if_re.c revision 217246
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 217246 2011-01-10 23:28:46Z yongari $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/sysctl.h>
127#include <sys/taskqueue.h>
128
129#include <net/if.h>
130#include <net/if_arp.h>
131#include <net/ethernet.h>
132#include <net/if_dl.h>
133#include <net/if_media.h>
134#include <net/if_types.h>
135#include <net/if_vlan_var.h>
136
137#include <net/bpf.h>
138
139#include <machine/bus.h>
140#include <machine/resource.h>
141#include <sys/bus.h>
142#include <sys/rman.h>
143
144#include <dev/mii/mii.h>
145#include <dev/mii/miivar.h>
146
147#include <dev/pci/pcireg.h>
148#include <dev/pci/pcivar.h>
149
150#include <pci/if_rlreg.h>
151
152MODULE_DEPEND(re, pci, 1, 1, 1);
153MODULE_DEPEND(re, ether, 1, 1, 1);
154MODULE_DEPEND(re, miibus, 1, 1, 1);
155
156/* "device miibus" required.  See GENERIC if you get errors here. */
157#include "miibus_if.h"
158
159/* Tunables. */
160static int msi_disable = 0;
161TUNABLE_INT("hw.re.msi_disable", &msi_disable);
162static int prefer_iomap = 0;
163TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
164
165#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
166
167/*
168 * Various supported device vendors/types and their names.
169 */
170static struct rl_type re_devs[] = {
171	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
172	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
173	{ RT_VENDORID, RT_DEVICEID_8139, 0,
174	    "RealTek 8139C+ 10/100BaseTX" },
175	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
176	    "RealTek 8101E/8102E/8102EL/8103E PCIe 10/100baseTX" },
177	{ RT_VENDORID, RT_DEVICEID_8168, 0,
178	    "RealTek 8168/8111 B/C/CP/D/DP/E PCIe Gigabit Ethernet" },
179	{ RT_VENDORID, RT_DEVICEID_8169, 0,
180	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
181	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
182	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
183	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
184	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
185	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
186	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
187	{ USR_VENDORID, USR_DEVICEID_997902, 0,
188	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
189};
190
191static struct rl_hwrev re_hwrevs[] = {
192	{ RL_HWREV_8139, RL_8139,  "" },
193	{ RL_HWREV_8139A, RL_8139, "A" },
194	{ RL_HWREV_8139AG, RL_8139, "A-G" },
195	{ RL_HWREV_8139B, RL_8139, "B" },
196	{ RL_HWREV_8130, RL_8139, "8130" },
197	{ RL_HWREV_8139C, RL_8139, "C" },
198	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
199	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
200	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
201	{ RL_HWREV_8169, RL_8169, "8169"},
202	{ RL_HWREV_8169S, RL_8169, "8169S"},
203	{ RL_HWREV_8110S, RL_8169, "8110S"},
204	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB"},
205	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC"},
206	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL"},
207	{ RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC"},
208	{ RL_HWREV_8100, RL_8139, "8100"},
209	{ RL_HWREV_8101, RL_8139, "8101"},
210	{ RL_HWREV_8100E, RL_8169, "8100E"},
211	{ RL_HWREV_8101E, RL_8169, "8101E"},
212	{ RL_HWREV_8102E, RL_8169, "8102E"},
213	{ RL_HWREV_8102EL, RL_8169, "8102EL"},
214	{ RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL"},
215	{ RL_HWREV_8103E, RL_8169, "8103E"},
216	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
217	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
218	{ RL_HWREV_8168C, RL_8169, "8168C/8111C"},
219	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"},
220	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"},
221	{ RL_HWREV_8168D, RL_8169, "8168D/8111D"},
222	{ RL_HWREV_8168DP, RL_8169, "8168DP/8111DP"},
223	{ RL_HWREV_8168E, RL_8169, "8168E/8111E"},
224	{ 0, 0, NULL }
225};
226
227static int re_probe		(device_t);
228static int re_attach		(device_t);
229static int re_detach		(device_t);
230
231static int re_encap		(struct rl_softc *, struct mbuf **);
232
233static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
234static int re_allocmem		(device_t, struct rl_softc *);
235static __inline void re_discard_rxbuf
236				(struct rl_softc *, int);
237static int re_newbuf		(struct rl_softc *, int);
238static int re_rx_list_init	(struct rl_softc *);
239static int re_tx_list_init	(struct rl_softc *);
240#ifdef RE_FIXUP_RX
241static __inline void re_fixup_rx
242				(struct mbuf *);
243#endif
244static int re_rxeof		(struct rl_softc *, int *);
245static void re_txeof		(struct rl_softc *);
246#ifdef DEVICE_POLLING
247static int re_poll		(struct ifnet *, enum poll_cmd, int);
248static int re_poll_locked	(struct ifnet *, enum poll_cmd, int);
249#endif
250static int re_intr		(void *);
251static void re_tick		(void *);
252static void re_tx_task		(void *, int);
253static void re_int_task		(void *, int);
254static void re_start		(struct ifnet *);
255static int re_ioctl		(struct ifnet *, u_long, caddr_t);
256static void re_init		(void *);
257static void re_init_locked	(struct rl_softc *);
258static void re_stop		(struct rl_softc *);
259static void re_watchdog		(struct rl_softc *);
260static int re_suspend		(device_t);
261static int re_resume		(device_t);
262static int re_shutdown		(device_t);
263static int re_ifmedia_upd	(struct ifnet *);
264static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
265
266static void re_eeprom_putbyte	(struct rl_softc *, int);
267static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
268static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
269static int re_gmii_readreg	(device_t, int, int);
270static int re_gmii_writereg	(device_t, int, int, int);
271
272static int re_miibus_readreg	(device_t, int, int);
273static int re_miibus_writereg	(device_t, int, int, int);
274static void re_miibus_statchg	(device_t);
275
276static void re_set_rxmode		(struct rl_softc *);
277static void re_reset		(struct rl_softc *);
278static void re_setwol		(struct rl_softc *);
279static void re_clrwol		(struct rl_softc *);
280
281#ifdef RE_DIAG
282static int re_diag		(struct rl_softc *);
283#endif
284
285static void re_add_sysctls	(struct rl_softc *);
286static int re_sysctl_stats	(SYSCTL_HANDLER_ARGS);
287
288static device_method_t re_methods[] = {
289	/* Device interface */
290	DEVMETHOD(device_probe,		re_probe),
291	DEVMETHOD(device_attach,	re_attach),
292	DEVMETHOD(device_detach,	re_detach),
293	DEVMETHOD(device_suspend,	re_suspend),
294	DEVMETHOD(device_resume,	re_resume),
295	DEVMETHOD(device_shutdown,	re_shutdown),
296
297	/* bus interface */
298	DEVMETHOD(bus_print_child,	bus_generic_print_child),
299	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
300
301	/* MII interface */
302	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
303	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
304	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
305
306	{ 0, 0 }
307};
308
309static driver_t re_driver = {
310	"re",
311	re_methods,
312	sizeof(struct rl_softc)
313};
314
315static devclass_t re_devclass;
316
317DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
318DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
319
320#define EE_SET(x)					\
321	CSR_WRITE_1(sc, RL_EECMD,			\
322		CSR_READ_1(sc, RL_EECMD) | x)
323
324#define EE_CLR(x)					\
325	CSR_WRITE_1(sc, RL_EECMD,			\
326		CSR_READ_1(sc, RL_EECMD) & ~x)
327
328/*
329 * Send a read command and address to the EEPROM, check for ACK.
330 */
331static void
332re_eeprom_putbyte(struct rl_softc *sc, int addr)
333{
334	int			d, i;
335
336	d = addr | (RL_9346_READ << sc->rl_eewidth);
337
338	/*
339	 * Feed in each bit and strobe the clock.
340	 */
341
342	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
343		if (d & i) {
344			EE_SET(RL_EE_DATAIN);
345		} else {
346			EE_CLR(RL_EE_DATAIN);
347		}
348		DELAY(100);
349		EE_SET(RL_EE_CLK);
350		DELAY(150);
351		EE_CLR(RL_EE_CLK);
352		DELAY(100);
353	}
354}
355
356/*
357 * Read a word of data stored in the EEPROM at address 'addr.'
358 */
359static void
360re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
361{
362	int			i;
363	u_int16_t		word = 0;
364
365	/*
366	 * Send address of word we want to read.
367	 */
368	re_eeprom_putbyte(sc, addr);
369
370	/*
371	 * Start reading bits from EEPROM.
372	 */
373	for (i = 0x8000; i; i >>= 1) {
374		EE_SET(RL_EE_CLK);
375		DELAY(100);
376		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
377			word |= i;
378		EE_CLR(RL_EE_CLK);
379		DELAY(100);
380	}
381
382	*dest = word;
383}
384
385/*
386 * Read a sequence of words from the EEPROM.
387 */
388static void
389re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
390{
391	int			i;
392	u_int16_t		word = 0, *ptr;
393
394	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
395
396        DELAY(100);
397
398	for (i = 0; i < cnt; i++) {
399		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
400		re_eeprom_getword(sc, off + i, &word);
401		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
402		ptr = (u_int16_t *)(dest + (i * 2));
403                *ptr = word;
404	}
405
406	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
407}
408
409static int
410re_gmii_readreg(device_t dev, int phy, int reg)
411{
412	struct rl_softc		*sc;
413	u_int32_t		rval;
414	int			i;
415
416	sc = device_get_softc(dev);
417
418	/* Let the rgephy driver read the GMEDIASTAT register */
419
420	if (reg == RL_GMEDIASTAT) {
421		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
422		return (rval);
423	}
424
425	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
426
427	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
428		rval = CSR_READ_4(sc, RL_PHYAR);
429		if (rval & RL_PHYAR_BUSY)
430			break;
431		DELAY(25);
432	}
433
434	if (i == RL_PHY_TIMEOUT) {
435		device_printf(sc->rl_dev, "PHY read failed\n");
436		return (0);
437	}
438
439	/*
440	 * Controller requires a 20us delay to process next MDIO request.
