if_re.c revision 224506
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 224506 2011-07-30 01:06:12Z yongari $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/sysctl.h>
127#include <sys/taskqueue.h>
128
129#include <net/if.h>
130#include <net/if_arp.h>
131#include <net/ethernet.h>
132#include <net/if_dl.h>
133#include <net/if_media.h>
134#include <net/if_types.h>
135#include <net/if_vlan_var.h>
136
137#include <net/bpf.h>
138
139#include <machine/bus.h>
140#include <machine/resource.h>
141#include <sys/bus.h>
142#include <sys/rman.h>
143
144#include <dev/mii/mii.h>
145#include <dev/mii/miivar.h>
146
147#include <dev/pci/pcireg.h>
148#include <dev/pci/pcivar.h>
149
150#include <pci/if_rlreg.h>
151
152MODULE_DEPEND(re, pci, 1, 1, 1);
153MODULE_DEPEND(re, ether, 1, 1, 1);
154MODULE_DEPEND(re, miibus, 1, 1, 1);
155
156/* "device miibus" required.  See GENERIC if you get errors here. */
157#include "miibus_if.h"
158
159/* Tunables. */
160static int intr_filter = 0;
161TUNABLE_INT("hw.re.intr_filter", &intr_filter);
162static int msi_disable = 0;
163TUNABLE_INT("hw.re.msi_disable", &msi_disable);
164static int msix_disable = 0;
165TUNABLE_INT("hw.re.msix_disable", &msix_disable);
166static int prefer_iomap = 0;
167TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
168
169#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
170
171/*
172 * Various supported device vendors/types and their names.
173 */
174static struct rl_type re_devs[] = {
175	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
176	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
177	{ DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
178	    "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
179	{ RT_VENDORID, RT_DEVICEID_8139, 0,
180	    "RealTek 8139C+ 10/100BaseTX" },
181	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
182	    "RealTek 810xE PCIe 10/100baseTX" },
183	{ RT_VENDORID, RT_DEVICEID_8168, 0,
184	    "RealTek 8168/8111 B/C/CP/D/DP/E PCIe Gigabit Ethernet" },
185	{ RT_VENDORID, RT_DEVICEID_8169, 0,
186	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
187	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
188	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
189	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
190	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
192	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193	{ USR_VENDORID, USR_DEVICEID_997902, 0,
194	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
195};
196
197static struct rl_hwrev re_hwrevs[] = {
198	{ RL_HWREV_8139, RL_8139,  "", RL_MTU },
199	{ RL_HWREV_8139A, RL_8139, "A", RL_MTU },
200	{ RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
201	{ RL_HWREV_8139B, RL_8139, "B", RL_MTU },
202	{ RL_HWREV_8130, RL_8139, "8130", RL_MTU },
203	{ RL_HWREV_8139C, RL_8139, "C", RL_MTU },
204	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
205	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
206	{ RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
207	{ RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
208	{ RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
209	{ RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
210	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
211	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
212	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
213	{ RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
214	{ RL_HWREV_8100, RL_8139, "8100", RL_MTU },
215	{ RL_HWREV_8101, RL_8139, "8101", RL_MTU },
216	{ RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
217	{ RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
218	{ RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
219	{ RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
220	{ RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
221	{ RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
222	{ RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
223	{ RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
224	{ RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
225	{ RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
226	{ RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
227	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
228	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
229	{ RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
230	{ RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
231	{ RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
232	{ RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
233	{ 0, 0, NULL, 0 }
234};
235
236static int re_probe		(device_t);
237static int re_attach		(device_t);
238static int re_detach		(device_t);
239
240static int re_encap		(struct rl_softc *, struct mbuf **);
241
242static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
243static int re_allocmem		(device_t, struct rl_softc *);
244static __inline void re_discard_rxbuf
245				(struct rl_softc *, int);
246static int re_newbuf		(struct rl_softc *, int);
247static int re_jumbo_newbuf	(struct rl_softc *, int);
248static int re_rx_list_init	(struct rl_softc *);
249static int re_jrx_list_init	(struct rl_softc *);
250static int re_tx_list_init	(struct rl_softc *);
251#ifdef RE_FIXUP_RX
252static __inline void re_fixup_rx
253				(struct mbuf *);
254#endif
255static int re_rxeof		(struct rl_softc *, int *);
256static void re_txeof		(struct rl_softc *);
257#ifdef DEVICE_POLLING
258static int re_poll		(struct ifnet *, enum poll_cmd, int);
259static int re_poll_locked	(struct ifnet *, enum poll_cmd, int);
260#endif
261static int re_intr		(void *);
262static void re_intr_msi		(void *);
263static void re_tick		(void *);
264static void re_int_task		(void *, int);
265static void re_start		(struct ifnet *);
266static void re_start_locked	(struct ifnet *);
267static int re_ioctl		(struct ifnet *, u_long, caddr_t);
268static void re_init		(void *);
269static void re_init_locked	(struct rl_softc *);
270static void re_stop		(struct rl_softc *);
271static void re_watchdog		(struct rl_softc *);
272static int re_suspend		(device_t);
273static int re_resume		(device_t);
274static int re_shutdown		(device_t);
275static int re_ifmedia_upd	(struct ifnet *);
276static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
277
278static void re_eeprom_putbyte	(struct rl_softc *, int);
279static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
280static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
281static int re_gmii_readreg	(device_t, int, int);
282static int re_gmii_writereg	(device_t, int, int, int);
283
284static int re_miibus_readreg	(device_t, int, int);
285static int re_miibus_writereg	(device_t, int, int, int);
286static void re_miibus_statchg	(device_t);
287
288static void re_set_jumbo	(struct rl_softc *, int);
289static void re_set_rxmode		(struct rl_softc *);
290static void re_reset		(struct rl_softc *);
291static void re_setwol		(struct rl_softc *);
292static void re_clrwol		(struct rl_softc *);
293
294#ifdef RE_DIAG
295static int re_diag		(struct rl_softc *);
296#endif
297
298static void re_add_sysctls	(struct rl_softc *);
299static int re_sysctl_stats	(SYSCTL_HANDLER_ARGS);
300static int sysctl_int_range	(SYSCTL_HANDLER_ARGS, int, int);
301static int sysctl_hw_re_int_mod	(SYSCTL_HANDLER_ARGS);
302
303static device_method_t re_methods[] = {
304	/* Device interface */
305	DEVMETHOD(device_probe,		re_probe),
306	DEVMETHOD(device_attach,	re_attach),
307	DEVMETHOD(device_detach,	re_detach),
308	DEVMETHOD(device_suspend,	re_suspend),
309	DEVMETHOD(device_resume,	re_resume),
310	DEVMETHOD(device_shutdown,	re_shutdown),
311
312	/* bus interface */
313	DEVMETHOD(bus_print_child,	bus_generic_print_child),
314	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
315
316	/* MII interface */
317	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
318	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
319	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
320
321	{ 0, 0 }
322};
323
324static driver_t re_driver = {
325	"re",
326	re_methods,
327	sizeof(struct rl_softc)
328};
329
330static devclass_t re_devclass;
331
332DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
333DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
334
335#define EE_SET(x)					\
336	CSR_WRITE_1(sc, RL_EECMD,			\
337		CSR_READ_1(sc, RL_EECMD) | x)
338
339#define EE_CLR(x)					\
340	CSR_WRITE_1(sc, RL_EECMD,			\
341		CSR_READ_1(sc, RL_EECMD) & ~x)
342
343/*
344 * Send a read command and address to the EEPROM, check for ACK.
345 */
346static void
347re_eeprom_putbyte(struct rl_softc *sc, int addr)
348{
349	int			d, i;
350
351	d = addr | (RL_9346_READ << sc->rl_eewidth);
352
353	/*
354	 * Feed in each bit and strobe the clock.
355	 */
356
357	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
358		if (d & i) {
359			EE_SET(RL_EE_DATAIN);
360		} else {
361			EE_CLR(RL_EE_DATAIN);
362		}
363		DELAY(100);
364		EE_SET(RL_EE_CLK);
365		DELAY(150);
366		EE_CLR(RL_EE_CLK);
367		DELAY(100);
368	}
369}
370
371/*
372 * Read a word of data stored in the EEPROM at address 'addr.'
373 */
374static void
375re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
376{
377	int			i;
378	u_int16_t		word = 0;
379
380	/*
381	 * Send address of word we want to read.
382	 */
383	re_eeprom_putbyte(sc, addr);
384
385	/*
386	 * Start reading bits from EEPROM.
387	 */
388	for (i = 0x8000; i; i >>= 1) {
389		EE_SET(RL_EE_CLK);
390		DELAY(100);
391		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
392			word |= i;
393		EE_CLR(RL_EE_CLK);
394		DELAY(100);
395	}
396
397	*dest = word;
398}
399
400/*
401 * Read a sequence of words from the EEPROM.
402 */
403static void
404re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
405{
406	int			i;
407	u_int16_t		word = 0, *ptr;
408
409	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
410
411        DELAY(100);
412
413	for (i = 0; i < cnt; i++) {
414		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
415		re_eeprom_getword(sc, off + i, &word);
416		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
417		ptr = (u_int16_t *)(dest + (i * 2));
418                *ptr = word;
419	}
420
421	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
422}
423
424static int
425re_gmii_readreg(device_t dev, int phy, int reg)
426{
427	struct rl_softc		*sc;
428	u_int32_t		rval;
429	int			i;
430
431	sc = device_get_softc(dev);
432
433	/* Let the rgephy driver read the GMEDIASTAT register */
434
435	if (reg == RL_GMEDIASTAT) {
436		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
437		return (rval);
438	}
439
440	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
441
442	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
443		rval = CSR_READ_4(sc, RL_PHYAR);
444		if (rval & RL_PHYAR_BUSY)
445			break;
446		DELAY(25);
447	}
448
449	if (i == RL_PHY_TIMEOUT) {
450		device_printf(sc->rl_dev, "PHY read failed\n");
451		return (0);
452	}
453
454	/*
455	 * Controller requires a 20us delay to process next MDIO request.
456	 */
457	DELAY(20);
458
459	return (rval & RL_PHYAR_PHYDATA);
460}
461
462static int
463re_gmii_writereg(device_t dev, int phy, int reg, int data)
464{
465	struct rl_softc		*sc;
466	u_int32_t		rval;
467	int			i;
468
469	sc = device_get_softc(dev);
470
471	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
472	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
473
474	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
475		rval = CSR_READ_4(sc, RL_PHYAR);
476		if (!(rval & RL_PHYAR_BUSY))
477			break;
478		DELAY(25);
479	}
480
481	if (i == RL_PHY_TIMEOUT) {
482		device_printf(sc->rl_dev, "PHY write failed\n");
483		return (0);
484	}
485
486	/*
487	 * Controller requires a 20us delay to process next MDIO request.
488	 */
489	DELAY(20);
490
491	return (0);
492}
493
494static int
495re_miibus_readreg(device_t dev, int phy, int reg)
496{
497	struct rl_softc		*sc;
498	u_int16_t		rval = 0;
499	u_int16_t		re8139_reg = 0;
500
501	sc = device_get_softc(dev);
502
503	if (sc->rl_type == RL_8169) {
504		rval = re_gmii_readreg(dev, phy, reg);
505		return (rval);
506	}
507
508	switch (reg) {
509	case MII_BMCR:
510		re8139_reg = RL_BMCR;
511		break;
512	case MII_BMSR:
513		re8139_reg = RL_BMSR;
514		break;
515	case MII_ANAR:
516		re8139_reg = RL_ANAR;
517		break;
518	case MII_ANER:
519		re8139_reg = RL_ANER;
520		break;
521	case MII_ANLPAR:
522		re8139_reg = RL_LPAR;
523		break;
524	case MII_PHYIDR1:
525	case MII_PHYIDR2:
526		return (0);
527	/*
528	 * Allow the rlphy driver to read the media status
529	 * register. If we have a link partner which does not
530	 * support NWAY, this is the register which will tell
531	 * us the results of parallel detection.
532	 */
533	case RL_MEDIASTAT:
534		rval = CSR_READ_1(sc, RL_MEDIASTAT);
535		return (rval);
536	default:
537		device_printf(sc->rl_dev, "bad phy register\n");
538		return (0);
539	}
540	rval = CSR_READ_2(sc, re8139_reg);
541	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
542		/* 8139C+ has different bit layout. */
543		rval &= ~(BMCR_LOOP | BMCR_ISO);
544	}
545	return (rval);
546}
547
548static int
549re_miibus_writereg(device_t dev, int phy, int reg, int data)
550{
551	struct rl_softc		*sc;
552	u_int16_t		re8139_reg = 0;
553	int			rval = 0;
554
555	sc = device_get_softc(dev);
556
557	if (sc->rl_type == RL_8169) {
558		rval = re_gmii_writereg(dev, phy, reg, data);
559		return (rval);
560	}
561
562	switch (reg) {
563	case MII_BMCR:
564		re8139_reg = RL_BMCR;
565		if (sc->rl_type == RL_8139CPLUS) {
566			/* 8139C+ has different bit layout. */
567			data &= ~(BMCR_LOOP | BMCR_ISO);
568		}
569		break;
570	case MII_BMSR:
571		re8139_reg = RL_BMSR;
572		break;
573	case MII_ANAR:
574		re8139_reg = RL_ANAR;
575		break;
576	case MII_ANER:
577		re8139_reg = RL_ANER;
578		break;
579	case MII_ANLPAR:
580		re8139_reg = RL_LPAR;
581		break;
582	case MII_PHYIDR1:
583	case MII_PHYIDR2:
584		return (0);
585		break;
586	default:
587		device_printf(sc->rl_dev, "bad phy register\n");
588		return (0);
589	}
590	CSR_WRITE_2(sc, re8139_reg, data);
591	return (0);
592}
593
594static void
595re_miibus_statchg(device_t dev)
596{
597	struct rl_softc		*sc;
598	struct ifnet		*ifp;
599	struct mii_data		*mii;
600
601	sc = device_get_softc(dev);
602	mii = device_get_softc(sc->rl_miibus);
603	ifp = sc->rl_ifp;
604	if (mii == NULL || ifp == NULL ||
605	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
606		return;
607
608	sc->rl_flags &= ~RL_FLAG_LINK;
609	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
610	    (IFM_ACTIVE | IFM_AVALID)) {
611		switch (IFM_SUBTYPE(mii->mii_media_active)) {
612		case IFM_10_T:
613		case IFM_100_TX:
614			sc->rl_flags |= RL_FLAG_LINK;
615			break;
616		case IFM_1000_T:
617			if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
618				break;
619			sc->rl_flags |= RL_FLAG_LINK;
620			break;
621		default:
622			break;
623		}
624	}
625	/*
626	 * RealTek controllers does not provide any interface to
627	 * Tx/Rx MACs for resolved speed, duplex and flow-control
628	 * parameters.
