if_re.c revision 229529
1251881Speter/*-
2251881Speter * Copyright (c) 1997, 1998-2003
3251881Speter *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4251881Speter *
5251881Speter * Redistribution and use in source and binary forms, with or without
6251881Speter * modification, are permitted provided that the following conditions
7251881Speter * are met:
8251881Speter * 1. Redistributions of source code must retain the above copyright
9251881Speter *    notice, this list of conditions and the following disclaimer.
10251881Speter * 2. Redistributions in binary form must reproduce the above copyright
11251881Speter *    notice, this list of conditions and the following disclaimer in the
12251881Speter *    documentation and/or other materials provided with the distribution.
13251881Speter * 3. All advertising materials mentioning features or use of this software
14251881Speter *    must display the following acknowledgement:
15251881Speter *	This product includes software developed by Bill Paul.
16251881Speter * 4. Neither the name of the author nor the names of any co-contributors
17251881Speter *    may be used to endorse or promote products derived from this software
18251881Speter *    without specific prior written permission.
19251881Speter *
20251881Speter * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21251881Speter * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22251881Speter * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23251881Speter * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24251881Speter * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25251881Speter * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26251881Speter * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27251881Speter * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28251881Speter * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29251881Speter * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30251881Speter * THE POSSIBILITY OF SUCH DAMAGE.
31251881Speter */
32251881Speter
33251881Speter#include <sys/cdefs.h>
34251881Speter__FBSDID("$FreeBSD: stable/9/sys/dev/re/if_re.c 229529 2012-01-04 22:53:18Z yongari $");
35251881Speter
36251881Speter/*
37251881Speter * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38251881Speter *
39251881Speter * Written by Bill Paul <wpaul@windriver.com>
40251881Speter * Senior Networking Software Engineer
41251881Speter * Wind River Systems
42251881Speter */
43251881Speter
44251881Speter/*
45251881Speter * This driver is designed to support RealTek's next generation of
46251881Speter * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47251881Speter * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/sysctl.h>
127#include <sys/taskqueue.h>
128
129#include <net/if.h>
130#include <net/if_arp.h>
131#include <net/ethernet.h>
132#include <net/if_dl.h>
133#include <net/if_media.h>
134#include <net/if_types.h>
135#include <net/if_vlan_var.h>
136
137#include <net/bpf.h>
138
139#include <machine/bus.h>
140#include <machine/resource.h>
141#include <sys/bus.h>
142#include <sys/rman.h>
143
144#include <dev/mii/mii.h>
145#include <dev/mii/miivar.h>
146
147#include <dev/pci/pcireg.h>
148#include <dev/pci/pcivar.h>
149
150#include <pci/if_rlreg.h>
151
152MODULE_DEPEND(re, pci, 1, 1, 1);
153MODULE_DEPEND(re, ether, 1, 1, 1);
154MODULE_DEPEND(re, miibus, 1, 1, 1);
155
156/* "device miibus" required.  See GENERIC if you get errors here. */
157#include "miibus_if.h"
158
159/* Tunables. */
160static int intr_filter = 0;
161TUNABLE_INT("hw.re.intr_filter", &intr_filter);
162static int msi_disable = 0;
163TUNABLE_INT("hw.re.msi_disable", &msi_disable);
164static int msix_disable = 0;
165TUNABLE_INT("hw.re.msix_disable", &msix_disable);
166static int prefer_iomap = 0;
167TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
168
169#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
170
171/*
172 * Various supported device vendors/types and their names.
173 */
174static struct rl_type re_devs[] = {
175	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
176	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
177	{ DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
178	    "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
179	{ RT_VENDORID, RT_DEVICEID_8139, 0,
180	    "RealTek 8139C+ 10/100BaseTX" },
181	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
182	    "RealTek 810xE PCIe 10/100baseTX" },
183	{ RT_VENDORID, RT_DEVICEID_8168, 0,
184	    "RealTek 8168/8111 B/C/CP/D/DP/E/F PCIe Gigabit Ethernet" },
185	{ RT_VENDORID, RT_DEVICEID_8169, 0,
186	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
187	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
188	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
189	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
190	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
192	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193	{ USR_VENDORID, USR_DEVICEID_997902, 0,
194	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
195};
196
197static struct rl_hwrev re_hwrevs[] = {
198	{ RL_HWREV_8139, RL_8139,  "", RL_MTU },
199	{ RL_HWREV_8139A, RL_8139, "A", RL_MTU },
200	{ RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
201	{ RL_HWREV_8139B, RL_8139, "B", RL_MTU },
202	{ RL_HWREV_8130, RL_8139, "8130", RL_MTU },
203	{ RL_HWREV_8139C, RL_8139, "C", RL_MTU },
204	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
205	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
206	{ RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
207	{ RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
208	{ RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
209	{ RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
210	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
211	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
212	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
213	{ RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
214	{ RL_HWREV_8100, RL_8139, "8100", RL_MTU },
215	{ RL_HWREV_8101, RL_8139, "8101", RL_MTU },
216	{ RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
217	{ RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
218	{ RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
219	{ RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
220	{ RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
221	{ RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
222	{ RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
223	{ RL_HWREV_8402, RL_8169, "8402", RL_MTU },
224	{ RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
225	{ RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
226	{ RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
227	{ RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
228	{ RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
229	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
230	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
231	{ RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
232	{ RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
233	{ RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
234	{ RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
235	{ RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
236	{ RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
237	{ 0, 0, NULL, 0 }
238};
239
240static int re_probe		(device_t);
241static int re_attach		(device_t);
242static int re_detach		(device_t);
243
244static int re_encap		(struct rl_softc *, struct mbuf **);
245
246static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
247static int re_allocmem		(device_t, struct rl_softc *);
248static __inline void re_discard_rxbuf
249				(struct rl_softc *, int);
250static int re_newbuf		(struct rl_softc *, int);
251static int re_jumbo_newbuf	(struct rl_softc *, int);
252static int re_rx_list_init	(struct rl_softc *);
253static int re_jrx_list_init	(struct rl_softc *);
254static int re_tx_list_init	(struct rl_softc *);
255#ifdef RE_FIXUP_RX
256static __inline void re_fixup_rx
257				(struct mbuf *);
258#endif
259static int re_rxeof		(struct rl_softc *, int *);
260static void re_txeof		(struct rl_softc *);
261#ifdef DEVICE_POLLING
262static int re_poll		(struct ifnet *, enum poll_cmd, int);
263static int re_poll_locked	(struct ifnet *, enum poll_cmd, int);
264#endif
265static int re_intr		(void *);
266static void re_intr_msi		(void *);
267static void re_tick		(void *);
268static void re_int_task		(void *, int);
269static void re_start		(struct ifnet *);
270static void re_start_locked	(struct ifnet *);
271static int re_ioctl		(struct ifnet *, u_long, caddr_t);
272static void re_init		(void *);
273static void re_init_locked	(struct rl_softc *);
274static void re_stop		(struct rl_softc *);
275static void re_watchdog		(struct rl_softc *);
276static int re_suspend		(device_t);
277static int re_resume		(device_t);
278static int re_shutdown		(device_t);
279static int re_ifmedia_upd	(struct ifnet *);
280static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
281
282static void re_eeprom_putbyte	(struct rl_softc *, int);
283static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
284static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
285static int re_gmii_readreg	(device_t, int, int);
286static int re_gmii_writereg	(device_t, int, int, int);
287
288static int re_miibus_readreg	(device_t, int, int);
289static int re_miibus_writereg	(device_t, int, int, int);
290static void re_miibus_statchg	(device_t);
291
292static void re_set_jumbo	(struct rl_softc *, int);
293static void re_set_rxmode		(struct rl_softc *);
294static void re_reset		(struct rl_softc *);
295static void re_setwol		(struct rl_softc *);
296static void re_clrwol		(struct rl_softc *);
297
298#ifdef RE_DIAG
299static int re_diag		(struct rl_softc *);
300#endif
301
302static void re_add_sysctls	(struct rl_softc *);
303static int re_sysctl_stats	(SYSCTL_HANDLER_ARGS);
304static int sysctl_int_range	(SYSCTL_HANDLER_ARGS, int, int);
305static int sysctl_hw_re_int_mod	(SYSCTL_HANDLER_ARGS);
306
307static device_method_t re_methods[] = {
308	/* Device interface */
309	DEVMETHOD(device_probe,		re_probe),
310	DEVMETHOD(device_attach,	re_attach),
311	DEVMETHOD(device_detach,	re_detach),
312	DEVMETHOD(device_suspend,	re_suspend),
313	DEVMETHOD(device_resume,	re_resume),
314	DEVMETHOD(device_shutdown,	re_shutdown),
315
316	/* MII interface */
317	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
318	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
319	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
320
321	DEVMETHOD_END
322};
323
324static driver_t re_driver = {
325	"re",
326	re_methods,
327	sizeof(struct rl_softc)
328};
329
330static devclass_t re_devclass;
331
332DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
333DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
334
335#define EE_SET(x)					\
336	CSR_WRITE_1(sc, RL_EECMD,			\
337		CSR_READ_1(sc, RL_EECMD) | x)
338
339#define EE_CLR(x)					\
340	CSR_WRITE_1(sc, RL_EECMD,			\
341		CSR_READ_1(sc, RL_EECMD) & ~x)
342
343/*
344 * Send a read command and address to the EEPROM, check for ACK.
345 */
346static void
347re_eeprom_putbyte(struct rl_softc *sc, int addr)
348{
349	int			d, i;
350
351	d = addr | (RL_9346_READ << sc->rl_eewidth);
352
353	/*
354	 * Feed in each bit and strobe the clock.
355	 */
356
357	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
358		if (d & i) {
359			EE_SET(RL_EE_DATAIN);
360		} else {
361			EE_CLR(RL_EE_DATAIN);
362		}
363		DELAY(100);
364		EE_SET(RL_EE_CLK);
365		DELAY(150);
366		EE_CLR(RL_EE_CLK);
367		DELAY(100);
368	}
369}
370
371/*
372 * Read a word of data stored in the EEPROM at address 'addr.'
373 */
374static void
375re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
376{
377	int			i;
378	u_int16_t		word = 0;
379
380	/*
381	 * Send address of word we want to read.
382	 */
383	re_eeprom_putbyte(sc, addr);
384
385	/*
386	 * Start reading bits from EEPROM.
387	 */
388	for (i = 0x8000; i; i >>= 1) {
389		EE_SET(RL_EE_CLK);
390		DELAY(100);
391		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
392			word |= i;
393		EE_CLR(RL_EE_CLK);
394		DELAY(100);
395	}
396
397	*dest = word;
398}
399
400/*
401 * Read a sequence of words from the EEPROM.
402 */
403static void
404re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
405{
406	int			i;
407	u_int16_t		word = 0, *ptr;
408
409	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
410
411        DELAY(100);
412
413	for (i = 0; i < cnt; i++) {
414		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
415		re_eeprom_getword(sc, off + i, &word);
416		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
417		ptr = (u_int16_t *)(dest + (i * 2));
418                *ptr = word;
419	}
420
421	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
422}
423
424static int
425re_gmii_readreg(device_t dev, int phy, int reg)
426{
427	struct rl_softc		*sc;
428	u_int32_t		rval;
429	int			i;
430
431	sc = device_get_softc(dev);
432
433	/* Let the rgephy driver read the GMEDIASTAT register */
434
435	if (reg == RL_GMEDIASTAT) {
436		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
437		return (rval);
438	}
439
440	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
441
442	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
443		rval = CSR_READ_4(sc, RL_PHYAR);
444		if (rval & RL_PHYAR_BUSY)
445			break;
446		DELAY(25);
447	}
448
449	if (i == RL_PHY_TIMEOUT) {
450		device_printf(sc->rl_dev, "PHY read failed\n");
451		return (0);
452	}
453
454	/*
455	 * Controller requires a 20us delay to process next MDIO request.
456	 */
457	DELAY(20);
458
459	return (rval & RL_PHYAR_PHYDATA);
460}
461
462static int
463re_gmii_writereg(device_t dev, int phy, int reg, int data)
464{
465	struct rl_softc		*sc;
466	u_int32_t		rval;
467	int			i;
468
469	sc = device_get_softc(dev);
470
471	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
472	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
473
474	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
475		rval = CSR_READ_4(sc, RL_PHYAR);
476		if (!(rval & RL_PHYAR_BUSY))
477			break;
478		DELAY(25);
479	}
480
481	if (i == RL_PHY_TIMEOUT) {
482		device_printf(sc->rl_dev, "PHY write failed\n");
483		return (0);
484	}
485
486	/*
487	 * Controller requires a 20us delay to process next MDIO request.
488	 */
489	DELAY(20);
490
491	return (0);
492}
493
494static int
495re_miibus_readreg(device_t dev, int phy, int reg)
496{
497	struct rl_softc		*sc;
498	u_int16_t		rval = 0;
499	u_int16_t		re8139_reg = 0;
500
501	sc = device_get_softc(dev);
502
503	if (sc->rl_type == RL_8169) {
504		rval = re_gmii_readreg(dev, phy, reg);
505		return (rval);
506	}
507
508	switch (reg) {
509	case MII_BMCR:
510		re8139_reg = RL_BMCR;
511		break;
512	case MII_BMSR:
513		re8139_reg = RL_BMSR;
514		break;
515	case MII_ANAR:
516		re8139_reg = RL_ANAR;
517		break;
518	case MII_ANER:
519		re8139_reg = RL_ANER;
520		break;
521	case MII_ANLPAR:
522		re8139_reg = RL_LPAR;
523		break;
524	case MII_PHYIDR1:
525	case MII_PHYIDR2:
526		return (0);
527	/*
528	 * Allow the rlphy driver to read the media status
529	 * register. If we have a link partner which does not
530	 * support NWAY, this is the register which will tell
531	 * us the results of parallel detection.