441	 */
442	DELAY(20);
443
444	return (rval & RL_PHYAR_PHYDATA);
445}
446
447static int
448re_gmii_writereg(device_t dev, int phy, int reg, int data)
449{
450	struct rl_softc		*sc;
451	u_int32_t		rval;
452	int			i;
453
454	sc = device_get_softc(dev);
455
456	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
457	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
458
459	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
460		rval = CSR_READ_4(sc, RL_PHYAR);
461		if (!(rval & RL_PHYAR_BUSY))
462			break;
463		DELAY(25);
464	}
465
466	if (i == RL_PHY_TIMEOUT) {
467		device_printf(sc->rl_dev, "PHY write failed\n");
468		return (0);
469	}
470
471	/*
472	 * Controller requires a 20us delay to process next MDIO request.
473	 */
474	DELAY(20);
475
476	return (0);
477}
478
479static int
480re_miibus_readreg(device_t dev, int phy, int reg)
481{
482	struct rl_softc		*sc;
483	u_int16_t		rval = 0;
484	u_int16_t		re8139_reg = 0;
485
486	sc = device_get_softc(dev);
487
488	if (sc->rl_type == RL_8169) {
489		rval = re_gmii_readreg(dev, phy, reg);
490		return (rval);
491	}
492
493	switch (reg) {
494	case MII_BMCR:
495		re8139_reg = RL_BMCR;
496		break;
497	case MII_BMSR:
498		re8139_reg = RL_BMSR;
499		break;
500	case MII_ANAR:
501		re8139_reg = RL_ANAR;
502		break;
503	case MII_ANER:
504		re8139_reg = RL_ANER;
505		break;
506	case MII_ANLPAR:
507		re8139_reg = RL_LPAR;
508		break;
509	case MII_PHYIDR1:
510	case MII_PHYIDR2:
511		return (0);
512	/*
513	 * Allow the rlphy driver to read the media status
514	 * register. If we have a link partner which does not
515	 * support NWAY, this is the register which will tell
516	 * us the results of parallel detection.
517	 */
518	case RL_MEDIASTAT:
519		rval = CSR_READ_1(sc, RL_MEDIASTAT);
520		return (rval);
521	default:
522		device_printf(sc->rl_dev, "bad phy register\n");
523		return (0);
524	}
525	rval = CSR_READ_2(sc, re8139_reg);
526	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
527		/* 8139C+ has different bit layout. */
528		rval &= ~(BMCR_LOOP | BMCR_ISO);
529	}
530	return (rval);
531}
532
533static int
534re_miibus_writereg(device_t dev, int phy, int reg, int data)
535{
536	struct rl_softc		*sc;
537	u_int16_t		re8139_reg = 0;
538	int			rval = 0;
539
540	sc = device_get_softc(dev);
541
542	if (sc->rl_type == RL_8169) {
543		rval = re_gmii_writereg(dev, phy, reg, data);
544		return (rval);
545	}
546
547	switch (reg) {
548	case MII_BMCR:
549		re8139_reg = RL_BMCR;
550		if (sc->rl_type == RL_8139CPLUS) {
551			/* 8139C+ has different bit layout. */
552			data &= ~(BMCR_LOOP | BMCR_ISO);
553		}
554		break;
555	case MII_BMSR:
556		re8139_reg = RL_BMSR;
557		break;
558	case MII_ANAR:
559		re8139_reg = RL_ANAR;
560		break;
561	case MII_ANER:
562		re8139_reg = RL_ANER;
563		break;
564	case MII_ANLPAR:
565		re8139_reg = RL_LPAR;
566		break;
567	case MII_PHYIDR1:
568	case MII_PHYIDR2:
569		return (0);
570		break;
571	default:
572		device_printf(sc->rl_dev, "bad phy register\n");
573		return (0);
574	}
575	CSR_WRITE_2(sc, re8139_reg, data);
576	return (0);
577}
578
579static void
580re_miibus_statchg(device_t dev)
581{
582	struct rl_softc		*sc;
583	struct ifnet		*ifp;
584	struct mii_data		*mii;
585
586	sc = device_get_softc(dev);
587	mii = device_get_softc(sc->rl_miibus);
588	ifp = sc->rl_ifp;
589	if (mii == NULL || ifp == NULL ||
590	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
591		return;
592
593	sc->rl_flags &= ~RL_FLAG_LINK;
594	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
595	    (IFM_ACTIVE | IFM_AVALID)) {
596		switch (IFM_SUBTYPE(mii->mii_media_active)) {
597		case IFM_10_T:
598		case IFM_100_TX:
599			sc->rl_flags |= RL_FLAG_LINK;
600			break;
601		case IFM_1000_T:
602			if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
603				break;
604			sc->rl_flags |= RL_FLAG_LINK;
605			break;
606		default:
607			break;
608		}
609	}
610	/*
611	 * RealTek controllers does not provide any interface to
612	 * Tx/Rx MACs for resolved speed, duplex and flow-control
613	 * parameters.
614	 */
615}
616
617/*
618 * Set the RX configuration and 64-bit multicast hash filter.
619 */
620static void
621re_set_rxmode(struct rl_softc *sc)
622{
623	struct ifnet		*ifp;
624	struct ifmultiaddr	*ifma;
625	uint32_t		hashes[2] = { 0, 0 };
626	uint32_t		h, rxfilt;
627
628	RL_LOCK_ASSERT(sc);
629
630	ifp = sc->rl_ifp;
631
632	rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
633
634	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
635		if (ifp->if_flags & IFF_PROMISC)
636			rxfilt |= RL_RXCFG_RX_ALLPHYS;
637		/*
638		 * Unlike other hardwares, we have to explicitly set
639		 * RL_RXCFG_RX_MULTI to receive multicast frames in
640		 * promiscuous mode.
641		 */
642		rxfilt |= RL_RXCFG_RX_MULTI;
643		hashes[0] = hashes[1] = 0xffffffff;
644		goto done;
645	}
646
647	if_maddr_rlock(ifp);
648	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
649		if (ifma->ifma_addr->sa_family != AF_LINK)
650			continue;
651		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
652		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
653		if (h < 32)
654			hashes[0] |= (1 << h);
655		else
656			hashes[1] |= (1 << (h - 32));
657	}
658	if_maddr_runlock(ifp);
659
660	if (hashes[0] != 0 || hashes[1] != 0) {
661		/*
662		 * For some unfathomable reason, RealTek decided to
663		 * reverse the order of the multicast hash registers
664		 * in the PCI Express parts.  This means we have to
665		 * write the hash pattern in reverse order for those
666		 * devices.
667		 */
668		if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
669			h = bswap32(hashes[0]);
670			hashes[0] = bswap32(hashes[1]);
671			hashes[1] = h;
672		}
673		rxfilt |= RL_RXCFG_RX_MULTI;
674	}
675
676done:
677	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
678	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
679	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
680}
681
682static void
683re_reset(struct rl_softc *sc)
684{
685	int			i;
686
687	RL_LOCK_ASSERT(sc);
688
689	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
690
691	for (i = 0; i < RL_TIMEOUT; i++) {
692		DELAY(10);
693		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
694			break;
695	}
696	if (i == RL_TIMEOUT)
697		device_printf(sc->rl_dev, "reset never completed!\n");
698
699	if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
700		CSR_WRITE_1(sc, 0x82, 1);
701	if (sc->rl_hwrev == RL_HWREV_8169S)
702		re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
703}
704
705#ifdef RE_DIAG
706
707/*
708 * The following routine is designed to test for a defect on some
709 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
710 * lines connected to the bus, however for a 32-bit only card, they
711 * should be pulled high. The result of this defect is that the
712 * NIC will not work right if you plug it into a 64-bit slot: DMA
713 * operations will be done with 64-bit transfers, which will fail
714 * because the 64-bit data lines aren't connected.
715 *
716 * There's no way to work around this (short of talking a soldering
717 * iron to the board), however we can detect it. The method we use
718 * here is to put the NIC into digital loopback mode, set the receiver
719 * to promiscuous mode, and then try to send a frame. We then compare
720 * the frame data we sent to what was received. If the data matches,
721 * then the NIC is working correctly, otherwise we know the user has
722 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
723 * slot. In the latter case, there's no way the NIC can work correctly,
724 * so we print out a message on the console and abort the device attach.
725 */
726
727static int
728re_diag(struct rl_softc *sc)
729{
730	struct ifnet		*ifp = sc->rl_ifp;
731	struct mbuf		*m0;
732	struct ether_header	*eh;
733	struct rl_desc		*cur_rx;
734	u_int16_t		status;
735	u_int32_t		rxstat;
736	int			total_len, i, error = 0, phyaddr;
737	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
738	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
739
740	/* Allocate a single mbuf */
741	MGETHDR(m0, M_DONTWAIT, MT_DATA);
742	if (m0 == NULL)
743		return (ENOBUFS);
744
745	RL_LOCK(sc);
746
747	/*
748	 * Initialize the NIC in test mode. This sets the chip up
749	 * so that it can send and receive frames, but performs the
750	 * following special functions:
751	 * - Puts receiver in promiscuous mode
752	 * - Enables digital loopback mode
753	 * - Leaves interrupts turned off
754	 */
755
756	ifp->if_flags |= IFF_PROMISC;
757	sc->rl_testmode = 1;
758	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
759	re_init_locked(sc);
760	sc->rl_flags |= RL_FLAG_LINK;
761	if (sc->rl_type == RL_8169)
762		phyaddr = 1;
763	else
764		phyaddr = 0;
765
766	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
767	for (i = 0; i < RL_TIMEOUT; i++) {
768		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
769		if (!(status & BMCR_RESET))
770			break;
771	}
772
773	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
774	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
775
776	DELAY(100000);
777
778	/* Put some data in the mbuf */
779
780	eh = mtod(m0, struct ether_header *);
781	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
782	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
783	eh->ether_type = htons(ETHERTYPE_IP);
784	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
785
786	/*
787	 * Queue the packet, start transmission.
