)
1209			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1210
1211		else if (sc->sis_rev == SIS_REV_635 ||
1212			 sc->sis_rev == SIS_REV_630ET)
1213			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1214		else if (sc->sis_rev == SIS_REV_96x) {
1215			/* Allow to read EEPROM from LAN. It is shared
1216			 * between a 1394 controller and the NIC and each
1217			 * time we access it, we need to set SIS_EECMD_REQ.
1218			 */
1219			SIO_SET(SIS_EECMD_REQ);
1220			for (waittime = 0; waittime < SIS_TIMEOUT;
1221			    waittime++) {
1222				/* Force EEPROM to idle state. */
1223				sis_eeprom_idle(sc);
1224				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1225					sis_read_eeprom(sc, (caddr_t)&eaddr,
1226					    SIS_EE_NODEADDR, 3, 0);
1227					break;
1228				}
1229				DELAY(1);
1230			}
1231			/*
1232			 * Set SIS_EECTL_CLK to high, so a other master
1233			 * can operate on the i2c bus.
1234			 */
1235			SIO_SET(SIS_EECTL_CLK);
1236			/* Refuse EEPROM access by LAN */
1237			SIO_SET(SIS_EECMD_DONE);
1238		} else
1239#endif
1240			sis_read_eeprom(sc, (caddr_t)&eaddr,
1241			    SIS_EE_NODEADDR, 3, 0);
1242		break;
1243	}
1244
1245	/*
1246	 * A SiS chip was detected. Inform the world.
1247	 */
1248	printf("sis%d: Ethernet address: %6D\n", unit, eaddr, ":");
1249
1250	sc->sis_unit = unit;
1251	callout_handle_init(&sc->sis_stat_ch);
1252	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1253
1254	/*
1255	 * Allocate the parent bus DMA tag appropriate for PCI.
1256	 */
1257#define SIS_NSEG_NEW 32
1258	 error = bus_dma_tag_create(NULL,	/* parent */
1259			1, 0,			/* alignment, boundary */
1260			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1261			BUS_SPACE_MAXADDR,	/* highaddr */
1262			NULL, NULL,		/* filter, filterarg */
1263			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1264			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1265			BUS_DMA_ALLOCNOW,	/* flags */
1266			&sc->sis_parent_tag);
1267	if (error)
1268		goto fail;
1269
1270	/*
1271	 * Now allocate a tag for the DMA descriptor lists and a chunk
1272	 * of DMA-able memory based on the tag.  Also obtain the physical
1273	 * addresses of the RX and TX ring, which we'll need later.
1274	 * All of our lists are allocated as a contiguous block
1275	 * of memory.
1276	 */
1277	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1278			1, 0,			/* alignment, boundary */
1279			BUS_SPACE_MAXADDR,	/* lowaddr */
1280			BUS_SPACE_MAXADDR,	/* highaddr */
1281			NULL, NULL,		/* filter, filterarg */
1282			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1283			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1284			0,			/* flags */
1285			&sc->sis_ldata.sis_rx_tag);
1286	if (error)
1287		goto fail;
1288
1289	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1290	    (void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT,
1291	    &sc->sis_ldata.sis_rx_dmamap);
1292
1293	if (error) {
1294		printf("sis%d: no memory for rx list buffers!\n", unit);
1295		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1296		sc->sis_ldata.sis_rx_tag = NULL;
1297		goto fail;
1298	}
1299
1300	error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1301	    sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
1302	    sizeof(struct sis_desc), sis_dma_map_ring,
1303	    &sc->sis_cdata.sis_rx_paddr, 0);
1304
1305	if (error) {
1306		printf("sis%d: cannot get address of the rx ring!\n", unit);
1307		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1308		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1309		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1310		sc->sis_ldata.sis_rx_tag = NULL;
1311		goto fail;
1312	}
1313
1314	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1315			1, 0,			/* alignment, boundary */
1316			BUS_SPACE_MAXADDR,	/* lowaddr */
1317			BUS_SPACE_MAXADDR,	/* highaddr */
1318			NULL, NULL,		/* filter, filterarg */
1319			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1320			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1321			0,			/* flags */
1322			&sc->sis_ldata.sis_tx_tag);
1323	if (error)
1324		goto fail;
1325
1326	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1327	    (void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT,
1328	    &sc->sis_ldata.sis_tx_dmamap);
1329
1330	if (error) {
1331		printf("sis%d: no memory for tx list buffers!\n", unit);
1332		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1333		sc->sis_ldata.sis_tx_tag = NULL;
1334		goto fail;
1335	}
1336
1337	error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1338	    sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
1339	    sizeof(struct sis_desc), sis_dma_map_ring,
1340	    &sc->sis_cdata.sis_tx_paddr, 0);
1341
1342	if (error) {
1343		printf("sis%d: cannot get address of the tx ring!\n", unit);
1344		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1345		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1346		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1347		sc->sis_ldata.sis_tx_tag = NULL;
1348		goto fail;
1349	}
1350
1351	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1352			1, 0,			/* alignment, boundary */
1353			BUS_SPACE_MAXADDR,	/* lowaddr */
1354			BUS_SPACE_MAXADDR,	/* highaddr */
1355			NULL, NULL,		/* filter, filterarg */
1356			MCLBYTES, 1,		/* maxsize,nsegments */
1357			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1358			0,			/* flags */
1359			&sc->sis_tag);
1360	if (error)
1361		goto fail;
1362
1363	bzero(sc->sis_ldata.sis_tx_list, SIS_TX_LIST_SZ);
1364	bzero(sc->sis_ldata.sis_rx_list, SIS_RX_LIST_SZ);
1365
1366	/*
1367	 * Obtain the physical addresses of the RX and TX
1368	 * rings which we'll need later in the init routine.