532	 */
533	case RL_MEDIASTAT:
534		rval = CSR_READ_1(sc, RL_MEDIASTAT);
535		return (rval);
536	default:
537		device_printf(sc->rl_dev, "bad phy register\n");
538		return (0);
539	}
540	rval = CSR_READ_2(sc, re8139_reg);
541	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
542		/* 8139C+ has different bit layout. */
543		rval &= ~(BMCR_LOOP | BMCR_ISO);
544	}
545	return (rval);
546}
547
548static int
549re_miibus_writereg(device_t dev, int phy, int reg, int data)
550{
551	struct rl_softc		*sc;
552	u_int16_t		re8139_reg = 0;
553	int			rval = 0;
554
555	sc = device_get_softc(dev);
556
557	if (sc->rl_type == RL_8169) {
558		rval = re_gmii_writereg(dev, phy, reg, data);
559		return (rval);
560	}
561
562	switch (reg) {
563	case MII_BMCR:
564		re8139_reg = RL_BMCR;
565		if (sc->rl_type == RL_8139CPLUS) {
566			/* 8139C+ has different bit layout. */
567			data &= ~(BMCR_LOOP | BMCR_ISO);
568		}
569		break;
570	case MII_BMSR:
571		re8139_reg = RL_BMSR;
572		break;
573	case MII_ANAR:
574		re8139_reg = RL_ANAR;
575		break;
576	case MII_ANER:
577		re8139_reg = RL_ANER;
578		break;
579	case MII_ANLPAR:
580		re8139_reg = RL_LPAR;
581		break;
582	case MII_PHYIDR1:
583	case MII_PHYIDR2:
584		return (0);
585		break;
586	default:
587		device_printf(sc->rl_dev, "bad phy register\n");
588		return (0);
589	}
590	CSR_WRITE_2(sc, re8139_reg, data);
591	return (0);
592}
593
594static void
595re_miibus_statchg(device_t dev)
596{
597	struct rl_softc		*sc;
598	struct ifnet		*ifp;
599	struct mii_data		*mii;
600
601	sc = device_get_softc(dev);
602	mii = device_get_softc(sc->rl_miibus);
603	ifp = sc->rl_ifp;
604	if (mii == NULL || ifp == NULL ||
605	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
606		return;
607
608	sc->rl_flags &= ~RL_FLAG_LINK;
609	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
610	    (IFM_ACTIVE | IFM_AVALID)) {
611		switch (IFM_SUBTYPE(mii->mii_media_active)) {
612		case IFM_10_T:
613		case IFM_100_TX:
614			sc->rl_flags |= RL_FLAG_LINK;
615			break;
616		case IFM_1000_T:
617			if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
618				break;
619			sc->rl_flags |= RL_FLAG_LINK;
620			break;
621		default:
622			break;
623		}
624	}
625	/*
626	 * RealTek controllers does not provide any interface to
627	 * Tx/Rx MACs for resolved speed, duplex and flow-control
628	 * parameters.
629	 */
630}
631
632/*
633 * Set the RX configuration and 64-bit multicast hash filter.
634 */
635static void
636re_set_rxmode(struct rl_softc *sc)
637{
638	struct ifnet		*ifp;
639	struct ifmultiaddr	*ifma;
640	uint32_t		hashes[2] = { 0, 0 };
641	uint32_t		h, rxfilt;
642
643	RL_LOCK_ASSERT(sc);
644
645	ifp = sc->rl_ifp;
646
647	rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
648
649	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
650		if (ifp->if_flags & IFF_PROMISC)
651			rxfilt |= RL_RXCFG_RX_ALLPHYS;
652		/*
653		 * Unlike other hardwares, we have to explicitly set
654		 * RL_RXCFG_RX_MULTI to receive multicast frames in
655		 * promiscuous mode.
656		 */
657		rxfilt |= RL_RXCFG_RX_MULTI;
658		hashes[0] = hashes[1] = 0xffffffff;
659		goto done;
660	}
661
662	if_maddr_rlock(ifp);
663	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
664		if (ifma->ifma_addr->sa_family != AF_LINK)
665			continue;
666		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
667		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
668		if (h < 32)
669			hashes[0] |= (1 << h);
670		else
671			hashes[1] |= (1 << (h - 32));
672	}
673	if_maddr_runlock(ifp);
674
675	if (hashes[0] != 0 || hashes[1] != 0) {
676		/*
677		 * For some unfathomable reason, RealTek decided to
678		 * reverse the order of the multicast hash registers
679		 * in the PCI Express parts.  This means we have to
680		 * write the hash pattern in reverse order for those
681		 * devices.
682		 */
683		if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
684			h = bswap32(hashes[0]);
685			hashes[0] = bswap32(hashes[1]);
686			hashes[1] = h;
687		}
688		rxfilt |= RL_RXCFG_RX_MULTI;
689	}
690
691done:
692	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
693	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
694	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
695}
696
697static void
698re_reset(struct rl_softc *sc)
699{
700	int			i;
701
702	RL_LOCK_ASSERT(sc);
703
704	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
705
706	for (i = 0; i < RL_TIMEOUT; i++) {
707		DELAY(10);
708		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
709			break;
710	}
711	if (i == RL_TIMEOUT)
712		device_printf(sc->rl_dev, "reset never completed!\n");
713
714	if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
715		CSR_WRITE_1(sc, 0x82, 1);
716	if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
717		re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
718}
719
720#ifdef RE_DIAG
721
722/*
723 * The following routine is designed to test for a defect on some
724 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
725 * lines connected to the bus, however for a 32-bit only card, they
726 * should be pulled high. The result of this defect is that the
727 * NIC will not work right if you plug it into a 64-bit slot: DMA
728 * operations will be done with 64-bit transfers, which will fail
729 * because the 64-bit data lines aren't connected.
730 *
731 * There's no way to work around this (short of talking a soldering
732 * iron to the board), however we can detect it. The method we use
733 * here is to put the NIC into digital loopback mode, set the receiver
734 * to promiscuous mode, and then try to send a frame. We then compare
735 * the frame data we sent to what was received. If the data matches,
736 * then the NIC is working correctly, otherwise we know the user has
737 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
738 * slot. In the latter case, there's no way the NIC can work correctly,
739 * so we print out a message on the console and abort the device attach.
740 */
741
742static int
743re_diag(struct rl_softc *sc)
744{
745	struct ifnet		*ifp = sc->rl_ifp;
746	struct mbuf		*m0;
747	struct ether_header	*eh;
748	struct rl_desc		*cur_rx;
749	u_int16_t		status;
750	u_int32_t		rxstat;
751	int			total_len, i, error = 0, phyaddr;
752	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
753	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
754
755	/* Allocate a single mbuf */
756	MGETHDR(m0, M_DONTWAIT, MT_DATA);
757	if (m0 == NULL)
758		return (ENOBUFS);
759
760	RL_LOCK(sc);
761
762	/*
763	 * Initialize the NIC in test mode. This sets the chip up
764	 * so that it can send and receive frames, but performs the
765	 * following special functions:
766	 * - Puts receiver in promiscuous mode
767	 * - Enables digital loopback mode
768	 * - Leaves interrupts turned off
769	 */
770
771	ifp->if_flags |= IFF_PROMISC;
772	sc->rl_testmode = 1;
773	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
774	re_init_locked(sc);
775	sc->rl_flags |= RL_FLAG_LINK;
776	if (sc->rl_type == RL_8169)
777		phyaddr = 1;
778	else
779		phyaddr = 0;
780
781	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
782	for (i = 0; i < RL_TIMEOUT; i++) {
783		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
784		if (!(status & BMCR_RESET))
785			break;
786	}
787
788	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
789	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
790
791	DELAY(100000);
792
793	/* Put some data in the mbuf */
794
795	eh = mtod(m0, struct ether_header *);
796	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
797	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
798	eh->ether_type = htons(ETHERTYPE_IP);
799	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
800
801	/*
802	 * Queue the packet, start transmission.
803	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
804	 */
805
806	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
807	RL_UNLOCK(sc);
808	/* XXX: re_diag must not be called when in ALTQ mode */
809	IF_HANDOFF(&ifp->if_snd, m0, ifp);
810	RL_LOCK(sc);
811	m0 = NULL;
812
813	/* Wait for it to propagate through the chip */
814
815	DELAY(100000);
816	for (i = 0; i < RL_TIMEOUT; i++) {
817		status = CSR_READ_2(sc, RL_ISR);
818		CSR_WRITE_2(sc, RL_ISR, status);
819		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
820		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
821			break;
822		DELAY(10);
823	}
824
825	if (i == RL_TIMEOUT) {
826		device_printf(sc->rl_dev,
827		    "diagnostic failed, failed to receive packet in"
828		    " loopback mode\n");
829		error = EIO;
830		goto done;
831	}
832
833	/*
834	 * The packet should have been dumped into the first
835	 * entry in the RX DMA ring. Grab it from there.
836	 */
837
838	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
839	    sc->rl_ldata.rl_rx_list_map,
840	    BUS_DMASYNC_POSTREAD);
841	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
842	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
843	    BUS_DMASYNC_POSTREAD);
844	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
845	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
846
847	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
848	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
849	eh = mtod(m0, struct ether_header *);
850
851	cur_rx = &sc->rl_ldata.rl_rx_list[0];
852	total_len = RL_RXBYTES(cur_rx);
853	rxstat = le32toh(cur_rx->rl_cmdstat);
854
855	if (total_len != ETHER_MIN_LEN) {
856		device_printf(sc->rl_dev,
857		    "diagnostic failed, received short packet\n");
858		error = EIO;
859		goto done;
860	}
861
862	/* Test that the received packet data matches what we sent. */
863
864	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
865	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
866	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
867		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
868		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
869		    dst, ":", src, ":", ETHERTYPE_IP);
870		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
871		    eh->ether_dhost, ":",  eh->ether_shost, ":",
872		    ntohs(eh->ether_type));
873		device_printf(sc->rl_dev, "You may have a defective 32-bit "
874		    "NIC plugged into a 64-bit PCI slot.\n");
875		device_printf(sc->rl_dev, "Please re-install the NIC in a "
876		    "32-bit slot for proper operation.\n");
877		device_printf(sc->rl_dev, "Read the re(4) man page for more "
878		    "details.\n");
879		error = EIO;
880	}
881
882done:
883	/* Turn interface off, release resources */
884
885	sc->rl_testmode = 0;
886	sc->rl_flags &= ~RL_FLAG_LINK;
887	ifp->if_flags &= ~IFF_PROMISC;
888	re_stop(sc);
889	if (m0 != NULL)
890		m_freem(m0);
891
892	RL_UNLOCK(sc);
893
894	return (error);
895}
896
897#endif
898
899/*
900 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
901 * IDs against our list and return a device name if we find a match.
902 */
903static int
904re_probe(device_t dev)
905{
906	struct rl_type		*t;
907	uint16_t		devid, vendor;
908	uint16_t		revid, sdevid;
909	int			i;
910
911	vendor = pci_get_vendor(dev);
912	devid = pci_get_device(dev);
913	revid = pci_get_revid(dev);
914	sdevid = pci_get_subdevice(dev);
915
916	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
917		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
918			/*
919			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
920			 * Rev. 2 is supported by sk(4).
921			 */
922			return (ENXIO);
923		}
924	}
925
926	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
927		if (revid != 0x20) {
928			/* 8139, let rl(4) take care of this device. */
929			return (ENXIO);
930		}
931	}
932
933	t = re_devs;
934	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
935		if (vendor == t->rl_vid && devid == t->rl_did) {
936			device_set_desc(dev, t->rl_name);
937			return (BUS_PROBE_DEFAULT);
938		}
939	}
940
941	return (ENXIO);
942}
943
944/*
945 * Map a single buffer address.
946 */
947
948static void
949re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
950{
951	bus_addr_t		*addr;
952
953	if (error)
954		return;
955
956	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
957	addr = arg;
958	*addr = segs->ds_addr;
959}
960
961static int
962re_allocmem(device_t dev, struct rl_softc *sc)
963{
964	bus_addr_t		lowaddr;
965	bus_size_t		rx_list_size, tx_list_size;
966	int			error;
967	int			i;
968
969	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
970	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
971
972	/*
973	 * Allocate the parent bus DMA tag appropriate for PCI.
974	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
975	 * register should be set. However some RealTek chips are known
976	 * to be buggy on DAC handling, therefore disable DAC by limiting
977	 * DMA address space to 32bit. PCIe variants of RealTek chips
978	 * may not have the limitation.
979	 */
980	lowaddr = BUS_SPACE_MAXADDR;
981	if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
982		lowaddr = BUS_SPACE_MAXADDR_32BIT;
983	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
984	    lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
985	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
986	    NULL, NULL, &sc->rl_parent_tag);
987	if (error) {
988		device_printf(dev, "could not allocate parent DMA tag\n");
989		return (error);
990	}
991
992	/*
993	 * Allocate map for TX mbufs.
994	 */
995	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
996	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
997	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
998	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
999	if (error) {
1000		device_printf(dev, "could not allocate TX DMA tag\n");
1001		return (error);
1002	}
1003
1004	/*
1005	 * Allocate map for RX mbufs.
1006	 */
1007
1008	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1009		error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1010		    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1011		    MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1012		    &sc->rl_ldata.rl_jrx_mtag);
1013		if (error) {
1014			device_printf(dev,
1015			    "could not allocate jumbo RX DMA tag\n");
1016			return (error);
1017		}
1018	}
1019	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1020	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1021	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1022	if (error) {
1023		device_printf(dev, "could not allocate RX DMA tag\n");
1024		return (error);
1025	}
1026
1027	/*
1028	 * Allocate map for TX descriptor list.
