if_sis.c revision 109060
155682Smarkm/*
2233294Sstas * Copyright (c) 1997, 1998, 1999
3233294Sstas *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4233294Sstas *
555682Smarkm * Redistribution and use in source and binary forms, with or without
6233294Sstas * modification, are permitted provided that the following conditions
7233294Sstas * are met:
8233294Sstas * 1. Redistributions of source code must retain the above copyright
955682Smarkm *    notice, this list of conditions and the following disclaimer.
10233294Sstas * 2. Redistributions in binary form must reproduce the above copyright
11233294Sstas *    notice, this list of conditions and the following disclaimer in the
1255682Smarkm *    documentation and/or other materials provided with the distribution.
13233294Sstas * 3. All advertising materials mentioning features or use of this software
14233294Sstas *    must display the following acknowledgement:
15233294Sstas *	This product includes software developed by Bill Paul.
1655682Smarkm * 4. Neither the name of the author nor the names of any co-contributors
17233294Sstas *    may be used to endorse or promote products derived from this software
18233294Sstas *    without specific prior written permission.
19233294Sstas *
2055682Smarkm * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21233294Sstas * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22233294Sstas * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23233294Sstas * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24233294Sstas * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25233294Sstas * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26233294Sstas * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27233294Sstas * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28233294Sstas * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29233294Sstas * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30233294Sstas * THE POSSIBILITY OF SUCH DAMAGE.
31233294Sstas *
3255682Smarkm * $FreeBSD: head/sys/pci/if_sis.c 109060 2003-01-10 08:14:07Z mbr $
3355682Smarkm */
3455682Smarkm
3555682Smarkm/*
3655682Smarkm * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
3755682Smarkm * available from http://www.sis.com.tw.
38233294Sstas *
3955682Smarkm * This driver also supports the NatSemi DP83815. Datasheets are
4055682Smarkm * available from http://www.national.com.
4155682Smarkm *
4255682Smarkm * Written by Bill Paul <wpaul@ee.columbia.edu>
4355682Smarkm * Electrical Engineering Department
4455682Smarkm * Columbia University, New York City
4555682Smarkm */
4655682Smarkm
4755682Smarkm/*
4855682Smarkm * The SiS 900 is a fairly simple chip. It uses bus master DMA with
4972445Sassar * simple TX and RX descriptors of 3 longwords in size. The receiver
5055682Smarkm * has a single perfect filter entry for the station address and a
5155682Smarkm * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
5255682Smarkm * transceiver while the 7016 requires an external transceiver chip.
5355682Smarkm * Both chips offer the standard bit-bang MII interface as well as
5455682Smarkm * an enchanced PHY interface which simplifies accessing MII registers.
5555682Smarkm *
5655682Smarkm * The only downside to this chipset is that RX descriptors must be
5755682Smarkm * longword aligned.
58178825Sdfr */
5955682Smarkm
60178825Sdfr#include <sys/param.h>
6155682Smarkm#include <sys/systm.h>
62178825Sdfr#include <sys/sockio.h>
63178825Sdfr#include <sys/mbuf.h>
64178825Sdfr#include <sys/malloc.h>
6555682Smarkm#include <sys/kernel.h>
6655682Smarkm#include <sys/socket.h>
6755682Smarkm#include <sys/sysctl.h>
6855682Smarkm
6955682Smarkm#include <net/if.h>
7055682Smarkm#include <net/if_arp.h>
7155682Smarkm#include <net/ethernet.h>
7255682Smarkm#include <net/if_dl.h>
7355682Smarkm#include <net/if_media.h>
7455682Smarkm#include <net/if_types.h>
7555682Smarkm#include <net/if_vlan_var.h>
7655682Smarkm
7755682Smarkm#include <net/bpf.h>
7855682Smarkm
7955682Smarkm#include <machine/bus_pio.h>
8055682Smarkm#include <machine/bus_memio.h>
8155682Smarkm#include <machine/bus.h>
8255682Smarkm#include <machine/resource.h>
8355682Smarkm#include <sys/bus.h>
8455682Smarkm#include <sys/rman.h>
8555682Smarkm
8655682Smarkm#include <dev/mii/mii.h>
8755682Smarkm#include <dev/mii/miivar.h>
8855682Smarkm
8955682Smarkm#include <pci/pcireg.h>
9055682Smarkm#include <pci/pcivar.h>
9155682Smarkm
9255682Smarkm#define SIS_USEIOSPACE
9355682Smarkm
9455682Smarkm#include <pci/if_sisreg.h>
9555682Smarkm
9655682SmarkmMODULE_DEPEND(sis, miibus, 1, 1, 1);
9755682Smarkm
9855682Smarkm/* "controller miibus0" required.  See GENERIC if you get errors here. */
9955682Smarkm#include "miibus_if.h"
10055682Smarkm
10155682Smarkm#ifndef lint
10255682Smarkmstatic const char rcsid[] =
10355682Smarkm  "$FreeBSD: head/sys/pci/if_sis.c 109060 2003-01-10 08:14:07Z mbr $";
10455682Smarkm#endif
10555682Smarkm
10655682Smarkm/*
10755682Smarkm * Various supported device vendors/types and their names.
10855682Smarkm */
10955682Smarkmstatic struct sis_type sis_devs[] = {
11055682Smarkm	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
11155682Smarkm	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
11255682Smarkm	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP83815 10/100BaseTX" },
11355682Smarkm	{ 0, 0, NULL }
11455682Smarkm};
11555682Smarkm
11655682Smarkmstatic int sis_probe		(device_t);
11755682Smarkmstatic int sis_attach		(device_t);
11855682Smarkmstatic int sis_detach		(device_t);
11955682Smarkm
12055682Smarkmstatic int sis_newbuf		(struct sis_softc *,
12155682Smarkm					struct sis_desc *, struct mbuf *);
12255682Smarkmstatic int sis_encap		(struct sis_softc *,
12355682Smarkm					struct mbuf *, u_int32_t *);
12455682Smarkmstatic void sis_rxeof		(struct sis_softc *);
12555682Smarkmstatic void sis_rxeoc		(struct sis_softc *);
12655682Smarkmstatic void sis_txeof		(struct sis_softc *);
12755682Smarkmstatic void sis_intr		(void *);
12855682Smarkmstatic void sis_tick		(void *);
12955682Smarkmstatic void sis_start		(struct ifnet *);
13055682Smarkmstatic int sis_ioctl		(struct ifnet *, u_long, caddr_t);
13155682Smarkmstatic void sis_init		(void *);
13255682Smarkmstatic void sis_stop		(struct sis_softc *);
13355682Smarkmstatic void sis_watchdog		(struct ifnet *);
13455682Smarkmstatic void sis_shutdown		(device_t);
13555682Smarkmstatic int sis_ifmedia_upd	(struct ifnet *);
13655682Smarkmstatic void sis_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
13755682Smarkm
13855682Smarkmstatic u_int16_t sis_reverse	(u_int16_t);
13955682Smarkmstatic void sis_delay		(struct sis_softc *);
14055682Smarkmstatic void sis_eeprom_idle	(struct sis_softc *);
14155682Smarkmstatic void sis_eeprom_putbyte	(struct sis_softc *, int);
14255682Smarkmstatic void sis_eeprom_getword	(struct sis_softc *, int, u_int16_t *);
14355682Smarkmstatic void sis_read_eeprom	(struct sis_softc *, caddr_t, int, int, int);
14455682Smarkm#ifdef __i386__
14555682Smarkmstatic void sis_read_cmos	(struct sis_softc *, device_t, caddr_t,
14655682Smarkm							int, int);
14755682Smarkmstatic void sis_read_mac	(struct sis_softc *, device_t, caddr_t);
14855682Smarkmstatic device_t sis_find_bridge	(device_t);
14955682Smarkm#endif
15055682Smarkm
15155682Smarkmstatic void sis_mii_sync	(struct sis_softc *);
15255682Smarkmstatic void sis_mii_send	(struct sis_softc *, u_int32_t, int);
15355682Smarkmstatic int sis_mii_readreg	(struct sis_softc *, struct sis_mii_frame *);
15455682Smarkmstatic int sis_mii_writereg	(struct sis_softc *, struct sis_mii_frame *);
15555682Smarkmstatic int sis_miibus_readreg	(device_t, int, int);
15655682Smarkmstatic int sis_miibus_writereg	(device_t, int, int, int);
15755682Smarkmstatic void sis_miibus_statchg	(device_t);
15855682Smarkm
15955682Smarkmstatic void sis_setmulti_sis	(struct sis_softc *);
16055682Smarkmstatic void sis_setmulti_ns	(struct sis_softc *);
16155682Smarkmstatic u_int32_t sis_crc	(struct sis_softc *, caddr_t);
16255682Smarkmstatic void sis_reset		(struct sis_softc *);
16355682Smarkmstatic int sis_list_rx_init	(struct sis_softc *);
16455682Smarkmstatic int sis_list_tx_init	(struct sis_softc *);
16555682Smarkm