629	 */
630}
631
632/*
633 * Set the RX configuration and 64-bit multicast hash filter.
634 */
635static void
636re_set_rxmode(struct rl_softc *sc)
637{
638	struct ifnet		*ifp;
639	struct ifmultiaddr	*ifma;
640	uint32_t		hashes[2] = { 0, 0 };
641	uint32_t		h, rxfilt;
642
643	RL_LOCK_ASSERT(sc);
644
645	ifp = sc->rl_ifp;
646
647	rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
648
649	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
650		if (ifp->if_flags & IFF_PROMISC)
651			rxfilt |= RL_RXCFG_RX_ALLPHYS;
652		/*
653		 * Unlike other hardwares, we have to explicitly set
654		 * RL_RXCFG_RX_MULTI to receive multicast frames in
655		 * promiscuous mode.
656		 */
657		rxfilt |= RL_RXCFG_RX_MULTI;
658		hashes[0] = hashes[1] = 0xffffffff;
659		goto done;
660	}
661
662	if_maddr_rlock(ifp);
663	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
664		if (ifma->ifma_addr->sa_family != AF_LINK)
665			continue;
666		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
667		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
668		if (h < 32)
669			hashes[0] |= (1 << h);
670		else
671			hashes[1] |= (1 << (h - 32));
672	}
673	if_maddr_runlock(ifp);
674
675	if (hashes[0] != 0 || hashes[1] != 0) {
676		/*
677		 * For some unfathomable reason, RealTek decided to
678		 * reverse the order of the multicast hash registers
679		 * in the PCI Express parts.  This means we have to
680		 * write the hash pattern in reverse order for those
681		 * devices.
682		 */
683		if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
684			h = bswap32(hashes[0]);
685			hashes[0] = bswap32(hashes[1]);
686			hashes[1] = h;
687		}
688		rxfilt |= RL_RXCFG_RX_MULTI;
689	}
690
691done:
692	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
693	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
694	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
695}
696
697static void
698re_reset(struct rl_softc *sc)
699{
700	int			i;
701
702	RL_LOCK_ASSERT(sc);
703
704	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
705
706	for (i = 0; i < RL_TIMEOUT; i++) {
707		DELAY(10);
708		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
709			break;
710	}
711	if (i == RL_TIMEOUT)
712		device_printf(sc->rl_dev, "reset never completed!\n");
713
714	if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
715		CSR_WRITE_1(sc, 0x82, 1);
716	if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
717		re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
718}
719
720#ifdef RE_DIAG
721
722/*
723 * The following routine is designed to test for a defect on some
724 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
725 * lines connected to the bus, however for a 32-bit only card, they
726 * should be pulled high. The result of this defect is that the
727 * NIC will not work right if you plug it into a 64-bit slot: DMA
728 * operations will be done with 64-bit transfers, which will fail
729 * because the 64-bit data lines aren't connected.
730 *
731 * There's no way to work around this (short of talking a soldering
732 * iron to the board), however we can detect it. The method we use
733 * here is to put the NIC into digital loopback mode, set the receiver
734 * to promiscuous mode, and then try to send a frame. We then compare
735 * the frame data we sent to what was received. If the data matches,
736 * then the NIC is working correctly, otherwise we know the user has
737 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
738 * slot. In the latter case, there's no way the NIC can work correctly,
739 * so we print out a message on the console and abort the device attach.
740 */
741
742static int
743re_diag(struct rl_softc *sc)
744{
745	struct ifnet		*ifp = sc->rl_ifp;
746	struct mbuf		*m0;
747	struct ether_header	*eh;
748	struct rl_desc		*cur_rx;
749	u_int16_t		status;
750	u_int32_t		rxstat;
751	int			total_len, i, error = 0, phyaddr;
752	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
753	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
754
755	/* Allocate a single mbuf */
756	MGETHDR(m0, M_DONTWAIT, MT_DATA);
757	if (m0 == NULL)
758		return (ENOBUFS);
759
760	RL_LOCK(sc);
761
762	/*
763	 * Initialize the NIC in test mode. This sets the chip up
764	 * so that it can send and receive frames, but performs the
765	 * following special functions:
766	 * - Puts receiver in promiscuous mode
767	 * - Enables digital loopback mode
768	 * - Leaves interrupts turned off
769	 */
770
771	ifp->if_flags |= IFF_PROMISC;
772	sc->rl_testmode = 1;
773	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
774	re_init_locked(sc);
775	sc->rl_flags |= RL_FLAG_LINK;
776	if (sc->rl_type == RL_8169)
777		phyaddr = 1;
778	else
779		phyaddr = 0;
780
781	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
782	for (i = 0; i < RL_TIMEOUT; i++) {
783		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
784		if (!(status & BMCR_RESET))
785			break;
786	}
787
788	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
789	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
790
791	DELAY(100000);
792
793	/* Put some data in the mbuf */
794
795	eh = mtod(m0, struct ether_header *);
796	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
797	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
798	eh->ether_type = htons(ETHERTYPE_IP);
799	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
800
801	/*
802	 * Queue the packet, start transmission.
803	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
804	 */
805
806	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
807	RL_UNLOCK(sc);
808	/* XXX: re_diag must not be called when in ALTQ mode */
809	IF_HANDOFF(&ifp->if_snd, m0, ifp);
810	RL_LOCK(sc);
811	m0 = NULL;
812
813	/* Wait for it to propagate through the chip */
814
815	DELAY(100000);
816	for (i = 0; i < RL_TIMEOUT; i++) {
817		status = CSR_READ_2(sc, RL_ISR);
818		CSR_WRITE_2(sc, RL_ISR, status);
819		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
820		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
821			break;
822		DELAY(10);
823	}
824
825	if (i == RL_TIMEOUT) {
826		device_printf(sc->rl_dev,
827		    "diagnostic failed, failed to receive packet in"
828		    " loopback mode\n");
829		error = EIO;
830		goto done;
831	}
832
833	/*
834	 * The packet should have been dumped into the first
835	 * entry in the RX DMA ring. Grab it from there.
836	 */
837
838	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
839	    sc->rl_ldata.rl_rx_list_map,
840	    BUS_DMASYNC_POSTREAD);
841	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
842	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
843	    BUS_DMASYNC_POSTREAD);
844	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
845	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
846
847	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
848	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
849	eh = mtod(m0, struct ether_header *);
850
851	cur_rx = &sc->rl_ldata.rl_rx_list[0];
852	total_len = RL_RXBYTES(cur_rx);
853	rxstat = le32toh(cur_rx->rl_cmdstat);
854
855	if (total_len != ETHER_MIN_LEN) {
856		device_printf(sc->rl_dev,
857		    "diagnostic failed, received short packet\n");
858		error = EIO;
859		goto done;
860	}
861
862	/* Test that the received packet data matches what we sent. */
863
864	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
865	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
866	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
867		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
868		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
869		    dst, ":", src, ":", ETHERTYPE_IP);
870		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
871		    eh->ether_dhost, ":",  eh->ether_shost, ":",
872		    ntohs(eh->ether_type));
873		device_printf(sc->rl_dev, "You may have a defective 32-bit "
874		    "NIC plugged into a 64-bit PCI slot.\n");
875		device_printf(sc->rl_dev, "Please re-install the NIC in a "
876		    "32-bit slot for proper operation.\n");
877		device_printf(sc->rl_dev, "Read the re(4) man page for more "
878		    "details.\n");
879		error = EIO;
880	}
881
882done:
883	/* Turn interface off, release resources */
884
885	sc->rl_testmode = 0;
886	sc->rl_flags &= ~RL_FLAG_LINK;
887	ifp->if_flags &= ~IFF_PROMISC;
888	re_stop(sc);
889	if (m0 != NULL)
890		m_freem(m0);
891
892	RL_UNLOCK(sc);
893
894	return (error);
895}
896
897#endif
898
899/*
900 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
901 * IDs against our list and return a device name if we find a match.
902 */
903static int
904re_probe(device_t dev)
905{
906	struct rl_type		*t;
907	uint16_t		devid, vendor;
908	uint16_t		revid, sdevid;
909	int			i;
910
911	vendor = pci_get_vendor(dev);
912	devid = pci_get_device(dev);
913	revid = pci_get_revid(dev);
914	sdevid = pci_get_subdevice(dev);
915
916	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
917		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
918			/*
919			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
920			 * Rev. 2 is supported by sk(4).
921			 */
922			return (ENXIO);
923		}
924	}
925
926	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
927		if (revid != 0x20) {
928			/* 8139, let rl(4) take care of this device. */
929			return (ENXIO);
930		}
931	}
932
933	t = re_devs;
934	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
935		if (vendor == t->rl_vid && devid == t->rl_did) {
936			device_set_desc(dev, t->rl_name);
937			return (BUS_PROBE_DEFAULT);
938		}
939	}
940
941	return (ENXIO);
942}
943
944/*
945 * Map a single buffer address.
946 */
947
948static void
949re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
950{
951	bus_addr_t		*addr;
952
953	if (error)
954		return;
955
956	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
957	addr = arg;
958	*addr = segs->ds_addr;
959}
960
961static int
962re_allocmem(device_t dev, struct rl_softc *sc)
963{
964	bus_addr_t		lowaddr;
965	bus_size_t		rx_list_size, tx_list_size;
966	int			error;
967	int			i;
968
969	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
970	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
971
972	/*
973	 * Allocate the parent bus DMA tag appropriate for PCI.
974	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
975	 * register should be set. However some RealTek chips are known
976	 * to be buggy on DAC handling, therefore disable DAC by limiting
977	 * DMA address space to 32bit. PCIe variants of RealTek chips
978	 * may not have the limitation.
979	 */
980	lowaddr = BUS_SPACE_MAXADDR;
981	if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
982		lowaddr = BUS_SPACE_MAXADDR_32BIT;
983	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
984	    lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
985	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
986	    NULL, NULL, &sc->rl_parent_tag);
987	if (error) {
988		device_printf(dev, "could not allocate parent DMA tag\n");
989		return (error);
990	}
991
992	/*
993	 * Allocate map for TX mbufs.
994	 */
995	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
996	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
997	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
998	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
999	if (error) {
1000		device_printf(dev, "could not allocate TX DMA tag\n");
1001		return (error);
1002	}
1003
1004	/*
1005	 * Allocate map for RX mbufs.
1006	 */
1007
1008	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1009		error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1010		    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1011		    MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1012		    &sc->rl_ldata.rl_jrx_mtag);
1013		if (error) {
1014			device_printf(dev,
1015			    "could not allocate jumbo RX DMA tag\n");
1016			return (error);
1017		}
1018	}
1019	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1020	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1021	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1022	if (error) {
1023		device_printf(dev, "could not allocate RX DMA tag\n");
1024		return (error);
1025	}
1026
1027	/*
1028	 * Allocate map for TX descriptor list.
1029	 */
1030	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1031	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1032	    NULL, tx_list_size, 1, tx_list_size, 0,
1033	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1034	if (error) {
1035		device_printf(dev, "could not allocate TX DMA ring tag\n");
1036		return (error);
1037	}
1038
1039	/* Allocate DMA'able memory for the TX ring */
1040
1041	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1042	    (void **)&sc->rl_ldata.rl_tx_list,
1043	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1044	    &sc->rl_ldata.rl_tx_list_map);
1045	if (error) {
1046		device_printf(dev, "could not allocate TX DMA ring\n");
1047		return (error);
1048	}
1049
1050	/* Load the map for the TX ring. */
1051
1052	sc->rl_ldata.rl_tx_list_addr = 0;
1053	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1054	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1055	     tx_list_size, re_dma_map_addr,
1056	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1057	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1058		device_printf(dev, "could not load TX DMA ring\n");
1059		return (ENOMEM);
1060	}
1061
1062	/* Create DMA maps for TX buffers */
1063
1064	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1065		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1066		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1067		if (error) {
1068			device_printf(dev, "could not create DMA map for TX\n");
1069			return (error);
1070		}
1071	}
1072
1073	/*
1074	 * Allocate map for RX descriptor list.