1029	 */
1030	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1031	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1032	    NULL, tx_list_size, 1, tx_list_size, 0,
1033	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1034	if (error) {
1035		device_printf(dev, "could not allocate TX DMA ring tag\n");
1036		return (error);
1037	}
1038
1039	/* Allocate DMA'able memory for the TX ring */
1040
1041	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1042	    (void **)&sc->rl_ldata.rl_tx_list,
1043	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1044	    &sc->rl_ldata.rl_tx_list_map);
1045	if (error) {
1046		device_printf(dev, "could not allocate TX DMA ring\n");
1047		return (error);
1048	}
1049
1050	/* Load the map for the TX ring. */
1051
1052	sc->rl_ldata.rl_tx_list_addr = 0;
1053	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1054	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1055	     tx_list_size, re_dma_map_addr,
1056	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1057	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1058		device_printf(dev, "could not load TX DMA ring\n");
1059		return (ENOMEM);
1060	}
1061
1062	/* Create DMA maps for TX buffers */
1063
1064	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1065		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1066		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1067		if (error) {
1068			device_printf(dev, "could not create DMA map for TX\n");
1069			return (error);
1070		}
1071	}
1072
1073	/*
1074	 * Allocate map for RX descriptor list.
1075	 */
1076	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1077	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1078	    NULL, rx_list_size, 1, rx_list_size, 0,
1079	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1080	if (error) {
1081		device_printf(dev, "could not create RX DMA ring tag\n");
1082		return (error);
1083	}
1084
1085	/* Allocate DMA'able memory for the RX ring */
1086
1087	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1088	    (void **)&sc->rl_ldata.rl_rx_list,
1089	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1090	    &sc->rl_ldata.rl_rx_list_map);
1091	if (error) {
1092		device_printf(dev, "could not allocate RX DMA ring\n");
1093		return (error);
1094	}
1095
1096	/* Load the map for the RX ring. */
1097
1098	sc->rl_ldata.rl_rx_list_addr = 0;
1099	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1100	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1101	     rx_list_size, re_dma_map_addr,
1102	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1103	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1104		device_printf(dev, "could not load RX DMA ring\n");
1105		return (ENOMEM);
1106	}
1107
1108	/* Create DMA maps for RX buffers */
1109
1110	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1111		error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1112		    &sc->rl_ldata.rl_jrx_sparemap);
1113		if (error) {
1114			device_printf(dev,
1115			    "could not create spare DMA map for jumbo RX\n");
1116			return (error);
1117		}
1118		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1119			error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1120			    &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1121			if (error) {
1122				device_printf(dev,
1123				    "could not create DMA map for jumbo RX\n");
1124				return (error);
1125			}
1126		}
1127	}
1128	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1129	    &sc->rl_ldata.rl_rx_sparemap);
1130	if (error) {
1131		device_printf(dev, "could not create spare DMA map for RX\n");
1132		return (error);
1133	}
1134	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1135		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1136		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1137		if (error) {
1138			device_printf(dev, "could not create DMA map for RX\n");
1139			return (error);
1140		}
1141	}
1142
1143	/* Create DMA map for statistics. */
1144	error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1145	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1146	    sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1147	    &sc->rl_ldata.rl_stag);
1148	if (error) {
1149		device_printf(dev, "could not create statistics DMA tag\n");
1150		return (error);
1151	}
1152	/* Allocate DMA'able memory for statistics. */
1153	error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1154	    (void **)&sc->rl_ldata.rl_stats,
1155	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1156	    &sc->rl_ldata.rl_smap);
1157	if (error) {
1158		device_printf(dev,
1159		    "could not allocate statistics DMA memory\n");
1160		return (error);
1161	}
1162	/* Load the map for statistics. */
1163	sc->rl_ldata.rl_stats_addr = 0;
1164	error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1165	    sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1166	     &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1167	if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1168		device_printf(dev, "could not load statistics DMA memory\n");
1169		return (ENOMEM);
1170	}
1171
1172	return (0);
1173}
1174
1175/*
1176 * Attach the interface. Allocate softc structures, do ifmedia
1177 * setup and ethernet/BPF attach.
1178 */
1179static int
1180re_attach(device_t dev)
1181{
1182	u_char			eaddr[ETHER_ADDR_LEN];
1183	u_int16_t		as[ETHER_ADDR_LEN / 2];
1184	struct rl_softc		*sc;
1185	struct ifnet		*ifp;
1186	struct rl_hwrev		*hw_rev;
1187	u_int32_t		cap, ctl;
1188	int			hwrev;
1189	u_int16_t		devid, re_did = 0;
1190	int			error = 0, i, phy, rid;
1191	int			msic, msixc, reg;
1192	uint8_t			cfg;
1193
1194	sc = device_get_softc(dev);
1195	sc->rl_dev = dev;
1196
1197	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1198	    MTX_DEF);
1199	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1200
1201	/*
1202	 * Map control/status registers.
1203	 */
1204	pci_enable_busmaster(dev);
1205
1206	devid = pci_get_device(dev);
1207	/*
1208	 * Prefer memory space register mapping over IO space.
1209	 * Because RTL8169SC does not seem to work when memory mapping
1210	 * is used always activate io mapping.
1211	 */
1212	if (devid == RT_DEVICEID_8169SC)
1213		prefer_iomap = 1;
1214	if (prefer_iomap == 0) {
1215		sc->rl_res_id = PCIR_BAR(1);
1216		sc->rl_res_type = SYS_RES_MEMORY;
1217		/* RTL8168/8101E seems to use different BARs. */
1218		if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1219			sc->rl_res_id = PCIR_BAR(2);
1220	} else {
1221		sc->rl_res_id = PCIR_BAR(0);
1222		sc->rl_res_type = SYS_RES_IOPORT;
1223	}
1224	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1225	    &sc->rl_res_id, RF_ACTIVE);
1226	if (sc->rl_res == NULL && prefer_iomap == 0) {
1227		sc->rl_res_id = PCIR_BAR(0);
1228		sc->rl_res_type = SYS_RES_IOPORT;
1229		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1230		    &sc->rl_res_id, RF_ACTIVE);
1231	}
1232	if (sc->rl_res == NULL) {
1233		device_printf(dev, "couldn't map ports/memory\n");
1234		error = ENXIO;
1235		goto fail;
1236	}
1237
1238	sc->rl_btag = rman_get_bustag(sc->rl_res);
1239	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1240
1241	msic = pci_msi_count(dev);
1242	msixc = pci_msix_count(dev);
1243	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
1244		sc->rl_flags |= RL_FLAG_PCIE;
1245		sc->rl_expcap = reg;
1246	}
1247	if (bootverbose) {
1248		device_printf(dev, "MSI count : %d\n", msic);
1249		device_printf(dev, "MSI-X count : %d\n", msixc);
1250	}
1251	if (msix_disable > 0)
1252		msixc = 0;
1253	if (msi_disable > 0)
1254		msic = 0;
1255	/* Prefer MSI-X to MSI. */
1256	if (msixc > 0) {
1257		msixc = 1;
1258		rid = PCIR_BAR(4);
1259		sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1260		    &rid, RF_ACTIVE);
1261		if (sc->rl_res_pba == NULL) {
1262			device_printf(sc->rl_dev,
1263			    "could not allocate MSI-X PBA resource\n");
1264		}
1265		if (sc->rl_res_pba != NULL &&
1266		    pci_alloc_msix(dev, &msixc) == 0) {
1267			if (msixc == 1) {
1268				device_printf(dev, "Using %d MSI-X message\n",
1269				    msixc);
1270				sc->rl_flags |= RL_FLAG_MSIX;
1271			} else
1272				pci_release_msi(dev);
1273		}
1274		if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1275			if (sc->rl_res_pba != NULL)
1276				bus_release_resource(dev, SYS_RES_MEMORY, rid,
1277				    sc->rl_res_pba);
1278			sc->rl_res_pba = NULL;
1279			msixc = 0;
1280		}
1281	}
1282	/* Prefer MSI to INTx. */
1283	if (msixc == 0 && msic > 0) {
1284		msic = 1;
1285		if (pci_alloc_msi(dev, &msic) == 0) {
1286			if (msic == RL_MSI_MESSAGES) {
1287				device_printf(dev, "Using %d MSI message\n",
1288				    msic);
1289				sc->rl_flags |= RL_FLAG_MSI;
1290				/* Explicitly set MSI enable bit. */
1291				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1292				cfg = CSR_READ_1(sc, RL_CFG2);
1293				cfg |= RL_CFG2_MSI;
1294				CSR_WRITE_1(sc, RL_CFG2, cfg);
1295				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1296			} else
1297				pci_release_msi(dev);
1298		}
1299		if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1300			msic = 0;
1301	}
1302
1303	/* Allocate interrupt */
1304	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1305		rid = 0;
1306		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1307		    RF_SHAREABLE | RF_ACTIVE);
1308		if (sc->rl_irq[0] == NULL) {
1309			device_printf(dev, "couldn't allocate IRQ resources\n");
1310			error = ENXIO;
1311			goto fail;
1312		}
1313	} else {
1314		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1315			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1316			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1317			if (sc->rl_irq[i] == NULL) {
1318				device_printf(dev,
1319				    "couldn't llocate IRQ resources for "
1320				    "message %d\n", rid);
1321				error = ENXIO;
1322				goto fail;
1323			}
1324		}
1325	}
1326
1327	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1328		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1329		cfg = CSR_READ_1(sc, RL_CFG2);
1330		if ((cfg & RL_CFG2_MSI) != 0) {
1331			device_printf(dev, "turning off MSI enable bit.\n");
1332			cfg &= ~RL_CFG2_MSI;
1333			CSR_WRITE_1(sc, RL_CFG2, cfg);
1334		}
1335		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1336	}
1337
1338	/* Disable ASPM L0S/L1. */
1339	if (sc->rl_expcap != 0) {
1340		cap = pci_read_config(dev, sc->rl_expcap +
1341		    PCIR_EXPRESS_LINK_CAP, 2);
1342		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
1343			ctl = pci_read_config(dev, sc->rl_expcap +
1344			    PCIR_EXPRESS_LINK_CTL, 2);
1345			if ((ctl & 0x0003) != 0) {
1346				ctl &= ~0x0003;
1347				pci_write_config(dev, sc->rl_expcap +
1348				    PCIR_EXPRESS_LINK_CTL, ctl, 2);
1349				device_printf(dev, "ASPM disabled\n");
1350			}
1351		} else
1352			device_printf(dev, "no ASPM capability\n");
1353	}
1354
1355	hw_rev = re_hwrevs;
1356	hwrev = CSR_READ_4(sc, RL_TXCFG);
1357	switch (hwrev & 0x70000000) {
1358	case 0x00000000:
1359	case 0x10000000:
1360		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1361		hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1362		break;
1363	default:
1364		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1365		hwrev &= RL_TXCFG_HWREV;
1366		break;
1367	}
1368	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1369	while (hw_rev->rl_desc != NULL) {
1370		if (hw_rev->rl_rev == hwrev) {
1371			sc->rl_type = hw_rev->rl_type;
1372			sc->rl_hwrev = hw_rev;
1373			break;
1374		}
1375		hw_rev++;
1376	}
1377	if (hw_rev->rl_desc == NULL) {
1378		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1379		error = ENXIO;
1380		goto fail;
1381	}
1382
1383	switch (hw_rev->rl_rev) {
1384	case RL_HWREV_8139CPLUS:
1385		sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1386		break;
1387	case RL_HWREV_8100E:
1388	case RL_HWREV_8101E:
1389		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1390		break;
1391	case RL_HWREV_8102E:
1392	case RL_HWREV_8102EL:
1393	case RL_HWREV_8102EL_SPIN1:
1394		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1395		    RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1396		    RL_FLAG_AUTOPAD;
1397		break;
1398	case RL_HWREV_8103E:
1399		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1400		    RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1401		    RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1402		break;
1403	case RL_HWREV_8401E:
1404	case RL_HWREV_8402:
1405	case RL_HWREV_8105E:
1406	case RL_HWREV_8105E_SPIN1:
1407		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1408		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1409		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1410		break;
1411	case RL_HWREV_8168B_SPIN1:
1412	case RL_HWREV_8168B_SPIN2:
1413		sc->rl_flags |= RL_FLAG_WOLRXENB;
1414		/* FALLTHROUGH */
1415	case RL_HWREV_8168B_SPIN3:
1416		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1417		break;
1418	case RL_HWREV_8168C_SPIN2:
1419		sc->rl_flags |= RL_FLAG_MACSLEEP;
1420		/* FALLTHROUGH */
1421	case RL_HWREV_8168C:
1422		if ((hwrev & 0x00700000) == 0x00200000)
1423			sc->rl_flags |= RL_FLAG_MACSLEEP;
1424		/* FALLTHROUGH */
1425	case RL_HWREV_8168CP:
1426	case RL_HWREV_8168D:
1427	case RL_HWREV_8168DP:
1428		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1429		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1430		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
1431		break;
1432	case RL_HWREV_8168E:
1433		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1434		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1435		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
1436		break;
1437	case RL_HWREV_8168E_VL:
1438	case RL_HWREV_8168F:
1439	case RL_HWREV_8411:
1440		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1441		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1442		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
1443		break;
1444	case RL_HWREV_8169_8110SB:
1445	case RL_HWREV_8169_8110SBL:
1446	case RL_HWREV_8169_8110SC:
1447	case RL_HWREV_8169_8110SCE:
1448		sc->rl_flags |= RL_FLAG_PHYWAKE;
1449		/* FALLTHROUGH */
1450	case RL_HWREV_8169:
1451	case RL_HWREV_8169S:
1452	case RL_HWREV_8110S:
1453		sc->rl_flags |= RL_FLAG_MACRESET;
1454		break;
1455	default:
1456		break;
1457	}
1458
1459	/* Reset the adapter. */
1460	RL_LOCK(sc);
1461	re_reset(sc);
1462	RL_UNLOCK(sc);
1463
1464	/* Enable PME. */
1465	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1466	cfg = CSR_READ_1(sc, RL_CFG1);
1467	cfg |= RL_CFG1_PME;
1468	CSR_WRITE_1(sc, RL_CFG1, cfg);
1469	cfg = CSR_READ_1(sc, RL_CFG5);
1470	cfg &= RL_CFG5_PME_STS;
1471	CSR_WRITE_1(sc, RL_CFG5, cfg);
1472	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1473
1474	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1475		/*
1476		 * XXX Should have a better way to extract station
1477		 * address from EEPROM.