16655682Smarkmstatic void sis_dma_map_desc_ptr	(void *, bus_dma_segment_t *, int, int);
16755682Smarkmstatic void sis_dma_map_desc_next	(void *, bus_dma_segment_t *, int, int);
168static void sis_dma_map_ring		(void *, bus_dma_segment_t *, int, int);
169#ifdef SIS_USEIOSPACE
170#define SIS_RES			SYS_RES_IOPORT
171#define SIS_RID			SIS_PCI_LOIO
172#else
173#define SIS_RES			SYS_RES_MEMORY
174#define SIS_RID			SIS_PCI_LOMEM
175#endif
176
177static device_method_t sis_methods[] = {
178	/* Device interface */
179	DEVMETHOD(device_probe,		sis_probe),
180	DEVMETHOD(device_attach,	sis_attach),
181	DEVMETHOD(device_detach,	sis_detach),
182	DEVMETHOD(device_shutdown,	sis_shutdown),
183
184	/* bus interface */
185	DEVMETHOD(bus_print_child,	bus_generic_print_child),
186	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
187
188	/* MII interface */
189	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
190	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
191	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
192
193	{ 0, 0 }
194};
195
196static driver_t sis_driver = {
197	"sis",
198	sis_methods,
199	sizeof(struct sis_softc)
200};
201
202static devclass_t sis_devclass;
203
204DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
205DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
206
207#define SIS_SETBIT(sc, reg, x)				\
208	CSR_WRITE_4(sc, reg,				\
209		CSR_READ_4(sc, reg) | (x))
210
211#define SIS_CLRBIT(sc, reg, x)				\
212	CSR_WRITE_4(sc, reg,				\
213		CSR_READ_4(sc, reg) & ~(x))
214
215#define SIO_SET(x)					\
216	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
217
218#define SIO_CLR(x)					\
219	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
220
221static void
222sis_dma_map_desc_next(arg, segs, nseg, error)
223	void *arg;
224	bus_dma_segment_t *segs;
225	int nseg, error;
226{
227	struct sis_desc	*r;
228
229	r = arg;
230	r->sis_next = segs->ds_addr;
231
232	return;
233}
234
235static void
236sis_dma_map_desc_ptr(arg, segs, nseg, error)
237	void *arg;
238	bus_dma_segment_t *segs;
239	int nseg, error;
240{
241	struct sis_desc	*r;
242
243	r = arg;
244	r->sis_ptr = segs->ds_addr;
245
246	return;
247}
248
249static void
250sis_dma_map_ring(arg, segs, nseg, error)
251	void *arg;
252	bus_dma_segment_t *segs;
253	int nseg, error;
254{
255	u_int32_t *p;
256
257	p = arg;
258	*p = segs->ds_addr;
259
260	return;
261}
262
263/*
264 * Routine to reverse the bits in a word. Stolen almost
265 * verbatim from /usr/games/fortune.
266 */
267static u_int16_t
268sis_reverse(n)
269	u_int16_t		n;
270{
271	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
272	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
273	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
274	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
275
276	return(n);
277}
278
279static void
280sis_delay(sc)
281	struct sis_softc	*sc;
282{
283	int			idx;
284
285	for (idx = (300 / 33) + 1; idx > 0; idx--)
286		CSR_READ_4(sc, SIS_CSR);
287
288	return;
289}
290
291static void
292sis_eeprom_idle(sc)
293	struct sis_softc	*sc;
294{
295	register int		i;
296
297	SIO_SET(SIS_EECTL_CSEL);
298	sis_delay(sc);
299	SIO_SET(SIS_EECTL_CLK);
300	sis_delay(sc);
301
302	for (i = 0; i < 25; i++) {
303		SIO_CLR(SIS_EECTL_CLK);
304		sis_delay(sc);
305		SIO_SET(SIS_EECTL_CLK);
306		sis_delay(sc);
307	}
308
309	SIO_CLR(SIS_EECTL_CLK);
310	sis_delay(sc);
311	SIO_CLR(SIS_EECTL_CSEL);
312	sis_delay(sc);
313	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
314
315	return;
316}
317
318/*
319 * Send a read command and address to the EEPROM, check for ACK.
320 */
321static void
322sis_eeprom_putbyte(sc, addr)
323	struct sis_softc	*sc;
324	int			addr;
325{
326	register int		d, i;
327
328	d = addr | SIS_EECMD_READ;
329
330	/*
331	 * Feed in each bit and stobe the clock.
332	 */
333	for (i = 0x400; i; i >>= 1) {
334		if (d & i) {
335			SIO_SET(SIS_EECTL_DIN);
336		} else {
337			SIO_CLR(SIS_EECTL_DIN);
338		}
339		sis_delay(sc);
340		SIO_SET(SIS_EECTL_CLK);
341		sis_delay(sc);
342		SIO_CLR(SIS_EECTL_CLK);
343		sis_delay(sc);
344	}
345
346	return;
347}
348
349/*
350 * Read a word of data stored in the EEPROM at address 'addr.'
351 */
352static void
353sis_eeprom_getword(sc, addr, dest)
354	struct sis_softc	*sc;
355	int			addr;
356	u_int16_t		*dest;
357{
358	register int		i;
359	u_int16_t		word = 0;
360
361	/* Force EEPROM to idle state. */
362	sis_eeprom_idle(sc);
363
364	/* Enter EEPROM access mode. */
365	sis_delay(sc);
366	SIO_CLR(SIS_EECTL_CLK);
367	sis_delay(sc);
368	SIO_SET(SIS_EECTL_CSEL);
369	sis_delay(sc);
370
371	/*
372	 * Send address of word we want to read.
373	 */
374	sis_eeprom_putbyte(sc, addr);
375
376	/*
377	 * Start reading bits from EEPROM.
378	 */
379	for (i = 0x8000; i; i >>= 1) {
380		SIO_SET(SIS_EECTL_CLK);
381		sis_delay(sc);
382		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
383			word |= i;
384		sis_delay(sc);
385		SIO_CLR(SIS_EECTL_CLK);
386		sis_delay(sc);
387	}
388
389	/* Turn off EEPROM access mode. */
390	sis_eeprom_idle(sc);
391
392	*dest = word;
393
394	return;
395}
396
397/*
398 * Read a sequence of words from the EEPROM.
399 */
400static void
401sis_read_eeprom(sc, dest, off, cnt, swap)
402	struct sis_softc	*sc;
403	caddr_t			dest;
404	int			off;
405	int			cnt;
406	int			swap;
407{
408	int			i;
409	u_int16_t		word = 0, *ptr;
410
411	for (i = 0; i < cnt; i++) {
412		sis_eeprom_getword(sc, off + i, &word);
413		ptr = (u_int16_t *)(dest + (i * 2));
414		if (swap)
415			*ptr = ntohs(word);
416		else
417			*ptr = word;
418	}
419
420	return;
421}
422
423#ifdef __i386__
424static device_t
425sis_find_bridge(dev)
426	device_t		dev;
427{
428	devclass_t		pci_devclass;
429	device_t		*pci_devices;
430	int			pci_count = 0;
431	device_t		*pci_children;
432	int			pci_childcount = 0;
433	device_t		*busp, *childp;
434	device_t		child = NULL;
435	int			i, j;
436
437	if ((pci_devclass = devclass_find("pci")) == NULL)
438		return(NULL);
439
440	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
441
442	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
443		pci_childcount = 0;
444		device_get_children(*busp, &pci_children, &pci_childcount);
445		for (j = 0, childp = pci_children;
446		    j < pci_childcount; j++, childp++) {
447			if (pci_get_vendor(*childp) == SIS_VENDORID &&
448			    pci_get_device(*childp) == 0x0008) {
449				child = *childp;
450				goto done;
451			}
452		}
453	}
454
455done:
456	free(pci_devices, M_TEMP);
457	free(pci_children, M_TEMP);
458	return(child);
459}
460
461static void
462sis_read_cmos(sc, dev, dest, off, cnt)
463	struct sis_softc	*sc;
464	device_t		dev;
465	caddr_t			dest;
466	int			off;
467	int			cnt;
468{
469	device_t		bridge;
470	u_int8_t		reg;
471	int			i;
472	bus_space_tag_t		btag;
473
474	bridge = sis_find_bridge(dev);
475	if (bridge == NULL)
476		return;
477	reg = pci_read_config(bridge, 0x48, 1);
478	pci_write_config(bridge, 0x48, reg|0x40, 1);
479
480	/* XXX */
481	btag = I386_BUS_SPACE_IO;
482
483	for (i = 0; i < cnt; i++) {
484		bus_space_write_1(btag, 0x0, 0x70, i + off);
485		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
486	}
487
488	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
489	return;
490}
491
492static void
493sis_read_mac(sc, dev, dest)
494	struct sis_softc	*sc;
495	device_t		dev;
496	caddr_t			dest;
497{
498	u_int32_t		filtsave, csrsave;
499
500	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
501	csrsave = CSR_READ_4(sc, SIS_CSR);
502
503	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
504	CSR_WRITE_4(sc, SIS_CSR, 0);
505
506	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
507
508	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
509	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
510	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
511	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
512	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
513	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
514
515	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
516	CSR_WRITE_4(sc, SIS_CSR, csrsave);
517	return;
518}
519#endif
520
521/*
522 * Sync the PHYs by setting data bit and strobing the clock 32 times.