1075	 */
1076	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1077	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1078	    NULL, rx_list_size, 1, rx_list_size, 0,
1079	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1080	if (error) {
1081		device_printf(dev, "could not create RX DMA ring tag\n");
1082		return (error);
1083	}
1084
1085	/* Allocate DMA'able memory for the RX ring */
1086
1087	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1088	    (void **)&sc->rl_ldata.rl_rx_list,
1089	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1090	    &sc->rl_ldata.rl_rx_list_map);
1091	if (error) {
1092		device_printf(dev, "could not allocate RX DMA ring\n");
1093		return (error);
1094	}
1095
1096	/* Load the map for the RX ring. */
1097
1098	sc->rl_ldata.rl_rx_list_addr = 0;
1099	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1100	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1101	     rx_list_size, re_dma_map_addr,
1102	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1103	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1104		device_printf(dev, "could not load RX DMA ring\n");
1105		return (ENOMEM);
1106	}
1107
1108	/* Create DMA maps for RX buffers */
1109
1110	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1111		error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1112		    &sc->rl_ldata.rl_jrx_sparemap);
1113		if (error) {
1114			device_printf(dev,
1115			    "could not create spare DMA map for jumbo RX\n");
1116			return (error);
1117		}
1118		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1119			error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1120			    &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1121			if (error) {
1122				device_printf(dev,
1123				    "could not create DMA map for jumbo RX\n");
1124				return (error);
1125			}
1126		}
1127	}
1128	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1129	    &sc->rl_ldata.rl_rx_sparemap);
1130	if (error) {
1131		device_printf(dev, "could not create spare DMA map for RX\n");
1132		return (error);
1133	}
1134	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1135		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1136		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1137		if (error) {
1138			device_printf(dev, "could not create DMA map for RX\n");
1139			return (error);
1140		}
1141	}
1142
1143	/* Create DMA map for statistics. */
1144	error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1145	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1146	    sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1147	    &sc->rl_ldata.rl_stag);
1148	if (error) {
1149		device_printf(dev, "could not create statistics DMA tag\n");
1150		return (error);
1151	}
1152	/* Allocate DMA'able memory for statistics. */
1153	error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1154	    (void **)&sc->rl_ldata.rl_stats,
1155	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1156	    &sc->rl_ldata.rl_smap);
1157	if (error) {
1158		device_printf(dev,
1159		    "could not allocate statistics DMA memory\n");
1160		return (error);
1161	}
1162	/* Load the map for statistics. */
1163	sc->rl_ldata.rl_stats_addr = 0;
1164	error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1165	    sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1166	     &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1167	if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1168		device_printf(dev, "could not load statistics DMA memory\n");
1169		return (ENOMEM);
1170	}
1171
1172	return (0);
1173}
1174
1175/*
1176 * Attach the interface. Allocate softc structures, do ifmedia
1177 * setup and ethernet/BPF attach.
1178 */
1179static int
1180re_attach(device_t dev)
1181{
1182	u_char			eaddr[ETHER_ADDR_LEN];
1183	u_int16_t		as[ETHER_ADDR_LEN / 2];
1184	struct rl_softc		*sc;
1185	struct ifnet		*ifp;
1186	struct rl_hwrev		*hw_rev;
1187	int			hwrev;
1188	u_int16_t		devid, re_did = 0;
1189	int			error = 0, i, phy, rid;
1190	int			msic, msixc, reg;
1191	uint8_t			cfg;
1192
1193	sc = device_get_softc(dev);
1194	sc->rl_dev = dev;
1195
1196	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1197	    MTX_DEF);
1198	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1199
1200	/*
1201	 * Map control/status registers.
1202	 */
1203	pci_enable_busmaster(dev);
1204
1205	devid = pci_get_device(dev);
1206	/*
1207	 * Prefer memory space register mapping over IO space.
1208	 * Because RTL8169SC does not seem to work when memory mapping
1209	 * is used always activate io mapping.
1210	 */
1211	if (devid == RT_DEVICEID_8169SC)
1212		prefer_iomap = 1;
1213	if (prefer_iomap == 0) {
1214		sc->rl_res_id = PCIR_BAR(1);
1215		sc->rl_res_type = SYS_RES_MEMORY;
1216		/* RTL8168/8101E seems to use different BARs. */
1217		if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1218			sc->rl_res_id = PCIR_BAR(2);
1219	} else {
1220		sc->rl_res_id = PCIR_BAR(0);
1221		sc->rl_res_type = SYS_RES_IOPORT;
1222	}
1223	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1224	    &sc->rl_res_id, RF_ACTIVE);
1225	if (sc->rl_res == NULL && prefer_iomap == 0) {
1226		sc->rl_res_id = PCIR_BAR(0);
1227		sc->rl_res_type = SYS_RES_IOPORT;
1228		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1229		    &sc->rl_res_id, RF_ACTIVE);
1230	}
1231	if (sc->rl_res == NULL) {
1232		device_printf(dev, "couldn't map ports/memory\n");
1233		error = ENXIO;
1234		goto fail;
1235	}
1236
1237	sc->rl_btag = rman_get_bustag(sc->rl_res);
1238	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1239
1240	msic = pci_msi_count(dev);
1241	msixc = pci_msix_count(dev);
1242	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0)
1243		sc->rl_flags |= RL_FLAG_PCIE;
1244	if (bootverbose) {
1245		device_printf(dev, "MSI count : %d\n", msic);
1246		device_printf(dev, "MSI-X count : %d\n", msixc);
1247	}
1248	if (msix_disable > 0)
1249		msixc = 0;
1250	if (msi_disable > 0)
1251		msic = 0;
1252	/* Prefer MSI-X to MSI. */
1253	if (msixc > 0) {
1254		msixc = 1;
1255		rid = PCIR_BAR(4);
1256		sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1257		    &rid, RF_ACTIVE);
1258		if (sc->rl_res_pba == NULL) {
1259			device_printf(sc->rl_dev,
1260			    "could not allocate MSI-X PBA resource\n");
1261		}
1262		if (sc->rl_res_pba != NULL &&
1263		    pci_alloc_msix(dev, &msixc) == 0) {
1264			if (msixc == 1) {
1265				device_printf(dev, "Using %d MSI-X message\n",
1266				    msixc);
1267				sc->rl_flags |= RL_FLAG_MSIX;
1268			} else
1269				pci_release_msi(dev);
1270		}
1271		if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1272			if (sc->rl_res_pba != NULL)
1273				bus_release_resource(dev, SYS_RES_MEMORY, rid,
1274				    sc->rl_res_pba);
1275			sc->rl_res_pba = NULL;
1276			msixc = 0;
1277		}
1278	}
1279	/* Prefer MSI to INTx. */
1280	if (msixc == 0 && msic > 0) {
1281		msic = 1;
1282		if (pci_alloc_msi(dev, &msic) == 0) {
1283			if (msic == RL_MSI_MESSAGES) {
1284				device_printf(dev, "Using %d MSI message\n",
1285				    msic);
1286				sc->rl_flags |= RL_FLAG_MSI;
1287				/* Explicitly set MSI enable bit. */
1288				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1289				cfg = CSR_READ_1(sc, RL_CFG2);
1290				cfg |= RL_CFG2_MSI;
1291				CSR_WRITE_1(sc, RL_CFG2, cfg);
1292				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1293			} else
1294				pci_release_msi(dev);
1295		}
1296		if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1297			msic = 0;
1298	}
1299
1300	/* Allocate interrupt */
1301	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1302		rid = 0;
1303		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1304		    RF_SHAREABLE | RF_ACTIVE);
1305		if (sc->rl_irq[0] == NULL) {
1306			device_printf(dev, "couldn't allocate IRQ resources\n");
1307			error = ENXIO;
1308			goto fail;
1309		}
1310	} else {
1311		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1312			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1313			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1314			if (sc->rl_irq[i] == NULL) {
1315				device_printf(dev,
1316				    "couldn't llocate IRQ resources for "
1317				    "message %d\n", rid);
1318				error = ENXIO;
1319				goto fail;
1320			}
1321		}
1322	}
1323
1324	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1325		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1326		cfg = CSR_READ_1(sc, RL_CFG2);
1327		if ((cfg & RL_CFG2_MSI) != 0) {
1328			device_printf(dev, "turning off MSI enable bit.\n");
1329			cfg &= ~RL_CFG2_MSI;
1330			CSR_WRITE_1(sc, RL_CFG2, cfg);
1331		}
1332		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1333	}
1334
1335	hw_rev = re_hwrevs;
1336	hwrev = CSR_READ_4(sc, RL_TXCFG);
1337	switch (hwrev & 0x70000000) {
1338	case 0x00000000:
1339	case 0x10000000:
1340		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1341		hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1342		break;
1343	default:
1344		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1345		hwrev &= RL_TXCFG_HWREV;
1346		break;
1347	}
1348	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1349	while (hw_rev->rl_desc != NULL) {
1350		if (hw_rev->rl_rev == hwrev) {
1351			sc->rl_type = hw_rev->rl_type;
1352			sc->rl_hwrev = hw_rev;
1353			break;
1354		}
1355		hw_rev++;
1356	}
1357	if (hw_rev->rl_desc == NULL) {
1358		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1359		error = ENXIO;
1360		goto fail;
1361	}
1362
1363	switch (hw_rev->rl_rev) {
1364	case RL_HWREV_8139CPLUS:
1365		sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1366		break;
1367	case RL_HWREV_8100E:
1368	case RL_HWREV_8101E:
1369		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1370		break;
1371	case RL_HWREV_8102E:
1372	case RL_HWREV_8102EL:
1373	case RL_HWREV_8102EL_SPIN1:
1374		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1375		    RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1376		    RL_FLAG_AUTOPAD;
1377		break;
1378	case RL_HWREV_8103E:
1379		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1380		    RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1381		    RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1382		break;
1383	case RL_HWREV_8401E:
1384	case RL_HWREV_8105E:
1385		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1386		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1387		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1388		break;
1389	case RL_HWREV_8168B_SPIN1:
1390	case RL_HWREV_8168B_SPIN2:
1391		sc->rl_flags |= RL_FLAG_WOLRXENB;
1392		/* FALLTHROUGH */
1393	case RL_HWREV_8168B_SPIN3:
1394		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1395		break;
1396	case RL_HWREV_8168C_SPIN2:
1397		sc->rl_flags |= RL_FLAG_MACSLEEP;
1398		/* FALLTHROUGH */
1399	case RL_HWREV_8168C:
1400		if ((hwrev & 0x00700000) == 0x00200000)
1401			sc->rl_flags |= RL_FLAG_MACSLEEP;
1402		/* FALLTHROUGH */
1403	case RL_HWREV_8168CP:
1404	case RL_HWREV_8168D:
1405	case RL_HWREV_8168DP:
1406		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1407		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1408		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
1409		break;
1410	case RL_HWREV_8168E:
1411		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1412		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1413		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
1414		break;
1415	case RL_HWREV_8168E_VL:
1416		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1417		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1418		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2;
1419		break;
1420	case RL_HWREV_8169_8110SB:
1421	case RL_HWREV_8169_8110SBL:
1422	case RL_HWREV_8169_8110SC:
1423	case RL_HWREV_8169_8110SCE:
1424		sc->rl_flags |= RL_FLAG_PHYWAKE;
1425		/* FALLTHROUGH */
1426	case RL_HWREV_8169:
1427	case RL_HWREV_8169S:
1428	case RL_HWREV_8110S:
1429		sc->rl_flags |= RL_FLAG_MACRESET;
1430		break;
1431	default:
1432		break;
1433	}
1434
1435	/* Reset the adapter. */
1436	RL_LOCK(sc);
1437	re_reset(sc);
1438	RL_UNLOCK(sc);
1439
1440	/* Enable PME. */
1441	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1442	cfg = CSR_READ_1(sc, RL_CFG1);
1443	cfg |= RL_CFG1_PME;
1444	CSR_WRITE_1(sc, RL_CFG1, cfg);
1445	cfg = CSR_READ_1(sc, RL_CFG5);
1446	cfg &= RL_CFG5_PME_STS;
1447	CSR_WRITE_1(sc, RL_CFG5, cfg);
1448	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1449
1450	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1451		/*
1452		 * XXX Should have a better way to extract station
1453		 * address from EEPROM.
1454		 */
1455		for (i = 0; i < ETHER_ADDR_LEN; i++)
1456			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1457	} else {
1458		sc->rl_eewidth = RL_9356_ADDR_LEN;
1459		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1460		if (re_did != 0x8129)
1461			sc->rl_eewidth = RL_9346_ADDR_LEN;
1462
1463		/*
1464		 * Get station address from the EEPROM.
1465		 */
1466		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1467		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1468			as[i] = le16toh(as[i]);
1469		bcopy(as, eaddr, sizeof(eaddr));
1470	}
1471
1472	if (sc->rl_type == RL_8169) {
1473		/* Set RX length mask and number of descriptors. */
1474		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1475		sc->rl_txstart = RL_GTXSTART;
1476		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1477		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1478	} else {
1479		/* Set RX length mask and number of descriptors. */
1480		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1481		sc->rl_txstart = RL_TXSTART;
1482		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1483		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1484	}
1485
1486	error = re_allocmem(dev, sc);
1487	if (error)
1488		goto fail;
1489	re_add_sysctls(sc);
1490
1491	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1492	if (ifp == NULL) {
1493		device_printf(dev, "can not if_alloc()\n");
1494		error = ENOSPC;
1495		goto fail;
1496	}
1497
1498	/* Take controller out of deep sleep mode. */
1499	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1500		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1501			CSR_WRITE_1(sc, RL_GPIO,
1502			    CSR_READ_1(sc, RL_GPIO) | 0x01);
1503		else
1504			CSR_WRITE_1(sc, RL_GPIO,
1505			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
1506	}
1507
1508	/* Take PHY out of power down mode. */
1509	if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1510		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1511		if (hw_rev->rl_rev == RL_HWREV_8401E)
1512			CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1513	}
1514	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1515		re_gmii_writereg(dev, 1, 0x1f, 0);
1516		re_gmii_writereg(dev, 1, 0x0e, 0);
1517	}
1518
1519#define	RE_PHYAD_INTERNAL	 0
1520
1521	/* Do MII setup. */
1522	phy = RE_PHYAD_INTERNAL;
1523	if (sc->rl_type == RL_8169)
1524		phy = 1;
1525	error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1526	    re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1527	if (error != 0) {
1528		device_printf(dev, "attaching PHYs failed\n");
1529		goto fail;
1530	}
1531
1532	ifp->if_softc = sc;
1533	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1534	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1535	ifp->if_ioctl = re_ioctl;
1536	ifp->if_start = re_start;
1537	/*
1538	 * RTL8168/8111C generates wrong IP checksummed frame if the
1539	 * packet has IP options so disable TX IP checksum offloading.