788	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
789	 */
790
791	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
792	RL_UNLOCK(sc);
793	/* XXX: re_diag must not be called when in ALTQ mode */
794	IF_HANDOFF(&ifp->if_snd, m0, ifp);
795	RL_LOCK(sc);
796	m0 = NULL;
797
798	/* Wait for it to propagate through the chip */
799
800	DELAY(100000);
801	for (i = 0; i < RL_TIMEOUT; i++) {
802		status = CSR_READ_2(sc, RL_ISR);
803		CSR_WRITE_2(sc, RL_ISR, status);
804		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
805		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
806			break;
807		DELAY(10);
808	}
809
810	if (i == RL_TIMEOUT) {
811		device_printf(sc->rl_dev,
812		    "diagnostic failed, failed to receive packet in"
813		    " loopback mode\n");
814		error = EIO;
815		goto done;
816	}
817
818	/*
819	 * The packet should have been dumped into the first
820	 * entry in the RX DMA ring. Grab it from there.
821	 */
822
823	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
824	    sc->rl_ldata.rl_rx_list_map,
825	    BUS_DMASYNC_POSTREAD);
826	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
827	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
828	    BUS_DMASYNC_POSTREAD);
829	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
830	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
831
832	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
833	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
834	eh = mtod(m0, struct ether_header *);
835
836	cur_rx = &sc->rl_ldata.rl_rx_list[0];
837	total_len = RL_RXBYTES(cur_rx);
838	rxstat = le32toh(cur_rx->rl_cmdstat);
839
840	if (total_len != ETHER_MIN_LEN) {
841		device_printf(sc->rl_dev,
842		    "diagnostic failed, received short packet\n");
843		error = EIO;
844		goto done;
845	}
846
847	/* Test that the received packet data matches what we sent. */
848
849	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
850	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
851	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
852		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
853		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
854		    dst, ":", src, ":", ETHERTYPE_IP);
855		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
856		    eh->ether_dhost, ":",  eh->ether_shost, ":",
857		    ntohs(eh->ether_type));
858		device_printf(sc->rl_dev, "You may have a defective 32-bit "
859		    "NIC plugged into a 64-bit PCI slot.\n");
860		device_printf(sc->rl_dev, "Please re-install the NIC in a "
861		    "32-bit slot for proper operation.\n");
862		device_printf(sc->rl_dev, "Read the re(4) man page for more "
863		    "details.\n");
864		error = EIO;
865	}
866
867done:
868	/* Turn interface off, release resources */
869
870	sc->rl_testmode = 0;
871	sc->rl_flags &= ~RL_FLAG_LINK;
872	ifp->if_flags &= ~IFF_PROMISC;
873	re_stop(sc);
874	if (m0 != NULL)
875		m_freem(m0);
876
877	RL_UNLOCK(sc);
878
879	return (error);
880}
881
882#endif
883
884/*
885 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
886 * IDs against our list and return a device name if we find a match.
887 */
888static int
889re_probe(device_t dev)
890{
891	struct rl_type		*t;
892	uint16_t		devid, vendor;
893	uint16_t		revid, sdevid;
894	int			i;
895
896	vendor = pci_get_vendor(dev);
897	devid = pci_get_device(dev);
898	revid = pci_get_revid(dev);
899	sdevid = pci_get_subdevice(dev);
900
901	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
902		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
903			/*
904			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
905			 * Rev. 2 is supported by sk(4).
906			 */
907			return (ENXIO);
908		}
909	}
910
911	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
912		if (revid != 0x20) {
913			/* 8139, let rl(4) take care of this device. */
914			return (ENXIO);
915		}
916	}
917
918	t = re_devs;
919	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
920		if (vendor == t->rl_vid && devid == t->rl_did) {
921			device_set_desc(dev, t->rl_name);
922			return (BUS_PROBE_DEFAULT);
923		}
924	}
925
926	return (ENXIO);
927}
928
929/*
930 * Map a single buffer address.
931 */
932
933static void
934re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
935{
936	bus_addr_t		*addr;
937
938	if (error)
939		return;
940
941	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
942	addr = arg;
943	*addr = segs->ds_addr;
944}
945
946static int
947re_allocmem(device_t dev, struct rl_softc *sc)
948{
949	bus_addr_t		lowaddr;
950	bus_size_t		rx_list_size, tx_list_size;
951	int			error;
952	int			i;
953
954	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
955	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
956
957	/*
958	 * Allocate the parent bus DMA tag appropriate for PCI.
959	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
960	 * register should be set. However some RealTek chips are known
961	 * to be buggy on DAC handling, therefore disable DAC by limiting
962	 * DMA address space to 32bit. PCIe variants of RealTek chips
963	 * may not have the limitation.
964	 */
965	lowaddr = BUS_SPACE_MAXADDR;
966	if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
967		lowaddr = BUS_SPACE_MAXADDR_32BIT;
968	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
969	    lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
970	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
971	    NULL, NULL, &sc->rl_parent_tag);
972	if (error) {
973		device_printf(dev, "could not allocate parent DMA tag\n");
974		return (error);
975	}
976
977	/*
978	 * Allocate map for TX mbufs.
979	 */
980	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
981	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
982	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
983	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
984	if (error) {
985		device_printf(dev, "could not allocate TX DMA tag\n");
986		return (error);
987	}
988
989	/*
990	 * Allocate map for RX mbufs.
991	 */
992
993	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
994	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
995	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
996	if (error) {
997		device_printf(dev, "could not allocate RX DMA tag\n");
998		return (error);
999	}
1000
1001	/*
1002	 * Allocate map for TX descriptor list.
1003	 */
1004	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1005	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1006	    NULL, tx_list_size, 1, tx_list_size, 0,
1007	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1008	if (error) {
1009		device_printf(dev, "could not allocate TX DMA ring tag\n");
1010		return (error);
1011	}
1012
1013	/* Allocate DMA'able memory for the TX ring */
1014
1015	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1016	    (void **)&sc->rl_ldata.rl_tx_list,
1017	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1018	    &sc->rl_ldata.rl_tx_list_map);
1019	if (error) {
1020		device_printf(dev, "could not allocate TX DMA ring\n");
1021		return (error);
1022	}
1023
1024	/* Load the map for the TX ring. */
1025
1026	sc->rl_ldata.rl_tx_list_addr = 0;
1027	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1028	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1029	     tx_list_size, re_dma_map_addr,
1030	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1031	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1032		device_printf(dev, "could not load TX DMA ring\n");
1033		return (ENOMEM);
1034	}
1035
1036	/* Create DMA maps for TX buffers */
1037
1038	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1039		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1040		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1041		if (error) {
1042			device_printf(dev, "could not create DMA map for TX\n");
1043			return (error);
1044		}
1045	}
1046
1047	/*
1048	 * Allocate map for RX descriptor list.
1049	 */
1050	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1051	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1052	    NULL, rx_list_size, 1, rx_list_size, 0,
1053	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1054	if (error) {
1055		device_printf(dev, "could not create RX DMA ring tag\n");
1056		return (error);
1057	}
1058
1059	/* Allocate DMA'able memory for the RX ring */
1060
1061	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1062	    (void **)&sc->rl_ldata.rl_rx_list,
1063	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1064	    &sc->rl_ldata.rl_rx_list_map);
1065	if (error) {
1066		device_printf(dev, "could not allocate RX DMA ring\n");
1067		return (error);
1068	}
1069
1070	/* Load the map for the RX ring. */
1071
1072	sc->rl_ldata.rl_rx_list_addr = 0;
1073	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1074	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1075	     rx_list_size, re_dma_map_addr,
1076	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1077	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1078		device_printf(dev, "could not load RX DMA ring\n");
1079		return (ENOMEM);
1080	}
1081
1082	/* Create DMA maps for RX buffers */
1083
1084	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1085	    &sc->rl_ldata.rl_rx_sparemap);
1086	if (error) {
1087		device_printf(dev, "could not create spare DMA map for RX\n");
1088		return (error);
1089	}
1090	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1091		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1092		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1093		if (error) {
1094			device_printf(dev, "could not create DMA map for RX\n");
1095			return (error);
1096		}
1097	}
1098
1099	/* Create DMA map for statistics. */
1100	error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1101	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1102	    sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1103	    &sc->rl_ldata.rl_stag);
1104	if (error) {
1105		device_printf(dev, "could not create statistics DMA tag\n");
1106		return (error);
1107	}
1108	/* Allocate DMA'able memory for statistics. */
1109	error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1110	    (void **)&sc->rl_ldata.rl_stats,
1111	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1112	    &sc->rl_ldata.rl_smap);
1113	if (error) {
1114		device_printf(dev,
1115		    "could not allocate statistics DMA memory\n");
1116		return (error);
1117	}
1118	/* Load the map for statistics. */
1119	sc->rl_ldata.rl_stats_addr = 0;
1120	error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1121	    sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1122	     &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1123	if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1124		device_printf(dev, "could not load statistics DMA memory\n");
1125		return (ENOMEM);
1126	}
1127
1128	return (0);
1129}
1130
1131/*
1132 * Attach the interface. Allocate softc structures, do ifmedia
1133 * setup and ethernet/BPF attach.