1478		 */
1479		for (i = 0; i < ETHER_ADDR_LEN; i++)
1480			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1481	} else {
1482		sc->rl_eewidth = RL_9356_ADDR_LEN;
1483		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1484		if (re_did != 0x8129)
1485			sc->rl_eewidth = RL_9346_ADDR_LEN;
1486
1487		/*
1488		 * Get station address from the EEPROM.
1489		 */
1490		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1491		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1492			as[i] = le16toh(as[i]);
1493		bcopy(as, eaddr, sizeof(eaddr));
1494	}
1495
1496	if (sc->rl_type == RL_8169) {
1497		/* Set RX length mask and number of descriptors. */
1498		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1499		sc->rl_txstart = RL_GTXSTART;
1500		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1501		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1502	} else {
1503		/* Set RX length mask and number of descriptors. */
1504		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1505		sc->rl_txstart = RL_TXSTART;
1506		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1507		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1508	}
1509
1510	error = re_allocmem(dev, sc);
1511	if (error)
1512		goto fail;
1513	re_add_sysctls(sc);
1514
1515	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1516	if (ifp == NULL) {
1517		device_printf(dev, "can not if_alloc()\n");
1518		error = ENOSPC;
1519		goto fail;
1520	}
1521
1522	/* Take controller out of deep sleep mode. */
1523	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1524		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1525			CSR_WRITE_1(sc, RL_GPIO,
1526			    CSR_READ_1(sc, RL_GPIO) | 0x01);
1527		else
1528			CSR_WRITE_1(sc, RL_GPIO,
1529			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
1530	}
1531
1532	/* Take PHY out of power down mode. */
1533	if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1534		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1535		if (hw_rev->rl_rev == RL_HWREV_8401E)
1536			CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1537	}
1538	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1539		re_gmii_writereg(dev, 1, 0x1f, 0);
1540		re_gmii_writereg(dev, 1, 0x0e, 0);
1541	}
1542
1543#define	RE_PHYAD_INTERNAL	 0
1544
1545	/* Do MII setup. */
1546	phy = RE_PHYAD_INTERNAL;
1547	if (sc->rl_type == RL_8169)
1548		phy = 1;
1549	error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1550	    re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1551	if (error != 0) {
1552		device_printf(dev, "attaching PHYs failed\n");
1553		goto fail;
1554	}
1555
1556	ifp->if_softc = sc;
1557	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1558	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1559	ifp->if_ioctl = re_ioctl;
1560	ifp->if_start = re_start;
1561	/*
1562	 * RTL8168/8111C generates wrong IP checksummed frame if the
1563	 * packet has IP options so disable TX IP checksum offloading.
1564	 */
1565	if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1566	    sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2)
1567		ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
1568	else
1569		ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1570	ifp->if_hwassist |= CSUM_TSO;
1571	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1572	ifp->if_capenable = ifp->if_capabilities;
1573	ifp->if_init = re_init;
1574	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1575	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1576	IFQ_SET_READY(&ifp->if_snd);
1577
1578	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1579
1580	/*
1581	 * Call MI attach routine.
1582	 */
1583	ether_ifattach(ifp, eaddr);
1584
1585	/* VLAN capability setup */
1586	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1587	if (ifp->if_capabilities & IFCAP_HWCSUM)
1588		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1589	/* Enable WOL if PM is supported. */
1590	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1591		ifp->if_capabilities |= IFCAP_WOL;
1592	ifp->if_capenable = ifp->if_capabilities;
1593	/*
1594	 * Don't enable TSO by default.  It is known to generate
1595	 * corrupted TCP segments(bad TCP options) under certain
1596	 * circumtances.
1597	 */
1598	ifp->if_hwassist &= ~CSUM_TSO;
1599	ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1600#ifdef DEVICE_POLLING
1601	ifp->if_capabilities |= IFCAP_POLLING;
1602#endif
1603	/*
1604	 * Tell the upper layer(s) we support long frames.
1605	 * Must appear after the call to ether_ifattach() because
1606	 * ether_ifattach() sets ifi_hdrlen to the default value.
1607	 */
1608	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1609
1610#ifdef RE_DIAG
1611	/*
1612	 * Perform hardware diagnostic on the original RTL8169.
1613	 * Some 32-bit cards were incorrectly wired and would
1614	 * malfunction if plugged into a 64-bit slot.
1615	 */
1616
1617	if (hwrev == RL_HWREV_8169) {
1618		error = re_diag(sc);
1619		if (error) {
1620			device_printf(dev,
1621		    	"attach aborted due to hardware diag failure\n");
1622			ether_ifdetach(ifp);
1623			goto fail;
1624		}
1625	}
1626#endif
1627
1628#ifdef RE_TX_MODERATION
1629	intr_filter = 1;
1630#endif
1631	/* Hook interrupt last to avoid having to lock softc */
1632	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1633	    intr_filter == 0) {
1634		error = bus_setup_intr(dev, sc->rl_irq[0],
1635		    INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1636		    &sc->rl_intrhand[0]);
1637	} else {
1638		error = bus_setup_intr(dev, sc->rl_irq[0],
1639		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1640		    &sc->rl_intrhand[0]);
1641	}
1642	if (error) {
1643		device_printf(dev, "couldn't set up irq\n");
1644		ether_ifdetach(ifp);
1645	}
1646
1647fail:
1648
1649	if (error)
1650		re_detach(dev);
1651
1652	return (error);
1653}
1654
1655/*
1656 * Shutdown hardware and free up resources. This can be called any
1657 * time after the mutex has been initialized. It is called in both
1658 * the error case in attach and the normal detach case so it needs
1659 * to be careful about only freeing resources that have actually been
1660 * allocated.
1661 */
1662static int
1663re_detach(device_t dev)
1664{
1665	struct rl_softc		*sc;
1666	struct ifnet		*ifp;
1667	int			i, rid;
1668
1669	sc = device_get_softc(dev);
1670	ifp = sc->rl_ifp;
1671	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1672
1673	/* These should only be active if attach succeeded */
1674	if (device_is_attached(dev)) {
1675#ifdef DEVICE_POLLING
1676		if (ifp->if_capenable & IFCAP_POLLING)
1677			ether_poll_deregister(ifp);
1678#endif
1679		RL_LOCK(sc);
1680#if 0
1681		sc->suspended = 1;
1682#endif
1683		re_stop(sc);
1684		RL_UNLOCK(sc);
1685		callout_drain(&sc->rl_stat_callout);
1686		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1687		/*
1688		 * Force off the IFF_UP flag here, in case someone
1689		 * still had a BPF descriptor attached to this
1690		 * interface. If they do, ether_ifdetach() will cause
1691		 * the BPF code to try and clear the promisc mode
1692		 * flag, which will bubble down to re_ioctl(),
1693		 * which will try to call re_init() again. This will
1694		 * turn the NIC back on and restart the MII ticker,
1695		 * which will panic the system when the kernel tries
1696		 * to invoke the re_tick() function that isn't there
1697		 * anymore.
1698		 */
1699		ifp->if_flags &= ~IFF_UP;
1700		ether_ifdetach(ifp);
1701	}
1702	if (sc->rl_miibus)
1703		device_delete_child(dev, sc->rl_miibus);
1704	bus_generic_detach(dev);
1705
1706	/*
1707	 * The rest is resource deallocation, so we should already be
1708	 * stopped here.
1709	 */
1710
1711	if (sc->rl_intrhand[0] != NULL) {
1712		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1713		sc->rl_intrhand[0] = NULL;
1714	}
1715	if (ifp != NULL)
1716		if_free(ifp);
1717	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1718		rid = 0;
1719	else
1720		rid = 1;
1721	if (sc->rl_irq[0] != NULL) {
1722		bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1723		sc->rl_irq[0] = NULL;
1724	}
1725	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1726		pci_release_msi(dev);
1727	if (sc->rl_res_pba) {
1728		rid = PCIR_BAR(4);
1729		bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1730	}
1731	if (sc->rl_res)
1732		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1733		    sc->rl_res);
1734
1735	/* Unload and free the RX DMA ring memory and map */
1736
1737	if (sc->rl_ldata.rl_rx_list_tag) {
1738		if (sc->rl_ldata.rl_rx_list_map)
1739			bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1740			    sc->rl_ldata.rl_rx_list_map);
1741		if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
1742			bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1743			    sc->rl_ldata.rl_rx_list,
1744			    sc->rl_ldata.rl_rx_list_map);
1745		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1746	}
1747
1748	/* Unload and free the TX DMA ring memory and map */
1749
1750	if (sc->rl_ldata.rl_tx_list_tag) {
1751		if (sc->rl_ldata.rl_tx_list_map)
1752			bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1753			    sc->rl_ldata.rl_tx_list_map);
1754		if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
1755			bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1756			    sc->rl_ldata.rl_tx_list,
1757			    sc->rl_ldata.rl_tx_list_map);
1758		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1759	}
1760
1761	/* Destroy all the RX and TX buffer maps */
1762
1763	if (sc->rl_ldata.rl_tx_mtag) {
1764		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1765			if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1766				bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1767				    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1768		}
1769		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1770	}
1771	if (sc->rl_ldata.rl_rx_mtag) {
1772		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1773			if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1774				bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1775				    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1776		}
1777		if (sc->rl_ldata.rl_rx_sparemap)
1778			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1779			    sc->rl_ldata.rl_rx_sparemap);
1780		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1781	}
1782	if (sc->rl_ldata.rl_jrx_mtag) {
1783		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1784			if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1785				bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1786				    sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1787		}
1788		if (sc->rl_ldata.rl_jrx_sparemap)
1789			bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1790			    sc->rl_ldata.rl_jrx_sparemap);
1791		bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1792	}
1793	/* Unload and free the stats buffer and map */
1794
1795	if (sc->rl_ldata.rl_stag) {
1796		if (sc->rl_ldata.rl_smap)
1797			bus_dmamap_unload(sc->rl_ldata.rl_stag,
1798			    sc->rl_ldata.rl_smap);
1799		if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
1800			bus_dmamem_free(sc->rl_ldata.rl_stag,
1801			    sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1802		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1803	}
1804
1805	if (sc->rl_parent_tag)
1806		bus_dma_tag_destroy(sc->rl_parent_tag);
1807
1808	mtx_destroy(&sc->rl_mtx);
1809
1810	return (0);
1811}
1812
1813static __inline void
1814re_discard_rxbuf(struct rl_softc *sc, int idx)
1815{
1816	struct rl_desc		*desc;
1817	struct rl_rxdesc	*rxd;
1818	uint32_t		cmdstat;
1819
1820	if (sc->rl_ifp->if_mtu > RL_MTU &&
1821	    (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1822		rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1823	else
1824		rxd = &sc->rl_ldata.rl_rx_desc[idx];
1825	desc = &sc->rl_ldata.rl_rx_list[idx];
1826	desc->rl_vlanctl = 0;
1827	cmdstat = rxd->rx_size;
1828	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1829		cmdstat |= RL_RDESC_CMD_EOR;
1830	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1831}
1832
1833static int
1834re_newbuf(struct rl_softc *sc, int idx)
1835{
1836	struct mbuf		*m;
1837	struct rl_rxdesc	*rxd;
1838	bus_dma_segment_t	segs[1];
1839	bus_dmamap_t		map;
1840	struct rl_desc		*desc;
1841	uint32_t		cmdstat;
1842	int			error, nsegs;
1843
1844	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1845	if (m == NULL)
1846		return (ENOBUFS);
1847
1848	m->m_len = m->m_pkthdr.len = MCLBYTES;
1849#ifdef RE_FIXUP_RX
1850	/*
1851	 * This is part of an evil trick to deal with non-x86 platforms.
1852	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1853	 * boundaries, but that will hose non-x86 machines. To get around
1854	 * this, we leave some empty space at the start of each buffer
1855	 * and for non-x86 hosts, we copy the buffer back six bytes
1856	 * to achieve word alignment. This is slightly more efficient
1857	 * than allocating a new buffer, copying the contents, and
1858	 * discarding the old buffer.