1369	 */
1370
1371	ifp = &sc->arpcom.ac_if;
1372	ifp->if_softc = sc;
1373	ifp->if_unit = unit;
1374	ifp->if_name = "sis";
1375	ifp->if_mtu = ETHERMTU;
1376	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1377	ifp->if_ioctl = sis_ioctl;
1378	ifp->if_output = ether_output;
1379	ifp->if_start = sis_start;
1380	ifp->if_watchdog = sis_watchdog;
1381	ifp->if_init = sis_init;
1382	ifp->if_baudrate = 10000000;
1383	ifp->if_snd.ifq_maxlen = SIS_TX_LIST_CNT - 1;
1384
1385	/*
1386	 * Do MII setup.
1387	 */
1388	if (mii_phy_probe(dev, &sc->sis_miibus,
1389	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1390		printf("sis%d: MII without any PHY!\n", sc->sis_unit);
1391		error = ENXIO;
1392		goto fail;
1393	}
1394
1395	callout_handle_init(&sc->sis_stat_ch);
1396
1397	/*
1398	 * Call MI attach routine.
1399	 */
1400	ether_ifattach(ifp, eaddr);
1401
1402	/*
1403	 * Tell the upper layer(s) we support long frames.
1404	 */
1405	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1406	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1407
1408	error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET,
1409	    sis_intr, sc, &sc->sis_intrhand);
1410
1411	if (error) {
1412		printf("sis%d: couldn't set up irq\n", unit);
1413		goto fail;
1414	}
1415
1416fail:
1417	if (error)
1418		sis_detach(dev);
1419
1420	return(error);
1421}
1422
1423static int
1424sis_detach(dev)
1425	device_t		dev;
1426{
1427	struct sis_softc	*sc;
1428	struct ifnet		*ifp;
1429
1430	sc = device_get_softc(dev);
1431	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1432	SIS_LOCK(sc);
1433	ifp = &sc->arpcom.ac_if;
1434
1435	if (device_is_alive(dev)) {
1436		if (bus_child_present(dev)) {
1437			sis_reset(sc);
1438			sis_stop(sc);
1439		}
1440		ether_ifdetach(ifp);
1441		device_delete_child(dev, sc->sis_miibus);
1442		bus_generic_detach(dev);
1443	}
1444
1445	if (sc->sis_intrhand)
1446		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1447	if (sc->sis_irq)
1448		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1449	if (sc->sis_res)
1450		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1451
1452	if (sc->sis_ldata.sis_rx_tag) {
1453		bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1454		    sc->sis_ldata.sis_rx_dmamap);
1455		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1456		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1457		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1458	}
1459	if (sc->sis_ldata.sis_tx_tag) {
1460		bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1461		    sc->sis_ldata.sis_tx_dmamap);
1462		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1463		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1464		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1465	}
1466	if (sc->sis_parent_tag)
1467		bus_dma_tag_destroy(sc->sis_parent_tag);
1468	if (sc->sis_tag)
1469		bus_dma_tag_destroy(sc->sis_tag);
1470
1471	SIS_UNLOCK(sc);
1472	mtx_destroy(&sc->sis_mtx);
1473
1474	return(0);
1475}
1476
1477/*
1478 * Initialize the transmit descriptors.