1134 */
1135static int
1136re_attach(device_t dev)
1137{
1138	u_char			eaddr[ETHER_ADDR_LEN];
1139	u_int16_t		as[ETHER_ADDR_LEN / 2];
1140	struct rl_softc		*sc;
1141	struct ifnet		*ifp;
1142	struct rl_hwrev		*hw_rev;
1143	int			hwrev;
1144	u_int16_t		devid, re_did = 0;
1145	int			error = 0, i, phy, rid;
1146	int			msic, reg;
1147	uint8_t			cfg;
1148
1149	sc = device_get_softc(dev);
1150	sc->rl_dev = dev;
1151
1152	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1153	    MTX_DEF);
1154	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1155
1156	/*
1157	 * Map control/status registers.
1158	 */
1159	pci_enable_busmaster(dev);
1160
1161	devid = pci_get_device(dev);
1162	/*
1163	 * Prefer memory space register mapping over IO space.
1164	 * Because RTL8169SC does not seem to work when memory mapping
1165	 * is used always activate io mapping.
1166	 */
1167	if (devid == RT_DEVICEID_8169SC)
1168		prefer_iomap = 1;
1169	if (prefer_iomap == 0) {
1170		sc->rl_res_id = PCIR_BAR(1);
1171		sc->rl_res_type = SYS_RES_MEMORY;
1172		/* RTL8168/8101E seems to use different BARs. */
1173		if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1174			sc->rl_res_id = PCIR_BAR(2);
1175	} else {
1176		sc->rl_res_id = PCIR_BAR(0);
1177		sc->rl_res_type = SYS_RES_IOPORT;
1178	}
1179	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1180	    &sc->rl_res_id, RF_ACTIVE);
1181	if (sc->rl_res == NULL && prefer_iomap == 0) {
1182		sc->rl_res_id = PCIR_BAR(0);
1183		sc->rl_res_type = SYS_RES_IOPORT;
1184		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1185		    &sc->rl_res_id, RF_ACTIVE);
1186	}
1187	if (sc->rl_res == NULL) {
1188		device_printf(dev, "couldn't map ports/memory\n");
1189		error = ENXIO;
1190		goto fail;
1191	}
1192
1193	sc->rl_btag = rman_get_bustag(sc->rl_res);
1194	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1195
1196	msic = 0;
1197	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1198		sc->rl_flags |= RL_FLAG_PCIE;
1199		if (devid != RT_DEVICEID_8101E) {
1200			/* Set PCIe maximum read request size to 2048. */
1201			if (pci_get_max_read_req(dev) < 2048)
1202				pci_set_max_read_req(dev, 2048);
1203		}
1204		msic = pci_msi_count(dev);
1205		if (bootverbose)
1206			device_printf(dev, "MSI count : %d\n", msic);
1207	}
1208	if (msic > 0 && msi_disable == 0) {
1209		msic = 1;
1210		if (pci_alloc_msi(dev, &msic) == 0) {
1211			if (msic == RL_MSI_MESSAGES) {
1212				device_printf(dev, "Using %d MSI messages\n",
1213				    msic);
1214				sc->rl_flags |= RL_FLAG_MSI;
1215				/* Explicitly set MSI enable bit. */
1216				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1217				cfg = CSR_READ_1(sc, RL_CFG2);
1218				cfg |= RL_CFG2_MSI;
1219				CSR_WRITE_1(sc, RL_CFG2, cfg);
1220				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1221			} else
1222				pci_release_msi(dev);
1223		}
1224	}
1225
1226	/* Allocate interrupt */
1227	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1228		rid = 0;
1229		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1230		    RF_SHAREABLE | RF_ACTIVE);
1231		if (sc->rl_irq[0] == NULL) {
1232			device_printf(dev, "couldn't allocate IRQ resources\n");
1233			error = ENXIO;
1234			goto fail;
1235		}
1236	} else {
1237		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1238			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1239			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1240			if (sc->rl_irq[i] == NULL) {
1241				device_printf(dev,
1242				    "couldn't llocate IRQ resources for "
1243				    "message %d\n", rid);
1244				error = ENXIO;
1245				goto fail;
1246			}
1247		}
1248	}
1249
1250	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1251		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1252		cfg = CSR_READ_1(sc, RL_CFG2);
1253		if ((cfg & RL_CFG2_MSI) != 0) {
1254			device_printf(dev, "turning off MSI enable bit.\n");
1255			cfg &= ~RL_CFG2_MSI;
1256			CSR_WRITE_1(sc, RL_CFG2, cfg);
1257		}
1258		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1259	}
1260
1261	/* Reset the adapter. */
1262	RL_LOCK(sc);
1263	re_reset(sc);
1264	RL_UNLOCK(sc);
1265
1266	hw_rev = re_hwrevs;
1267	hwrev = CSR_READ_4(sc, RL_TXCFG);
1268	switch (hwrev & 0x70000000) {
1269	case 0x00000000:
1270	case 0x10000000:
1271		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1272		hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1273		break;
1274	default:
1275		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1276		hwrev &= RL_TXCFG_HWREV;
1277		break;
1278	}
1279	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1280	while (hw_rev->rl_desc != NULL) {
1281		if (hw_rev->rl_rev == hwrev) {
1282			sc->rl_type = hw_rev->rl_type;
1283			sc->rl_hwrev = hw_rev->rl_rev;
1284			break;
1285		}
1286		hw_rev++;
1287	}
1288	if (hw_rev->rl_desc == NULL) {
1289		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1290		error = ENXIO;
1291		goto fail;
1292	}
1293
1294	switch (hw_rev->rl_rev) {
1295	case RL_HWREV_8139CPLUS:
1296		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_FASTETHER |
1297		    RL_FLAG_AUTOPAD;
1298		break;
1299	case RL_HWREV_8100E:
1300	case RL_HWREV_8101E:
1301		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE |
1302		    RL_FLAG_FASTETHER;
1303		break;
1304	case RL_HWREV_8102E:
1305	case RL_HWREV_8102EL:
1306	case RL_HWREV_8102EL_SPIN1:
1307		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE |
1308		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1309		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1310		break;
1311	case RL_HWREV_8103E:
1312		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE |
1313		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1314		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1315		    RL_FLAG_MACSLEEP;
1316		break;
1317	case RL_HWREV_8168_SPIN1:
1318	case RL_HWREV_8168_SPIN2:
1319		sc->rl_flags |= RL_FLAG_WOLRXENB;
1320		/* FALLTHROUGH */
1321	case RL_HWREV_8168_SPIN3:
1322		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1323		break;
1324	case RL_HWREV_8168C_SPIN2:
1325		sc->rl_flags |= RL_FLAG_MACSLEEP;
1326		/* FALLTHROUGH */
1327	case RL_HWREV_8168C:
1328		if ((hwrev & 0x00700000) == 0x00200000)
1329			sc->rl_flags |= RL_FLAG_MACSLEEP;
1330		/* FALLTHROUGH */
1331	case RL_HWREV_8168CP:
1332	case RL_HWREV_8168D:
1333	case RL_HWREV_8168DP:
1334		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1335		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1336		    RL_FLAG_AUTOPAD;
1337		/*
1338		 * These controllers support jumbo frame but it seems
1339		 * that enabling it requires touching additional magic
1340		 * registers. Depending on MAC revisions some
1341		 * controllers need to disable checksum offload. So
1342		 * disable jumbo frame until I have better idea what
1343		 * it really requires to make it support.
1344		 * RTL8168C/CP : supports up to 6KB jumbo frame.
1345		 * RTL8111C/CP : supports up to 9KB jumbo frame.
1346		 */
1347		sc->rl_flags |= RL_FLAG_NOJUMBO;
1348		break;
1349	case RL_HWREV_8168E:
1350		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1351		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1352		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_NOJUMBO;
1353		break;
1354	case RL_HWREV_8169_8110SB:
1355	case RL_HWREV_8169_8110SBL:
1356	case RL_HWREV_8169_8110SC:
1357	case RL_HWREV_8169_8110SCE:
1358		sc->rl_flags |= RL_FLAG_PHYWAKE;
1359		/* FALLTHROUGH */
1360	case RL_HWREV_8169:
1361	case RL_HWREV_8169S:
1362	case RL_HWREV_8110S:
1363		sc->rl_flags |= RL_FLAG_MACRESET;
1364		break;
1365	default:
1366		break;
1367	}
1368
1369	/* Enable PME. */
1370	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1371	cfg = CSR_READ_1(sc, RL_CFG1);
1372	cfg |= RL_CFG1_PME;
1373	CSR_WRITE_1(sc, RL_CFG1, cfg);
1374	cfg = CSR_READ_1(sc, RL_CFG5);
1375	cfg &= RL_CFG5_PME_STS;
1376	CSR_WRITE_1(sc, RL_CFG5, cfg);
1377	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1378
1379	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1380		/*
1381		 * XXX Should have a better way to extract station
1382		 * address from EEPROM.
1383		 */
1384		for (i = 0; i < ETHER_ADDR_LEN; i++)
1385			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1386	} else {
1387		sc->rl_eewidth = RL_9356_ADDR_LEN;
1388		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1389		if (re_did != 0x8129)
1390			sc->rl_eewidth = RL_9346_ADDR_LEN;
1391
1392		/*
1393		 * Get station address from the EEPROM.