523 */
524static void sis_mii_sync(sc)
525	struct sis_softc	*sc;
526{
527	register int		i;
528
529 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
530
531 	for (i = 0; i < 32; i++) {
532 		SIO_SET(SIS_MII_CLK);
533 		DELAY(1);
534 		SIO_CLR(SIS_MII_CLK);
535 		DELAY(1);
536 	}
537
538 	return;
539}
540
541/*
542 * Clock a series of bits through the MII.
543 */
544static void sis_mii_send(sc, bits, cnt)
545	struct sis_softc	*sc;
546	u_int32_t		bits;
547	int			cnt;
548{
549	int			i;
550
551	SIO_CLR(SIS_MII_CLK);
552
553	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
554		if (bits & i) {
555			SIO_SET(SIS_MII_DATA);
556		} else {
557			SIO_CLR(SIS_MII_DATA);
558		}
559		DELAY(1);
560		SIO_CLR(SIS_MII_CLK);
561		DELAY(1);
562		SIO_SET(SIS_MII_CLK);
563	}
564}
565
566/*
567 * Read an PHY register through the MII.
568 */
569static int sis_mii_readreg(sc, frame)
570	struct sis_softc	*sc;
571	struct sis_mii_frame	*frame;
572
573{
574	int			i, ack, s;
575
576	s = splimp();
577
578	/*
579	 * Set up frame for RX.
580	 */
581	frame->mii_stdelim = SIS_MII_STARTDELIM;
582	frame->mii_opcode = SIS_MII_READOP;
583	frame->mii_turnaround = 0;
584	frame->mii_data = 0;
585
586	/*
587 	 * Turn on data xmit.
588	 */
589	SIO_SET(SIS_MII_DIR);
590
591	sis_mii_sync(sc);
592
593	/*
594	 * Send command/address info.
595	 */
596	sis_mii_send(sc, frame->mii_stdelim, 2);
597	sis_mii_send(sc, frame->mii_opcode, 2);
598	sis_mii_send(sc, frame->mii_phyaddr, 5);
599	sis_mii_send(sc, frame->mii_regaddr, 5);
600
601	/* Idle bit */
602	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
603	DELAY(1);
604	SIO_SET(SIS_MII_CLK);
605	DELAY(1);
606
607	/* Turn off xmit. */
608	SIO_CLR(SIS_MII_DIR);
609
610	/* Check for ack */
611	SIO_CLR(SIS_MII_CLK);
612	DELAY(1);
613	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
614	SIO_SET(SIS_MII_CLK);
615	DELAY(1);
616
617	/*
618	 * Now try reading data bits. If the ack failed, we still
619	 * need to clock through 16 cycles to keep the PHY(s) in sync.
620	 */
621	if (ack) {
622		for(i = 0; i < 16; i++) {
623			SIO_CLR(SIS_MII_CLK);
624			DELAY(1);
625			SIO_SET(SIS_MII_CLK);
626			DELAY(1);
627		}
628		goto fail;
629	}
630
631	for (i = 0x8000; i; i >>= 1) {
632		SIO_CLR(SIS_MII_CLK);
633		DELAY(1);
634		if (!ack) {
635			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
636				frame->mii_data |= i;
637			DELAY(1);
638		}
639		SIO_SET(SIS_MII_CLK);
640		DELAY(1);
641	}
642
643fail:
644
645	SIO_CLR(SIS_MII_CLK);
646	DELAY(1);
647	SIO_SET(SIS_MII_CLK);
648	DELAY(1);
649
650	splx(s);
651
652	if (ack)
653		return(1);
654	return(0);
655}
656
657/*
658 * Write to a PHY register through the MII.
659 */
660static int sis_mii_writereg(sc, frame)
661	struct sis_softc	*sc;
662	struct sis_mii_frame	*frame;
663
664{
665	int			s;
666
667	 s = splimp();
668 	/*
669 	 * Set up frame for TX.
670 	 */
671
672 	frame->mii_stdelim = SIS_MII_STARTDELIM;
673 	frame->mii_opcode = SIS_MII_WRITEOP;
674 	frame->mii_turnaround = SIS_MII_TURNAROUND;
675
676 	/*
677  	 * Turn on data output.
678 	 */
679 	SIO_SET(SIS_MII_DIR);
680
681 	sis_mii_sync(sc);
682
683 	sis_mii_send(sc, frame->mii_stdelim, 2);
684 	sis_mii_send(sc, frame->mii_opcode, 2);
685 	sis_mii_send(sc, frame->mii_phyaddr, 5);
686 	sis_mii_send(sc, frame->mii_regaddr, 5);
687 	sis_mii_send(sc, frame->mii_turnaround, 2);
688 	sis_mii_send(sc, frame->mii_data, 16);
689
690 	/* Idle bit. */
691 	SIO_SET(SIS_MII_CLK);
692 	DELAY(1);
693 	SIO_CLR(SIS_MII_CLK);
694 	DELAY(1);
695
696 	/*
697 	 * Turn off xmit.
698 	 */
699 	SIO_CLR(SIS_MII_DIR);
700
701 	splx(s);
702
703 	return(0);
704}
705
706static int
707sis_miibus_readreg(dev, phy, reg)
708	device_t		dev;
709	int			phy, reg;
710{
711	struct sis_softc	*sc;
712	struct sis_mii_frame    frame;
713
714	sc = device_get_softc(dev);
715
716	if (sc->sis_type == SIS_TYPE_83815) {
717		if (phy != 0)
718			return(0);
719		/*
720		 * The NatSemi chip can take a while after
721		 * a reset to come ready, during which the BMSR
722		 * returns a value of 0. This is *never* supposed
723		 * to happen: some of the BMSR bits are meant to
724		 * be hardwired in the on position, and this can
725		 * confuse the miibus code a bit during the probe
726		 * and attach phase. So we make an effort to check
727		 * for this condition and wait for it to clear.
728		 */
729		if (!CSR_READ_4(sc, NS_BMSR))
730			DELAY(1000);
731		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
732	}
733
734	if (sc->sis_type == SIS_TYPE_900 &&
735	    sc->sis_rev < SIS_REV_635 && phy != 0)
736		return(0);
737
738	bzero((char *)&frame, sizeof(frame));
739
740	frame.mii_phyaddr = phy;
741	frame.mii_regaddr = reg;
742	sis_mii_readreg(sc, &frame);
743
744	return(frame.mii_data);
745}
746
747static int
748sis_miibus_writereg(dev, phy, reg, data)
749	device_t		dev;
750	int			phy, reg, data;
751{
752	struct sis_softc	*sc;
753	struct sis_mii_frame	frame;
754
755	sc = device_get_softc(dev);
756
757	if (sc->sis_type == SIS_TYPE_83815) {
758		if (phy != 0)
759			return(0);
760		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
761		return(0);
762	}
763
764	if (sc->sis_type == SIS_TYPE_900 && phy != 0)
765		return(0);
766
767	bzero((char *)&frame, sizeof(frame));
768
769	frame.mii_phyaddr = phy;
770	frame.mii_regaddr = reg;
771	frame.mii_data = data;
772
773	sis_mii_writereg(sc, &frame);
774
775	return(0);
776}
777
778static void
779sis_miibus_statchg(dev)
780	device_t		dev;
781{
782	struct sis_softc	*sc;
783
784	sc = device_get_softc(dev);
785	sis_init(sc);
786
787	return;
788}
789
790static u_int32_t
791sis_crc(sc, addr)
792	struct sis_softc	*sc;
793	caddr_t			addr;
794{
795	u_int32_t		crc, carry;
796	int			i, j;
797	u_int8_t		c;
798
799	/* Compute CRC for the address value. */
800	crc = 0xFFFFFFFF; /* initial value */
801
802	for (i = 0; i < 6; i++) {
803		c = *(addr + i);
804		for (j = 0; j < 8; j++) {
805			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
806			crc <<= 1;
807			c >>= 1;
808			if (carry)
809				crc = (crc ^ 0x04c11db6) | carry;
810		}
811	}
812
813	/*
814	 * return the filter bit position
815	 *
816	 * The NatSemi chip has a 512-bit filter, which is
817	 * different than the SiS, so we special-case it.