1479 */
1480static int
1481sis_list_tx_init(sc)
1482	struct sis_softc	*sc;
1483{
1484	struct sis_list_data	*ld;
1485	struct sis_ring_data	*cd;
1486	int			i, nexti;
1487
1488	cd = &sc->sis_cdata;
1489	ld = &sc->sis_ldata;
1490
1491	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1492		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1493			ld->sis_tx_list[i].sis_nextdesc =
1494			    &ld->sis_tx_list[nexti];
1495			bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1496			    sc->sis_ldata.sis_tx_dmamap,
1497			    &ld->sis_tx_list[nexti], sizeof(struct sis_desc),
1498			    sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
1499		ld->sis_tx_list[i].sis_mbuf = NULL;
1500		ld->sis_tx_list[i].sis_ptr = 0;
1501		ld->sis_tx_list[i].sis_ctl = 0;
1502	}
1503
1504	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1505
1506	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
1507	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1508
1509	return(0);
1510}
1511
1512/*
1513 * Initialize the RX descriptors and allocate mbufs for them. Note that
1514 * we arrange the descriptors in a closed ring, so that the last descriptor
1515 * points back to the first.
1516 */
1517static int
1518sis_list_rx_init(sc)
1519	struct sis_softc	*sc;
1520{
1521	struct sis_list_data	*ld;
1522	struct sis_ring_data	*cd;
1523	int			i,nexti;
1524
1525	ld = &sc->sis_ldata;
1526	cd = &sc->sis_cdata;
1527
1528	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1529		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1530			return(ENOBUFS);
1531		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1532			ld->sis_rx_list[i].sis_nextdesc =
1533			    &ld->sis_rx_list[nexti];
1534			bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1535			    sc->sis_ldata.sis_rx_dmamap,
1536			    &ld->sis_rx_list[nexti],
1537			    sizeof(struct sis_desc), sis_dma_map_desc_next,
1538			    &ld->sis_rx_list[i], 0);
1539		}
1540
1541	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
1542	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1543
1544	cd->sis_rx_prod = 0;
1545
1546	return(0);
1547}
1548
1549/*
1550 * Initialize an RX descriptor and attach an MBUF cluster.
1551 */
1552static int
1553sis_newbuf(sc, c, m)
1554	struct sis_softc	*sc;
1555	struct sis_desc		*c;
1556	struct mbuf		*m;
1557{
1558
1559	if (c == NULL)
1560		return(EINVAL);
1561
1562	if (m == NULL) {
1563		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1564		if (m == NULL)
1565			return(ENOBUFS);
1566	} else
1567		m->m_data = m->m_ext.ext_buf;
1568
1569	c->sis_mbuf = m;
1570	c->sis_ctl = SIS_RXLEN;
1571
1572	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1573	bus_dmamap_load(sc->sis_tag, c->sis_map,
1574	    mtod(m, void *), MCLBYTES,
1575	    sis_dma_map_desc_ptr, c, 0);
1576	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1577
1578	return(0);
1579}
1580
1581/*
1582 * A frame has been uploaded: pass the resulting mbuf chain up to
1583 * the higher level protocols.
1584 */
1585static void
1586sis_rxeof(sc)
1587	struct sis_softc	*sc;
1588{
1589        struct mbuf		*m;
1590        struct ifnet		*ifp;
1591	struct sis_desc		*cur_rx;
1592	int			i, total_len = 0;
1593	u_int32_t		rxstat;
1594
1595	ifp = &sc->arpcom.ac_if;
1596	i = sc->sis_cdata.sis_rx_prod;
1597
1598	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1599
1600#ifdef DEVICE_POLLING
1601		if (ifp->if_flags & IFF_POLLING) {
1602			if (sc->rxcycles <= 0)
1603				break;
1604			sc->rxcycles--;
1605		}
1606#endif /* DEVICE_POLLING */
1607		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1608		rxstat = cur_rx->sis_rxstat;
1609		bus_dmamap_sync(sc->sis_tag,
1610		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1611		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1612		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1613		m = cur_rx->sis_mbuf;
1614		cur_rx->sis_mbuf = NULL;
1615		total_len = SIS_RXBYTES(cur_rx);
1616		SIS_INC(i, SIS_RX_LIST_CNT);
1617
1618		/*
1619		 * If an error occurs, update stats, clear the
1620		 * status word and leave the mbuf cluster in place:
1621		 * it should simply get re-used next time this descriptor
1622	 	 * comes up in the ring.