1394		 */
1395		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1396		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1397			as[i] = le16toh(as[i]);
1398		bcopy(as, eaddr, sizeof(eaddr));
1399	}
1400
1401	if (sc->rl_type == RL_8169) {
1402		/* Set RX length mask and number of descriptors. */
1403		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1404		sc->rl_txstart = RL_GTXSTART;
1405		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1406		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1407	} else {
1408		/* Set RX length mask and number of descriptors. */
1409		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1410		sc->rl_txstart = RL_TXSTART;
1411		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1412		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1413	}
1414
1415	error = re_allocmem(dev, sc);
1416	if (error)
1417		goto fail;
1418	re_add_sysctls(sc);
1419
1420	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1421	if (ifp == NULL) {
1422		device_printf(dev, "can not if_alloc()\n");
1423		error = ENOSPC;
1424		goto fail;
1425	}
1426
1427	/* Take controller out of deep sleep mode. */
1428	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1429		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1430			CSR_WRITE_1(sc, RL_GPIO,
1431			    CSR_READ_1(sc, RL_GPIO) | 0x01);
1432		else
1433			CSR_WRITE_1(sc, RL_GPIO,
1434			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
1435	}
1436
1437	/* Take PHY out of power down mode. */
1438	if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
1439		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1440	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1441		re_gmii_writereg(dev, 1, 0x1f, 0);
1442		re_gmii_writereg(dev, 1, 0x0e, 0);
1443	}
1444
1445#define	RE_PHYAD_INTERNAL	 0
1446
1447	/* Do MII setup. */
1448	phy = RE_PHYAD_INTERNAL;
1449	if (sc->rl_type == RL_8169)
1450		phy = 1;
1451	error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1452	    re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1453	if (error != 0) {
1454		device_printf(dev, "attaching PHYs failed\n");
1455		goto fail;
1456	}
1457
1458	ifp->if_softc = sc;
1459	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1460	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1461	ifp->if_ioctl = re_ioctl;
1462	ifp->if_start = re_start;
1463	ifp->if_hwassist = RE_CSUM_FEATURES | CSUM_TSO;
1464	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1465	ifp->if_capenable = ifp->if_capabilities;
1466	ifp->if_init = re_init;
1467	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1468	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1469	IFQ_SET_READY(&ifp->if_snd);
1470
1471	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1472	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1473
1474	/*
1475	 * Call MI attach routine.
1476	 */
1477	ether_ifattach(ifp, eaddr);
1478
1479	/* VLAN capability setup */
1480	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1481	if (ifp->if_capabilities & IFCAP_HWCSUM)
1482		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1483	/* Enable WOL if PM is supported. */
1484	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1485		ifp->if_capabilities |= IFCAP_WOL;
1486	ifp->if_capenable = ifp->if_capabilities;
1487	/*
1488	 * Don't enable TSO by default for old controllers. Under
1489	 * certain circumtances the controller generated corrupted
1490	 * packets in TSO size.
1491	 */
1492	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1493		ifp->if_hwassist &= ~CSUM_TSO;
1494		ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1495	}
1496#ifdef DEVICE_POLLING
1497	ifp->if_capabilities |= IFCAP_POLLING;
1498#endif
1499	/*
1500	 * Tell the upper layer(s) we support long frames.
1501	 * Must appear after the call to ether_ifattach() because
1502	 * ether_ifattach() sets ifi_hdrlen to the default value.
1503	 */
1504	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1505
1506#ifdef RE_DIAG
1507	/*
1508	 * Perform hardware diagnostic on the original RTL8169.
1509	 * Some 32-bit cards were incorrectly wired and would
1510	 * malfunction if plugged into a 64-bit slot.
1511	 */
1512
1513	if (hwrev == RL_HWREV_8169) {
1514		error = re_diag(sc);
1515		if (error) {
1516			device_printf(dev,
1517		    	"attach aborted due to hardware diag failure\n");
1518			ether_ifdetach(ifp);
1519			goto fail;
1520		}
1521	}
1522#endif
1523
1524	/* Hook interrupt last to avoid having to lock softc */
1525	if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1526		error = bus_setup_intr(dev, sc->rl_irq[0],
1527		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1528		    &sc->rl_intrhand[0]);
1529	else {
1530		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1531			error = bus_setup_intr(dev, sc->rl_irq[i],
1532			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1533		    	    &sc->rl_intrhand[i]);
1534			if (error != 0)
1535				break;
1536		}
1537	}
1538	if (error) {
1539		device_printf(dev, "couldn't set up irq\n");
1540		ether_ifdetach(ifp);
1541	}
1542
1543fail:
1544
1545	if (error)
1546		re_detach(dev);
1547
1548	return (error);
1549}
1550
1551/*
1552 * Shutdown hardware and free up resources. This can be called any
1553 * time after the mutex has been initialized. It is called in both
1554 * the error case in attach and the normal detach case so it needs
1555 * to be careful about only freeing resources that have actually been
1556 * allocated.
1557 */
1558static int
1559re_detach(device_t dev)
1560{
1561	struct rl_softc		*sc;
1562	struct ifnet		*ifp;
1563	int			i, rid;
1564
1565	sc = device_get_softc(dev);
1566	ifp = sc->rl_ifp;
1567	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1568
1569	/* These should only be active if attach succeeded */
1570	if (device_is_attached(dev)) {
1571#ifdef DEVICE_POLLING
1572		if (ifp->if_capenable & IFCAP_POLLING)
1573			ether_poll_deregister(ifp);
1574#endif
1575		RL_LOCK(sc);
1576#if 0
1577		sc->suspended = 1;
1578#endif
1579		re_stop(sc);
1580		RL_UNLOCK(sc);
1581		callout_drain(&sc->rl_stat_callout);
1582		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1583		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1584		/*
1585		 * Force off the IFF_UP flag here, in case someone
1586		 * still had a BPF descriptor attached to this
1587		 * interface. If they do, ether_ifdetach() will cause
1588		 * the BPF code to try and clear the promisc mode
1589		 * flag, which will bubble down to re_ioctl(),
1590		 * which will try to call re_init() again. This will
1591		 * turn the NIC back on and restart the MII ticker,
1592		 * which will panic the system when the kernel tries
1593		 * to invoke the re_tick() function that isn't there
1594		 * anymore.
1595		 */
1596		ifp->if_flags &= ~IFF_UP;
1597		ether_ifdetach(ifp);
1598	}
1599	if (sc->rl_miibus)
1600		device_delete_child(dev, sc->rl_miibus);
1601	bus_generic_detach(dev);
1602
1603	/*
1604	 * The rest is resource deallocation, so we should already be
1605	 * stopped here.
1606	 */
1607
1608	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1609		if (sc->rl_intrhand[i] != NULL) {
1610			bus_teardown_intr(dev, sc->rl_irq[i],
1611			    sc->rl_intrhand[i]);
1612			sc->rl_intrhand[i] = NULL;
1613		}
1614	}
1615	if (ifp != NULL)
1616		if_free(ifp);
1617	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1618		if (sc->rl_irq[0] != NULL) {
1619			bus_release_resource(dev, SYS_RES_IRQ, 0,
1620			    sc->rl_irq[0]);
1621			sc->rl_irq[0] = NULL;
1622		}
1623	} else {
1624		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1625			if (sc->rl_irq[i] != NULL) {
1626				bus_release_resource(dev, SYS_RES_IRQ, rid,
1627				    sc->rl_irq[i]);
1628				sc->rl_irq[i] = NULL;
1629			}
1630		}
1631		pci_release_msi(dev);
1632	}
1633	if (sc->rl_res)
1634		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1635		    sc->rl_res);
1636
1637	/* Unload and free the RX DMA ring memory and map */
1638
1639	if (sc->rl_ldata.rl_rx_list_tag) {
1640		if (sc->rl_ldata.rl_rx_list_map)
1641			bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1642			    sc->rl_ldata.rl_rx_list_map);
1643		if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
1644			bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1645			    sc->rl_ldata.rl_rx_list,
1646			    sc->rl_ldata.rl_rx_list_map);
1647		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1648	}
1649
1650	/* Unload and free the TX DMA ring memory and map */
1651
1652	if (sc->rl_ldata.rl_tx_list_tag) {
1653		if (sc->rl_ldata.rl_tx_list_map)
1654			bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1655			    sc->rl_ldata.rl_tx_list_map);
1656		if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
1657			bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1658			    sc->rl_ldata.rl_tx_list,
1659			    sc->rl_ldata.rl_tx_list_map);
1660		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1661	}
1662
1663	/* Destroy all the RX and TX buffer maps */
1664
1665	if (sc->rl_ldata.rl_tx_mtag) {
1666		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1667			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1668			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1669		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1670	}
1671	if (sc->rl_ldata.rl_rx_mtag) {
1672		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1673			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1674			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1675		if (sc->rl_ldata.rl_rx_sparemap)
1676			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1677			    sc->rl_ldata.rl_rx_sparemap);
1678		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1679	}
1680
1681	/* Unload and free the stats buffer and map */
1682
1683	if (sc->rl_ldata.rl_stag) {
1684		if (sc->rl_ldata.rl_smap)
1685			bus_dmamap_unload(sc->rl_ldata.rl_stag,
1686			    sc->rl_ldata.rl_smap);
1687		if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
1688			bus_dmamem_free(sc->rl_ldata.rl_stag,
1689			    sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1690		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1691	}
1692
1693	if (sc->rl_parent_tag)
1694		bus_dma_tag_destroy(sc->rl_parent_tag);
1695
1696	mtx_destroy(&sc->rl_mtx);
1697
1698	return (0);
1699}
1700
1701static __inline void
1702re_discard_rxbuf(struct rl_softc *sc, int idx)
1703{
1704	struct rl_desc		*desc;
1705	struct rl_rxdesc	*rxd;
1706	uint32_t		cmdstat;
1707
1708	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1709	desc = &sc->rl_ldata.rl_rx_list[idx];
1710	desc->rl_vlanctl = 0;
1711	cmdstat = rxd->rx_size;
1712	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1713		cmdstat |= RL_RDESC_CMD_EOR;
1714	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1715}
1716
1717static int
1718re_newbuf(struct rl_softc *sc, int idx)
1719{
1720	struct mbuf		*m;
1721	struct rl_rxdesc	*rxd;
1722	bus_dma_segment_t	segs[1];
1723	bus_dmamap_t		map;
1724	struct rl_desc		*desc;
1725	uint32_t		cmdstat;
1726	int			error, nsegs;
1727
1728	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1729	if (m == NULL)
1730		return (ENOBUFS);
1731
1732	m->m_len = m->m_pkthdr.len = MCLBYTES;
1733#ifdef RE_FIXUP_RX
1734	/*
1735	 * This is part of an evil trick to deal with non-x86 platforms.