1540	 */
1541	if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1542	    sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2)
1543		ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
1544	else
1545		ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1546	ifp->if_hwassist |= CSUM_TSO;
1547	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1548	ifp->if_capenable = ifp->if_capabilities;
1549	ifp->if_init = re_init;
1550	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1551	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1552	IFQ_SET_READY(&ifp->if_snd);
1553
1554	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1555
1556	/*
1557	 * Call MI attach routine.
1558	 */
1559	ether_ifattach(ifp, eaddr);
1560
1561	/* VLAN capability setup */
1562	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1563	if (ifp->if_capabilities & IFCAP_HWCSUM)
1564		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1565	/* Enable WOL if PM is supported. */
1566	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1567		ifp->if_capabilities |= IFCAP_WOL;
1568	ifp->if_capenable = ifp->if_capabilities;
1569	/*
1570	 * Don't enable TSO by default.  It is known to generate
1571	 * corrupted TCP segments(bad TCP options) under certain
1572	 * circumtances.
1573	 */
1574	ifp->if_hwassist &= ~CSUM_TSO;
1575	ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1576#ifdef DEVICE_POLLING
1577	ifp->if_capabilities |= IFCAP_POLLING;
1578#endif
1579	/*
1580	 * Tell the upper layer(s) we support long frames.
1581	 * Must appear after the call to ether_ifattach() because
1582	 * ether_ifattach() sets ifi_hdrlen to the default value.
1583	 */
1584	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1585
1586#ifdef RE_DIAG
1587	/*
1588	 * Perform hardware diagnostic on the original RTL8169.
1589	 * Some 32-bit cards were incorrectly wired and would
1590	 * malfunction if plugged into a 64-bit slot.
1591	 */
1592
1593	if (hwrev == RL_HWREV_8169) {
1594		error = re_diag(sc);
1595		if (error) {
1596			device_printf(dev,
1597		    	"attach aborted due to hardware diag failure\n");
1598			ether_ifdetach(ifp);
1599			goto fail;
1600		}
1601	}
1602#endif
1603
1604#ifdef RE_TX_MODERATION
1605	intr_filter = 1;
1606#endif
1607	/* Hook interrupt last to avoid having to lock softc */
1608	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1609	    intr_filter == 0) {
1610		error = bus_setup_intr(dev, sc->rl_irq[0],
1611		    INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1612		    &sc->rl_intrhand[0]);
1613	} else {
1614		error = bus_setup_intr(dev, sc->rl_irq[0],
1615		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1616		    &sc->rl_intrhand[0]);
1617	}
1618	if (error) {
1619		device_printf(dev, "couldn't set up irq\n");
1620		ether_ifdetach(ifp);
1621	}
1622
1623fail:
1624
1625	if (error)
1626		re_detach(dev);
1627
1628	return (error);
1629}
1630
1631/*
1632 * Shutdown hardware and free up resources. This can be called any
1633 * time after the mutex has been initialized. It is called in both
1634 * the error case in attach and the normal detach case so it needs
1635 * to be careful about only freeing resources that have actually been
1636 * allocated.
1637 */
1638static int
1639re_detach(device_t dev)
1640{
1641	struct rl_softc		*sc;
1642	struct ifnet		*ifp;
1643	int			i, rid;
1644
1645	sc = device_get_softc(dev);
1646	ifp = sc->rl_ifp;
1647	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1648
1649	/* These should only be active if attach succeeded */
1650	if (device_is_attached(dev)) {
1651#ifdef DEVICE_POLLING
1652		if (ifp->if_capenable & IFCAP_POLLING)
1653			ether_poll_deregister(ifp);
1654#endif
1655		RL_LOCK(sc);
1656#if 0
1657		sc->suspended = 1;
1658#endif
1659		re_stop(sc);
1660		RL_UNLOCK(sc);
1661		callout_drain(&sc->rl_stat_callout);
1662		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1663		/*
1664		 * Force off the IFF_UP flag here, in case someone
1665		 * still had a BPF descriptor attached to this
1666		 * interface. If they do, ether_ifdetach() will cause
1667		 * the BPF code to try and clear the promisc mode
1668		 * flag, which will bubble down to re_ioctl(),
1669		 * which will try to call re_init() again. This will
1670		 * turn the NIC back on and restart the MII ticker,
1671		 * which will panic the system when the kernel tries
1672		 * to invoke the re_tick() function that isn't there
1673		 * anymore.
1674		 */
1675		ifp->if_flags &= ~IFF_UP;
1676		ether_ifdetach(ifp);
1677	}
1678	if (sc->rl_miibus)
1679		device_delete_child(dev, sc->rl_miibus);
1680	bus_generic_detach(dev);
1681
1682	/*
1683	 * The rest is resource deallocation, so we should already be
1684	 * stopped here.
1685	 */
1686
1687	if (sc->rl_intrhand[0] != NULL) {
1688		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1689		sc->rl_intrhand[0] = NULL;
1690	}
1691	if (ifp != NULL)
1692		if_free(ifp);
1693	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1694		rid = 0;
1695	else
1696		rid = 1;
1697	if (sc->rl_irq[0] != NULL) {
1698		bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1699		sc->rl_irq[0] = NULL;
1700	}
1701	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1702		pci_release_msi(dev);
1703	if (sc->rl_res_pba) {
1704		rid = PCIR_BAR(4);
1705		bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1706	}
1707	if (sc->rl_res)
1708		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1709		    sc->rl_res);
1710
1711	/* Unload and free the RX DMA ring memory and map */
1712
1713	if (sc->rl_ldata.rl_rx_list_tag) {
1714		if (sc->rl_ldata.rl_rx_list_map)
1715			bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1716			    sc->rl_ldata.rl_rx_list_map);
1717		if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
1718			bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1719			    sc->rl_ldata.rl_rx_list,
1720			    sc->rl_ldata.rl_rx_list_map);
1721		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1722	}
1723
1724	/* Unload and free the TX DMA ring memory and map */
1725
1726	if (sc->rl_ldata.rl_tx_list_tag) {
1727		if (sc->rl_ldata.rl_tx_list_map)
1728			bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1729			    sc->rl_ldata.rl_tx_list_map);
1730		if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
1731			bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1732			    sc->rl_ldata.rl_tx_list,
1733			    sc->rl_ldata.rl_tx_list_map);
1734		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1735	}
1736
1737	/* Destroy all the RX and TX buffer maps */
1738
1739	if (sc->rl_ldata.rl_tx_mtag) {
1740		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1741			if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1742				bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1743				    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1744		}
1745		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1746	}
1747	if (sc->rl_ldata.rl_rx_mtag) {
1748		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1749			if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1750				bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1751				    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1752		}
1753		if (sc->rl_ldata.rl_rx_sparemap)
1754			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1755			    sc->rl_ldata.rl_rx_sparemap);
1756		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1757	}
1758	if (sc->rl_ldata.rl_jrx_mtag) {
1759		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1760			if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1761				bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1762				    sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1763		}
1764		if (sc->rl_ldata.rl_jrx_sparemap)
1765			bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1766			    sc->rl_ldata.rl_jrx_sparemap);
1767		bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1768	}
1769	/* Unload and free the stats buffer and map */
1770
1771	if (sc->rl_ldata.rl_stag) {
1772		if (sc->rl_ldata.rl_smap)
1773			bus_dmamap_unload(sc->rl_ldata.rl_stag,
1774			    sc->rl_ldata.rl_smap);
1775		if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
1776			bus_dmamem_free(sc->rl_ldata.rl_stag,
1777			    sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1778		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1779	}
1780
1781	if (sc->rl_parent_tag)
1782		bus_dma_tag_destroy(sc->rl_parent_tag);
1783
1784	mtx_destroy(&sc->rl_mtx);
1785
1786	return (0);
1787}
1788
1789static __inline void
1790re_discard_rxbuf(struct rl_softc *sc, int idx)
1791{
1792	struct rl_desc		*desc;
1793	struct rl_rxdesc	*rxd;
1794	uint32_t		cmdstat;
1795
1796	if (sc->rl_ifp->if_mtu > RL_MTU &&
1797	    (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1798		rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1799	else
1800		rxd = &sc->rl_ldata.rl_rx_desc[idx];
1801	desc = &sc->rl_ldata.rl_rx_list[idx];
1802	desc->rl_vlanctl = 0;
1803	cmdstat = rxd->rx_size;
1804	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1805		cmdstat |= RL_RDESC_CMD_EOR;
1806	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1807}
1808
1809static int
1810re_newbuf(struct rl_softc *sc, int idx)
1811{
1812	struct mbuf		*m;
1813	struct rl_rxdesc	*rxd;
1814	bus_dma_segment_t	segs[1];
1815	bus_dmamap_t		map;
1816	struct rl_desc		*desc;
1817	uint32_t		cmdstat;
1818	int			error, nsegs;
1819
1820	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1821	if (m == NULL)
1822		return (ENOBUFS);
1823
1824	m->m_len = m->m_pkthdr.len = MCLBYTES;
1825#ifdef RE_FIXUP_RX
1826	/*
1827	 * This is part of an evil trick to deal with non-x86 platforms.
1828	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1829	 * boundaries, but that will hose non-x86 machines. To get around
1830	 * this, we leave some empty space at the start of each buffer
1831	 * and for non-x86 hosts, we copy the buffer back six bytes
1832	 * to achieve word alignment. This is slightly more efficient
1833	 * than allocating a new buffer, copying the contents, and
1834	 * discarding the old buffer.
1835	 */
1836	m_adj(m, RE_ETHER_ALIGN);
1837#endif
1838	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1839	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1840	if (error != 0) {
1841		m_freem(m);
1842		return (ENOBUFS);
1843	}
1844	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1845
1846	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1847	if (rxd->rx_m != NULL) {
1848		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1849		    BUS_DMASYNC_POSTREAD);
1850		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1851	}
1852
1853	rxd->rx_m = m;
1854	map = rxd->rx_dmamap;
1855	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1856	rxd->rx_size = segs[0].ds_len;
1857	sc->rl_ldata.rl_rx_sparemap = map;
1858	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1859	    BUS_DMASYNC_PREREAD);
1860
1861	desc = &sc->rl_ldata.rl_rx_list[idx];
1862	desc->rl_vlanctl = 0;
1863	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1864	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1865	cmdstat = segs[0].ds_len;
1866	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1867		cmdstat |= RL_RDESC_CMD_EOR;
1868	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1869
1870	return (0);
1871}
1872
1873static int
1874re_jumbo_newbuf(struct rl_softc *sc, int idx)
1875{
1876	struct mbuf		*m;
1877	struct rl_rxdesc	*rxd;
1878	bus_dma_segment_t	segs[1];
1879	bus_dmamap_t		map;
1880	struct rl_desc		*desc;
1881	uint32_t		cmdstat;
1882	int			error, nsegs;
1883
1884	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1885	if (m == NULL)
1886		return (ENOBUFS);
1887	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1888#ifdef RE_FIXUP_RX
1889	m_adj(m, RE_ETHER_ALIGN);
1890#endif
1891	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
1892	    sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1893	if (error != 0) {
1894		m_freem(m);
1895		return (ENOBUFS);
1896	}
1897	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1898
1899	rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1900	if (rxd->rx_m != NULL) {
1901		bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1902		    BUS_DMASYNC_POSTREAD);
1903		bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
1904	}
1905
1906	rxd->rx_m = m;
1907	map = rxd->rx_dmamap;
1908	rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
1909	rxd->rx_size = segs[0].ds_len;
1910	sc->rl_ldata.rl_jrx_sparemap = map;
1911	bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1912	    BUS_DMASYNC_PREREAD);
1913
1914	desc = &sc->rl_ldata.rl_rx_list[idx];
1915	desc->rl_vlanctl = 0;
1916	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1917	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1918	cmdstat = segs[0].ds_len;
1919	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1920		cmdstat |= RL_RDESC_CMD_EOR;
1921	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1922
1923	return (0);
1924}
1925
1926#ifdef RE_FIXUP_RX
1927static __inline void
1928re_fixup_rx(struct mbuf *m)
1929{
1930	int                     i;
1931	uint16_t                *src, *dst;
1932
1933	src = mtod(m, uint16_t *);
1934	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1935
1936	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1937		*dst++ = *src++;
1938
1939	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1940}
1941#endif
1942
1943static int
1944re_tx_list_init(struct rl_softc *sc)
1945{
1946	struct rl_desc		*desc;
1947	int			i;
1948
1949	RL_LOCK_ASSERT(sc);
1950
1951	bzero(sc->rl_ldata.rl_tx_list,
1952	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1953	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1954		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1955	/* Set EOR. */
1956	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1957	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1958
1959	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1960	    sc->rl_ldata.rl_tx_list_map,
1961	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1962
1963	sc->rl_ldata.rl_tx_prodidx = 0;
1964	sc->rl_ldata.rl_tx_considx = 0;
1965	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1966
1967	return (0);
1968}
1969
1970static int
1971re_rx_list_init(struct rl_softc *sc)
1972{
1973	int			error, i;
1974
1975	bzero(sc->rl_ldata.rl_rx_list,
1976	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1977	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1978		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1979		if ((error = re_newbuf(sc, i)) != 0)
1980			return (error);
1981	}
1982
1983	/* Flush the RX descriptors */
1984
1985	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1986	    sc->rl_ldata.rl_rx_list_map,
1987	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1988
1989	sc->rl_ldata.rl_rx_prodidx = 0;
1990	sc->rl_head = sc->rl_tail = NULL;
1991	sc->rl_int_rx_act = 0;
1992
1993	return (0);
1994}
1995
1996static int
1997re_jrx_list_init(struct rl_softc *sc)
1998{
1999	int			error, i;
2000
2001	bzero(sc->rl_ldata.rl_rx_list,
2002	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2003	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2004		sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2005		if ((error = re_jumbo_newbuf(sc, i)) != 0)
2006			return (error);
2007	}
2008
2009	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2010	    sc->rl_ldata.rl_rx_list_map,
2011	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2012
2013	sc->rl_ldata.rl_rx_prodidx = 0;
2014	sc->rl_head = sc->rl_tail = NULL;
2015	sc->rl_int_rx_act = 0;
2016
2017	return (0);
2018}
2019
2020/*
2021 * RX handler for C+ and 8169. For the gigE chips, we support
2022 * the reception of jumbo frames that have been fragmented
2023 * across multiple 2K mbuf cluster buffers.