1623		 */
1624		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1625			ifp->if_ierrors++;
1626			if (rxstat & SIS_RXSTAT_COLL)
1627				ifp->if_collisions++;
1628			sis_newbuf(sc, cur_rx, m);
1629			continue;
1630		}
1631
1632		/* No errors; receive the packet. */
1633#ifdef __i386__
1634		/*
1635		 * On the x86 we do not have alignment problems, so try to
1636		 * allocate a new buffer for the receive ring, and pass up
1637		 * the one where the packet is already, saving the expensive
1638		 * copy done in m_devget().
1639		 * If we are on an architecture with alignment problems, or
1640		 * if the allocation fails, then use m_devget and leave the
1641		 * existing buffer in the receive ring.
1642		 */
1643		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1644			m->m_pkthdr.len = m->m_len = total_len;
1645		else
1646#endif
1647		{
1648			struct mbuf		*m0;
1649			m0 = m_devget(mtod(m, char *), total_len,
1650				ETHER_ALIGN, ifp, NULL);
1651			sis_newbuf(sc, cur_rx, m);
1652			if (m0 == NULL) {
1653				ifp->if_ierrors++;
1654				continue;
1655			}
1656			m = m0;
1657		}
1658
1659		ifp->if_ipackets++;
1660		m->m_pkthdr.rcvif = ifp;
1661
1662		(*ifp->if_input)(ifp, m);
1663	}
1664
1665	sc->sis_cdata.sis_rx_prod = i;
1666
1667	return;
1668}
1669
1670static void
1671sis_rxeoc(sc)
1672	struct sis_softc	*sc;
1673{
1674	sis_rxeof(sc);
1675	sis_init(sc);
1676	return;
1677}
1678
1679/*
1680 * A frame was downloaded to the chip. It's safe for us to clean up
1681 * the list buffers.
1682 */
1683
1684static void
1685sis_txeof(sc)
1686	struct sis_softc	*sc;
1687{
1688	struct ifnet		*ifp;
1689	u_int32_t		idx;
1690
1691	ifp = &sc->arpcom.ac_if;
1692
1693	/*
1694	 * Go through our tx list and free mbufs for those
1695	 * frames that have been transmitted.
1696	 */
1697	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1698	    sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1699		struct sis_desc *cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1700
1701		if (SIS_OWNDESC(cur_tx))
1702			break;
1703
1704		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1705			continue;
1706
1707		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1708			ifp->if_oerrors++;
1709			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1710				ifp->if_collisions++;
1711			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1712				ifp->if_collisions++;
1713		}
1714
1715		ifp->if_collisions +=
1716		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1717
1718		ifp->if_opackets++;
1719		if (cur_tx->sis_mbuf != NULL) {
1720			m_freem(cur_tx->sis_mbuf);
1721			cur_tx->sis_mbuf = NULL;
1722			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1723			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1724		}
1725	}
1726
1727	if (idx != sc->sis_cdata.sis_tx_cons) {
1728		/* we freed up some buffers */
1729		sc->sis_cdata.sis_tx_cons = idx;
1730		ifp->if_flags &= ~IFF_OACTIVE;
1731	}
1732
1733	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1734
1735	return;
1736}
1737
1738static void
1739sis_tick(xsc)
1740	void			*xsc;
1741{
1742	struct sis_softc	*sc;
1743	struct mii_data		*mii;
1744	struct ifnet		*ifp;
1745
1746	sc = xsc;
1747	SIS_LOCK(sc);
1748	ifp = &sc->arpcom.ac_if;
1749
1750	mii = device_get_softc(sc->sis_miibus);
1751	mii_tick(mii);
1752
1753	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1754	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1755		sc->sis_link++;
1756		if (ifp->if_snd.ifq_head != NULL)
1757			sis_start(ifp);
1758	}
1759
1760	sc->sis_stat_ch = timeout(sis_tick, sc, hz);
1761
1762	SIS_UNLOCK(sc);
1763
1764	return;
1765}
1766
1767#ifdef DEVICE_POLLING
1768static poll_handler_t sis_poll;
1769
1770static void
1771sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1772{
1773	struct	sis_softc *sc = ifp->if_softc;
1774
1775	SIS_LOCK(sc);
1776	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1777		CSR_WRITE_4(sc, SIS_IER, 1);
1778		goto done;
1779	}
1780
1781	/*
1782	 * On the sis, reading the status register also clears it.