1736	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1737	 * boundaries, but that will hose non-x86 machines. To get around
1738	 * this, we leave some empty space at the start of each buffer
1739	 * and for non-x86 hosts, we copy the buffer back six bytes
1740	 * to achieve word alignment. This is slightly more efficient
1741	 * than allocating a new buffer, copying the contents, and
1742	 * discarding the old buffer.
1743	 */
1744	m_adj(m, RE_ETHER_ALIGN);
1745#endif
1746	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1747	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1748	if (error != 0) {
1749		m_freem(m);
1750		return (ENOBUFS);
1751	}
1752	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1753
1754	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1755	if (rxd->rx_m != NULL) {
1756		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1757		    BUS_DMASYNC_POSTREAD);
1758		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1759	}
1760
1761	rxd->rx_m = m;
1762	map = rxd->rx_dmamap;
1763	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1764	rxd->rx_size = segs[0].ds_len;
1765	sc->rl_ldata.rl_rx_sparemap = map;
1766	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1767	    BUS_DMASYNC_PREREAD);
1768
1769	desc = &sc->rl_ldata.rl_rx_list[idx];
1770	desc->rl_vlanctl = 0;
1771	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1772	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1773	cmdstat = segs[0].ds_len;
1774	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1775		cmdstat |= RL_RDESC_CMD_EOR;
1776	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1777
1778	return (0);
1779}
1780
1781#ifdef RE_FIXUP_RX
1782static __inline void
1783re_fixup_rx(struct mbuf *m)
1784{
1785	int                     i;
1786	uint16_t                *src, *dst;
1787
1788	src = mtod(m, uint16_t *);
1789	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1790
1791	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1792		*dst++ = *src++;
1793
1794	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1795}
1796#endif
1797
1798static int
1799re_tx_list_init(struct rl_softc *sc)
1800{
1801	struct rl_desc		*desc;
1802	int			i;
1803
1804	RL_LOCK_ASSERT(sc);
1805
1806	bzero(sc->rl_ldata.rl_tx_list,
1807	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1808	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1809		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1810	/* Set EOR. */
1811	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1812	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1813
1814	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1815	    sc->rl_ldata.rl_tx_list_map,
1816	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1817
1818	sc->rl_ldata.rl_tx_prodidx = 0;
1819	sc->rl_ldata.rl_tx_considx = 0;
1820	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1821
1822	return (0);
1823}
1824
1825static int
1826re_rx_list_init(struct rl_softc *sc)
1827{
1828	int			error, i;
1829
1830	bzero(sc->rl_ldata.rl_rx_list,
1831	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1832	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1833		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1834		if ((error = re_newbuf(sc, i)) != 0)
1835			return (error);
1836	}
1837
1838	/* Flush the RX descriptors */
1839
1840	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1841	    sc->rl_ldata.rl_rx_list_map,
1842	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1843
1844	sc->rl_ldata.rl_rx_prodidx = 0;
1845	sc->rl_head = sc->rl_tail = NULL;
1846
1847	return (0);
1848}
1849
1850/*
1851 * RX handler for C+ and 8169. For the gigE chips, we support
1852 * the reception of jumbo frames that have been fragmented
1853 * across multiple 2K mbuf cluster buffers.
1854 */
1855static int
1856re_rxeof(struct rl_softc *sc, int *rx_npktsp)
1857{
1858	struct mbuf		*m;
1859	struct ifnet		*ifp;
1860	int			i, total_len;
1861	struct rl_desc		*cur_rx;
1862	u_int32_t		rxstat, rxvlan;
1863	int			maxpkt = 16, rx_npkts = 0;
1864
1865	RL_LOCK_ASSERT(sc);
1866
1867	ifp = sc->rl_ifp;
1868
1869	/* Invalidate the descriptor memory */
1870
1871	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1872	    sc->rl_ldata.rl_rx_list_map,
1873	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1874
1875	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1876	    i = RL_RX_DESC_NXT(sc, i)) {
1877		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1878			break;
1879		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1880		rxstat = le32toh(cur_rx->rl_cmdstat);
1881		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1882			break;
1883		total_len = rxstat & sc->rl_rxlenmask;
1884		rxvlan = le32toh(cur_rx->rl_vlanctl);
1885		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1886
1887		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1888			if (re_newbuf(sc, i) != 0) {
1889				/*
1890				 * If this is part of a multi-fragment packet,
1891				 * discard all the pieces.
1892				 */
1893				if (sc->rl_head != NULL) {
1894					m_freem(sc->rl_head);
1895					sc->rl_head = sc->rl_tail = NULL;
1896				}
1897				re_discard_rxbuf(sc, i);
1898				continue;
1899			}
1900			m->m_len = RE_RX_DESC_BUFLEN;
1901			if (sc->rl_head == NULL)
1902				sc->rl_head = sc->rl_tail = m;
1903			else {
1904				m->m_flags &= ~M_PKTHDR;
1905				sc->rl_tail->m_next = m;
1906				sc->rl_tail = m;
1907			}
1908			continue;
1909		}
1910
1911		/*
1912		 * NOTE: for the 8139C+, the frame length field
1913		 * is always 12 bits in size, but for the gigE chips,
1914		 * it is 13 bits (since the max RX frame length is 16K).
1915		 * Unfortunately, all 32 bits in the status word
1916		 * were already used, so to make room for the extra
1917		 * length bit, RealTek took out the 'frame alignment
1918		 * error' bit and shifted the other status bits
1919		 * over one slot. The OWN, EOR, FS and LS bits are
1920		 * still in the same places. We have already extracted
1921		 * the frame length and checked the OWN bit, so rather
1922		 * than using an alternate bit mapping, we shift the
1923		 * status bits one space to the right so we can evaluate
1924		 * them using the 8169 status as though it was in the
1925		 * same format as that of the 8139C+.
1926		 */
1927		if (sc->rl_type == RL_8169)
1928			rxstat >>= 1;
1929
1930		/*
1931		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1932		 * set, but if CRC is clear, it will still be a valid frame.
1933		 */
1934		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1935		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1936			ifp->if_ierrors++;
1937			/*
1938			 * If this is part of a multi-fragment packet,
1939			 * discard all the pieces.
1940			 */
1941			if (sc->rl_head != NULL) {
1942				m_freem(sc->rl_head);
1943				sc->rl_head = sc->rl_tail = NULL;
1944			}
1945			re_discard_rxbuf(sc, i);
1946			continue;
1947		}
1948
1949		/*
1950		 * If allocating a replacement mbuf fails,
1951		 * reload the current one.
1952		 */
1953
1954		if (re_newbuf(sc, i) != 0) {
1955			ifp->if_iqdrops++;
1956			if (sc->rl_head != NULL) {
1957				m_freem(sc->rl_head);
1958				sc->rl_head = sc->rl_tail = NULL;
1959			}
1960			re_discard_rxbuf(sc, i);
1961			continue;
1962		}
1963
1964		if (sc->rl_head != NULL) {
1965			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1966			if (m->m_len == 0)
1967				m->m_len = RE_RX_DESC_BUFLEN;
1968			/*
1969			 * Special case: if there's 4 bytes or less
1970			 * in this buffer, the mbuf can be discarded:
1971			 * the last 4 bytes is the CRC, which we don't
1972			 * care about anyway.