818	 */
819	if (sc->sis_type == SIS_TYPE_83815)
820		return (crc >> 23);
821
822	if (sc->sis_rev >= SIS_REV_635)
823		return (crc >> 24);
824
825	return (crc >> 25);
826}
827
828static void
829sis_setmulti_ns(sc)
830	struct sis_softc	*sc;
831{
832	struct ifnet		*ifp;
833	struct ifmultiaddr	*ifma;
834	u_int32_t		h = 0, i, filtsave;
835	int			bit, index;
836
837	ifp = &sc->arpcom.ac_if;
838
839	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
840		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
841		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
842		return;
843	}
844
845	/*
846	 * We have to explicitly enable the multicast hash table
847	 * on the NatSemi chip if we want to use it, which we do.
848	 */
849	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
850	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
851
852	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
853
854	/* first, zot all the existing hash bits */
855	for (i = 0; i < 32; i++) {
856		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
857		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
858	}
859
860	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
861		if (ifma->ifma_addr->sa_family != AF_LINK)
862			continue;
863		h = sis_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
864		index = h >> 3;
865		bit = h & 0x1F;
866		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
867		if (bit > 0xF)
868			bit -= 0x10;
869		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
870	}
871
872	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
873
874	return;
875}
876
877static void
878sis_setmulti_sis(sc)
879	struct sis_softc	*sc;
880{
881	struct ifnet		*ifp;
882	struct ifmultiaddr	*ifma;
883	u_int32_t		h, i, n, ctl;
884	u_int16_t		hashes[16];
885
886	ifp = &sc->arpcom.ac_if;
887
888	/* hash table size */
889	n = sc->sis_rev >= SIS_REV_635 ? 16 : 8;
890
891	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
892
893	if (ifp->if_flags & IFF_BROADCAST)
894		ctl |= SIS_RXFILTCTL_BROAD;
895
896	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
897		ctl |= SIS_RXFILTCTL_ALLMULTI;
898		if (ifp->if_flags & IFF_PROMISC)
899			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
900		for (i = 0; i < n; i++)
901			hashes[i] = ~0;
902	} else {
903		for (i = 0; i < n; i++)
904			hashes[i] = 0;
905		i = 0;
906		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
907			if (ifma->ifma_addr->sa_family != AF_LINK)
908			continue;
909			h = sis_crc(sc,
910			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
911			hashes[h >> 4] |= 1 << (h & 0xf);
912			i++;
913		}
914		if (i > n) {
915			ctl |= SIS_RXFILTCTL_ALLMULTI;
916			for (i = 0; i < n; i++)
917				hashes[i] = ~0;
918		}
919	}
920
921	for (i = 0; i < n; i++) {
922		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
923		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
924	}
925
926	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
927}
928
929static void
930sis_reset(sc)
931	struct sis_softc	*sc;
932{
933	register int		i;
934
935	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
936
937	for (i = 0; i < SIS_TIMEOUT; i++) {
938		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
939			break;
940	}
941
942	if (i == SIS_TIMEOUT)
943		printf("sis%d: reset never completed\n", sc->sis_unit);
944
945	/* Wait a little while for the chip to get its brains in order. */
946	DELAY(1000);
947
948	/*
949	 * If this is a NetSemi chip, make sure to clear
950	 * PME mode.
951	 */
952	if (sc->sis_type == SIS_TYPE_83815) {
953		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
954		CSR_WRITE_4(sc, NS_CLKRUN, 0);
955	}
956
957        return;
958}
959
960/*
961 * Probe for an SiS chip. Check the PCI vendor and device
962 * IDs against our list and return a device name if we find a match.
963 */
964static int
965sis_probe(dev)
966	device_t		dev;
967{
968	struct sis_type		*t;
969
970	t = sis_devs;
971
972	while(t->sis_name != NULL) {
973		if ((pci_get_vendor(dev) == t->sis_vid) &&
974		    (pci_get_device(dev) == t->sis_did)) {
975			device_set_desc(dev, t->sis_name);
976			return(0);
977		}
978		t++;
979	}
980
981	return(ENXIO);
982}
983
984/*
985 * Attach the interface. Allocate softc structures, do ifmedia
986 * setup and ethernet/BPF attach.
987 */
988static int
989sis_attach(dev)
990	device_t		dev;
991{
992	u_char			eaddr[ETHER_ADDR_LEN];
993	u_int32_t		command;
994	struct sis_softc	*sc;
995	struct ifnet		*ifp;
996	int			unit, error = 0, rid;
997
998	sc = device_get_softc(dev);
999	unit = device_get_unit(dev);
1000	bzero(sc, sizeof(struct sis_softc));
1001
1002	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1003	    MTX_DEF | MTX_RECURSE);
1004
1005	if (pci_get_device(dev) == SIS_DEVICEID_900)
1006		sc->sis_type = SIS_TYPE_900;
1007	if (pci_get_device(dev) == SIS_DEVICEID_7016)
1008		sc->sis_type = SIS_TYPE_7016;
1009	if (pci_get_vendor(dev) == NS_VENDORID)
1010		sc->sis_type = SIS_TYPE_83815;
1011
1012	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
1013
1014	/*
1015	 * Handle power management nonsense.
1016	 */
1017	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1018		u_int32_t		iobase, membase, irq;
1019
1020		/* Save important PCI config data. */
1021		iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
1022		membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
1023		irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
1024
1025		/* Reset the power state. */
1026		printf("sis%d: chip is in D%d power mode "
1027		    "-- setting to D0\n", unit,
1028		    pci_get_powerstate(dev));
1029		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1030
1031		/* Restore PCI config data. */
1032		pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
1033		pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
1034		pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
1035	}
1036
1037	/*
1038	 * Map control/status registers.
1039	 */
1040	pci_enable_busmaster(dev);
1041	pci_enable_io(dev, SYS_RES_IOPORT);
1042	pci_enable_io(dev, SYS_RES_MEMORY);
1043	command = pci_read_config(dev, PCIR_COMMAND, 4);
1044
1045#ifdef SIS_USEIOSPACE
1046	if (!(command & PCIM_CMD_PORTEN)) {
1047		printf("sis%d: failed to enable I/O ports!\n", unit);
1048		error = ENXIO;;
1049		goto fail;
1050	}
1051#else
1052	if (!(command & PCIM_CMD_MEMEN)) {
1053		printf("sis%d: failed to enable memory mapping!\n", unit);
1054		error = ENXIO;;
1055		goto fail;
1056	}
1057#endif
1058
1059	rid = SIS_RID;
1060	sc->sis_res = bus_alloc_resource(dev, SIS_RES, &rid,
1061	    0, ~0, 1, RF_ACTIVE);
1062
1063	if (sc->sis_res == NULL) {
1064		printf("sis%d: couldn't map ports/memory\n", unit);
1065		error = ENXIO;
1066		goto fail;
1067	}
1068
1069	sc->sis_btag = rman_get_bustag(sc->sis_res);
1070	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1071
1072	/* Allocate interrupt */
1073	rid = 0;
1074	sc->sis_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1075	    RF_SHAREABLE | RF_ACTIVE);
1076
1077	if (sc->sis_irq == NULL) {
1078		printf("sis%d: couldn't map interrupt\n", unit);
1079		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1080		error = ENXIO;
1081		goto fail;
1082	}
1083
1084	error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET,
1085	    sis_intr, sc, &sc->sis_intrhand);
1086
1087	if (error) {
1088		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1089		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1090		printf("sis%d: couldn't set up irq\n", unit);
1091		goto fail;
1092	}
1093
1094	/* Reset the adapter. */
1095	sis_reset(sc);
1096
1097	/*
1098	 * Get station address from the EEPROM.
1099	 */
1100	switch (pci_get_vendor(dev)) {
1101	case NS_VENDORID:
1102		/*
1103		 * Reading the MAC address out of the EEPROM on
1104		 * the NatSemi chip takes a bit more work than
1105		 * you'd expect. The address spans 4 16-bit words,
1106		 * with the first word containing only a single bit.