1783	 * So before returning to intr mode we must make sure that all
1784	 * possible pending sources of interrupts have been served.
1785	 * In practice this means run to completion the *eof routines,
1786	 * and then call the interrupt routine
1787	 */
1788	sc->rxcycles = count;
1789	sis_rxeof(sc);
1790	sis_txeof(sc);
1791	if (ifp->if_snd.ifq_head != NULL)
1792		sis_start(ifp);
1793
1794	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1795		u_int32_t	status;
1796
1797		/* Reading the ISR register clears all interrupts. */
1798		status = CSR_READ_4(sc, SIS_ISR);
1799
1800		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1801			sis_rxeoc(sc);
1802
1803		if (status & (SIS_ISR_RX_IDLE))
1804			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1805
1806		if (status & SIS_ISR_SYSERR) {
1807			sis_reset(sc);
1808			sis_init(sc);
1809		}
1810	}
1811done:
1812	SIS_UNLOCK(sc);
1813	return;
1814}
1815#endif /* DEVICE_POLLING */
1816
1817static void
1818sis_intr(arg)
1819	void			*arg;
1820{
1821	struct sis_softc	*sc;
1822	struct ifnet		*ifp;
1823	u_int32_t		status;
1824
1825	sc = arg;
1826	ifp = &sc->arpcom.ac_if;
1827
1828	SIS_LOCK(sc);
1829#ifdef DEVICE_POLLING
1830	if (ifp->if_flags & IFF_POLLING)
1831		goto done;
1832	if (ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
1833		CSR_WRITE_4(sc, SIS_IER, 0);
1834		goto done;
1835	}
1836#endif /* DEVICE_POLLING */
1837
1838	/* Supress unwanted interrupts */
1839	if (!(ifp->if_flags & IFF_UP)) {
1840		sis_stop(sc);
1841		goto done;
1842	}
1843
1844	/* Disable interrupts. */
1845	CSR_WRITE_4(sc, SIS_IER, 0);
1846
1847	for (;;) {
1848		/* Reading the ISR register clears all interrupts. */
1849		status = CSR_READ_4(sc, SIS_ISR);
1850
1851		if ((status & SIS_INTRS) == 0)
1852			break;
1853
1854		if (status &
1855		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1856		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1857			sis_txeof(sc);
1858
1859		if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
1860			sis_rxeof(sc);
1861
1862		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1863			sis_rxeoc(sc);
1864
1865		if (status & (SIS_ISR_RX_IDLE))
1866			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1867
1868		if (status & SIS_ISR_SYSERR) {
1869			sis_reset(sc);
1870			sis_init(sc);
1871		}
1872	}
1873
1874	/* Re-enable interrupts. */
1875	CSR_WRITE_4(sc, SIS_IER, 1);
1876
1877	if (ifp->if_snd.ifq_head != NULL)
1878		sis_start(ifp);
1879done:
1880	SIS_UNLOCK(sc);
1881
1882	return;
1883}
1884
1885/*
1886 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1887 * pointers to the fragment pointers.
1888 */
1889static int
1890sis_encap(sc, m_head, txidx)
1891	struct sis_softc	*sc;
1892	struct mbuf		*m_head;
1893	u_int32_t		*txidx;
1894{
1895	struct sis_desc		*f = NULL;
1896	struct mbuf		*m;
1897	int			frag, cur, cnt = 0, chainlen = 0;
1898
1899	/*
1900	 * If there's no way we can send any packets, return now.
1901	 */
1902	if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
1903		return (ENOBUFS);
1904
1905	/*
1906	 * Count the number of frags in this chain to see if
1907	 * we need to m_defrag.  Since the descriptor list is shared
1908	 * by all packets, we'll m_defrag long chains so that they
1909	 * do not use up the entire list, even if they would fit.
1910	 */
1911
1912	for (m = m_head; m != NULL; m = m->m_next)
1913		chainlen++;
1914
1915	if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1916	    ((SIS_TX_LIST_CNT - (chainlen + sc->sis_cdata.sis_tx_cnt)) < 2)) {
1917		m = m_defrag(m_head, M_DONTWAIT);
1918		if (m == NULL)
1919			return (ENOBUFS);
1920		m_head = m;
1921	}
1922
1923	/*
1924 	 * Start packing the mbufs in this chain into
1925	 * the fragment pointers. Stop when we run out
1926 	 * of fragments or hit the end of the mbuf chain.