2024 */
2025static int
2026re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2027{
2028	struct mbuf		*m;
2029	struct ifnet		*ifp;
2030	int			i, rxerr, total_len;
2031	struct rl_desc		*cur_rx;
2032	u_int32_t		rxstat, rxvlan;
2033	int			jumbo, maxpkt = 16, rx_npkts = 0;
2034
2035	RL_LOCK_ASSERT(sc);
2036
2037	ifp = sc->rl_ifp;
2038	if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2039		jumbo = 1;
2040	else
2041		jumbo = 0;
2042
2043	/* Invalidate the descriptor memory */
2044
2045	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2046	    sc->rl_ldata.rl_rx_list_map,
2047	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2048
2049	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2050	    i = RL_RX_DESC_NXT(sc, i)) {
2051		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2052			break;
2053		cur_rx = &sc->rl_ldata.rl_rx_list[i];
2054		rxstat = le32toh(cur_rx->rl_cmdstat);
2055		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2056			break;
2057		total_len = rxstat & sc->rl_rxlenmask;
2058		rxvlan = le32toh(cur_rx->rl_vlanctl);
2059		if (jumbo != 0)
2060			m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2061		else
2062			m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2063
2064		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2065		    (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2066		    (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2067			/*
2068			 * RTL8168C or later controllers do not
2069			 * support multi-fragment packet.
2070			 */
2071			re_discard_rxbuf(sc, i);
2072			continue;
2073		} else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2074			if (re_newbuf(sc, i) != 0) {
2075				/*
2076				 * If this is part of a multi-fragment packet,
2077				 * discard all the pieces.
2078				 */
2079				if (sc->rl_head != NULL) {
2080					m_freem(sc->rl_head);
2081					sc->rl_head = sc->rl_tail = NULL;
2082				}
2083				re_discard_rxbuf(sc, i);
2084				continue;
2085			}
2086			m->m_len = RE_RX_DESC_BUFLEN;
2087			if (sc->rl_head == NULL)
2088				sc->rl_head = sc->rl_tail = m;
2089			else {
2090				m->m_flags &= ~M_PKTHDR;
2091				sc->rl_tail->m_next = m;
2092				sc->rl_tail = m;
2093			}
2094			continue;
2095		}
2096
2097		/*
2098		 * NOTE: for the 8139C+, the frame length field
2099		 * is always 12 bits in size, but for the gigE chips,
2100		 * it is 13 bits (since the max RX frame length is 16K).
2101		 * Unfortunately, all 32 bits in the status word
2102		 * were already used, so to make room for the extra
2103		 * length bit, RealTek took out the 'frame alignment
2104		 * error' bit and shifted the other status bits
2105		 * over one slot. The OWN, EOR, FS and LS bits are
2106		 * still in the same places. We have already extracted
2107		 * the frame length and checked the OWN bit, so rather
2108		 * than using an alternate bit mapping, we shift the
2109		 * status bits one space to the right so we can evaluate
2110		 * them using the 8169 status as though it was in the
2111		 * same format as that of the 8139C+.
2112		 */
2113		if (sc->rl_type == RL_8169)
2114			rxstat >>= 1;
2115
2116		/*
2117		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2118		 * set, but if CRC is clear, it will still be a valid frame.
2119		 */
2120		if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2121			rxerr = 1;
2122			if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2123			    total_len > 8191 &&
2124			    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2125				rxerr = 0;
2126			if (rxerr != 0) {
2127				ifp->if_ierrors++;
2128				/*
2129				 * If this is part of a multi-fragment packet,
2130				 * discard all the pieces.
2131				 */
2132				if (sc->rl_head != NULL) {
2133					m_freem(sc->rl_head);
2134					sc->rl_head = sc->rl_tail = NULL;
2135				}
2136				re_discard_rxbuf(sc, i);
2137				continue;
2138			}
2139		}
2140
2141		/*
2142		 * If allocating a replacement mbuf fails,
2143		 * reload the current one.
2144		 */
2145		if (jumbo != 0)
2146			rxerr = re_jumbo_newbuf(sc, i);
2147		else
2148			rxerr = re_newbuf(sc, i);
2149		if (rxerr != 0) {
2150			ifp->if_iqdrops++;
2151			if (sc->rl_head != NULL) {
2152				m_freem(sc->rl_head);
2153				sc->rl_head = sc->rl_tail = NULL;
2154			}
2155			re_discard_rxbuf(sc, i);
2156			continue;
2157		}
2158
2159		if (sc->rl_head != NULL) {
2160			if (jumbo != 0)
2161				m->m_len = total_len;
2162			else {
2163				m->m_len = total_len % RE_RX_DESC_BUFLEN;
2164				if (m->m_len == 0)
2165					m->m_len = RE_RX_DESC_BUFLEN;
2166			}
2167			/*
2168			 * Special case: if there's 4 bytes or less
2169			 * in this buffer, the mbuf can be discarded:
2170			 * the last 4 bytes is the CRC, which we don't
2171			 * care about anyway.
2172			 */
2173			if (m->m_len <= ETHER_CRC_LEN) {
2174				sc->rl_tail->m_len -=
2175				    (ETHER_CRC_LEN - m->m_len);
2176				m_freem(m);
2177			} else {
2178				m->m_len -= ETHER_CRC_LEN;
2179				m->m_flags &= ~M_PKTHDR;
2180				sc->rl_tail->m_next = m;
2181			}
2182			m = sc->rl_head;
2183			sc->rl_head = sc->rl_tail = NULL;
2184			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2185		} else
2186			m->m_pkthdr.len = m->m_len =
2187			    (total_len - ETHER_CRC_LEN);
2188
2189#ifdef RE_FIXUP_RX
2190		re_fixup_rx(m);
2191#endif
2192		ifp->if_ipackets++;
2193		m->m_pkthdr.rcvif = ifp;
2194
2195		/* Do RX checksumming if enabled */
2196
2197		if (ifp->if_capenable & IFCAP_RXCSUM) {
2198			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2199				/* Check IP header checksum */
2200				if (rxstat & RL_RDESC_STAT_PROTOID)
2201					m->m_pkthdr.csum_flags |=
2202					    CSUM_IP_CHECKED;
2203				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2204					m->m_pkthdr.csum_flags |=
2205					    CSUM_IP_VALID;
2206
2207				/* Check TCP/UDP checksum */
2208				if ((RL_TCPPKT(rxstat) &&
2209				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2210				    (RL_UDPPKT(rxstat) &&
2211				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2212					m->m_pkthdr.csum_flags |=
2213						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2214					m->m_pkthdr.csum_data = 0xffff;
2215				}
2216			} else {
2217				/*
2218				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2219				 */
2220				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2221				    (rxvlan & RL_RDESC_IPV4))
2222					m->m_pkthdr.csum_flags |=
2223					    CSUM_IP_CHECKED;
2224				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2225				    (rxvlan & RL_RDESC_IPV4))
2226					m->m_pkthdr.csum_flags |=
2227					    CSUM_IP_VALID;
2228				if (((rxstat & RL_RDESC_STAT_TCP) &&
2229				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2230				    ((rxstat & RL_RDESC_STAT_UDP) &&
2231				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2232					m->m_pkthdr.csum_flags |=
2233						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2234					m->m_pkthdr.csum_data = 0xffff;
2235				}
2236			}
2237		}
2238		maxpkt--;
2239		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2240			m->m_pkthdr.ether_vtag =
2241			    bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2242			m->m_flags |= M_VLANTAG;
2243		}
2244		RL_UNLOCK(sc);
2245		(*ifp->if_input)(ifp, m);
2246		RL_LOCK(sc);
2247		rx_npkts++;
2248	}
2249
2250	/* Flush the RX DMA ring */
2251
2252	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2253	    sc->rl_ldata.rl_rx_list_map,
2254	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2255
2256	sc->rl_ldata.rl_rx_prodidx = i;
2257
2258	if (rx_npktsp != NULL)
2259		*rx_npktsp = rx_npkts;
2260	if (maxpkt)
2261		return (EAGAIN);
2262
2263	return (0);
2264}
2265
2266static void
2267re_txeof(struct rl_softc *sc)
2268{
2269	struct ifnet		*ifp;
2270	struct rl_txdesc	*txd;
2271	u_int32_t		txstat;
2272	int			cons;
2273
2274	cons = sc->rl_ldata.rl_tx_considx;
2275	if (cons == sc->rl_ldata.rl_tx_prodidx)
2276		return;
2277
2278	ifp = sc->rl_ifp;
2279	/* Invalidate the TX descriptor list */
2280	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2281	    sc->rl_ldata.rl_tx_list_map,
2282	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2283
2284	for (; cons != sc->rl_ldata.rl_tx_prodidx;
2285	    cons = RL_TX_DESC_NXT(sc, cons)) {
2286		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2287		if (txstat & RL_TDESC_STAT_OWN)
2288			break;
2289		/*
2290		 * We only stash mbufs in the last descriptor
2291		 * in a fragment chain, which also happens to
2292		 * be the only place where the TX status bits
2293		 * are valid.
2294		 */
2295		if (txstat & RL_TDESC_CMD_EOF) {
2296			txd = &sc->rl_ldata.rl_tx_desc[cons];
2297			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2298			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2299			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2300			    txd->tx_dmamap);
2301			KASSERT(txd->tx_m != NULL,
2302			    ("%s: freeing NULL mbufs!", __func__));
2303			m_freem(txd->tx_m);
2304			txd->tx_m = NULL;
2305			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2306			    RL_TDESC_STAT_COLCNT))
2307				ifp->if_collisions++;
2308			if (txstat & RL_TDESC_STAT_TXERRSUM)
2309				ifp->if_oerrors++;
2310			else
2311				ifp->if_opackets++;
2312		}
2313		sc->rl_ldata.rl_tx_free++;
2314		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2315	}
2316	sc->rl_ldata.rl_tx_considx = cons;
2317
2318	/* No changes made to the TX ring, so no flush needed */
2319
2320	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2321#ifdef RE_TX_MODERATION
2322		/*
2323		 * If not all descriptors have been reaped yet, reload
2324		 * the timer so that we will eventually get another
2325		 * interrupt that will cause us to re-enter this routine.
2326		 * This is done in case the transmitter has gone idle.
2327		 */
2328		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2329#endif
2330	} else
2331		sc->rl_watchdog_timer = 0;
2332}
2333
2334static void
2335re_tick(void *xsc)
2336{
2337	struct rl_softc		*sc;
2338	struct mii_data		*mii;
2339
2340	sc = xsc;
2341
2342	RL_LOCK_ASSERT(sc);
2343
2344	mii = device_get_softc(sc->rl_miibus);
2345	mii_tick(mii);
2346	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2347		re_miibus_statchg(sc->rl_dev);
2348	/*
2349	 * Reclaim transmitted frames here. Technically it is not
2350	 * necessary to do here but it ensures periodic reclamation
2351	 * regardless of Tx completion interrupt which seems to be
2352	 * lost on PCIe based controllers under certain situations.
2353	 */
2354	re_txeof(sc);
2355	re_watchdog(sc);
2356	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2357}
2358
2359#ifdef DEVICE_POLLING
2360static int
2361re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2362{
2363	struct rl_softc *sc = ifp->if_softc;
2364	int rx_npkts = 0;
2365
2366	RL_LOCK(sc);
2367	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2368		rx_npkts = re_poll_locked(ifp, cmd, count);
2369	RL_UNLOCK(sc);
2370	return (rx_npkts);
2371}
2372
2373static int
2374re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2375{
2376	struct rl_softc *sc = ifp->if_softc;
2377	int rx_npkts;
2378
2379	RL_LOCK_ASSERT(sc);
2380
2381	sc->rxcycles = count;
2382	re_rxeof(sc, &rx_npkts);
2383	re_txeof(sc);
2384
2385	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2386		re_start_locked(ifp);
2387
2388	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2389		u_int16_t       status;
2390
2391		status = CSR_READ_2(sc, RL_ISR);
2392		if (status == 0xffff)
2393			return (rx_npkts);
2394		if (status)
2395			CSR_WRITE_2(sc, RL_ISR, status);
2396		if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2397		    (sc->rl_flags & RL_FLAG_PCIE))
2398			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2399
2400		/*
2401		 * XXX check behaviour on receiver stalls.