1107		 * You have to shift everything over one bit to
1108		 * get it aligned properly. Also, the bits are
1109		 * stored backwards (the LSB is really the MSB,
1110		 * and so on) so you have to reverse them in order
1111		 * to get the MAC address into the form we want.
1112		 * Why? Who the hell knows.
1113		 */
1114		{
1115			u_int16_t		tmp[4];
1116
1117			sis_read_eeprom(sc, (caddr_t)&tmp,
1118			    NS_EE_NODEADDR, 4, 0);
1119
1120			/* Shift everything over one bit. */
1121			tmp[3] = tmp[3] >> 1;
1122			tmp[3] |= tmp[2] << 15;
1123			tmp[2] = tmp[2] >> 1;
1124			tmp[2] |= tmp[1] << 15;
1125			tmp[1] = tmp[1] >> 1;
1126			tmp[1] |= tmp[0] << 15;
1127
1128			/* Now reverse all the bits. */
1129			tmp[3] = sis_reverse(tmp[3]);
1130			tmp[2] = sis_reverse(tmp[2]);
1131			tmp[1] = sis_reverse(tmp[1]);
1132
1133			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1134		}
1135		break;
1136	case SIS_VENDORID:
1137	default:
1138#ifdef __i386__
1139		/*
1140		 * If this is a SiS 630E chipset with an embedded
1141		 * SiS 900 controller, we have to read the MAC address
1142		 * from the APC CMOS RAM. Our method for doing this
1143		 * is very ugly since we have to reach out and grab
1144		 * ahold of hardware for which we cannot properly
1145		 * allocate resources. This code is only compiled on
1146		 * the i386 architecture since the SiS 630E chipset
1147		 * is for x86 motherboards only. Note that there are
1148		 * a lot of magic numbers in this hack. These are
1149		 * taken from SiS's Linux driver. I'd like to replace
1150		 * them with proper symbolic definitions, but that
1151		 * requires some datasheets that I don't have access
1152		 * to at the moment.
1153		 */
1154		if (sc->sis_rev == SIS_REV_630S ||
1155		    sc->sis_rev == SIS_REV_630E ||
1156		    sc->sis_rev == SIS_REV_630EA1)
1157			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1158
1159		else if (sc->sis_rev == SIS_REV_635 ||
1160			 sc->sis_rev == SIS_REV_630ET)
1161			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1162		else
1163#endif
1164			sis_read_eeprom(sc, (caddr_t)&eaddr,
1165			    SIS_EE_NODEADDR, 3, 0);
1166		break;
1167	}
1168
1169	/*
1170	 * A SiS chip was detected. Inform the world.
1171	 */
1172	printf("sis%d: Ethernet address: %6D\n", unit, eaddr, ":");
1173
1174	sc->sis_unit = unit;
1175	callout_handle_init(&sc->sis_stat_ch);
1176	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1177
1178	/*
1179	 * Allocate the parent bus DMA tag appropriate for PCI.
1180	 */
1181#define SIS_NSEG_NEW 32
1182	 error = bus_dma_tag_create(NULL,	/* parent */
1183			1, 0,			/* alignment, boundary */
1184			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1185			BUS_SPACE_MAXADDR,	/* highaddr */
1186			NULL, NULL,		/* filter, filterarg */
1187			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1188			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1189			BUS_DMA_ALLOCNOW,	/* flags */
1190			&sc->sis_parent_tag);
1191
1192	/*
1193	 * Now allocate a tag for the DMA descriptor lists.
1194	 * All of our lists are allocated as a contiguous block
1195	 * of memory.
1196	 */
1197	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1198			1, 0,			/* alignment, boundary */
1199			BUS_SPACE_MAXADDR,	/* lowaddr */
1200			BUS_SPACE_MAXADDR,	/* highaddr */
1201			NULL, NULL,		/* filter, filterarg */
1202			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1203			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1204			0,			/* flags */
1205			&sc->sis_ldata.sis_rx_tag);
1206
1207	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1208			1, 0,			/* alignment, boundary */
1209			BUS_SPACE_MAXADDR,	/* lowaddr */
1210			BUS_SPACE_MAXADDR,	/* highaddr */
1211			NULL, NULL,		/* filter, filterarg */
1212			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1213			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1214			0,			/* flags */
1215			&sc->sis_ldata.sis_tx_tag);
1216
1217	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1218			1, 0,			/* alignment, boundary */
1219			BUS_SPACE_MAXADDR,	/* lowaddr */
1220			BUS_SPACE_MAXADDR,	/* highaddr */
1221			NULL, NULL,		/* filter, filterarg */
1222			MCLBYTES, 1,		/* maxsize,nsegments */
1223			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1224			0,			/* flags */
1225			&sc->sis_tag);
1226
1227	/*
1228	 * Now allocate a chunk of DMA-able memory based on the
1229	 * tag we just created.
1230	 */
1231	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1232	    (void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT,
1233	    &sc->sis_ldata.sis_tx_dmamap);
1234
1235	if (error) {
1236		printf("sis%d: no memory for list buffers!\n", unit);
1237		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1238		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1239		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1240		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1241		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1242		error = ENXIO;
1243		goto fail;
1244	}
1245
1246	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1247	    (void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT,
1248	    &sc->sis_ldata.sis_rx_dmamap);
1249
1250	if (error) {
1251		printf("sis%d: no memory for list buffers!\n", unit);
1252		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1253		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1254		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1255		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1256		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1257		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1258		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1259		error = ENXIO;
1260		goto fail;
1261	}
1262
1263
1264	bzero(sc->sis_ldata.sis_tx_list, SIS_TX_LIST_SZ);
1265	bzero(sc->sis_ldata.sis_rx_list, SIS_RX_LIST_SZ);
1266
1267	/*
1268	 * Obtain the physical addresses of the RX and TX
1269	 * rings which we'll need later in the init routine.
1270	 */
1271	bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1272	    sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
1273	    sizeof(struct sis_desc), sis_dma_map_ring,
1274	    &sc->sis_cdata.sis_tx_paddr, 0);
1275	bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1276	    sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
1277	    sizeof(struct sis_desc), sis_dma_map_ring,
1278	    &sc->sis_cdata.sis_rx_paddr, 0);
1279
1280	ifp = &sc->arpcom.ac_if;
1281	ifp->if_softc = sc;
1282	ifp->if_unit = unit;
1283	ifp->if_name = "sis";
1284	ifp->if_mtu = ETHERMTU;
1285	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1286	ifp->if_ioctl = sis_ioctl;
1287	ifp->if_output = ether_output;
1288	ifp->if_start = sis_start;
1289	ifp->if_watchdog = sis_watchdog;
1290	ifp->if_init = sis_init;
1291	ifp->if_baudrate = 10000000;
1292	ifp->if_snd.ifq_maxlen = SIS_TX_LIST_CNT - 1;
1293
1294	/*
1295	 * Do MII setup.
1296	 */
1297	if (mii_phy_probe(dev, &sc->sis_miibus,
1298	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1299		printf("sis%d: MII without any PHY!\n", sc->sis_unit);
1300		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1301		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1302		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1303		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1304		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1305		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1306		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1307		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1308		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1309		error = ENXIO;
1310		goto fail;
1311	}
1312
1313	/*
1314	 * Call MI attach routine.
1315	 */
1316	ether_ifattach(ifp, eaddr);
1317
1318	/*
1319	 * Tell the upper layer(s) we support long frames.
1320	 */
1321	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1322	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1323
1324	callout_handle_init(&sc->sis_stat_ch);
1325	return(0);
1326
1327fail:
1328	mtx_destroy(&sc->sis_mtx);
1329	return(error);
1330}
1331
1332static int
1333sis_detach(dev)
1334	device_t		dev;
1335{
1336	struct sis_softc	*sc;
1337	struct ifnet		*ifp;
1338
1339
1340	sc = device_get_softc(dev);
1341	SIS_LOCK(sc);
1342	ifp = &sc->arpcom.ac_if;
1343
1344	sis_reset(sc);
1345	sis_stop(sc);
1346	ether_ifdetach(ifp);
1347
1348	bus_generic_detach(dev);
1349	device_delete_child(dev, sc->sis_miibus);
1350
1351	bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1352	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1353	bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1354
1355	bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1356	    sc->sis_ldata.sis_rx_dmamap);
1357	bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1358	    sc->sis_ldata.sis_tx_dmamap);
1359	bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1360	    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1361	bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1362	    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1363	bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1364	bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1365	bus_dma_tag_destroy(sc->sis_parent_tag);
1366
1367	SIS_UNLOCK(sc);
1368	mtx_destroy(&sc->sis_mtx);
1369
1370	return(0);
1371}
1372
1373/*
1374 * Initialize the transmit descriptors.