1927	 */
1928	m = m_head;
1929	cur = frag = *txidx;
1930
1931	for (m = m_head; m != NULL; m = m->m_next) {
1932		if (m->m_len != 0) {
1933			if ((SIS_TX_LIST_CNT -
1934			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1935				return(ENOBUFS);
1936			f = &sc->sis_ldata.sis_tx_list[frag];
1937			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1938			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1939			bus_dmamap_load(sc->sis_tag, f->sis_map,
1940			    mtod(m, void *), m->m_len,
1941			    sis_dma_map_desc_ptr, f, 0);
1942			bus_dmamap_sync(sc->sis_tag,
1943			    f->sis_map, BUS_DMASYNC_PREREAD);
1944			if (cnt != 0)
1945				f->sis_ctl |= SIS_CMDSTS_OWN;
1946			cur = frag;
1947			SIS_INC(frag, SIS_TX_LIST_CNT);
1948			cnt++;
1949		}
1950	}
1951
1952	if (m != NULL)
1953		return(ENOBUFS);
1954
1955	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
1956	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1957	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1958	sc->sis_cdata.sis_tx_cnt += cnt;
1959	*txidx = frag;
1960
1961	return(0);
1962}
1963
1964/*
1965 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1966 * to the mbuf data regions directly in the transmit lists. We also save a
1967 * copy of the pointers since the transmit list fragment pointers are
1968 * physical addresses.
1969 */
1970
1971static void
1972sis_start(ifp)
1973	struct ifnet		*ifp;
1974{
1975	struct sis_softc	*sc;
1976	struct mbuf		*m_head = NULL;
1977	u_int32_t		idx;
1978
1979	sc = ifp->if_softc;
1980	SIS_LOCK(sc);
1981
1982	if (!sc->sis_link) {
1983		SIS_UNLOCK(sc);
1984		return;
1985	}
1986
1987	idx = sc->sis_cdata.sis_tx_prod;
1988
1989	if (ifp->if_flags & IFF_OACTIVE) {
1990		SIS_UNLOCK(sc);
1991		return;
1992	}
1993
1994	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
1995		IF_DEQUEUE(&ifp->if_snd, m_head);
1996		if (m_head == NULL)
1997			break;
1998
1999		if (sis_encap(sc, m_head, &idx)) {
2000			IF_PREPEND(&ifp->if_snd, m_head);
2001			ifp->if_flags |= IFF_OACTIVE;
2002			break;
2003		}
2004
2005		/*
2006		 * If there's a BPF listener, bounce a copy of this frame
2007		 * to him.
2008		 */
2009		BPF_MTAP(ifp, m_head);
2010
2011	}
2012
2013	/* Transmit */
2014	sc->sis_cdata.sis_tx_prod = idx;
2015	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
2016
2017	/*
2018	 * Set a timeout in case the chip goes out to lunch.
2019	 */
2020	ifp->if_timer = 5;
2021
2022	SIS_UNLOCK(sc);
2023
2024	return;
2025}
2026
2027static void
2028sis_init(xsc)
2029	void			*xsc;
2030{
2031	struct sis_softc	*sc = xsc;
2032	struct ifnet		*ifp = &sc->arpcom.ac_if;
2033	struct mii_data		*mii;
2034
2035	SIS_LOCK(sc);
2036
2037	/*
2038	 * Cancel pending I/O and free all RX/TX buffers.
2039	 */
2040	sis_stop(sc);
2041
2042	mii = device_get_softc(sc->sis_miibus);
2043
2044	/* Set MAC address */
2045	if (sc->sis_type == SIS_TYPE_83815) {
2046		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
2047		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2048		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2049		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
2050		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2051		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2052		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
2053		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2054		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2055	} else {
2056		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
2057		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2058		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2059		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
2060		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2061		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2062		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
2063		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2064		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2065	}
2066
2067	/* Init circular RX list. */
2068	if (sis_list_rx_init(sc) == ENOBUFS) {
2069		printf("sis%d: initialization failed: no "
2070			"memory for rx buffers\n", sc->sis_unit);
2071		sis_stop(sc);
2072		SIS_UNLOCK(sc);
2073		return;
2074	}
2075
2076	/*
2077	 * Init tx descriptors.
2078	 */
2079	sis_list_tx_init(sc);
2080
2081	/*
2082	 * For the NatSemi chip, we have to explicitly enable the
2083	 * reception of ARP frames, as well as turn on the 'perfect
2084	 * match' filter where we store the station address, otherwise
2085	 * we won't receive unicasts meant for this host.