1859	 */
1860	m_adj(m, RE_ETHER_ALIGN);
1861#endif
1862	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1863	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1864	if (error != 0) {
1865		m_freem(m);
1866		return (ENOBUFS);
1867	}
1868	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1869
1870	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1871	if (rxd->rx_m != NULL) {
1872		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1873		    BUS_DMASYNC_POSTREAD);
1874		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1875	}
1876
1877	rxd->rx_m = m;
1878	map = rxd->rx_dmamap;
1879	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1880	rxd->rx_size = segs[0].ds_len;
1881	sc->rl_ldata.rl_rx_sparemap = map;
1882	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1883	    BUS_DMASYNC_PREREAD);
1884
1885	desc = &sc->rl_ldata.rl_rx_list[idx];
1886	desc->rl_vlanctl = 0;
1887	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1888	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1889	cmdstat = segs[0].ds_len;
1890	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1891		cmdstat |= RL_RDESC_CMD_EOR;
1892	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1893
1894	return (0);
1895}
1896
1897static int
1898re_jumbo_newbuf(struct rl_softc *sc, int idx)
1899{
1900	struct mbuf		*m;
1901	struct rl_rxdesc	*rxd;
1902	bus_dma_segment_t	segs[1];
1903	bus_dmamap_t		map;
1904	struct rl_desc		*desc;
1905	uint32_t		cmdstat;
1906	int			error, nsegs;
1907
1908	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1909	if (m == NULL)
1910		return (ENOBUFS);
1911	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1912#ifdef RE_FIXUP_RX
1913	m_adj(m, RE_ETHER_ALIGN);
1914#endif
1915	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
1916	    sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1917	if (error != 0) {
1918		m_freem(m);
1919		return (ENOBUFS);
1920	}
1921	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1922
1923	rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1924	if (rxd->rx_m != NULL) {
1925		bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1926		    BUS_DMASYNC_POSTREAD);
1927		bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
1928	}
1929
1930	rxd->rx_m = m;
1931	map = rxd->rx_dmamap;
1932	rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
1933	rxd->rx_size = segs[0].ds_len;
1934	sc->rl_ldata.rl_jrx_sparemap = map;
1935	bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1936	    BUS_DMASYNC_PREREAD);
1937
1938	desc = &sc->rl_ldata.rl_rx_list[idx];
1939	desc->rl_vlanctl = 0;
1940	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1941	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1942	cmdstat = segs[0].ds_len;
1943	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1944		cmdstat |= RL_RDESC_CMD_EOR;
1945	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1946
1947	return (0);
1948}
1949
1950#ifdef RE_FIXUP_RX
1951static __inline void
1952re_fixup_rx(struct mbuf *m)
1953{
1954	int                     i;
1955	uint16_t                *src, *dst;
1956
1957	src = mtod(m, uint16_t *);
1958	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1959
1960	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1961		*dst++ = *src++;
1962
1963	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1964}
1965#endif
1966
1967static int
1968re_tx_list_init(struct rl_softc *sc)
1969{
1970	struct rl_desc		*desc;
1971	int			i;
1972
1973	RL_LOCK_ASSERT(sc);
1974
1975	bzero(sc->rl_ldata.rl_tx_list,
1976	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1977	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1978		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1979	/* Set EOR. */
1980	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1981	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1982
1983	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1984	    sc->rl_ldata.rl_tx_list_map,
1985	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1986
1987	sc->rl_ldata.rl_tx_prodidx = 0;
1988	sc->rl_ldata.rl_tx_considx = 0;
1989	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1990
1991	return (0);
1992}
1993
1994static int
1995re_rx_list_init(struct rl_softc *sc)
1996{
1997	int			error, i;
1998
1999	bzero(sc->rl_ldata.rl_rx_list,
2000	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2001	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2002		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
2003		if ((error = re_newbuf(sc, i)) != 0)
2004			return (error);
2005	}
2006
2007	/* Flush the RX descriptors */
2008
2009	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2010	    sc->rl_ldata.rl_rx_list_map,
2011	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2012
2013	sc->rl_ldata.rl_rx_prodidx = 0;
2014	sc->rl_head = sc->rl_tail = NULL;
2015	sc->rl_int_rx_act = 0;
2016
2017	return (0);
2018}
2019
2020static int
2021re_jrx_list_init(struct rl_softc *sc)
2022{
2023	int			error, i;
2024
2025	bzero(sc->rl_ldata.rl_rx_list,
2026	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2027	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2028		sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2029		if ((error = re_jumbo_newbuf(sc, i)) != 0)
2030			return (error);
2031	}
2032
2033	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2034	    sc->rl_ldata.rl_rx_list_map,
2035	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2036
2037	sc->rl_ldata.rl_rx_prodidx = 0;
2038	sc->rl_head = sc->rl_tail = NULL;
2039	sc->rl_int_rx_act = 0;
2040
2041	return (0);
2042}
2043
2044/*
2045 * RX handler for C+ and 8169. For the gigE chips, we support
2046 * the reception of jumbo frames that have been fragmented
2047 * across multiple 2K mbuf cluster buffers.
2048 */
2049static int
2050re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2051{
2052	struct mbuf		*m;
2053	struct ifnet		*ifp;
2054	int			i, rxerr, total_len;
2055	struct rl_desc		*cur_rx;
2056	u_int32_t		rxstat, rxvlan;
2057	int			jumbo, maxpkt = 16, rx_npkts = 0;
2058
2059	RL_LOCK_ASSERT(sc);
2060
2061	ifp = sc->rl_ifp;
2062	if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2063		jumbo = 1;
2064	else
2065		jumbo = 0;
2066
2067	/* Invalidate the descriptor memory */
2068
2069	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2070	    sc->rl_ldata.rl_rx_list_map,
2071	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2072
2073	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2074	    i = RL_RX_DESC_NXT(sc, i)) {
2075		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2076			break;
2077		cur_rx = &sc->rl_ldata.rl_rx_list[i];
2078		rxstat = le32toh(cur_rx->rl_cmdstat);
2079		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2080			break;
2081		total_len = rxstat & sc->rl_rxlenmask;
2082		rxvlan = le32toh(cur_rx->rl_vlanctl);
2083		if (jumbo != 0)
2084			m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2085		else
2086			m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2087
2088		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2089		    (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2090		    (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2091			/*
2092			 * RTL8168C or later controllers do not
2093			 * support multi-fragment packet.
2094			 */
2095			re_discard_rxbuf(sc, i);
2096			continue;
2097		} else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2098			if (re_newbuf(sc, i) != 0) {
2099				/*
2100				 * If this is part of a multi-fragment packet,
2101				 * discard all the pieces.
2102				 */
2103				if (sc->rl_head != NULL) {
2104					m_freem(sc->rl_head);
2105					sc->rl_head = sc->rl_tail = NULL;
2106				}
2107				re_discard_rxbuf(sc, i);
2108				continue;
2109			}
2110			m->m_len = RE_RX_DESC_BUFLEN;
2111			if (sc->rl_head == NULL)
2112				sc->rl_head = sc->rl_tail = m;
2113			else {
2114				m->m_flags &= ~M_PKTHDR;
2115				sc->rl_tail->m_next = m;
2116				sc->rl_tail = m;
2117			}
2118			continue;
2119		}
2120
2121		/*
2122		 * NOTE: for the 8139C+, the frame length field
2123		 * is always 12 bits in size, but for the gigE chips,
2124		 * it is 13 bits (since the max RX frame length is 16K).
2125		 * Unfortunately, all 32 bits in the status word
2126		 * were already used, so to make room for the extra
2127		 * length bit, RealTek took out the 'frame alignment
2128		 * error' bit and shifted the other status bits
2129		 * over one slot. The OWN, EOR, FS and LS bits are
2130		 * still in the same places. We have already extracted
2131		 * the frame length and checked the OWN bit, so rather
2132		 * than using an alternate bit mapping, we shift the
2133		 * status bits one space to the right so we can evaluate
2134		 * them using the 8169 status as though it was in the
2135		 * same format as that of the 8139C+.
2136		 */
2137		if (sc->rl_type == RL_8169)
2138			rxstat >>= 1;
2139
2140		/*
2141		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2142		 * set, but if CRC is clear, it will still be a valid frame.
2143		 */
2144		if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2145			rxerr = 1;
2146			if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2147			    total_len > 8191 &&
2148			    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2149				rxerr = 0;
2150			if (rxerr != 0) {
2151				ifp->if_ierrors++;
2152				/*
2153				 * If this is part of a multi-fragment packet,
2154				 * discard all the pieces.
2155				 */
2156				if (sc->rl_head != NULL) {
2157					m_freem(sc->rl_head);
2158					sc->rl_head = sc->rl_tail = NULL;
2159				}
2160				re_discard_rxbuf(sc, i);
2161				continue;
2162			}
2163		}
2164
2165		/*
2166		 * If allocating a replacement mbuf fails,
2167		 * reload the current one.
2168		 */
2169		if (jumbo != 0)
2170			rxerr = re_jumbo_newbuf(sc, i);
2171		else
2172			rxerr = re_newbuf(sc, i);
2173		if (rxerr != 0) {
2174			ifp->if_iqdrops++;
2175			if (sc->rl_head != NULL) {
2176				m_freem(sc->rl_head);
2177				sc->rl_head = sc->rl_tail = NULL;
2178			}
2179			re_discard_rxbuf(sc, i);
2180			continue;
2181		}
2182
2183		if (sc->rl_head != NULL) {
2184			if (jumbo != 0)
2185				m->m_len = total_len;
2186			else {
2187				m->m_len = total_len % RE_RX_DESC_BUFLEN;
2188				if (m->m_len == 0)
2189					m->m_len = RE_RX_DESC_BUFLEN;
2190			}
2191			/*
2192			 * Special case: if there's 4 bytes or less
2193			 * in this buffer, the mbuf can be discarded:
2194			 * the last 4 bytes is the CRC, which we don't
2195			 * care about anyway.
2196			 */
2197			if (m->m_len <= ETHER_CRC_LEN) {
2198				sc->rl_tail->m_len -=
2199				    (ETHER_CRC_LEN - m->m_len);
2200				m_freem(m);
2201			} else {
2202				m->m_len -= ETHER_CRC_LEN;
2203				m->m_flags &= ~M_PKTHDR;
2204				sc->rl_tail->m_next = m;
2205			}
2206			m = sc->rl_head;
2207			sc->rl_head = sc->rl_tail = NULL;
2208			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2209		} else
2210			m->m_pkthdr.len = m->m_len =
2211			    (total_len - ETHER_CRC_LEN);
2212
2213#ifdef RE_FIXUP_RX
2214		re_fixup_rx(m);
2215#endif
2216		ifp->if_ipackets++;
2217		m->m_pkthdr.rcvif = ifp;
2218
2219		/* Do RX checksumming if enabled */
2220
2221		if (ifp->if_capenable & IFCAP_RXCSUM) {
2222			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2223				/* Check IP header checksum */
2224				if (rxstat & RL_RDESC_STAT_PROTOID)
2225					m->m_pkthdr.csum_flags |=
2226					    CSUM_IP_CHECKED;
2227				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2228					m->m_pkthdr.csum_flags |=
2229					    CSUM_IP_VALID;
2230
2231				/* Check TCP/UDP checksum */
2232				if ((RL_TCPPKT(rxstat) &&
2233				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2234				    (RL_UDPPKT(rxstat) &&
2235				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2236					m->m_pkthdr.csum_flags |=
2237						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2238					m->m_pkthdr.csum_data = 0xffff;
2239				}
2240			} else {
2241				/*
2242				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2243				 */
2244				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2245				    (rxvlan & RL_RDESC_IPV4))
2246					m->m_pkthdr.csum_flags |=
2247					    CSUM_IP_CHECKED;
2248				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2249				    (rxvlan & RL_RDESC_IPV4))
2250					m->m_pkthdr.csum_flags |=
2251					    CSUM_IP_VALID;
2252				if (((rxstat & RL_RDESC_STAT_TCP) &&
2253				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2254				    ((rxstat & RL_RDESC_STAT_UDP) &&
2255				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2256					m->m_pkthdr.csum_flags |=
2257						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2258					m->m_pkthdr.csum_data = 0xffff;
2259				}
2260			}
2261		}
2262		maxpkt--;
2263		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2264			m->m_pkthdr.ether_vtag =
2265			    bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2266			m->m_flags |= M_VLANTAG;
2267		}
2268		RL_UNLOCK(sc);
2269		(*ifp->if_input)(ifp, m);
2270		RL_LOCK(sc);
2271		rx_npkts++;
2272	}
2273
2274	/* Flush the RX DMA ring */
2275
2276	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2277	    sc->rl_ldata.rl_rx_list_map,
2278	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2279
2280	sc->rl_ldata.rl_rx_prodidx = i;
2281
2282	if (rx_npktsp != NULL)
2283		*rx_npktsp = rx_npkts;
2284	if (maxpkt)
2285		return (EAGAIN);
2286
2287	return (0);
2288}
2289
2290static void
2291re_txeof(struct rl_softc *sc)
2292{
2293	struct ifnet		*ifp;
2294	struct rl_txdesc	*txd;
2295	u_int32_t		txstat;
2296	int			cons;
2297
2298	cons = sc->rl_ldata.rl_tx_considx;
2299	if (cons == sc->rl_ldata.rl_tx_prodidx)
2300		return;
2301
2302	ifp = sc->rl_ifp;
2303	/* Invalidate the TX descriptor list */
2304	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2305	    sc->rl_ldata.rl_tx_list_map,
2306	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2307
2308	for (; cons != sc->rl_ldata.rl_tx_prodidx;
2309	    cons = RL_TX_DESC_NXT(sc, cons)) {
2310		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2311		if (txstat & RL_TDESC_STAT_OWN)
2312			break;
2313		/*
2314		 * We only stash mbufs in the last descriptor
2315		 * in a fragment chain, which also happens to
2316		 * be the only place where the TX status bits
2317		 * are valid.
2318		 */
2319		if (txstat & RL_TDESC_CMD_EOF) {
2320			txd = &sc->rl_ldata.rl_tx_desc[cons];
2321			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2322			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2323			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2324			    txd->tx_dmamap);
2325			KASSERT(txd->tx_m != NULL,
2326			    ("%s: freeing NULL mbufs!", __func__));
2327			m_freem(txd->tx_m);
2328			txd->tx_m = NULL;
2329			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2330			    RL_TDESC_STAT_COLCNT))
2331				ifp->if_collisions++;
2332			if (txstat & RL_TDESC_STAT_TXERRSUM)
2333				ifp->if_oerrors++;
2334			else
2335				ifp->if_opackets++;
2336		}
2337		sc->rl_ldata.rl_tx_free++;
2338		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2339	}
2340	sc->rl_ldata.rl_tx_considx = cons;
2341
2342	/* No changes made to the TX ring, so no flush needed */
2343
2344	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2345#ifdef RE_TX_MODERATION
2346		/*
2347		 * If not all descriptors have been reaped yet, reload
2348		 * the timer so that we will eventually get another
2349		 * interrupt that will cause us to re-enter this routine.
2350		 * This is done in case the transmitter has gone idle.
2351		 */
2352		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2353#endif
2354	} else
2355		sc->rl_watchdog_timer = 0;
2356}
2357
2358static void
2359re_tick(void *xsc)
2360{
2361	struct rl_softc		*sc;
2362	struct mii_data		*mii;
2363
2364	sc = xsc;
2365
2366	RL_LOCK_ASSERT(sc);
2367
2368	mii = device_get_softc(sc->rl_miibus);
2369	mii_tick(mii);
2370	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2371		re_miibus_statchg(sc->rl_dev);
2372	/*
2373	 * Reclaim transmitted frames here. Technically it is not
2374	 * necessary to do here but it ensures periodic reclamation
2375	 * regardless of Tx completion interrupt which seems to be
2376	 * lost on PCIe based controllers under certain situations.