1375 */
1376static int
1377sis_list_tx_init(sc)
1378	struct sis_softc	*sc;
1379{
1380	struct sis_list_data	*ld;
1381	struct sis_ring_data	*cd;
1382	int			i, nexti;
1383
1384	cd = &sc->sis_cdata;
1385	ld = &sc->sis_ldata;
1386
1387	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1388		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1389			ld->sis_tx_list[i].sis_nextdesc =
1390			    &ld->sis_tx_list[nexti];
1391			bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1392			    sc->sis_ldata.sis_tx_dmamap,
1393			    &ld->sis_tx_list[nexti], sizeof(struct sis_desc),
1394			    sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
1395		ld->sis_tx_list[i].sis_mbuf = NULL;
1396		ld->sis_tx_list[i].sis_ptr = 0;
1397		ld->sis_tx_list[i].sis_ctl = 0;
1398	}
1399
1400	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1401
1402	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
1403	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1404
1405	return(0);
1406}
1407
1408/*
1409 * Initialize the RX descriptors and allocate mbufs for them. Note that
1410 * we arrange the descriptors in a closed ring, so that the last descriptor
1411 * points back to the first.
1412 */
1413static int
1414sis_list_rx_init(sc)
1415	struct sis_softc	*sc;
1416{
1417	struct sis_list_data	*ld;
1418	struct sis_ring_data	*cd;
1419	int			i,nexti;
1420
1421	ld = &sc->sis_ldata;
1422	cd = &sc->sis_cdata;
1423
1424	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1425		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1426			return(ENOBUFS);
1427		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1428			ld->sis_rx_list[i].sis_nextdesc =
1429			    &ld->sis_rx_list[nexti];
1430			bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1431			    sc->sis_ldata.sis_rx_dmamap,
1432			    &ld->sis_rx_list[nexti],
1433			    sizeof(struct sis_desc), sis_dma_map_desc_next,
1434			    &ld->sis_rx_list[i], 0);
1435		}
1436
1437	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
1438	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1439
1440	cd->sis_rx_prod = 0;
1441
1442	return(0);
1443}
1444
1445/*
1446 * Initialize an RX descriptor and attach an MBUF cluster.
1447 */
1448static int
1449sis_newbuf(sc, c, m)
1450	struct sis_softc	*sc;
1451	struct sis_desc		*c;
1452	struct mbuf		*m;
1453{
1454
1455	if (c == NULL)
1456		return(EINVAL);
1457
1458	if (m == NULL) {
1459		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1460		if (m == NULL)
1461			return(ENOBUFS);
1462	} else
1463		m->m_data = m->m_ext.ext_buf;
1464
1465	c->sis_mbuf = m;
1466	c->sis_ctl = SIS_RXLEN;
1467
1468	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1469	bus_dmamap_load(sc->sis_tag, c->sis_map,
1470	    mtod(m, void *), MCLBYTES,
1471	    sis_dma_map_desc_ptr, c, 0);
1472	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1473
1474	return(0);
1475}
1476
1477/*
1478 * A frame has been uploaded: pass the resulting mbuf chain up to
1479 * the higher level protocols.
1480 */
1481static void
1482sis_rxeof(sc)
1483	struct sis_softc	*sc;
1484{
1485        struct mbuf		*m;
1486        struct ifnet		*ifp;
1487	struct sis_desc		*cur_rx;
1488	int			i, total_len = 0;
1489	u_int32_t		rxstat;
1490
1491	ifp = &sc->arpcom.ac_if;
1492	i = sc->sis_cdata.sis_rx_prod;
1493
1494	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1495
1496#ifdef DEVICE_POLLING
1497		if (ifp->if_flags & IFF_POLLING) {
1498			if (sc->rxcycles <= 0)
1499				break;
1500			sc->rxcycles--;
1501		}
1502#endif /* DEVICE_POLLING */
1503		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1504		rxstat = cur_rx->sis_rxstat;
1505		bus_dmamap_sync(sc->sis_tag,
1506		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1507		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1508		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1509		m = cur_rx->sis_mbuf;
1510		cur_rx->sis_mbuf = NULL;
1511		total_len = SIS_RXBYTES(cur_rx);
1512		SIS_INC(i, SIS_RX_LIST_CNT);
1513
1514		/*
1515		 * If an error occurs, update stats, clear the
1516		 * status word and leave the mbuf cluster in place:
1517		 * it should simply get re-used next time this descriptor
1518	 	 * comes up in the ring.
1519		 */
1520		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1521			ifp->if_ierrors++;
1522			if (rxstat & SIS_RXSTAT_COLL)
1523				ifp->if_collisions++;
1524			sis_newbuf(sc, cur_rx, m);
1525			continue;
1526		}
1527
1528		/* No errors; receive the packet. */
1529#ifdef __i386__
1530		/*
1531		 * On the x86 we do not have alignment problems, so try to
1532		 * allocate a new buffer for the receive ring, and pass up
1533		 * the one where the packet is already, saving the expensive
1534		 * copy done in m_devget().
1535		 * If we are on an architecture with alignment problems, or
1536		 * if the allocation fails, then use m_devget and leave the
1537		 * existing buffer in the receive ring.
1538		 */
1539		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1540			m->m_pkthdr.len = m->m_len = total_len;
1541		else
1542#endif
1543		{
1544			struct mbuf		*m0;
1545			m0 = m_devget(mtod(m, char *), total_len,
1546				ETHER_ALIGN, ifp, NULL);
1547			sis_newbuf(sc, cur_rx, m);
1548			if (m0 == NULL) {
1549				ifp->if_ierrors++;
1550				continue;
1551			}
1552			m = m0;
1553		}
1554
1555		ifp->if_ipackets++;
1556		m->m_pkthdr.rcvif = ifp;
1557
1558		(*ifp->if_input)(ifp, m);
1559	}
1560
1561	sc->sis_cdata.sis_rx_prod = i;
1562
1563	return;
1564}
1565
1566static void
1567sis_rxeoc(sc)
1568	struct sis_softc	*sc;
1569{
1570	sis_rxeof(sc);
1571	sis_init(sc);
1572	return;
1573}
1574
1575/*
1576 * A frame was downloaded to the chip. It's safe for us to clean up
1577 * the list buffers.
1578 */
1579
1580static void
1581sis_txeof(sc)
1582	struct sis_softc	*sc;
1583{
1584	struct ifnet		*ifp;
1585	u_int32_t		idx;
1586
1587	ifp = &sc->arpcom.ac_if;
1588
1589	/*
1590	 * Go through our tx list and free mbufs for those
1591	 * frames that have been transmitted.
1592	 */
1593	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1594	    sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1595		struct sis_desc *cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1596
1597		if (SIS_OWNDESC(cur_tx))
1598			break;
1599
1600		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1601			continue;
1602
1603		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1604			ifp->if_oerrors++;
1605			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1606				ifp->if_collisions++;
1607			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1608				ifp->if_collisions++;
1609		}
1610
1611		ifp->if_collisions +=
1612		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1613
1614		ifp->if_opackets++;
1615		if (cur_tx->sis_mbuf != NULL) {
1616			m_freem(cur_tx->sis_mbuf);
1617			cur_tx->sis_mbuf = NULL;
1618			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1619			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1620		}
1621	}
1622
1623	if (idx != sc->sis_cdata.sis_tx_cons) {
1624		/* we freed up some buffers */
1625		sc->sis_cdata.sis_tx_cons = idx;
1626		ifp->if_flags &= ~IFF_OACTIVE;
1627	}
1628
1629	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1630
1631	return;
1632}
1633
1634static void
1635sis_tick(xsc)
1636	void			*xsc;
1637{
1638	struct sis_softc	*sc;
1639	struct mii_data		*mii;
1640	struct ifnet		*ifp;
1641
1642	sc = xsc;
1643	SIS_LOCK(sc);
1644	ifp = &sc->arpcom.ac_if;
1645
1646	mii = device_get_softc(sc->sis_miibus);
1647	mii_tick(mii);
1648
1649	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1650	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1651		sc->sis_link++;
1652		if (ifp->if_snd.ifq_head != NULL)
1653			sis_start(ifp);
1654	}
1655
1656	sc->sis_stat_ch = timeout(sis_tick, sc, hz);
1657
1658	SIS_UNLOCK(sc);
1659
1660	return;
1661}
1662
1663#ifdef DEVICE_POLLING
1664static poll_handler_t sis_poll;
1665
1666static void
1667sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1668{
1669	struct	sis_softc *sc = ifp->if_softc;
1670
1671	SIS_LOCK(sc);
1672	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1673		CSR_WRITE_4(sc, SIS_IER, 1);
1674		goto done;
1675	}
1676
1677	/*
1678	 * On the sis, reading the status register also clears it.