1973			 */
1974			if (m->m_len <= ETHER_CRC_LEN) {
1975				sc->rl_tail->m_len -=
1976				    (ETHER_CRC_LEN - m->m_len);
1977				m_freem(m);
1978			} else {
1979				m->m_len -= ETHER_CRC_LEN;
1980				m->m_flags &= ~M_PKTHDR;
1981				sc->rl_tail->m_next = m;
1982			}
1983			m = sc->rl_head;
1984			sc->rl_head = sc->rl_tail = NULL;
1985			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1986		} else
1987			m->m_pkthdr.len = m->m_len =
1988			    (total_len - ETHER_CRC_LEN);
1989
1990#ifdef RE_FIXUP_RX
1991		re_fixup_rx(m);
1992#endif
1993		ifp->if_ipackets++;
1994		m->m_pkthdr.rcvif = ifp;
1995
1996		/* Do RX checksumming if enabled */
1997
1998		if (ifp->if_capenable & IFCAP_RXCSUM) {
1999			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2000				/* Check IP header checksum */
2001				if (rxstat & RL_RDESC_STAT_PROTOID)
2002					m->m_pkthdr.csum_flags |=
2003					    CSUM_IP_CHECKED;
2004				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2005					m->m_pkthdr.csum_flags |=
2006					    CSUM_IP_VALID;
2007
2008				/* Check TCP/UDP checksum */
2009				if ((RL_TCPPKT(rxstat) &&
2010				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2011				    (RL_UDPPKT(rxstat) &&
2012				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2013					m->m_pkthdr.csum_flags |=
2014						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2015					m->m_pkthdr.csum_data = 0xffff;
2016				}
2017			} else {
2018				/*
2019				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2020				 */
2021				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2022				    (rxvlan & RL_RDESC_IPV4))
2023					m->m_pkthdr.csum_flags |=
2024					    CSUM_IP_CHECKED;
2025				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2026				    (rxvlan & RL_RDESC_IPV4))
2027					m->m_pkthdr.csum_flags |=
2028					    CSUM_IP_VALID;
2029				if (((rxstat & RL_RDESC_STAT_TCP) &&
2030				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2031				    ((rxstat & RL_RDESC_STAT_UDP) &&
2032				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2033					m->m_pkthdr.csum_flags |=
2034						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2035					m->m_pkthdr.csum_data = 0xffff;
2036				}
2037			}
2038		}
2039		maxpkt--;
2040		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2041			m->m_pkthdr.ether_vtag =
2042			    bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2043			m->m_flags |= M_VLANTAG;
2044		}
2045		RL_UNLOCK(sc);
2046		(*ifp->if_input)(ifp, m);
2047		RL_LOCK(sc);
2048		rx_npkts++;
2049	}
2050
2051	/* Flush the RX DMA ring */
2052
2053	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2054	    sc->rl_ldata.rl_rx_list_map,
2055	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2056
2057	sc->rl_ldata.rl_rx_prodidx = i;
2058
2059	if (rx_npktsp != NULL)
2060		*rx_npktsp = rx_npkts;
2061	if (maxpkt)
2062		return (EAGAIN);
2063
2064	return (0);
2065}
2066
2067static void
2068re_txeof(struct rl_softc *sc)
2069{
2070	struct ifnet		*ifp;
2071	struct rl_txdesc	*txd;
2072	u_int32_t		txstat;
2073	int			cons;
2074
2075	cons = sc->rl_ldata.rl_tx_considx;
2076	if (cons == sc->rl_ldata.rl_tx_prodidx)
2077		return;
2078
2079	ifp = sc->rl_ifp;
2080	/* Invalidate the TX descriptor list */
2081	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2082	    sc->rl_ldata.rl_tx_list_map,
2083	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2084
2085	for (; cons != sc->rl_ldata.rl_tx_prodidx;
2086	    cons = RL_TX_DESC_NXT(sc, cons)) {
2087		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2088		if (txstat & RL_TDESC_STAT_OWN)
2089			break;
2090		/*
2091		 * We only stash mbufs in the last descriptor
2092		 * in a fragment chain, which also happens to
2093		 * be the only place where the TX status bits
2094		 * are valid.
2095		 */
2096		if (txstat & RL_TDESC_CMD_EOF) {
2097			txd = &sc->rl_ldata.rl_tx_desc[cons];
2098			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2099			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2100			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2101			    txd->tx_dmamap);
2102			KASSERT(txd->tx_m != NULL,
2103			    ("%s: freeing NULL mbufs!", __func__));
2104			m_freem(txd->tx_m);
2105			txd->tx_m = NULL;
2106			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2107			    RL_TDESC_STAT_COLCNT))
2108				ifp->if_collisions++;
2109			if (txstat & RL_TDESC_STAT_TXERRSUM)
2110				ifp->if_oerrors++;
2111			else
2112				ifp->if_opackets++;
2113		}
2114		sc->rl_ldata.rl_tx_free++;
2115		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2116	}
2117	sc->rl_ldata.rl_tx_considx = cons;
2118
2119	/* No changes made to the TX ring, so no flush needed */
2120
2121	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2122#ifdef RE_TX_MODERATION
2123		/*
2124		 * If not all descriptors have been reaped yet, reload
2125		 * the timer so that we will eventually get another
2126		 * interrupt that will cause us to re-enter this routine.
2127		 * This is done in case the transmitter has gone idle.
2128		 */
2129		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2130#endif
2131	} else
2132		sc->rl_watchdog_timer = 0;
2133}
2134
2135static void
2136re_tick(void *xsc)
2137{
2138	struct rl_softc		*sc;
2139	struct mii_data		*mii;
2140
2141	sc = xsc;
2142
2143	RL_LOCK_ASSERT(sc);
2144
2145	mii = device_get_softc(sc->rl_miibus);
2146	mii_tick(mii);
2147	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2148		re_miibus_statchg(sc->rl_dev);
2149	/*
2150	 * Reclaim transmitted frames here. Technically it is not
2151	 * necessary to do here but it ensures periodic reclamation
2152	 * regardless of Tx completion interrupt which seems to be
2153	 * lost on PCIe based controllers under certain situations.
2154	 */
2155	re_txeof(sc);
2156	re_watchdog(sc);
2157	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2158}
2159
2160#ifdef DEVICE_POLLING
2161static int
2162re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2163{
2164	struct rl_softc *sc = ifp->if_softc;
2165	int rx_npkts = 0;
2166
2167	RL_LOCK(sc);
2168	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2169		rx_npkts = re_poll_locked(ifp, cmd, count);
2170	RL_UNLOCK(sc);
2171	return (rx_npkts);
2172}
2173
2174static int
2175re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2176{
2177	struct rl_softc *sc = ifp->if_softc;
2178	int rx_npkts;
2179
2180	RL_LOCK_ASSERT(sc);
2181
2182	sc->rxcycles = count;
2183	re_rxeof(sc, &rx_npkts);
2184	re_txeof(sc);
2185
2186	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2187		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2188
2189	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2190		u_int16_t       status;
2191
2192		status = CSR_READ_2(sc, RL_ISR);
2193		if (status == 0xffff)
2194			return (rx_npkts);
2195		if (status)
2196			CSR_WRITE_2(sc, RL_ISR, status);
2197		if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2198		    (sc->rl_flags & RL_FLAG_PCIE))
2199			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2200
2201		/*
2202		 * XXX check behaviour on receiver stalls.
2203		 */
2204
2205		if (status & RL_ISR_SYSTEM_ERR) {
2206			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2207			re_init_locked(sc);
2208		}
2209	}
2210	return (rx_npkts);
2211}
2212#endif /* DEVICE_POLLING */
2213
2214static int
2215re_intr(void *arg)
2216{
2217	struct rl_softc		*sc;
2218	uint16_t		status;
2219
2220	sc = arg;
2221
2222	status = CSR_READ_2(sc, RL_ISR);
2223	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2224                return (FILTER_STRAY);
2225	CSR_WRITE_2(sc, RL_IMR, 0);
2226
2227	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2228
2229	return (FILTER_HANDLED);
2230}
2231
2232static void
2233re_int_task(void *arg, int npending)
2234{
2235	struct rl_softc		*sc;
2236	struct ifnet		*ifp;
2237	u_int16_t		status;
2238	int			rval = 0;
2239
2240	sc = arg;
2241	ifp = sc->rl_ifp;
2242
2243	RL_LOCK(sc);
2244
2245	status = CSR_READ_2(sc, RL_ISR);
2246        CSR_WRITE_2(sc, RL_ISR, status);
2247
2248	if (sc->suspended ||
2249	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2250		RL_UNLOCK(sc);
2251		return;
2252	}
2253
2254#ifdef DEVICE_POLLING
2255	if  (ifp->if_capenable & IFCAP_POLLING) {
2256		RL_UNLOCK(sc);
2257		return;
2258	}
2259#endif
2260
2261	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2262		rval = re_rxeof(sc, NULL);
2263
2264	/*
2265	 * Some chips will ignore a second TX request issued
2266	 * while an existing transmission is in progress. If
2267	 * the transmitter goes idle but there are still
2268	 * packets waiting to be sent, we need to restart the
2269	 * channel here to flush them out. This only seems to
2270	 * be required with the PCIe devices.
2271	 */
2272	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2273	    (sc->rl_flags & RL_FLAG_PCIE))
2274		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2275	if (status & (
2276#ifdef RE_TX_MODERATION
2277	    RL_ISR_TIMEOUT_EXPIRED|
2278#else
2279	    RL_ISR_TX_OK|
2280#endif
2281	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2282		re_txeof(sc);
2283
2284	if (status & RL_ISR_SYSTEM_ERR) {
2285		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2286		re_init_locked(sc);
2287	}
2288
2289	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2290		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2291
2292	RL_UNLOCK(sc);
2293
2294        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2295		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2296		return;
2297	}
2298
2299	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2300}
2301
2302static int
2303re_encap(struct rl_softc *sc, struct mbuf **m_head)
2304{
2305	struct rl_txdesc	*txd, *txd_last;
2306	bus_dma_segment_t	segs[RL_NTXSEGS];
2307	bus_dmamap_t		map;
2308	struct mbuf		*m_new;
2309	struct rl_desc		*desc;
2310	int			nsegs, prod;
2311	int			i, error, ei, si;
2312	int			padlen;
2313	uint32_t		cmdstat, csum_flags, vlanctl;
2314
2315	RL_LOCK_ASSERT(sc);
2316	M_ASSERTPKTHDR((*m_head));
2317
2318	/*
2319	 * With some of the RealTek chips, using the checksum offload
2320	 * support in conjunction with the autopadding feature results
2321	 * in the transmission of corrupt frames. For example, if we
2322	 * need to send a really small IP fragment that's less than 60
2323	 * bytes in size, and IP header checksumming is enabled, the
2324	 * resulting ethernet frame that appears on the wire will
2325	 * have garbled payload. To work around this, if TX IP checksum
2326	 * offload is enabled, we always manually pad short frames out
2327	 * to the minimum ethernet frame size.