2402		 */
2403
2404		if (status & RL_ISR_SYSTEM_ERR) {
2405			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2406			re_init_locked(sc);
2407		}
2408	}
2409	return (rx_npkts);
2410}
2411#endif /* DEVICE_POLLING */
2412
2413static int
2414re_intr(void *arg)
2415{
2416	struct rl_softc		*sc;
2417	uint16_t		status;
2418
2419	sc = arg;
2420
2421	status = CSR_READ_2(sc, RL_ISR);
2422	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2423                return (FILTER_STRAY);
2424	CSR_WRITE_2(sc, RL_IMR, 0);
2425
2426	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2427
2428	return (FILTER_HANDLED);
2429}
2430
2431static void
2432re_int_task(void *arg, int npending)
2433{
2434	struct rl_softc		*sc;
2435	struct ifnet		*ifp;
2436	u_int16_t		status;
2437	int			rval = 0;
2438
2439	sc = arg;
2440	ifp = sc->rl_ifp;
2441
2442	RL_LOCK(sc);
2443
2444	status = CSR_READ_2(sc, RL_ISR);
2445        CSR_WRITE_2(sc, RL_ISR, status);
2446
2447	if (sc->suspended ||
2448	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2449		RL_UNLOCK(sc);
2450		return;
2451	}
2452
2453#ifdef DEVICE_POLLING
2454	if  (ifp->if_capenable & IFCAP_POLLING) {
2455		RL_UNLOCK(sc);
2456		return;
2457	}
2458#endif
2459
2460	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2461		rval = re_rxeof(sc, NULL);
2462
2463	/*
2464	 * Some chips will ignore a second TX request issued
2465	 * while an existing transmission is in progress. If
2466	 * the transmitter goes idle but there are still
2467	 * packets waiting to be sent, we need to restart the
2468	 * channel here to flush them out. This only seems to
2469	 * be required with the PCIe devices.
2470	 */
2471	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2472	    (sc->rl_flags & RL_FLAG_PCIE))
2473		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2474	if (status & (
2475#ifdef RE_TX_MODERATION
2476	    RL_ISR_TIMEOUT_EXPIRED|
2477#else
2478	    RL_ISR_TX_OK|
2479#endif
2480	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2481		re_txeof(sc);
2482
2483	if (status & RL_ISR_SYSTEM_ERR) {
2484		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2485		re_init_locked(sc);
2486	}
2487
2488	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2489		re_start_locked(ifp);
2490
2491	RL_UNLOCK(sc);
2492
2493        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2494		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2495		return;
2496	}
2497
2498	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2499}
2500
2501static void
2502re_intr_msi(void *xsc)
2503{
2504	struct rl_softc		*sc;
2505	struct ifnet		*ifp;
2506	uint16_t		intrs, status;
2507
2508	sc = xsc;
2509	RL_LOCK(sc);
2510
2511	ifp = sc->rl_ifp;
2512#ifdef DEVICE_POLLING
2513	if (ifp->if_capenable & IFCAP_POLLING) {
2514		RL_UNLOCK(sc);
2515		return;
2516	}
2517#endif
2518	/* Disable interrupts. */
2519	CSR_WRITE_2(sc, RL_IMR, 0);
2520	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2521		RL_UNLOCK(sc);
2522		return;
2523	}
2524
2525	intrs = RL_INTRS_CPLUS;
2526	status = CSR_READ_2(sc, RL_ISR);
2527        CSR_WRITE_2(sc, RL_ISR, status);
2528	if (sc->rl_int_rx_act > 0) {
2529		intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2530		    RL_ISR_RX_OVERRUN);
2531		status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2532		    RL_ISR_RX_OVERRUN);
2533	}
2534
2535	if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2536	    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2537		re_rxeof(sc, NULL);
2538		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2539			if (sc->rl_int_rx_mod != 0 &&
2540			    (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2541			    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2542				/* Rearm one-shot timer. */
2543				CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2544				intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2545				    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2546				sc->rl_int_rx_act = 1;
2547			} else {
2548				intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2549				    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2550				sc->rl_int_rx_act = 0;
2551			}
2552		}
2553	}
2554
2555	/*
2556	 * Some chips will ignore a second TX request issued
2557	 * while an existing transmission is in progress. If
2558	 * the transmitter goes idle but there are still
2559	 * packets waiting to be sent, we need to restart the
2560	 * channel here to flush them out. This only seems to
2561	 * be required with the PCIe devices.
2562	 */
2563	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2564	    (sc->rl_flags & RL_FLAG_PCIE))
2565		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2566	if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2567		re_txeof(sc);
2568
2569	if (status & RL_ISR_SYSTEM_ERR) {
2570		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2571		re_init_locked(sc);
2572	}
2573
2574	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2575		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2576			re_start_locked(ifp);
2577		CSR_WRITE_2(sc, RL_IMR, intrs);
2578	}
2579	RL_UNLOCK(sc);
2580}
2581
2582static int
2583re_encap(struct rl_softc *sc, struct mbuf **m_head)
2584{
2585	struct rl_txdesc	*txd, *txd_last;
2586	bus_dma_segment_t	segs[RL_NTXSEGS];
2587	bus_dmamap_t		map;
2588	struct mbuf		*m_new;
2589	struct rl_desc		*desc;
2590	int			nsegs, prod;
2591	int			i, error, ei, si;
2592	int			padlen;
2593	uint32_t		cmdstat, csum_flags, vlanctl;
2594
2595	RL_LOCK_ASSERT(sc);
2596	M_ASSERTPKTHDR((*m_head));
2597
2598	/*
2599	 * With some of the RealTek chips, using the checksum offload
2600	 * support in conjunction with the autopadding feature results
2601	 * in the transmission of corrupt frames. For example, if we
2602	 * need to send a really small IP fragment that's less than 60
2603	 * bytes in size, and IP header checksumming is enabled, the
2604	 * resulting ethernet frame that appears on the wire will
2605	 * have garbled payload. To work around this, if TX IP checksum
2606	 * offload is enabled, we always manually pad short frames out
2607	 * to the minimum ethernet frame size.
2608	 */
2609	if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2610	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2611	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2612		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2613		if (M_WRITABLE(*m_head) == 0) {
2614			/* Get a writable copy. */
2615			m_new = m_dup(*m_head, M_DONTWAIT);
2616			m_freem(*m_head);
2617			if (m_new == NULL) {
2618				*m_head = NULL;
2619				return (ENOBUFS);
2620			}
2621			*m_head = m_new;
2622		}
2623		if ((*m_head)->m_next != NULL ||
2624		    M_TRAILINGSPACE(*m_head) < padlen) {
2625			m_new = m_defrag(*m_head, M_DONTWAIT);
2626			if (m_new == NULL) {
2627				m_freem(*m_head);
2628				*m_head = NULL;
2629				return (ENOBUFS);
2630			}
2631		} else
2632			m_new = *m_head;
2633
2634		/*
2635		 * Manually pad short frames, and zero the pad space
2636		 * to avoid leaking data.
2637		 */
2638		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2639		m_new->m_pkthdr.len += padlen;
2640		m_new->m_len = m_new->m_pkthdr.len;
2641		*m_head = m_new;
2642	}
2643
2644	prod = sc->rl_ldata.rl_tx_prodidx;
2645	txd = &sc->rl_ldata.rl_tx_desc[prod];
2646	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2647	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2648	if (error == EFBIG) {
2649		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2650		if (m_new == NULL) {
2651			m_freem(*m_head);
2652			*m_head = NULL;
2653			return (ENOBUFS);
2654		}
2655		*m_head = m_new;
2656		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2657		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2658		if (error != 0) {
2659			m_freem(*m_head);
2660			*m_head = NULL;
2661			return (error);
2662		}
2663	} else if (error != 0)
2664		return (error);
2665	if (nsegs == 0) {
2666		m_freem(*m_head);
2667		*m_head = NULL;
2668		return (EIO);
2669	}
2670
2671	/* Check for number of available descriptors. */
2672	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2673		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2674		return (ENOBUFS);
2675	}
2676
2677	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2678	    BUS_DMASYNC_PREWRITE);
2679
2680	/*
2681	 * Set up checksum offload. Note: checksum offload bits must
2682	 * appear in all descriptors of a multi-descriptor transmit
2683	 * attempt. This is according to testing done with an 8169
2684	 * chip. This is a requirement.
2685	 */
2686	vlanctl = 0;
2687	csum_flags = 0;
2688	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2689		if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2690			csum_flags |= RL_TDESC_CMD_LGSEND;
2691			vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2692			    RL_TDESC_CMD_MSSVALV2_SHIFT);
2693		} else {
2694			csum_flags |= RL_TDESC_CMD_LGSEND |
2695			    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2696			    RL_TDESC_CMD_MSSVAL_SHIFT);
2697		}
2698	} else {
2699		/*
2700		 * Unconditionally enable IP checksum if TCP or UDP
2701		 * checksum is required. Otherwise, TCP/UDP checksum
2702		 * does't make effects.
2703		 */
2704		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2705			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2706				csum_flags |= RL_TDESC_CMD_IPCSUM;
2707				if (((*m_head)->m_pkthdr.csum_flags &
2708				    CSUM_TCP) != 0)
2709					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2710				if (((*m_head)->m_pkthdr.csum_flags &
2711				    CSUM_UDP) != 0)
2712					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2713			} else {
2714				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2715				if (((*m_head)->m_pkthdr.csum_flags &
2716				    CSUM_TCP) != 0)
2717					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2718				if (((*m_head)->m_pkthdr.csum_flags &
2719				    CSUM_UDP) != 0)
2720					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2721			}
2722		}
2723	}
2724
2725	/*
2726	 * Set up hardware VLAN tagging. Note: vlan tag info must
2727	 * appear in all descriptors of a multi-descriptor
2728	 * transmission attempt.
2729	 */
2730	if ((*m_head)->m_flags & M_VLANTAG)
2731		vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2732		    RL_TDESC_VLANCTL_TAG;
2733
2734	si = prod;
2735	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2736		desc = &sc->rl_ldata.rl_tx_list[prod];
2737		desc->rl_vlanctl = htole32(vlanctl);
2738		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2739		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2740		cmdstat = segs[i].ds_len;
2741		if (i != 0)
2742			cmdstat |= RL_TDESC_CMD_OWN;
2743		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2744			cmdstat |= RL_TDESC_CMD_EOR;
2745		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2746		sc->rl_ldata.rl_tx_free--;
2747	}
2748	/* Update producer index. */
2749	sc->rl_ldata.rl_tx_prodidx = prod;
2750
2751	/* Set EOF on the last descriptor. */
2752	ei = RL_TX_DESC_PRV(sc, prod);
2753	desc = &sc->rl_ldata.rl_tx_list[ei];
2754	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2755
2756	desc = &sc->rl_ldata.rl_tx_list[si];
2757	/* Set SOF and transfer ownership of packet to the chip. */
2758	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2759
2760	/*
2761	 * Insure that the map for this transmission
2762	 * is placed at the array index of the last descriptor
2763	 * in this chain.  (Swap last and first dmamaps.)
2764	 */
2765	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2766	map = txd->tx_dmamap;
2767	txd->tx_dmamap = txd_last->tx_dmamap;
2768	txd_last->tx_dmamap = map;
2769	txd_last->tx_m = *m_head;
2770
2771	return (0);
2772}
2773
2774static void
2775re_start(struct ifnet *ifp)
2776{
2777	struct rl_softc		*sc;
2778
2779	sc = ifp->if_softc;
2780	RL_LOCK(sc);
2781	re_start_locked(ifp);
2782	RL_UNLOCK(sc);
2783}
2784
2785/*
2786 * Main transmit routine for C+ and gigE NICs.
2787 */
2788static void
2789re_start_locked(struct ifnet *ifp)
2790{
2791	struct rl_softc		*sc;
2792	struct mbuf		*m_head;
2793	int			queued;
2794
2795	sc = ifp->if_softc;
2796
2797	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2798	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2799		return;
2800
2801	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2802	    sc->rl_ldata.rl_tx_free > 1;) {
2803		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2804		if (m_head == NULL)
2805			break;
2806
2807		if (re_encap(sc, &m_head) != 0) {
2808			if (m_head == NULL)
2809				break;
2810			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2811			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2812			break;
2813		}
2814
2815		/*
2816		 * If there's a BPF listener, bounce a copy of this frame
2817		 * to him.
2818		 */
2819		ETHER_BPF_MTAP(ifp, m_head);
2820
2821		queued++;
2822	}
2823
2824	if (queued == 0) {
2825#ifdef RE_TX_MODERATION
2826		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2827			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2828#endif
2829		return;
2830	}
2831
2832	/* Flush the TX descriptors */
2833
2834	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2835	    sc->rl_ldata.rl_tx_list_map,
2836	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2837
2838	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2839
2840#ifdef RE_TX_MODERATION
2841	/*
2842	 * Use the countdown timer for interrupt moderation.
2843	 * 'TX done' interrupts are disabled. Instead, we reset the
2844	 * countdown timer, which will begin counting until it hits
2845	 * the value in the TIMERINT register, and then trigger an
2846	 * interrupt. Each time we write to the TIMERCNT register,
2847	 * the timer count is reset to 0.
2848	 */
2849	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2850#endif
2851
2852	/*
2853	 * Set a timeout in case the chip goes out to lunch.