1679	 * So before returning to intr mode we must make sure that all
1680	 * possible pending sources of interrupts have been served.
1681	 * In practice this means run to completion the *eof routines,
1682	 * and then call the interrupt routine
1683	 */
1684	sc->rxcycles = count;
1685	sis_rxeof(sc);
1686	sis_txeof(sc);
1687	if (ifp->if_snd.ifq_head != NULL)
1688		sis_start(ifp);
1689
1690	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1691		u_int32_t	status;
1692
1693		/* Reading the ISR register clears all interrupts. */
1694		status = CSR_READ_4(sc, SIS_ISR);
1695
1696		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1697			sis_rxeoc(sc);
1698
1699		if (status & (SIS_ISR_RX_IDLE))
1700			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1701
1702		if (status & SIS_ISR_SYSERR) {
1703			sis_reset(sc);
1704			sis_init(sc);
1705		}
1706	}
1707done:
1708	SIS_UNLOCK(sc);
1709	return;
1710}
1711#endif /* DEVICE_POLLING */
1712
1713static void
1714sis_intr(arg)
1715	void			*arg;
1716{
1717	struct sis_softc	*sc;
1718	struct ifnet		*ifp;
1719	u_int32_t		status;
1720
1721	sc = arg;
1722	ifp = &sc->arpcom.ac_if;
1723
1724	SIS_LOCK(sc);
1725#ifdef DEVICE_POLLING
1726	if (ifp->if_flags & IFF_POLLING)
1727		goto done;
1728	if (ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
1729		CSR_WRITE_4(sc, SIS_IER, 0);
1730		goto done;
1731	}
1732#endif /* DEVICE_POLLING */
1733
1734	/* Supress unwanted interrupts */
1735	if (!(ifp->if_flags & IFF_UP)) {
1736		sis_stop(sc);
1737		goto done;
1738	}
1739
1740	/* Disable interrupts. */
1741	CSR_WRITE_4(sc, SIS_IER, 0);
1742
1743	for (;;) {
1744		/* Reading the ISR register clears all interrupts. */
1745		status = CSR_READ_4(sc, SIS_ISR);
1746
1747		if ((status & SIS_INTRS) == 0)
1748			break;
1749
1750		if (status &
1751		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1752		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1753			sis_txeof(sc);
1754
1755		if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
1756			sis_rxeof(sc);
1757
1758		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1759			sis_rxeoc(sc);
1760
1761		if (status & (SIS_ISR_RX_IDLE))
1762			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1763
1764		if (status & SIS_ISR_SYSERR) {
1765			sis_reset(sc);
1766			sis_init(sc);
1767		}
1768	}
1769
1770	/* Re-enable interrupts. */
1771	CSR_WRITE_4(sc, SIS_IER, 1);
1772
1773	if (ifp->if_snd.ifq_head != NULL)
1774		sis_start(ifp);
1775done:
1776	SIS_UNLOCK(sc);
1777
1778	return;
1779}
1780
1781/*
1782 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1783 * pointers to the fragment pointers.
1784 */
1785static int
1786sis_encap(sc, m_head, txidx)
1787	struct sis_softc	*sc;
1788	struct mbuf		*m_head;
1789	u_int32_t		*txidx;
1790{
1791	struct sis_desc		*f = NULL;
1792	struct mbuf		*m;
1793	int			frag, cur, cnt = 0;
1794
1795	/*
1796 	 * Start packing the mbufs in this chain into
1797	 * the fragment pointers. Stop when we run out
1798 	 * of fragments or hit the end of the mbuf chain.
1799	 */
1800	m = m_head;
1801	cur = frag = *txidx;
1802
1803	for (m = m_head; m != NULL; m = m->m_next) {
1804		if (m->m_len != 0) {
1805			if ((SIS_TX_LIST_CNT -
1806			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1807				return(ENOBUFS);
1808			f = &sc->sis_ldata.sis_tx_list[frag];
1809			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1810			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1811			bus_dmamap_load(sc->sis_tag, f->sis_map,
1812			    mtod(m, void *), m->m_len,
1813			    sis_dma_map_desc_ptr, f, 0);
1814			bus_dmamap_sync(sc->sis_tag,
1815			    f->sis_map, BUS_DMASYNC_PREREAD);
1816			if (cnt != 0)
1817				f->sis_ctl |= SIS_CMDSTS_OWN;
1818			cur = frag;
1819			SIS_INC(frag, SIS_TX_LIST_CNT);
1820			cnt++;
1821		}
1822	}
1823
1824	if (m != NULL)
1825		return(ENOBUFS);
1826
1827	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
1828	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1829	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1830	sc->sis_cdata.sis_tx_cnt += cnt;
1831	*txidx = frag;
1832
1833	return(0);
1834}
1835
1836/*
1837 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1838 * to the mbuf data regions directly in the transmit lists. We also save a
1839 * copy of the pointers since the transmit list fragment pointers are
1840 * physical addresses.
1841 */
1842
1843static void
1844sis_start(ifp)
1845	struct ifnet		*ifp;
1846{
1847	struct sis_softc	*sc;
1848	struct mbuf		*m_head = NULL;
1849	u_int32_t		idx;
1850
1851	sc = ifp->if_softc;
1852	SIS_LOCK(sc);
1853
1854	if (!sc->sis_link) {
1855		SIS_UNLOCK(sc);
1856		return;
1857	}
1858
1859	idx = sc->sis_cdata.sis_tx_prod;
1860
1861	if (ifp->if_flags & IFF_OACTIVE) {
1862		SIS_UNLOCK(sc);
1863		return;
1864	}
1865
1866	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
1867		IF_DEQUEUE(&ifp->if_snd, m_head);
1868		if (m_head == NULL)
1869			break;
1870
1871		if (sis_encap(sc, m_head, &idx)) {
1872			IF_PREPEND(&ifp->if_snd, m_head);
1873			ifp->if_flags |= IFF_OACTIVE;
1874			break;
1875		}
1876
1877		/*
1878		 * If there's a BPF listener, bounce a copy of this frame
1879		 * to him.
1880		 */
1881		BPF_MTAP(ifp, m_head);
1882
1883	}
1884
1885	/* Transmit */
1886	sc->sis_cdata.sis_tx_prod = idx;
1887	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1888
1889	/*
1890	 * Set a timeout in case the chip goes out to lunch.
1891	 */
1892	ifp->if_timer = 5;
1893
1894	SIS_UNLOCK(sc);
1895
1896	return;
1897}
1898
1899static void
1900sis_init(xsc)
1901	void			*xsc;
1902{
1903	struct sis_softc	*sc = xsc;
1904	struct ifnet		*ifp = &sc->arpcom.ac_if;
1905	struct mii_data		*mii;
1906
1907	SIS_LOCK(sc);
1908
1909	/*
1910	 * Cancel pending I/O and free all RX/TX buffers.
1911	 */
1912	sis_stop(sc);
1913
1914	mii = device_get_softc(sc->sis_miibus);
1915
1916	/* Set MAC address */
1917	if (sc->sis_type == SIS_TYPE_83815) {
1918		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1919		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1920		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1921		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1922		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1923		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1924		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1925		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1926		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1927	} else {
1928		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1929		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1930		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1931		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1932		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1933		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1934		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1935		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1936		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1937	}
1938
1939	/* Init circular RX list. */
1940	if (sis_list_rx_init(sc) == ENOBUFS) {
1941		printf("sis%d: initialization failed: no "
1942			"memory for rx buffers\n", sc->sis_unit);
1943		sis_stop(sc);
1944		SIS_UNLOCK(sc);
1945		return;
1946	}
1947
1948	/*
1949	 * Init tx descriptors.
1950	 */
1951	sis_list_tx_init(sc);
1952
1953	/*
1954	 * For the NatSemi chip, we have to explicitly enable the
1955	 * reception of ARP frames, as well as turn on the 'perfect
1956	 * match' filter where we store the station address, otherwise
1957	 * we won't receive unicasts meant for this host.
1958	 */
1959	if (sc->sis_type == SIS_TYPE_83815) {
1960		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1961		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1962	}
1963
1964	 /* If we want promiscuous mode, set the allframes bit. */
1965	if (ifp->if_flags & IFF_PROMISC) {
1966		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1967	} else {
1968		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1969	}
1970
1971	/*
1972	 * Set the capture broadcast bit to capture broadcast frames.