2377	 */
2378	re_txeof(sc);
2379	re_watchdog(sc);
2380	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2381}
2382
2383#ifdef DEVICE_POLLING
2384static int
2385re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2386{
2387	struct rl_softc *sc = ifp->if_softc;
2388	int rx_npkts = 0;
2389
2390	RL_LOCK(sc);
2391	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2392		rx_npkts = re_poll_locked(ifp, cmd, count);
2393	RL_UNLOCK(sc);
2394	return (rx_npkts);
2395}
2396
2397static int
2398re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2399{
2400	struct rl_softc *sc = ifp->if_softc;
2401	int rx_npkts;
2402
2403	RL_LOCK_ASSERT(sc);
2404
2405	sc->rxcycles = count;
2406	re_rxeof(sc, &rx_npkts);
2407	re_txeof(sc);
2408
2409	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2410		re_start_locked(ifp);
2411
2412	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2413		u_int16_t       status;
2414
2415		status = CSR_READ_2(sc, RL_ISR);
2416		if (status == 0xffff)
2417			return (rx_npkts);
2418		if (status)
2419			CSR_WRITE_2(sc, RL_ISR, status);
2420		if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2421		    (sc->rl_flags & RL_FLAG_PCIE))
2422			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2423
2424		/*
2425		 * XXX check behaviour on receiver stalls.
2426		 */
2427
2428		if (status & RL_ISR_SYSTEM_ERR) {
2429			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2430			re_init_locked(sc);
2431		}
2432	}
2433	return (rx_npkts);
2434}
2435#endif /* DEVICE_POLLING */
2436
2437static int
2438re_intr(void *arg)
2439{
2440	struct rl_softc		*sc;
2441	uint16_t		status;
2442
2443	sc = arg;
2444
2445	status = CSR_READ_2(sc, RL_ISR);
2446	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2447                return (FILTER_STRAY);
2448	CSR_WRITE_2(sc, RL_IMR, 0);
2449
2450	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2451
2452	return (FILTER_HANDLED);
2453}
2454
2455static void
2456re_int_task(void *arg, int npending)
2457{
2458	struct rl_softc		*sc;
2459	struct ifnet		*ifp;
2460	u_int16_t		status;
2461	int			rval = 0;
2462
2463	sc = arg;
2464	ifp = sc->rl_ifp;
2465
2466	RL_LOCK(sc);
2467
2468	status = CSR_READ_2(sc, RL_ISR);
2469        CSR_WRITE_2(sc, RL_ISR, status);
2470
2471	if (sc->suspended ||
2472	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2473		RL_UNLOCK(sc);
2474		return;
2475	}
2476
2477#ifdef DEVICE_POLLING
2478	if  (ifp->if_capenable & IFCAP_POLLING) {
2479		RL_UNLOCK(sc);
2480		return;
2481	}
2482#endif
2483
2484	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2485		rval = re_rxeof(sc, NULL);
2486
2487	/*
2488	 * Some chips will ignore a second TX request issued
2489	 * while an existing transmission is in progress. If
2490	 * the transmitter goes idle but there are still
2491	 * packets waiting to be sent, we need to restart the
2492	 * channel here to flush them out. This only seems to
2493	 * be required with the PCIe devices.
2494	 */
2495	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2496	    (sc->rl_flags & RL_FLAG_PCIE))
2497		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2498	if (status & (
2499#ifdef RE_TX_MODERATION
2500	    RL_ISR_TIMEOUT_EXPIRED|
2501#else
2502	    RL_ISR_TX_OK|
2503#endif
2504	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2505		re_txeof(sc);
2506
2507	if (status & RL_ISR_SYSTEM_ERR) {
2508		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2509		re_init_locked(sc);
2510	}
2511
2512	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2513		re_start_locked(ifp);
2514
2515	RL_UNLOCK(sc);
2516
2517        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2518		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2519		return;
2520	}
2521
2522	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2523}
2524
2525static void
2526re_intr_msi(void *xsc)
2527{
2528	struct rl_softc		*sc;
2529	struct ifnet		*ifp;
2530	uint16_t		intrs, status;
2531
2532	sc = xsc;
2533	RL_LOCK(sc);
2534
2535	ifp = sc->rl_ifp;
2536#ifdef DEVICE_POLLING
2537	if (ifp->if_capenable & IFCAP_POLLING) {
2538		RL_UNLOCK(sc);
2539		return;
2540	}
2541#endif
2542	/* Disable interrupts. */
2543	CSR_WRITE_2(sc, RL_IMR, 0);
2544	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2545		RL_UNLOCK(sc);
2546		return;
2547	}
2548
2549	intrs = RL_INTRS_CPLUS;
2550	status = CSR_READ_2(sc, RL_ISR);
2551        CSR_WRITE_2(sc, RL_ISR, status);
2552	if (sc->rl_int_rx_act > 0) {
2553		intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2554		    RL_ISR_RX_OVERRUN);
2555		status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2556		    RL_ISR_RX_OVERRUN);
2557	}
2558
2559	if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2560	    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2561		re_rxeof(sc, NULL);
2562		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2563			if (sc->rl_int_rx_mod != 0 &&
2564			    (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2565			    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2566				/* Rearm one-shot timer. */
2567				CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2568				intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2569				    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2570				sc->rl_int_rx_act = 1;
2571			} else {
2572				intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2573				    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2574				sc->rl_int_rx_act = 0;
2575			}
2576		}
2577	}
2578
2579	/*
2580	 * Some chips will ignore a second TX request issued
2581	 * while an existing transmission is in progress. If
2582	 * the transmitter goes idle but there are still
2583	 * packets waiting to be sent, we need to restart the
2584	 * channel here to flush them out. This only seems to
2585	 * be required with the PCIe devices.
2586	 */
2587	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2588	    (sc->rl_flags & RL_FLAG_PCIE))
2589		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2590	if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2591		re_txeof(sc);
2592
2593	if (status & RL_ISR_SYSTEM_ERR) {
2594		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2595		re_init_locked(sc);
2596	}
2597
2598	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2599		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2600			re_start_locked(ifp);
2601		CSR_WRITE_2(sc, RL_IMR, intrs);
2602	}
2603	RL_UNLOCK(sc);
2604}
2605
2606static int
2607re_encap(struct rl_softc *sc, struct mbuf **m_head)
2608{
2609	struct rl_txdesc	*txd, *txd_last;
2610	bus_dma_segment_t	segs[RL_NTXSEGS];
2611	bus_dmamap_t		map;
2612	struct mbuf		*m_new;
2613	struct rl_desc		*desc;
2614	int			nsegs, prod;
2615	int			i, error, ei, si;
2616	int			padlen;
2617	uint32_t		cmdstat, csum_flags, vlanctl;
2618
2619	RL_LOCK_ASSERT(sc);
2620	M_ASSERTPKTHDR((*m_head));
2621
2622	/*
2623	 * With some of the RealTek chips, using the checksum offload
2624	 * support in conjunction with the autopadding feature results
2625	 * in the transmission of corrupt frames. For example, if we
2626	 * need to send a really small IP fragment that's less than 60
2627	 * bytes in size, and IP header checksumming is enabled, the
2628	 * resulting ethernet frame that appears on the wire will
2629	 * have garbled payload. To work around this, if TX IP checksum
2630	 * offload is enabled, we always manually pad short frames out
2631	 * to the minimum ethernet frame size.
2632	 */
2633	if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2634	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2635	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2636		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2637		if (M_WRITABLE(*m_head) == 0) {
2638			/* Get a writable copy. */
2639			m_new = m_dup(*m_head, M_DONTWAIT);
2640			m_freem(*m_head);
2641			if (m_new == NULL) {
2642				*m_head = NULL;
2643				return (ENOBUFS);
2644			}
2645			*m_head = m_new;
2646		}
2647		if ((*m_head)->m_next != NULL ||
2648		    M_TRAILINGSPACE(*m_head) < padlen) {
2649			m_new = m_defrag(*m_head, M_DONTWAIT);
2650			if (m_new == NULL) {
2651				m_freem(*m_head);
2652				*m_head = NULL;
2653				return (ENOBUFS);
2654			}
2655		} else
2656			m_new = *m_head;
2657
2658		/*
2659		 * Manually pad short frames, and zero the pad space
2660		 * to avoid leaking data.
2661		 */
2662		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2663		m_new->m_pkthdr.len += padlen;
2664		m_new->m_len = m_new->m_pkthdr.len;
2665		*m_head = m_new;
2666	}
2667
2668	prod = sc->rl_ldata.rl_tx_prodidx;
2669	txd = &sc->rl_ldata.rl_tx_desc[prod];
2670	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2671	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2672	if (error == EFBIG) {
2673		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2674		if (m_new == NULL) {
2675			m_freem(*m_head);
2676			*m_head = NULL;
2677			return (ENOBUFS);
2678		}
2679		*m_head = m_new;
2680		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2681		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2682		if (error != 0) {
2683			m_freem(*m_head);
2684			*m_head = NULL;
2685			return (error);
2686		}
2687	} else if (error != 0)
2688		return (error);
2689	if (nsegs == 0) {
2690		m_freem(*m_head);
2691		*m_head = NULL;
2692		return (EIO);
2693	}
2694
2695	/* Check for number of available descriptors. */
2696	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2697		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2698		return (ENOBUFS);
2699	}
2700
2701	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2702	    BUS_DMASYNC_PREWRITE);
2703
2704	/*
2705	 * Set up checksum offload. Note: checksum offload bits must
2706	 * appear in all descriptors of a multi-descriptor transmit
2707	 * attempt. This is according to testing done with an 8169
2708	 * chip. This is a requirement.
2709	 */
2710	vlanctl = 0;
2711	csum_flags = 0;
2712	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2713		if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2714			csum_flags |= RL_TDESC_CMD_LGSEND;
2715			vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2716			    RL_TDESC_CMD_MSSVALV2_SHIFT);
2717		} else {
2718			csum_flags |= RL_TDESC_CMD_LGSEND |
2719			    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2720			    RL_TDESC_CMD_MSSVAL_SHIFT);
2721		}
2722	} else {
2723		/*
2724		 * Unconditionally enable IP checksum if TCP or UDP
2725		 * checksum is required. Otherwise, TCP/UDP checksum
2726		 * does't make effects.
2727		 */
2728		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2729			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2730				csum_flags |= RL_TDESC_CMD_IPCSUM;
2731				if (((*m_head)->m_pkthdr.csum_flags &
2732				    CSUM_TCP) != 0)
2733					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2734				if (((*m_head)->m_pkthdr.csum_flags &
2735				    CSUM_UDP) != 0)
2736					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2737			} else {
2738				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2739				if (((*m_head)->m_pkthdr.csum_flags &
2740				    CSUM_TCP) != 0)
2741					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2742				if (((*m_head)->m_pkthdr.csum_flags &
2743				    CSUM_UDP) != 0)
2744					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2745			}
2746		}
2747	}
2748
2749	/*
2750	 * Set up hardware VLAN tagging. Note: vlan tag info must
2751	 * appear in all descriptors of a multi-descriptor
2752	 * transmission attempt.
2753	 */
2754	if ((*m_head)->m_flags & M_VLANTAG)
2755		vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2756		    RL_TDESC_VLANCTL_TAG;
2757
2758	si = prod;
2759	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2760		desc = &sc->rl_ldata.rl_tx_list[prod];
2761		desc->rl_vlanctl = htole32(vlanctl);
2762		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2763		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2764		cmdstat = segs[i].ds_len;
2765		if (i != 0)
2766			cmdstat |= RL_TDESC_CMD_OWN;
2767		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2768			cmdstat |= RL_TDESC_CMD_EOR;
2769		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2770		sc->rl_ldata.rl_tx_free--;
2771	}
2772	/* Update producer index. */
2773	sc->rl_ldata.rl_tx_prodidx = prod;
2774
2775	/* Set EOF on the last descriptor. */
2776	ei = RL_TX_DESC_PRV(sc, prod);
2777	desc = &sc->rl_ldata.rl_tx_list[ei];
2778	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2779
2780	desc = &sc->rl_ldata.rl_tx_list[si];
2781	/* Set SOF and transfer ownership of packet to the chip. */
2782	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2783
2784	/*
2785	 * Insure that the map for this transmission
2786	 * is placed at the array index of the last descriptor
2787	 * in this chain.  (Swap last and first dmamaps.)
2788	 */
2789	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2790	map = txd->tx_dmamap;
2791	txd->tx_dmamap = txd_last->tx_dmamap;
2792	txd_last->tx_dmamap = map;
2793	txd_last->tx_m = *m_head;
2794
2795	return (0);
2796}
2797
2798static void
2799re_start(struct ifnet *ifp)
2800{
2801	struct rl_softc		*sc;
2802
2803	sc = ifp->if_softc;
2804	RL_LOCK(sc);
2805	re_start_locked(ifp);
2806	RL_UNLOCK(sc);
2807}
2808
2809/*
2810 * Main transmit routine for C+ and gigE NICs.
2811 */
2812static void
2813re_start_locked(struct ifnet *ifp)
2814{
2815	struct rl_softc		*sc;
2816	struct mbuf		*m_head;
2817	int			queued;
2818
2819	sc = ifp->if_softc;
2820
2821	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2822	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2823		return;
2824
2825	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2826	    sc->rl_ldata.rl_tx_free > 1;) {
2827		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2828		if (m_head == NULL)
2829			break;
2830
2831		if (re_encap(sc, &m_head) != 0) {
2832			if (m_head == NULL)
2833				break;
2834			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2835			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2836			break;
2837		}
2838
2839		/*
2840		 * If there's a BPF listener, bounce a copy of this frame
2841		 * to him.
2842		 */
2843		ETHER_BPF_MTAP(ifp, m_head);
2844
2845		queued++;
2846	}
2847
2848	if (queued == 0) {
2849#ifdef RE_TX_MODERATION
2850		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2851			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2852#endif
2853		return;
2854	}
2855
2856	/* Flush the TX descriptors */
2857
2858	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2859	    sc->rl_ldata.rl_tx_list_map,
2860	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2861
2862	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2863
2864#ifdef RE_TX_MODERATION
2865	/*
2866	 * Use the countdown timer for interrupt moderation.