2854	 */
2855	sc->rl_watchdog_timer = 5;
2856}
2857
2858static void
2859re_set_jumbo(struct rl_softc *sc, int jumbo)
2860{
2861
2862	if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
2863		pci_set_max_read_req(sc->rl_dev, 4096);
2864		return;
2865	}
2866
2867	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2868	if (jumbo != 0) {
2869		CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) |
2870		    RL_CFG3_JUMBO_EN0);
2871		switch (sc->rl_hwrev->rl_rev) {
2872		case RL_HWREV_8168DP:
2873			break;
2874		case RL_HWREV_8168E:
2875			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2876			    0x01);
2877			break;
2878		default:
2879			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2880			    RL_CFG4_JUMBO_EN1);
2881		}
2882	} else {
2883		CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) &
2884		    ~RL_CFG3_JUMBO_EN0);
2885		switch (sc->rl_hwrev->rl_rev) {
2886		case RL_HWREV_8168DP:
2887			break;
2888		case RL_HWREV_8168E:
2889			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
2890			    ~0x01);
2891			break;
2892		default:
2893			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
2894			    ~RL_CFG4_JUMBO_EN1);
2895		}
2896	}
2897	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2898
2899	switch (sc->rl_hwrev->rl_rev) {
2900	case RL_HWREV_8168DP:
2901		pci_set_max_read_req(sc->rl_dev, 4096);
2902		break;
2903	default:
2904		if (jumbo != 0)
2905			pci_set_max_read_req(sc->rl_dev, 512);
2906		else
2907			pci_set_max_read_req(sc->rl_dev, 4096);
2908	}
2909}
2910
2911static void
2912re_init(void *xsc)
2913{
2914	struct rl_softc		*sc = xsc;
2915
2916	RL_LOCK(sc);
2917	re_init_locked(sc);
2918	RL_UNLOCK(sc);
2919}
2920
2921static void
2922re_init_locked(struct rl_softc *sc)
2923{
2924	struct ifnet		*ifp = sc->rl_ifp;
2925	struct mii_data		*mii;
2926	uint32_t		reg;
2927	uint16_t		cfg;
2928	union {
2929		uint32_t align_dummy;
2930		u_char eaddr[ETHER_ADDR_LEN];
2931        } eaddr;
2932
2933	RL_LOCK_ASSERT(sc);
2934
2935	mii = device_get_softc(sc->rl_miibus);
2936
2937	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2938		return;
2939
2940	/*
2941	 * Cancel pending I/O and free all RX/TX buffers.
2942	 */
2943	re_stop(sc);
2944
2945	/* Put controller into known state. */
2946	re_reset(sc);
2947
2948	/*
2949	 * For C+ mode, initialize the RX descriptors and mbufs.
2950	 */
2951	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
2952		if (ifp->if_mtu > RL_MTU) {
2953			if (re_jrx_list_init(sc) != 0) {
2954				device_printf(sc->rl_dev,
2955				    "no memory for jumbo RX buffers\n");
2956				re_stop(sc);
2957				return;
2958			}
2959			/* Disable checksum offloading for jumbo frames. */
2960			ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
2961			ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
2962		} else {
2963			if (re_rx_list_init(sc) != 0) {
2964				device_printf(sc->rl_dev,
2965				    "no memory for RX buffers\n");
2966				re_stop(sc);
2967				return;
2968			}
2969		}
2970		re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
2971	} else {
2972		if (re_rx_list_init(sc) != 0) {
2973			device_printf(sc->rl_dev, "no memory for RX buffers\n");
2974			re_stop(sc);
2975			return;
2976		}
2977		if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
2978		    pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
2979			if (ifp->if_mtu > RL_MTU)
2980				pci_set_max_read_req(sc->rl_dev, 512);
2981			else
2982				pci_set_max_read_req(sc->rl_dev, 4096);
2983		}
2984	}
2985	re_tx_list_init(sc);
2986
2987	/*
2988	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2989	 * RX checksum offload. We must configure the C+ register
2990	 * before all others.
2991	 */
2992	cfg = RL_CPLUSCMD_PCI_MRW;
2993	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2994		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2995	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2996		cfg |= RL_CPLUSCMD_VLANSTRIP;
2997	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
2998		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
2999		/* XXX magic. */
3000		cfg |= 0x0001;
3001	} else
3002		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3003	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3004	if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3005	    sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3006		reg = 0x000fff00;
3007		if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0)
3008			reg |= 0x000000ff;
3009		if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3010			reg |= 0x00f00000;
3011		CSR_WRITE_4(sc, 0x7c, reg);
3012		/* Disable interrupt mitigation. */
3013		CSR_WRITE_2(sc, 0xe2, 0);
3014	}
3015	/*
3016	 * Disable TSO if interface MTU size is greater than MSS
3017	 * allowed in controller.
3018	 */
3019	if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
3020		ifp->if_capenable &= ~IFCAP_TSO4;
3021		ifp->if_hwassist &= ~CSUM_TSO;
3022	}
3023
3024	/*
3025	 * Init our MAC address.  Even though the chipset
3026	 * documentation doesn't mention it, we need to enter "Config
3027	 * register write enable" mode to modify the ID registers.
3028	 */
3029	/* Copy MAC address on stack to align. */
3030	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
3031	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3032	CSR_WRITE_4(sc, RL_IDR0,
3033	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
3034	CSR_WRITE_4(sc, RL_IDR4,
3035	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
3036	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3037
3038	/*
3039	 * Load the addresses of the RX and TX lists into the chip.
3040	 */
3041
3042	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3043	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3044	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3045	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3046
3047	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3048	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3049	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3050	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3051
3052	/*
3053	 * Enable transmit and receive.
3054	 */
3055	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3056
3057	/*
3058	 * Set the initial TX configuration.
3059	 */
3060	if (sc->rl_testmode) {
3061		if (sc->rl_type == RL_8169)
3062			CSR_WRITE_4(sc, RL_TXCFG,
3063			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3064		else
3065			CSR_WRITE_4(sc, RL_TXCFG,
3066			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3067	} else
3068		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3069
3070	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3071
3072	/*
3073	 * Set the initial RX configuration.
3074	 */
3075	re_set_rxmode(sc);
3076
3077	/* Configure interrupt moderation. */
3078	if (sc->rl_type == RL_8169) {
3079		/* Magic from vendor. */
3080		CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3081	}
3082
3083#ifdef DEVICE_POLLING
3084	/*
3085	 * Disable interrupts if we are polling.
3086	 */
3087	if (ifp->if_capenable & IFCAP_POLLING)
3088		CSR_WRITE_2(sc, RL_IMR, 0);
3089	else	/* otherwise ... */
3090#endif
3091
3092	/*
3093	 * Enable interrupts.
3094	 */
3095	if (sc->rl_testmode)
3096		CSR_WRITE_2(sc, RL_IMR, 0);
3097	else
3098		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3099	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3100
3101	/* Set initial TX threshold */
3102	sc->rl_txthresh = RL_TX_THRESH_INIT;
3103
3104	/* Start RX/TX process. */
3105	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3106#ifdef notdef
3107	/* Enable receiver and transmitter. */
3108	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3109#endif
3110
3111	/*
3112	 * Initialize the timer interrupt register so that
3113	 * a timer interrupt will be generated once the timer
3114	 * reaches a certain number of ticks. The timer is
3115	 * reloaded on each transmit.
3116	 */
3117#ifdef RE_TX_MODERATION
3118	/*
3119	 * Use timer interrupt register to moderate TX interrupt
3120	 * moderation, which dramatically improves TX frame rate.
3121	 */
3122	if (sc->rl_type == RL_8169)
3123		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3124	else
3125		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3126#else
3127	/*
3128	 * Use timer interrupt register to moderate RX interrupt
3129	 * moderation.
3130	 */
3131	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3132	    intr_filter == 0) {
3133		if (sc->rl_type == RL_8169)
3134			CSR_WRITE_4(sc, RL_TIMERINT_8169,
3135			    RL_USECS(sc->rl_int_rx_mod));
3136	} else {
3137		if (sc->rl_type == RL_8169)
3138			CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3139	}
3140#endif
3141
3142	/*
3143	 * For 8169 gigE NICs, set the max allowed RX packet
3144	 * size so we can receive jumbo frames.
3145	 */
3146	if (sc->rl_type == RL_8169) {
3147		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3148			/*
3149			 * For controllers that use new jumbo frame scheme,
3150			 * set maximum size of jumbo frame depedning on
3151			 * controller revisions.
3152			 */
3153			if (ifp->if_mtu > RL_MTU)
3154				CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3155				    sc->rl_hwrev->rl_max_mtu +
3156				    ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3157				    ETHER_CRC_LEN);
3158			else
3159				CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3160				    RE_RX_DESC_BUFLEN);
3161		} else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3162		    sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3163			/* RTL810x has no jumbo frame support. */
3164			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3165		} else
3166			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3167	}
3168
3169	if (sc->rl_testmode)
3170		return;
3171
3172	mii_mediachg(mii);
3173
3174	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
3175
3176	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3177	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3178
3179	sc->rl_flags &= ~RL_FLAG_LINK;
3180	sc->rl_watchdog_timer = 0;
3181	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3182}
3183
3184/*
3185 * Set media options.
3186 */
3187static int
3188re_ifmedia_upd(struct ifnet *ifp)
3189{
3190	struct rl_softc		*sc;
3191	struct mii_data		*mii;
3192	int			error;
3193
3194	sc = ifp->if_softc;
3195	mii = device_get_softc(sc->rl_miibus);
3196	RL_LOCK(sc);
3197	error = mii_mediachg(mii);
3198	RL_UNLOCK(sc);
3199
3200	return (error);
3201}
3202
3203/*
3204 * Report current media status.
3205 */
3206static void
3207re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3208{
3209	struct rl_softc		*sc;
3210	struct mii_data		*mii;
3211
3212	sc = ifp->if_softc;
3213	mii = device_get_softc(sc->rl_miibus);
3214
3215	RL_LOCK(sc);
3216	mii_pollstat(mii);
3217	RL_UNLOCK(sc);
3218	ifmr->ifm_active = mii->mii_media_active;
3219	ifmr->ifm_status = mii->mii_media_status;
3220}
3221
3222static int
3223re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3224{
3225	struct rl_softc		*sc = ifp->if_softc;
3226	struct ifreq		*ifr = (struct ifreq *) data;
3227	struct mii_data		*mii;
3228	uint32_t		rev;
3229	int			error = 0;
3230
3231	switch (command) {
3232	case SIOCSIFMTU:
3233		if (ifr->ifr_mtu < ETHERMIN ||
3234		    ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu) {
3235			error = EINVAL;
3236			break;
3237		}
3238		RL_LOCK(sc);
3239		if (ifp->if_mtu != ifr->ifr_mtu) {
3240			ifp->if_mtu = ifr->ifr_mtu;
3241			if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3242			    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3243				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3244				re_init_locked(sc);
3245			}
3246			if (ifp->if_mtu > RL_TSO_MTU &&
3247			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
3248				ifp->if_capenable &= ~(IFCAP_TSO4 |
3249				    IFCAP_VLAN_HWTSO);
3250				ifp->if_hwassist &= ~CSUM_TSO;
3251			}
3252			VLAN_CAPABILITIES(ifp);
3253		}
3254		RL_UNLOCK(sc);
3255		break;
3256	case SIOCSIFFLAGS:
3257		RL_LOCK(sc);
3258		if ((ifp->if_flags & IFF_UP) != 0) {
3259			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3260				if (((ifp->if_flags ^ sc->rl_if_flags)
3261				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3262					re_set_rxmode(sc);
3263			} else
3264				re_init_locked(sc);
3265		} else {
3266			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3267				re_stop(sc);
3268		}
3269		sc->rl_if_flags = ifp->if_flags;
3270		RL_UNLOCK(sc);
3271		break;
3272	case SIOCADDMULTI:
3273	case SIOCDELMULTI:
3274		RL_LOCK(sc);
3275		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3276			re_set_rxmode(sc);
3277		RL_UNLOCK(sc);
3278		break;
3279	case SIOCGIFMEDIA:
3280	case SIOCSIFMEDIA:
3281		mii = device_get_softc(sc->rl_miibus);
3282		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3283		break;
3284	case SIOCSIFCAP:
3285	    {
3286		int mask, reinit;
3287
3288		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3289		reinit = 0;
3290#ifdef DEVICE_POLLING
3291		if (mask & IFCAP_POLLING) {
3292			if (ifr->ifr_reqcap & IFCAP_POLLING) {
3293				error = ether_poll_register(re_poll, ifp);
3294				if (error)
3295					return (error);
3296				RL_LOCK(sc);
3297				/* Disable interrupts */
3298				CSR_WRITE_2(sc, RL_IMR, 0x0000);
3299				ifp->if_capenable |= IFCAP_POLLING;
3300				RL_UNLOCK(sc);
3301			} else {
3302				error = ether_poll_deregister(ifp);
3303				/* Enable interrupts. */
3304				RL_LOCK(sc);
3305				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3306				ifp->if_capenable &= ~IFCAP_POLLING;
3307				RL_UNLOCK(sc);
3308			}
3309		}
3310#endif /* DEVICE_POLLING */
3311		if ((mask & IFCAP_TXCSUM) != 0 &&
3312		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3313			ifp->if_capenable ^= IFCAP_TXCSUM;
3314			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) {
3315				rev = sc->rl_hwrev->rl_rev;
3316				if (rev == RL_HWREV_8168C ||
3317				    rev == RL_HWREV_8168C_SPIN2)
3318					ifp->if_hwassist |= CSUM_TCP | CSUM_UDP;
3319				else
3320					ifp->if_hwassist |= RE_CSUM_FEATURES;
3321			} else
3322				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
3323			reinit = 1;
3324		}
3325		if ((mask & IFCAP_RXCSUM) != 0 &&
3326		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
3327			ifp->if_capenable ^= IFCAP_RXCSUM;
3328			reinit = 1;
3329		}
3330		if ((mask & IFCAP_TSO4) != 0 &&
3331		    (ifp->if_capabilities & IFCAP_TSO) != 0) {
3332			ifp->if_capenable ^= IFCAP_TSO4;
3333			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
3334				ifp->if_hwassist |= CSUM_TSO;
3335			else
3336				ifp->if_hwassist &= ~CSUM_TSO;
3337			if (ifp->if_mtu > RL_TSO_MTU &&
3338			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
3339				ifp->if_capenable &= ~IFCAP_TSO4;
3340				ifp->if_hwassist &= ~CSUM_TSO;
3341			}
3342		}
3343		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3344		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
3345			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3346		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3347		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
3348			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3349			/* TSO over VLAN requires VLAN hardware tagging. */
3350			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
3351				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
3352			reinit = 1;
3353		}
3354		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3355		    (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3356		    IFCAP_VLAN_HWTSO)) != 0)
3357				reinit = 1;
3358		if ((mask & IFCAP_WOL) != 0 &&
3359		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
3360			if ((mask & IFCAP_WOL_UCAST) != 0)
3361				ifp->if_capenable ^= IFCAP_WOL_UCAST;
3362			if ((mask & IFCAP_WOL_MCAST) != 0)
3363				ifp->if_capenable ^= IFCAP_WOL_MCAST;
3364			if ((mask & IFCAP_WOL_MAGIC) != 0)
3365				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
3366		}
3367		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
3368			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3369			re_init(sc);
3370		}
3371		VLAN_CAPABILITIES(ifp);
3372	    }
3373		break;
3374	default:
3375		error = ether_ioctl(ifp, command, data);
3376		break;
3377	}
3378
3379	return (error);
3380}
3381
3382static void
3383re_watchdog(struct rl_softc *sc)
3384{
3385	struct ifnet		*ifp;
3386
3387	RL_LOCK_ASSERT(sc);
3388
3389	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3390		return;
3391
3392	ifp = sc->rl_ifp;
3393	re_txeof(sc);
3394	if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3395		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3396		    "-- recovering\n");
3397		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3398			re_start_locked(ifp);
3399		return;
3400	}
3401
3402	if_printf(ifp, "watchdog timeout\n");
3403	ifp->if_oerrors++;
3404
3405	re_rxeof(sc, NULL);
3406	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3407	re_init_locked(sc);
3408	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3409		re_start_locked(ifp);
3410}
3411
3412/*
3413 * Stop the adapter and free any mbufs allocated to the
3414 * RX and TX lists.