2086	 */
2087	if (sc->sis_type == SIS_TYPE_83815) {
2088		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
2089		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
2090	}
2091
2092	 /* If we want promiscuous mode, set the allframes bit. */
2093	if (ifp->if_flags & IFF_PROMISC) {
2094		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2095	} else {
2096		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2097	}
2098
2099	/*
2100	 * Set the capture broadcast bit to capture broadcast frames.
2101	 */
2102	if (ifp->if_flags & IFF_BROADCAST) {
2103		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2104	} else {
2105		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2106	}
2107
2108	/*
2109	 * Load the multicast filter.
2110	 */
2111	if (sc->sis_type == SIS_TYPE_83815)
2112		sis_setmulti_ns(sc);
2113	else
2114		sis_setmulti_sis(sc);
2115
2116	/* Turn the receive filter on */
2117	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
2118
2119	/*
2120	 * Load the address of the RX and TX lists.
2121	 */
2122	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
2123	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
2124
2125	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2126	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2127	 * for TX/RX DMA should be no larger than 16 double words.
2128	 */
2129	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2130		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2131	} else {
2132		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2133	}
2134
2135
2136	/* Accept Long Packets for VLAN support */
2137	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2138
2139	/* Set TX configuration */
2140	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
2141		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
2142	} else {
2143		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2144	}
2145
2146	/* Set full/half duplex mode. */
2147	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
2148		SIS_SETBIT(sc, SIS_TX_CFG,
2149		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2150		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2151	} else {
2152		SIS_CLRBIT(sc, SIS_TX_CFG,
2153		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2154		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2155	}
2156
2157	/*
2158	 * Enable interrupts.
2159	 */
2160	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2161#ifdef DEVICE_POLLING
2162	/*
2163	 * ... only enable interrupts if we are not polling, make sure
2164	 * they are off otherwise.
2165	 */
2166	if (ifp->if_flags & IFF_POLLING)
2167		CSR_WRITE_4(sc, SIS_IER, 0);
2168	else
2169#endif /* DEVICE_POLLING */
2170	CSR_WRITE_4(sc, SIS_IER, 1);
2171
2172	/* Enable receiver and transmitter. */
2173	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2174	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2175
2176#ifdef notdef
2177	mii_mediachg(mii);
2178#endif
2179
2180	/*
2181	 * Page 75 of the DP83815 manual recommends the
2182	 * following register settings "for optimum
2183	 * performance." Note however that at least three
2184	 * of the registers are listed as "reserved" in
2185	 * the register map, so who knows what they do.
2186	 */
2187	if (sc->sis_type == SIS_TYPE_83815) {
2188		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2189		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2190		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2191		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2192		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2193	}
2194
2195	ifp->if_flags |= IFF_RUNNING;
2196	ifp->if_flags &= ~IFF_OACTIVE;
2197
2198	sc->sis_stat_ch = timeout(sis_tick, sc, hz);
2199
2200	SIS_UNLOCK(sc);
2201
2202	return;
2203}
2204
2205/*
2206 * Set media options.
2207 */
2208static int
2209sis_ifmedia_upd(ifp)
2210	struct ifnet		*ifp;
2211{
2212	struct sis_softc	*sc;
2213	struct mii_data		*mii;
2214
2215	sc = ifp->if_softc;
2216
2217	mii = device_get_softc(sc->sis_miibus);
2218	sc->sis_link = 0;
2219	if (mii->mii_instance) {
2220		struct mii_softc	*miisc;
2221		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2222			mii_phy_reset(miisc);
2223	}
2224	mii_mediachg(mii);
2225
2226	return(0);
2227}
2228
2229/*
2230 * Report current media status.