2867	 * 'TX done' interrupts are disabled. Instead, we reset the
2868	 * countdown timer, which will begin counting until it hits
2869	 * the value in the TIMERINT register, and then trigger an
2870	 * interrupt. Each time we write to the TIMERCNT register,
2871	 * the timer count is reset to 0.
2872	 */
2873	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2874#endif
2875
2876	/*
2877	 * Set a timeout in case the chip goes out to lunch.
2878	 */
2879	sc->rl_watchdog_timer = 5;
2880}
2881
2882static void
2883re_set_jumbo(struct rl_softc *sc, int jumbo)
2884{
2885
2886	if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
2887		pci_set_max_read_req(sc->rl_dev, 4096);
2888		return;
2889	}
2890
2891	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2892	if (jumbo != 0) {
2893		CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) |
2894		    RL_CFG3_JUMBO_EN0);
2895		switch (sc->rl_hwrev->rl_rev) {
2896		case RL_HWREV_8168DP:
2897			break;
2898		case RL_HWREV_8168E:
2899			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2900			    0x01);
2901			break;
2902		default:
2903			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2904			    RL_CFG4_JUMBO_EN1);
2905		}
2906	} else {
2907		CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) &
2908		    ~RL_CFG3_JUMBO_EN0);
2909		switch (sc->rl_hwrev->rl_rev) {
2910		case RL_HWREV_8168DP:
2911			break;
2912		case RL_HWREV_8168E:
2913			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
2914			    ~0x01);
2915			break;
2916		default:
2917			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
2918			    ~RL_CFG4_JUMBO_EN1);
2919		}
2920	}
2921	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2922
2923	switch (sc->rl_hwrev->rl_rev) {
2924	case RL_HWREV_8168DP:
2925		pci_set_max_read_req(sc->rl_dev, 4096);
2926		break;
2927	default:
2928		if (jumbo != 0)
2929			pci_set_max_read_req(sc->rl_dev, 512);
2930		else
2931			pci_set_max_read_req(sc->rl_dev, 4096);
2932	}
2933}
2934
2935static void
2936re_init(void *xsc)
2937{
2938	struct rl_softc		*sc = xsc;
2939
2940	RL_LOCK(sc);
2941	re_init_locked(sc);
2942	RL_UNLOCK(sc);
2943}
2944
2945static void
2946re_init_locked(struct rl_softc *sc)
2947{
2948	struct ifnet		*ifp = sc->rl_ifp;
2949	struct mii_data		*mii;
2950	uint32_t		reg;
2951	uint16_t		cfg;
2952	union {
2953		uint32_t align_dummy;
2954		u_char eaddr[ETHER_ADDR_LEN];
2955        } eaddr;
2956
2957	RL_LOCK_ASSERT(sc);
2958
2959	mii = device_get_softc(sc->rl_miibus);
2960
2961	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2962		return;
2963
2964	/*
2965	 * Cancel pending I/O and free all RX/TX buffers.
2966	 */
2967	re_stop(sc);
2968
2969	/* Put controller into known state. */
2970	re_reset(sc);
2971
2972	/*
2973	 * For C+ mode, initialize the RX descriptors and mbufs.
2974	 */
2975	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
2976		if (ifp->if_mtu > RL_MTU) {
2977			if (re_jrx_list_init(sc) != 0) {
2978				device_printf(sc->rl_dev,
2979				    "no memory for jumbo RX buffers\n");
2980				re_stop(sc);
2981				return;
2982			}
2983			/* Disable checksum offloading for jumbo frames. */
2984			ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
2985			ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
2986		} else {
2987			if (re_rx_list_init(sc) != 0) {
2988				device_printf(sc->rl_dev,
2989				    "no memory for RX buffers\n");
2990				re_stop(sc);
2991				return;
2992			}
2993		}
2994		re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
2995	} else {
2996		if (re_rx_list_init(sc) != 0) {
2997			device_printf(sc->rl_dev, "no memory for RX buffers\n");
2998			re_stop(sc);
2999			return;
3000		}
3001		if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3002		    pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
3003			if (ifp->if_mtu > RL_MTU)
3004				pci_set_max_read_req(sc->rl_dev, 512);
3005			else
3006				pci_set_max_read_req(sc->rl_dev, 4096);
3007		}
3008	}
3009	re_tx_list_init(sc);
3010
3011	/*
3012	 * Enable C+ RX and TX mode, as well as VLAN stripping and
3013	 * RX checksum offload. We must configure the C+ register
3014	 * before all others.
3015	 */
3016	cfg = RL_CPLUSCMD_PCI_MRW;
3017	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3018		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
3019	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3020		cfg |= RL_CPLUSCMD_VLANSTRIP;
3021	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
3022		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
3023		/* XXX magic. */
3024		cfg |= 0x0001;
3025	} else
3026		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3027	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3028	if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3029	    sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3030		reg = 0x000fff00;
3031		if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0)
3032			reg |= 0x000000ff;
3033		if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3034			reg |= 0x00f00000;
3035		CSR_WRITE_4(sc, 0x7c, reg);
3036		/* Disable interrupt mitigation. */
3037		CSR_WRITE_2(sc, 0xe2, 0);
3038	}
3039	/*
3040	 * Disable TSO if interface MTU size is greater than MSS
3041	 * allowed in controller.
3042	 */
3043	if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
3044		ifp->if_capenable &= ~IFCAP_TSO4;
3045		ifp->if_hwassist &= ~CSUM_TSO;
3046	}
3047
3048	/*
3049	 * Init our MAC address.  Even though the chipset
3050	 * documentation doesn't mention it, we need to enter "Config
3051	 * register write enable" mode to modify the ID registers.
3052	 */
3053	/* Copy MAC address on stack to align. */
3054	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
3055	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3056	CSR_WRITE_4(sc, RL_IDR0,
3057	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
3058	CSR_WRITE_4(sc, RL_IDR4,
3059	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
3060	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3061
3062	/*
3063	 * Load the addresses of the RX and TX lists into the chip.
3064	 */
3065
3066	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3067	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3068	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3069	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3070
3071	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3072	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3073	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3074	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3075
3076	/*
3077	 * Enable transmit and receive.
3078	 */
3079	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3080
3081	/*
3082	 * Set the initial TX configuration.
3083	 */
3084	if (sc->rl_testmode) {
3085		if (sc->rl_type == RL_8169)
3086			CSR_WRITE_4(sc, RL_TXCFG,
3087			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3088		else
3089			CSR_WRITE_4(sc, RL_TXCFG,
3090			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3091	} else
3092		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3093
3094	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3095
3096	/*
3097	 * Set the initial RX configuration.
3098	 */
3099	re_set_rxmode(sc);
3100
3101	/* Configure interrupt moderation. */
3102	if (sc->rl_type == RL_8169) {
3103		/* Magic from vendor. */
3104		CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3105	}
3106
3107#ifdef DEVICE_POLLING
3108	/*
3109	 * Disable interrupts if we are polling.
3110	 */
3111	if (ifp->if_capenable & IFCAP_POLLING)
3112		CSR_WRITE_2(sc, RL_IMR, 0);
3113	else	/* otherwise ... */
3114#endif
3115
3116	/*
3117	 * Enable interrupts.
3118	 */
3119	if (sc->rl_testmode)
3120		CSR_WRITE_2(sc, RL_IMR, 0);
3121	else
3122		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3123	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3124
3125	/* Set initial TX threshold */
3126	sc->rl_txthresh = RL_TX_THRESH_INIT;
3127
3128	/* Start RX/TX process. */
3129	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3130#ifdef notdef
3131	/* Enable receiver and transmitter. */
3132	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3133#endif
3134
3135	/*
3136	 * Initialize the timer interrupt register so that
3137	 * a timer interrupt will be generated once the timer
3138	 * reaches a certain number of ticks. The timer is
3139	 * reloaded on each transmit.
3140	 */
3141#ifdef RE_TX_MODERATION
3142	/*
3143	 * Use timer interrupt register to moderate TX interrupt
3144	 * moderation, which dramatically improves TX frame rate.
3145	 */
3146	if (sc->rl_type == RL_8169)
3147		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3148	else
3149		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3150#else
3151	/*
3152	 * Use timer interrupt register to moderate RX interrupt
3153	 * moderation.
3154	 */
3155	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3156	    intr_filter == 0) {
3157		if (sc->rl_type == RL_8169)
3158			CSR_WRITE_4(sc, RL_TIMERINT_8169,
3159			    RL_USECS(sc->rl_int_rx_mod));
3160	} else {
3161		if (sc->rl_type == RL_8169)
3162			CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3163	}
3164#endif
3165
3166	/*
3167	 * For 8169 gigE NICs, set the max allowed RX packet
3168	 * size so we can receive jumbo frames.
3169	 */
3170	if (sc->rl_type == RL_8169) {
3171		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3172			/*
3173			 * For controllers that use new jumbo frame scheme,
3174			 * set maximum size of jumbo frame depedning on
3175			 * controller revisions.
3176			 */
3177			if (ifp->if_mtu > RL_MTU)
3178				CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3179				    sc->rl_hwrev->rl_max_mtu +
3180				    ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3181				    ETHER_CRC_LEN);
3182			else
3183				CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3184				    RE_RX_DESC_BUFLEN);
3185		} else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3186		    sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3187			/* RTL810x has no jumbo frame support. */
3188			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3189		} else
3190			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3191	}
3192
3193	if (sc->rl_testmode)
3194		return;
3195
3196	mii_mediachg(mii);
3197
3198	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
3199
3200	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3201	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3202
3203	sc->rl_flags &= ~RL_FLAG_LINK;
3204	sc->rl_watchdog_timer = 0;
3205	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3206}
3207
3208/*
3209 * Set media options.
3210 */
3211static int
3212re_ifmedia_upd(struct ifnet *ifp)
3213{
3214	struct rl_softc		*sc;
3215	struct mii_data		*mii;
3216	int			error;
3217
3218	sc = ifp->if_softc;
3219	mii = device_get_softc(sc->rl_miibus);
3220	RL_LOCK(sc);
3221	error = mii_mediachg(mii);
3222	RL_UNLOCK(sc);
3223
3224	return (error);
3225}
3226
3227/*
3228 * Report current media status.
3229 */
3230static void
3231re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3232{
3233	struct rl_softc		*sc;
3234	struct mii_data		*mii;
3235
3236	sc = ifp->if_softc;
3237	mii = device_get_softc(sc->rl_miibus);
3238
3239	RL_LOCK(sc);
3240	mii_pollstat(mii);
3241	ifmr->ifm_active = mii->mii_media_active;
3242	ifmr->ifm_status = mii->mii_media_status;
3243	RL_UNLOCK(sc);
3244}
3245
3246static int
3247re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3248{
3249	struct rl_softc		*sc = ifp->if_softc;
3250	struct ifreq		*ifr = (struct ifreq *) data;
3251	struct mii_data		*mii;
3252	uint32_t		rev;
3253	int			error = 0;
3254
3255	switch (command) {
3256	case SIOCSIFMTU:
3257		if (ifr->ifr_mtu < ETHERMIN ||
3258		    ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu) {
3259			error = EINVAL;
3260			break;
3261		}
3262		RL_LOCK(sc);
3263		if (ifp->if_mtu != ifr->ifr_mtu) {
3264			ifp->if_mtu = ifr->ifr_mtu;
3265			if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3266			    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3267				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3268				re_init_locked(sc);
3269			}
3270			if (ifp->if_mtu > RL_TSO_MTU &&
3271			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
3272				ifp->if_capenable &= ~(IFCAP_TSO4 |
3273				    IFCAP_VLAN_HWTSO);
3274				ifp->if_hwassist &= ~CSUM_TSO;
3275			}
3276			VLAN_CAPABILITIES(ifp);
3277		}
3278		RL_UNLOCK(sc);
3279		break;
3280	case SIOCSIFFLAGS:
3281		RL_LOCK(sc);
3282		if ((ifp->if_flags & IFF_UP) != 0) {
3283			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3284				if (((ifp->if_flags ^ sc->rl_if_flags)
3285				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3286					re_set_rxmode(sc);
3287			} else
3288				re_init_locked(sc);
3289		} else {
3290			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3291				re_stop(sc);
3292		}
3293		sc->rl_if_flags = ifp->if_flags;
3294		RL_UNLOCK(sc);
3295		break;
3296	case SIOCADDMULTI:
3297	case SIOCDELMULTI:
3298		RL_LOCK(sc);
3299		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3300			re_set_rxmode(sc);
3301		RL_UNLOCK(sc);
3302		break;
3303	case SIOCGIFMEDIA:
3304	case SIOCSIFMEDIA:
3305		mii = device_get_softc(sc->rl_miibus);
3306		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3307		break;
3308	case SIOCSIFCAP:
3309	    {
3310		int mask, reinit;
3311
3312		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3313		reinit = 0;
3314#ifdef DEVICE_POLLING
3315		if (mask & IFCAP_POLLING) {
3316			if (ifr->ifr_reqcap & IFCAP_POLLING) {
3317				error = ether_poll_register(re_poll, ifp);
3318				if (error)
3319					return (error);
3320				RL_LOCK(sc);
3321				/* Disable interrupts */
3322				CSR_WRITE_2(sc, RL_IMR, 0x0000);
3323				ifp->if_capenable |= IFCAP_POLLING;
3324				RL_UNLOCK(sc);
3325			} else {
3326				error = ether_poll_deregister(ifp);
3327				/* Enable interrupts. */
3328				RL_LOCK(sc);
3329				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3330				ifp->if_capenable &= ~IFCAP_POLLING;
3331				RL_UNLOCK(sc);
3332			}
3333		}
3334#endif /* DEVICE_POLLING */
3335		RL_LOCK(sc);
3336		if ((mask & IFCAP_TXCSUM) != 0 &&
3337		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3338			ifp->if_capenable ^= IFCAP_TXCSUM;
3339			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) {
3340				rev = sc->rl_hwrev->rl_rev;
3341				if (rev == RL_HWREV_8168C ||
3342				    rev == RL_HWREV_8168C_SPIN2)
3343					ifp->if_hwassist |= CSUM_TCP | CSUM_UDP;
3344				else
3345					ifp->if_hwassist |= RE_CSUM_FEATURES;
3346			} else
3347				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
3348			reinit = 1;
3349		}
3350		if ((mask & IFCAP_RXCSUM) != 0 &&
3351		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
3352			ifp->if_capenable ^= IFCAP_RXCSUM;
3353			reinit = 1;
3354		}
3355		if ((mask & IFCAP_TSO4) != 0 &&
3356		    (ifp->if_capabilities & IFCAP_TSO) != 0) {
3357			ifp->if_capenable ^= IFCAP_TSO4;
3358			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
3359				ifp->if_hwassist |= CSUM_TSO;
3360			else
3361				ifp->if_hwassist &= ~CSUM_TSO;
3362			if (ifp->if_mtu > RL_TSO_MTU &&
3363			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
3364				ifp->if_capenable &= ~IFCAP_TSO4;
3365				ifp->if_hwassist &= ~CSUM_TSO;
3366			}
3367		}
3368		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3369		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
3370			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3371		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3372		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
3373			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3374			/* TSO over VLAN requires VLAN hardware tagging. */
3375			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
3376				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
3377			reinit = 1;
3378		}
3379		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3380		    (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3381		    IFCAP_VLAN_HWTSO)) != 0)
3382				reinit = 1;
3383		if ((mask & IFCAP_WOL) != 0 &&
3384		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
3385			if ((mask & IFCAP_WOL_UCAST) != 0)
3386				ifp->if_capenable ^= IFCAP_WOL_UCAST;
3387			if ((mask & IFCAP_WOL_MCAST) != 0)
3388				ifp->if_capenable ^= IFCAP_WOL_MCAST;
3389			if ((mask & IFCAP_WOL_MAGIC) != 0)
3390				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
3391		}
3392		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
3393			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3394			re_init_locked(sc);
3395		}
3396		RL_UNLOCK(sc);
3397		VLAN_CAPABILITIES(ifp);
3398	    }
3399		break;
3400	default:
3401		error = ether_ioctl(ifp, command, data);
3402		break;
3403	}
3404
3405	return (error);
3406}
3407
3408static void
3409re_watchdog(struct rl_softc *sc)
3410{
3411	struct ifnet		*ifp;
3412
3413	RL_LOCK_ASSERT(sc);
3414
3415	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3416		return;
3417
3418	ifp = sc->rl_ifp;
3419	re_txeof(sc);
3420	if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3421		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3422		    "-- recovering\n");
3423		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3424			re_start_locked(ifp);
3425		return;
3426	}
3427
3428	if_printf(ifp, "watchdog timeout\n");
3429	ifp->if_oerrors++;
3430
3431	re_rxeof(sc, NULL);
3432	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3433	re_init_locked(sc);
3434	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3435		re_start_locked(ifp);
3436}
3437
3438/*
3439 * Stop the adapter and free any mbufs allocated to the
3440 * RX and TX lists.