3415 */
3416static void
3417re_stop(struct rl_softc *sc)
3418{
3419	int			i;
3420	struct ifnet		*ifp;
3421	struct rl_txdesc	*txd;
3422	struct rl_rxdesc	*rxd;
3423
3424	RL_LOCK_ASSERT(sc);
3425
3426	ifp = sc->rl_ifp;
3427
3428	sc->rl_watchdog_timer = 0;
3429	callout_stop(&sc->rl_stat_callout);
3430	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3431
3432	if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0)
3433		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3434		    RL_CMD_RX_ENB);
3435	else
3436		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3437	DELAY(1000);
3438	CSR_WRITE_2(sc, RL_IMR, 0x0000);
3439	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3440
3441	if (sc->rl_head != NULL) {
3442		m_freem(sc->rl_head);
3443		sc->rl_head = sc->rl_tail = NULL;
3444	}
3445
3446	/* Free the TX list buffers. */
3447
3448	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3449		txd = &sc->rl_ldata.rl_tx_desc[i];
3450		if (txd->tx_m != NULL) {
3451			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3452			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3453			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3454			    txd->tx_dmamap);
3455			m_freem(txd->tx_m);
3456			txd->tx_m = NULL;
3457		}
3458	}
3459
3460	/* Free the RX list buffers. */
3461
3462	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3463		rxd = &sc->rl_ldata.rl_rx_desc[i];
3464		if (rxd->rx_m != NULL) {
3465			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3466			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3467			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3468			    rxd->rx_dmamap);
3469			m_freem(rxd->rx_m);
3470			rxd->rx_m = NULL;
3471		}
3472	}
3473}
3474
3475/*
3476 * Device suspend routine.  Stop the interface and save some PCI
3477 * settings in case the BIOS doesn't restore them properly on
3478 * resume.
3479 */
3480static int
3481re_suspend(device_t dev)
3482{
3483	struct rl_softc		*sc;
3484
3485	sc = device_get_softc(dev);
3486
3487	RL_LOCK(sc);
3488	re_stop(sc);
3489	re_setwol(sc);
3490	sc->suspended = 1;
3491	RL_UNLOCK(sc);
3492
3493	return (0);
3494}
3495
3496/*
3497 * Device resume routine.  Restore some PCI settings in case the BIOS
3498 * doesn't, re-enable busmastering, and restart the interface if
3499 * appropriate.
3500 */
3501static int
3502re_resume(device_t dev)
3503{
3504	struct rl_softc		*sc;
3505	struct ifnet		*ifp;
3506
3507	sc = device_get_softc(dev);
3508
3509	RL_LOCK(sc);
3510
3511	ifp = sc->rl_ifp;
3512	/* Take controller out of sleep mode. */
3513	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3514		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3515			CSR_WRITE_1(sc, RL_GPIO,
3516			    CSR_READ_1(sc, RL_GPIO) | 0x01);
3517	}
3518
3519	/*
3520	 * Clear WOL matching such that normal Rx filtering
3521	 * wouldn't interfere with WOL patterns.
3522	 */
3523	re_clrwol(sc);
3524
3525	/* reinitialize interface if necessary */
3526	if (ifp->if_flags & IFF_UP)
3527		re_init_locked(sc);
3528
3529	sc->suspended = 0;
3530	RL_UNLOCK(sc);
3531
3532	return (0);
3533}
3534
3535/*
3536 * Stop all chip I/O so that the kernel's probe routines don't
3537 * get confused by errant DMAs when rebooting.
3538 */
3539static int
3540re_shutdown(device_t dev)
3541{
3542	struct rl_softc		*sc;
3543
3544	sc = device_get_softc(dev);
3545
3546	RL_LOCK(sc);
3547	re_stop(sc);
3548	/*
3549	 * Mark interface as down since otherwise we will panic if
3550	 * interrupt comes in later on, which can happen in some
3551	 * cases.
3552	 */
3553	sc->rl_ifp->if_flags &= ~IFF_UP;
3554	re_setwol(sc);
3555	RL_UNLOCK(sc);
3556
3557	return (0);
3558}
3559
3560static void
3561re_setwol(struct rl_softc *sc)
3562{
3563	struct ifnet		*ifp;
3564	int			pmc;
3565	uint16_t		pmstat;
3566	uint8_t			v;
3567
3568	RL_LOCK_ASSERT(sc);
3569
3570	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3571		return;
3572
3573	ifp = sc->rl_ifp;
3574	/* Put controller into sleep mode. */
3575	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3576		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3577			CSR_WRITE_1(sc, RL_GPIO,
3578			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
3579	}
3580	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3581	    (sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3582		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3583	/* Enable config register write. */
3584	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3585
3586	/* Enable PME. */
3587	v = CSR_READ_1(sc, RL_CFG1);
3588	v &= ~RL_CFG1_PME;
3589	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3590		v |= RL_CFG1_PME;
3591	CSR_WRITE_1(sc, RL_CFG1, v);
3592
3593	v = CSR_READ_1(sc, RL_CFG3);
3594	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3595	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3596		v |= RL_CFG3_WOL_MAGIC;
3597	CSR_WRITE_1(sc, RL_CFG3, v);
3598
3599	/* Config register write done. */
3600	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3601
3602	v = CSR_READ_1(sc, RL_CFG5);
3603	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3604	v &= ~RL_CFG5_WOL_LANWAKE;
3605	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3606		v |= RL_CFG5_WOL_UCAST;
3607	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3608		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3609	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3610		v |= RL_CFG5_WOL_LANWAKE;
3611	CSR_WRITE_1(sc, RL_CFG5, v);
3612
3613	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3614	    (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3615		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3616	/*
3617	 * It seems that hardware resets its link speed to 100Mbps in
3618	 * power down mode so switching to 100Mbps in driver is not
3619	 * needed.
3620	 */
3621
3622	/* Request PME if WOL is requested. */
3623	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3624	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3625	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3626		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3627	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3628}
3629
3630static void
3631re_clrwol(struct rl_softc *sc)
3632{
3633	int			pmc;
3634	uint8_t			v;
3635
3636	RL_LOCK_ASSERT(sc);
3637
3638	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3639		return;
3640
3641	/* Enable config register write. */
3642	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3643
3644	v = CSR_READ_1(sc, RL_CFG3);
3645	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3646	CSR_WRITE_1(sc, RL_CFG3, v);
3647
3648	/* Config register write done. */
3649	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3650
3651	v = CSR_READ_1(sc, RL_CFG5);
3652	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3653	v &= ~RL_CFG5_WOL_LANWAKE;
3654	CSR_WRITE_1(sc, RL_CFG5, v);
3655}
3656
3657static void
3658re_add_sysctls(struct rl_softc *sc)
3659{
3660	struct sysctl_ctx_list	*ctx;
3661	struct sysctl_oid_list	*children;
3662	int			error;
3663
3664	ctx = device_get_sysctl_ctx(sc->rl_dev);
3665	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3666
3667	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3668	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3669	    "Statistics Information");
3670	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3671		return;
3672
3673	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3674	    CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
3675	    sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
3676	/* Pull in device tunables. */
3677	sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3678	error = resource_int_value(device_get_name(sc->rl_dev),
3679	    device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3680	if (error == 0) {
3681		if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3682		    sc->rl_int_rx_mod > RL_TIMER_MAX) {
3683			device_printf(sc->rl_dev, "int_rx_mod value out of "
3684			    "range; using default: %d\n",
3685			    RL_TIMER_DEFAULT);
3686			sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3687		}
3688	}
3689
3690}
3691
3692static int
3693re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3694{
3695	struct rl_softc		*sc;
3696	struct rl_stats		*stats;
3697	int			error, i, result;
3698
3699	result = -1;
3700	error = sysctl_handle_int(oidp, &result, 0, req);
3701	if (error || req->newptr == NULL)
3702		return (error);
3703
3704	if (result == 1) {
3705		sc = (struct rl_softc *)arg1;
3706		RL_LOCK(sc);
3707		if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3708			RL_UNLOCK(sc);
3709			goto done;
3710		}
3711		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3712		    sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3713		CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3714		    RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3715		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3716		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3717		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3718		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3719		    RL_DUMPSTATS_START));
3720		for (i = RL_TIMEOUT; i > 0; i--) {
3721			if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3722			    RL_DUMPSTATS_START) == 0)
3723				break;
3724			DELAY(1000);
3725		}
3726		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3727		    sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3728		RL_UNLOCK(sc);
3729		if (i == 0) {
3730			device_printf(sc->rl_dev,
3731			    "DUMP statistics request timedout\n");
3732			return (ETIMEDOUT);
3733		}
3734done:
3735		stats = sc->rl_ldata.rl_stats;
3736		printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3737		printf("Tx frames : %ju\n",
3738		    (uintmax_t)le64toh(stats->rl_tx_pkts));
3739		printf("Rx frames : %ju\n",
3740		    (uintmax_t)le64toh(stats->rl_rx_pkts));
3741		printf("Tx errors : %ju\n",
3742		    (uintmax_t)le64toh(stats->rl_tx_errs));
3743		printf("Rx errors : %u\n",
3744		    le32toh(stats->rl_rx_errs));
3745		printf("Rx missed frames : %u\n",
3746		    (uint32_t)le16toh(stats->rl_missed_pkts));
3747		printf("Rx frame alignment errs : %u\n",
3748		    (uint32_t)le16toh(stats->rl_rx_framealign_errs));
3749		printf("Tx single collisions : %u\n",
3750		    le32toh(stats->rl_tx_onecoll));
3751		printf("Tx multiple collisions : %u\n",
3752		    le32toh(stats->rl_tx_multicolls));
3753		printf("Rx unicast frames : %ju\n",
3754		    (uintmax_t)le64toh(stats->rl_rx_ucasts));
3755		printf("Rx broadcast frames : %ju\n",
3756		    (uintmax_t)le64toh(stats->rl_rx_bcasts));
3757		printf("Rx multicast frames : %u\n",
3758		    le32toh(stats->rl_rx_mcasts));
3759		printf("Tx aborts : %u\n",
3760		    (uint32_t)le16toh(stats->rl_tx_aborts));
3761		printf("Tx underruns : %u\n",
3762		    (uint32_t)le16toh(stats->rl_rx_underruns));
3763	}
3764
3765	return (error);
3766}
3767
3768static int
3769sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3770{
3771	int error, value;
3772
3773	if (arg1 == NULL)
3774		return (EINVAL);
3775	value = *(int *)arg1;
3776	error = sysctl_handle_int(oidp, &value, 0, req);
3777	if (error || req->newptr == NULL)
3778		return (error);
3779	if (value < low || value > high)
3780		return (EINVAL);
3781	*(int *)arg1 = value;
3782
3783	return (0);
3784}
3785
3786static int
3787sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
3788{
3789
3790	return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
3791	    RL_TIMER_MAX));
3792}
3793