2231 */
2232static void
2233sis_ifmedia_sts(ifp, ifmr)
2234	struct ifnet		*ifp;
2235	struct ifmediareq	*ifmr;
2236{
2237	struct sis_softc	*sc;
2238	struct mii_data		*mii;
2239
2240	sc = ifp->if_softc;
2241
2242	mii = device_get_softc(sc->sis_miibus);
2243	mii_pollstat(mii);
2244	ifmr->ifm_active = mii->mii_media_active;
2245	ifmr->ifm_status = mii->mii_media_status;
2246
2247	return;
2248}
2249
2250static int
2251sis_ioctl(ifp, command, data)
2252	struct ifnet		*ifp;
2253	u_long			command;
2254	caddr_t			data;
2255{
2256	struct sis_softc	*sc = ifp->if_softc;
2257	struct ifreq		*ifr = (struct ifreq *) data;
2258	struct mii_data		*mii;
2259	int			error = 0;
2260
2261	switch(command) {
2262	case SIOCSIFFLAGS:
2263		if (ifp->if_flags & IFF_UP) {
2264			sis_init(sc);
2265		} else {
2266			if (ifp->if_flags & IFF_RUNNING)
2267				sis_stop(sc);
2268		}
2269		error = 0;
2270		break;
2271	case SIOCADDMULTI:
2272	case SIOCDELMULTI:
2273		SIS_LOCK(sc);
2274		if (sc->sis_type == SIS_TYPE_83815)
2275			sis_setmulti_ns(sc);
2276		else
2277			sis_setmulti_sis(sc);
2278		SIS_UNLOCK(sc);
2279		error = 0;
2280		break;
2281	case SIOCGIFMEDIA:
2282	case SIOCSIFMEDIA:
2283		mii = device_get_softc(sc->sis_miibus);
2284		SIS_LOCK(sc);
2285		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2286		SIS_UNLOCK(sc);
2287		break;
2288	default:
2289		error = ether_ioctl(ifp, command, data);
2290		break;
2291	}
2292
2293	return(error);
2294}
2295
2296static void
2297sis_watchdog(ifp)
2298	struct ifnet		*ifp;
2299{
2300	struct sis_softc	*sc;
2301
2302	sc = ifp->if_softc;
2303
2304	SIS_LOCK(sc);
2305
2306	ifp->if_oerrors++;
2307	printf("sis%d: watchdog timeout\n", sc->sis_unit);
2308
2309	sis_stop(sc);
2310	sis_reset(sc);
2311	sis_init(sc);
2312
2313	if (ifp->if_snd.ifq_head != NULL)
2314		sis_start(ifp);
2315
2316	SIS_UNLOCK(sc);
2317
2318	return;
2319}
2320
2321/*
2322 * Stop the adapter and free any mbufs allocated to the
2323 * RX and TX lists.
2324 */
2325static void
2326sis_stop(sc)
2327	struct sis_softc	*sc;
2328{
2329	register int		i;
2330	struct ifnet		*ifp;
2331
2332	SIS_LOCK(sc);
2333	ifp = &sc->arpcom.ac_if;
2334	ifp->if_timer = 0;
2335
2336	untimeout(sis_tick, sc, sc->sis_stat_ch);
2337
2338	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2339#ifdef DEVICE_POLLING
2340	ether_poll_deregister(ifp);
2341#endif
2342	CSR_WRITE_4(sc, SIS_IER, 0);
2343	CSR_WRITE_4(sc, SIS_IMR, 0);
2344	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2345	DELAY(1000);
2346	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2347	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2348
2349	sc->sis_link = 0;
2350
2351	/*
2352	 * Free data in the RX lists.
2353	 */
2354	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2355		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2356			bus_dmamap_unload(sc->sis_tag,
2357			    sc->sis_ldata.sis_rx_list[i].sis_map);
2358			bus_dmamap_destroy(sc->sis_tag,
2359			    sc->sis_ldata.sis_rx_list[i].sis_map);
2360			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2361			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2362		}
2363	}
2364	bzero(sc->sis_ldata.sis_rx_list,
2365		sizeof(sc->sis_ldata.sis_rx_list));
2366
2367	/*
2368	 * Free the TX list buffers.
2369	 */
2370	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2371		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2372			bus_dmamap_unload(sc->sis_tag,
2373			    sc->sis_ldata.sis_tx_list[i].sis_map);
2374			bus_dmamap_destroy(sc->sis_tag,
2375			    sc->sis_ldata.sis_tx_list[i].sis_map);
2376			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2377			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2378		}
2379	}
2380
2381	bzero(sc->sis_ldata.sis_tx_list,
2382		sizeof(sc->sis_ldata.sis_tx_list));
2383
2384	SIS_UNLOCK(sc);
2385
2386	return;
2387}
2388
2389/*
2390 * Stop all chip I/O so that the kernel's probe routines don't
2391 * get confused by errant DMAs when rebooting.
2392 */
2393static void
2394sis_shutdown(dev)
2395	device_t		dev;
2396{
2397	struct sis_softc	*sc;
2398
2399	sc = device_get_softc(dev);
2400	SIS_LOCK(sc);
2401	sis_reset(sc);
2402	sis_stop(sc);
2403	SIS_UNLOCK(sc);
2404
2405	return;
2406}
2407