1973	 */
1974	if (ifp->if_flags & IFF_BROADCAST) {
1975		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1976	} else {
1977		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1978	}
1979
1980	/*
1981	 * Load the multicast filter.
1982	 */
1983	if (sc->sis_type == SIS_TYPE_83815)
1984		sis_setmulti_ns(sc);
1985	else
1986		sis_setmulti_sis(sc);
1987
1988	/* Turn the receive filter on */
1989	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1990
1991	/*
1992	 * Load the address of the RX and TX lists.
1993	 */
1994	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
1995	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
1996
1997	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1998	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1999	 * for TX/RX DMA should be no larger than 16 double words.
2000	 */
2001	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2002		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2003	} else {
2004		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2005	}
2006
2007
2008	/* Accept Long Packets for VLAN support */
2009	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2010
2011	/* Set TX configuration */
2012	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
2013		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
2014	} else {
2015		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2016	}
2017
2018	/* Set full/half duplex mode. */
2019	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
2020		SIS_SETBIT(sc, SIS_TX_CFG,
2021		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2022		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2023	} else {
2024		SIS_CLRBIT(sc, SIS_TX_CFG,
2025		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2026		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2027	}
2028
2029	/*
2030	 * Enable interrupts.
2031	 */
2032	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2033#ifdef DEVICE_POLLING
2034	/*
2035	 * ... only enable interrupts if we are not polling, make sure
2036	 * they are off otherwise.
2037	 */
2038	if (ifp->if_flags & IFF_POLLING)
2039		CSR_WRITE_4(sc, SIS_IER, 0);
2040	else
2041#endif /* DEVICE_POLLING */
2042	CSR_WRITE_4(sc, SIS_IER, 1);
2043
2044	/* Enable receiver and transmitter. */
2045	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2046	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2047
2048#ifdef notdef
2049	mii_mediachg(mii);
2050#endif
2051
2052	/*
2053	 * Page 75 of the DP83815 manual recommends the
2054	 * following register settings "for optimum
2055	 * performance." Note however that at least three
2056	 * of the registers are listed as "reserved" in
2057	 * the register map, so who knows what they do.
2058	 */
2059	if (sc->sis_type == SIS_TYPE_83815) {
2060		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2061		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2062		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2063		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2064		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2065	}
2066
2067	ifp->if_flags |= IFF_RUNNING;
2068	ifp->if_flags &= ~IFF_OACTIVE;
2069
2070	sc->sis_stat_ch = timeout(sis_tick, sc, hz);
2071
2072	SIS_UNLOCK(sc);
2073
2074	return;
2075}
2076
2077/*
2078 * Set media options.
2079 */
2080static int
2081sis_ifmedia_upd(ifp)
2082	struct ifnet		*ifp;
2083{
2084	struct sis_softc	*sc;
2085	struct mii_data		*mii;
2086
2087	sc = ifp->if_softc;
2088
2089	mii = device_get_softc(sc->sis_miibus);
2090	sc->sis_link = 0;
2091	if (mii->mii_instance) {
2092		struct mii_softc	*miisc;
2093		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2094			mii_phy_reset(miisc);
2095	}
2096	mii_mediachg(mii);
2097
2098	return(0);
2099}
2100
2101/*
2102 * Report current media status.
2103 */
2104static void
2105sis_ifmedia_sts(ifp, ifmr)
2106	struct ifnet		*ifp;
2107	struct ifmediareq	*ifmr;
2108{
2109	struct sis_softc	*sc;
2110	struct mii_data		*mii;
2111
2112	sc = ifp->if_softc;
2113
2114	mii = device_get_softc(sc->sis_miibus);
2115	mii_pollstat(mii);
2116	ifmr->ifm_active = mii->mii_media_active;
2117	ifmr->ifm_status = mii->mii_media_status;
2118
2119	return;
2120}
2121
2122static int
2123sis_ioctl(ifp, command, data)
2124	struct ifnet		*ifp;
2125	u_long			command;
2126	caddr_t			data;
2127{
2128	struct sis_softc	*sc = ifp->if_softc;
2129	struct ifreq		*ifr = (struct ifreq *) data;
2130	struct mii_data		*mii;
2131	int			error = 0;
2132
2133	switch(command) {
2134	case SIOCSIFFLAGS:
2135		if (ifp->if_flags & IFF_UP) {
2136			sis_init(sc);
2137		} else {
2138			if (ifp->if_flags & IFF_RUNNING)
2139				sis_stop(sc);
2140		}
2141		error = 0;
2142		break;
2143	case SIOCADDMULTI:
2144	case SIOCDELMULTI:
2145		SIS_LOCK(sc);
2146		if (sc->sis_type == SIS_TYPE_83815)
2147			sis_setmulti_ns(sc);
2148		else
2149			sis_setmulti_sis(sc);
2150		SIS_UNLOCK(sc);
2151		error = 0;
2152		break;
2153	case SIOCGIFMEDIA:
2154	case SIOCSIFMEDIA:
2155		mii = device_get_softc(sc->sis_miibus);
2156		SIS_LOCK(sc);
2157		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2158		SIS_UNLOCK(sc);
2159		break;
2160	default:
2161		error = ether_ioctl(ifp, command, data);
2162		break;
2163	}
2164
2165	return(error);
2166}
2167
2168static void
2169sis_watchdog(ifp)
2170	struct ifnet		*ifp;
2171{
2172	struct sis_softc	*sc;
2173
2174	sc = ifp->if_softc;
2175
2176	SIS_LOCK(sc);
2177
2178	ifp->if_oerrors++;
2179	printf("sis%d: watchdog timeout\n", sc->sis_unit);
2180
2181	sis_stop(sc);
2182	sis_reset(sc);
2183	sis_init(sc);
2184
2185	if (ifp->if_snd.ifq_head != NULL)
2186		sis_start(ifp);
2187
2188	SIS_UNLOCK(sc);
2189
2190	return;
2191}
2192
2193/*
2194 * Stop the adapter and free any mbufs allocated to the
2195 * RX and TX lists.
2196 */
2197static void
2198sis_stop(sc)
2199	struct sis_softc	*sc;
2200{
2201	register int		i;
2202	struct ifnet		*ifp;
2203
2204	SIS_LOCK(sc);
2205	ifp = &sc->arpcom.ac_if;
2206	ifp->if_timer = 0;
2207
2208	untimeout(sis_tick, sc, sc->sis_stat_ch);
2209
2210	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2211#ifdef DEVICE_POLLING
2212	ether_poll_deregister(ifp);
2213#endif
2214	CSR_WRITE_4(sc, SIS_IER, 0);
2215	CSR_WRITE_4(sc, SIS_IMR, 0);
2216	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2217	DELAY(1000);
2218	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2219	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2220
2221	sc->sis_link = 0;
2222
2223	/*
2224	 * Free data in the RX lists.
2225	 */
2226	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2227		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2228			bus_dmamap_unload(sc->sis_tag,
2229			    sc->sis_ldata.sis_rx_list[i].sis_map);
2230			bus_dmamap_destroy(sc->sis_tag,
2231			    sc->sis_ldata.sis_rx_list[i].sis_map);
2232			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2233			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2234		}
2235	}
2236	bzero(sc->sis_ldata.sis_rx_list,
2237		sizeof(sc->sis_ldata.sis_rx_list));
2238
2239	/*
2240	 * Free the TX list buffers.
2241	 */
2242	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2243		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2244			bus_dmamap_unload(sc->sis_tag,
2245			    sc->sis_ldata.sis_tx_list[i].sis_map);
2246			bus_dmamap_destroy(sc->sis_tag,
2247			    sc->sis_ldata.sis_tx_list[i].sis_map);
2248			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2249			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2250		}
2251	}
2252
2253	bzero(sc->sis_ldata.sis_tx_list,
2254		sizeof(sc->sis_ldata.sis_tx_list));
2255
2256	SIS_UNLOCK(sc);
2257
2258	return;
2259}
2260
2261/*
2262 * Stop all chip I/O so that the kernel's probe routines don't
2263 * get confused by errant DMAs when rebooting.
2264 */
2265static void
2266sis_shutdown(dev)
2267	device_t		dev;
2268{
2269	struct sis_softc	*sc;
2270
2271	sc = device_get_softc(dev);
2272	SIS_LOCK(sc);
2273	sis_reset(sc);
2274	sis_stop(sc);
2275	SIS_UNLOCK(sc);
2276
2277	return;
2278}
2279