3441 */
3442static void
3443re_stop(struct rl_softc *sc)
3444{
3445	int			i;
3446	struct ifnet		*ifp;
3447	struct rl_txdesc	*txd;
3448	struct rl_rxdesc	*rxd;
3449
3450	RL_LOCK_ASSERT(sc);
3451
3452	ifp = sc->rl_ifp;
3453
3454	sc->rl_watchdog_timer = 0;
3455	callout_stop(&sc->rl_stat_callout);
3456	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3457
3458	if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0)
3459		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3460		    RL_CMD_RX_ENB);
3461	else
3462		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3463	DELAY(1000);
3464	CSR_WRITE_2(sc, RL_IMR, 0x0000);
3465	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3466
3467	if (sc->rl_head != NULL) {
3468		m_freem(sc->rl_head);
3469		sc->rl_head = sc->rl_tail = NULL;
3470	}
3471
3472	/* Free the TX list buffers. */
3473
3474	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3475		txd = &sc->rl_ldata.rl_tx_desc[i];
3476		if (txd->tx_m != NULL) {
3477			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3478			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3479			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3480			    txd->tx_dmamap);
3481			m_freem(txd->tx_m);
3482			txd->tx_m = NULL;
3483		}
3484	}
3485
3486	/* Free the RX list buffers. */
3487
3488	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3489		rxd = &sc->rl_ldata.rl_rx_desc[i];
3490		if (rxd->rx_m != NULL) {
3491			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3492			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3493			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3494			    rxd->rx_dmamap);
3495			m_freem(rxd->rx_m);
3496			rxd->rx_m = NULL;
3497		}
3498	}
3499}
3500
3501/*
3502 * Device suspend routine.  Stop the interface and save some PCI
3503 * settings in case the BIOS doesn't restore them properly on
3504 * resume.
3505 */
3506static int
3507re_suspend(device_t dev)
3508{
3509	struct rl_softc		*sc;
3510
3511	sc = device_get_softc(dev);
3512
3513	RL_LOCK(sc);
3514	re_stop(sc);
3515	re_setwol(sc);
3516	sc->suspended = 1;
3517	RL_UNLOCK(sc);
3518
3519	return (0);
3520}
3521
3522/*
3523 * Device resume routine.  Restore some PCI settings in case the BIOS
3524 * doesn't, re-enable busmastering, and restart the interface if
3525 * appropriate.
3526 */
3527static int
3528re_resume(device_t dev)
3529{
3530	struct rl_softc		*sc;
3531	struct ifnet		*ifp;
3532
3533	sc = device_get_softc(dev);
3534
3535	RL_LOCK(sc);
3536
3537	ifp = sc->rl_ifp;
3538	/* Take controller out of sleep mode. */
3539	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3540		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3541			CSR_WRITE_1(sc, RL_GPIO,
3542			    CSR_READ_1(sc, RL_GPIO) | 0x01);
3543	}
3544
3545	/*
3546	 * Clear WOL matching such that normal Rx filtering
3547	 * wouldn't interfere with WOL patterns.
3548	 */
3549	re_clrwol(sc);
3550
3551	/* reinitialize interface if necessary */
3552	if (ifp->if_flags & IFF_UP)
3553		re_init_locked(sc);
3554
3555	sc->suspended = 0;
3556	RL_UNLOCK(sc);
3557
3558	return (0);
3559}
3560
3561/*
3562 * Stop all chip I/O so that the kernel's probe routines don't
3563 * get confused by errant DMAs when rebooting.
3564 */
3565static int
3566re_shutdown(device_t dev)
3567{
3568	struct rl_softc		*sc;
3569
3570	sc = device_get_softc(dev);
3571
3572	RL_LOCK(sc);
3573	re_stop(sc);
3574	/*
3575	 * Mark interface as down since otherwise we will panic if
3576	 * interrupt comes in later on, which can happen in some
3577	 * cases.
3578	 */
3579	sc->rl_ifp->if_flags &= ~IFF_UP;
3580	re_setwol(sc);
3581	RL_UNLOCK(sc);
3582
3583	return (0);
3584}
3585
3586static void
3587re_setwol(struct rl_softc *sc)
3588{
3589	struct ifnet		*ifp;
3590	int			pmc;
3591	uint16_t		pmstat;
3592	uint8_t			v;
3593
3594	RL_LOCK_ASSERT(sc);
3595
3596	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3597		return;
3598
3599	ifp = sc->rl_ifp;
3600	/* Put controller into sleep mode. */
3601	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3602		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3603			CSR_WRITE_1(sc, RL_GPIO,
3604			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
3605	}
3606	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3607	    (sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3608		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3609	/* Enable config register write. */
3610	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3611
3612	/* Enable PME. */
3613	v = CSR_READ_1(sc, RL_CFG1);
3614	v &= ~RL_CFG1_PME;
3615	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3616		v |= RL_CFG1_PME;
3617	CSR_WRITE_1(sc, RL_CFG1, v);
3618
3619	v = CSR_READ_1(sc, RL_CFG3);
3620	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3621	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3622		v |= RL_CFG3_WOL_MAGIC;
3623	CSR_WRITE_1(sc, RL_CFG3, v);
3624
3625	/* Config register write done. */
3626	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3627
3628	v = CSR_READ_1(sc, RL_CFG5);
3629	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3630	v &= ~RL_CFG5_WOL_LANWAKE;
3631	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3632		v |= RL_CFG5_WOL_UCAST;
3633	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3634		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3635	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3636		v |= RL_CFG5_WOL_LANWAKE;
3637	CSR_WRITE_1(sc, RL_CFG5, v);
3638
3639	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3640	    (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3641		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3642	/*
3643	 * It seems that hardware resets its link speed to 100Mbps in
3644	 * power down mode so switching to 100Mbps in driver is not
3645	 * needed.
3646	 */
3647
3648	/* Request PME if WOL is requested. */
3649	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3650	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3651	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3652		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3653	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3654}
3655
3656static void
3657re_clrwol(struct rl_softc *sc)
3658{
3659	int			pmc;
3660	uint8_t			v;
3661
3662	RL_LOCK_ASSERT(sc);
3663
3664	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3665		return;
3666
3667	/* Enable config register write. */
3668	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3669
3670	v = CSR_READ_1(sc, RL_CFG3);
3671	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3672	CSR_WRITE_1(sc, RL_CFG3, v);
3673
3674	/* Config register write done. */
3675	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3676
3677	v = CSR_READ_1(sc, RL_CFG5);
3678	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3679	v &= ~RL_CFG5_WOL_LANWAKE;
3680	CSR_WRITE_1(sc, RL_CFG5, v);
3681}
3682
3683static void
3684re_add_sysctls(struct rl_softc *sc)
3685{
3686	struct sysctl_ctx_list	*ctx;
3687	struct sysctl_oid_list	*children;
3688	int			error;
3689
3690	ctx = device_get_sysctl_ctx(sc->rl_dev);
3691	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3692
3693	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3694	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3695	    "Statistics Information");
3696	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3697		return;
3698
3699	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3700	    CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
3701	    sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
3702	/* Pull in device tunables. */
3703	sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3704	error = resource_int_value(device_get_name(sc->rl_dev),
3705	    device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3706	if (error == 0) {
3707		if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3708		    sc->rl_int_rx_mod > RL_TIMER_MAX) {
3709			device_printf(sc->rl_dev, "int_rx_mod value out of "
3710			    "range; using default: %d\n",
3711			    RL_TIMER_DEFAULT);
3712			sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3713		}
3714	}
3715
3716}
3717
3718static int
3719re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3720{
3721	struct rl_softc		*sc;
3722	struct rl_stats		*stats;
3723	int			error, i, result;
3724
3725	result = -1;
3726	error = sysctl_handle_int(oidp, &result, 0, req);
3727	if (error || req->newptr == NULL)
3728		return (error);
3729
3730	if (result == 1) {
3731		sc = (struct rl_softc *)arg1;
3732		RL_LOCK(sc);
3733		if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3734			RL_UNLOCK(sc);
3735			goto done;
3736		}
3737		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3738		    sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3739		CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3740		    RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3741		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3742		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3743		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3744		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3745		    RL_DUMPSTATS_START));
3746		for (i = RL_TIMEOUT; i > 0; i--) {
3747			if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3748			    RL_DUMPSTATS_START) == 0)
3749				break;
3750			DELAY(1000);
3751		}
3752		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3753		    sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3754		RL_UNLOCK(sc);
3755		if (i == 0) {
3756			device_printf(sc->rl_dev,
3757			    "DUMP statistics request timedout\n");
3758			return (ETIMEDOUT);
3759		}
3760done:
3761		stats = sc->rl_ldata.rl_stats;
3762		printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3763		printf("Tx frames : %ju\n",
3764		    (uintmax_t)le64toh(stats->rl_tx_pkts));
3765		printf("Rx frames : %ju\n",
3766		    (uintmax_t)le64toh(stats->rl_rx_pkts));
3767		printf("Tx errors : %ju\n",
3768		    (uintmax_t)le64toh(stats->rl_tx_errs));
3769		printf("Rx errors : %u\n",
3770		    le32toh(stats->rl_rx_errs));
3771		printf("Rx missed frames : %u\n",
3772		    (uint32_t)le16toh(stats->rl_missed_pkts));
3773		printf("Rx frame alignment errs : %u\n",
3774		    (uint32_t)le16toh(stats->rl_rx_framealign_errs));
3775		printf("Tx single collisions : %u\n",
3776		    le32toh(stats->rl_tx_onecoll));
3777		printf("Tx multiple collisions : %u\n",
3778		    le32toh(stats->rl_tx_multicolls));
3779		printf("Rx unicast frames : %ju\n",
3780		    (uintmax_t)le64toh(stats->rl_rx_ucasts));
3781		printf("Rx broadcast frames : %ju\n",
3782		    (uintmax_t)le64toh(stats->rl_rx_bcasts));
3783		printf("Rx multicast frames : %u\n",
3784		    le32toh(stats->rl_rx_mcasts));
3785		printf("Tx aborts : %u\n",
3786		    (uint32_t)le16toh(stats->rl_tx_aborts));
3787		printf("Tx underruns : %u\n",
3788		    (uint32_t)le16toh(stats->rl_rx_underruns));
3789	}
3790
3791	return (error);
3792}
3793
3794static int
3795sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3796{
3797	int error, value;
3798
3799	if (arg1 == NULL)
3800		return (EINVAL);
3801	value = *(int *)arg1;
3802	error = sysctl_handle_int(oidp, &value, 0, req);
3803	if (error || req->newptr == NULL)
3804		return (error);
3805	if (value < low || value > high)
3806		return (EINVAL);
3807	*(int *)arg1 = value;
3808
3809	return (0);
3810}
3811
3812static int
3813sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
3814{
3815
3816	return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
3817	    RL_TIMER_MAX));
3818}
3819