2328	 */
2329	if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2330	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2331	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2332		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2333		if (M_WRITABLE(*m_head) == 0) {
2334			/* Get a writable copy. */
2335			m_new = m_dup(*m_head, M_DONTWAIT);
2336			m_freem(*m_head);
2337			if (m_new == NULL) {
2338				*m_head = NULL;
2339				return (ENOBUFS);
2340			}
2341			*m_head = m_new;
2342		}
2343		if ((*m_head)->m_next != NULL ||
2344		    M_TRAILINGSPACE(*m_head) < padlen) {
2345			m_new = m_defrag(*m_head, M_DONTWAIT);
2346			if (m_new == NULL) {
2347				m_freem(*m_head);
2348				*m_head = NULL;
2349				return (ENOBUFS);
2350			}
2351		} else
2352			m_new = *m_head;
2353
2354		/*
2355		 * Manually pad short frames, and zero the pad space
2356		 * to avoid leaking data.
2357		 */
2358		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2359		m_new->m_pkthdr.len += padlen;
2360		m_new->m_len = m_new->m_pkthdr.len;
2361		*m_head = m_new;
2362	}
2363
2364	prod = sc->rl_ldata.rl_tx_prodidx;
2365	txd = &sc->rl_ldata.rl_tx_desc[prod];
2366	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2367	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2368	if (error == EFBIG) {
2369		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2370		if (m_new == NULL) {
2371			m_freem(*m_head);
2372			*m_head = NULL;
2373			return (ENOBUFS);
2374		}
2375		*m_head = m_new;
2376		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2377		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2378		if (error != 0) {
2379			m_freem(*m_head);
2380			*m_head = NULL;
2381			return (error);
2382		}
2383	} else if (error != 0)
2384		return (error);
2385	if (nsegs == 0) {
2386		m_freem(*m_head);
2387		*m_head = NULL;
2388		return (EIO);
2389	}
2390
2391	/* Check for number of available descriptors. */
2392	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2393		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2394		return (ENOBUFS);
2395	}
2396
2397	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2398	    BUS_DMASYNC_PREWRITE);
2399
2400	/*
2401	 * Set up checksum offload. Note: checksum offload bits must
2402	 * appear in all descriptors of a multi-descriptor transmit
2403	 * attempt. This is according to testing done with an 8169
2404	 * chip. This is a requirement.
2405	 */
2406	vlanctl = 0;
2407	csum_flags = 0;
2408	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2409		if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2410			csum_flags |= RL_TDESC_CMD_LGSEND;
2411			vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2412			    RL_TDESC_CMD_MSSVALV2_SHIFT);
2413		} else {
2414			csum_flags |= RL_TDESC_CMD_LGSEND |
2415			    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2416			    RL_TDESC_CMD_MSSVAL_SHIFT);
2417		}
2418	} else {
2419		/*
2420		 * Unconditionally enable IP checksum if TCP or UDP
2421		 * checksum is required. Otherwise, TCP/UDP checksum
2422		 * does't make effects.
2423		 */
2424		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2425			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2426				csum_flags |= RL_TDESC_CMD_IPCSUM;
2427				if (((*m_head)->m_pkthdr.csum_flags &
2428				    CSUM_TCP) != 0)
2429					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2430				if (((*m_head)->m_pkthdr.csum_flags &
2431				    CSUM_UDP) != 0)
2432					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2433			} else {
2434				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2435				if (((*m_head)->m_pkthdr.csum_flags &
2436				    CSUM_TCP) != 0)
2437					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2438				if (((*m_head)->m_pkthdr.csum_flags &
2439				    CSUM_UDP) != 0)
2440					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2441			}
2442		}
2443	}
2444
2445	/*
2446	 * Set up hardware VLAN tagging. Note: vlan tag info must
2447	 * appear in all descriptors of a multi-descriptor
2448	 * transmission attempt.
2449	 */
2450	if ((*m_head)->m_flags & M_VLANTAG)
2451		vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2452		    RL_TDESC_VLANCTL_TAG;
2453
2454	si = prod;
2455	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2456		desc = &sc->rl_ldata.rl_tx_list[prod];
2457		desc->rl_vlanctl = htole32(vlanctl);
2458		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2459		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2460		cmdstat = segs[i].ds_len;
2461		if (i != 0)
2462			cmdstat |= RL_TDESC_CMD_OWN;
2463		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2464			cmdstat |= RL_TDESC_CMD_EOR;
2465		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2466		sc->rl_ldata.rl_tx_free--;
2467	}
2468	/* Update producer index. */
2469	sc->rl_ldata.rl_tx_prodidx = prod;
2470
2471	/* Set EOF on the last descriptor. */
2472	ei = RL_TX_DESC_PRV(sc, prod);
2473	desc = &sc->rl_ldata.rl_tx_list[ei];
2474	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2475
2476	desc = &sc->rl_ldata.rl_tx_list[si];
2477	/* Set SOF and transfer ownership of packet to the chip. */
2478	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2479
2480	/*
2481	 * Insure that the map for this transmission
2482	 * is placed at the array index of the last descriptor
2483	 * in this chain.  (Swap last and first dmamaps.)
2484	 */
2485	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2486	map = txd->tx_dmamap;
2487	txd->tx_dmamap = txd_last->tx_dmamap;
2488	txd_last->tx_dmamap = map;
2489	txd_last->tx_m = *m_head;
2490
2491	return (0);
2492}
2493
2494static void
2495re_tx_task(void *arg, int npending)
2496{
2497	struct ifnet		*ifp;
2498
2499	ifp = arg;
2500	re_start(ifp);
2501}
2502
2503/*
2504 * Main transmit routine for C+ and gigE NICs.
2505 */
2506static void
2507re_start(struct ifnet *ifp)
2508{
2509	struct rl_softc		*sc;
2510	struct mbuf		*m_head;
2511	int			queued;
2512
2513	sc = ifp->if_softc;
2514
2515	RL_LOCK(sc);
2516
2517	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2518	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) {
2519		RL_UNLOCK(sc);
2520		return;
2521	}
2522
2523	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2524	    sc->rl_ldata.rl_tx_free > 1;) {
2525		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2526		if (m_head == NULL)
2527			break;
2528
2529		if (re_encap(sc, &m_head) != 0) {
2530			if (m_head == NULL)
2531				break;
2532			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2533			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2534			break;
2535		}
2536
2537		/*
2538		 * If there's a BPF listener, bounce a copy of this frame
2539		 * to him.
2540		 */
2541		ETHER_BPF_MTAP(ifp, m_head);
2542
2543		queued++;
2544	}
2545
2546	if (queued == 0) {
2547#ifdef RE_TX_MODERATION
2548		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2549			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2550#endif
2551		RL_UNLOCK(sc);
2552		return;
2553	}
2554
2555	/* Flush the TX descriptors */
2556
2557	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2558	    sc->rl_ldata.rl_tx_list_map,
2559	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2560
2561	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2562
2563#ifdef RE_TX_MODERATION
2564	/*
2565	 * Use the countdown timer for interrupt moderation.
2566	 * 'TX done' interrupts are disabled. Instead, we reset the
2567	 * countdown timer, which will begin counting until it hits
2568	 * the value in the TIMERINT register, and then trigger an
2569	 * interrupt. Each time we write to the TIMERCNT register,
2570	 * the timer count is reset to 0.
2571	 */
2572	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2573#endif
2574
2575	/*
2576	 * Set a timeout in case the chip goes out to lunch.
2577	 */
2578	sc->rl_watchdog_timer = 5;
2579
2580	RL_UNLOCK(sc);
2581}
2582
2583static void
2584re_init(void *xsc)
2585{
2586	struct rl_softc		*sc = xsc;
2587
2588	RL_LOCK(sc);
2589	re_init_locked(sc);
2590	RL_UNLOCK(sc);
2591}
2592
2593static void
2594re_init_locked(struct rl_softc *sc)
2595{
2596	struct ifnet		*ifp = sc->rl_ifp;
2597	struct mii_data		*mii;
2598	uint32_t		reg;
2599	uint16_t		cfg;
2600	union {
2601		uint32_t align_dummy;
2602		u_char eaddr[ETHER_ADDR_LEN];
2603        } eaddr;
2604
2605	RL_LOCK_ASSERT(sc);
2606
2607	mii = device_get_softc(sc->rl_miibus);
2608
2609	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2610		return;
2611
2612	/*
2613	 * Cancel pending I/O and free all RX/TX buffers.
2614	 */
2615	re_stop(sc);
2616
2617	/* Put controller into known state. */
2618	re_reset(sc);
2619
2620	/*
2621	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2622	 * RX checksum offload. We must configure the C+ register
2623	 * before all others.
2624	 */
2625	cfg = RL_CPLUSCMD_PCI_MRW;
2626	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2627		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2628	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2629		cfg |= RL_CPLUSCMD_VLANSTRIP;
2630	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
2631		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
2632		/* XXX magic. */
2633		cfg |= 0x0001;
2634	} else
2635		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
2636	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
2637	if (sc->rl_hwrev == RL_HWREV_8169_8110SC ||
2638	    sc->rl_hwrev == RL_HWREV_8169_8110SCE) {
2639		reg = 0x000fff00;
2640		if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0)
2641			reg |= 0x000000ff;
2642		if (sc->rl_hwrev == RL_HWREV_8169_8110SCE)
2643			reg |= 0x00f00000;
2644		CSR_WRITE_4(sc, 0x7c, reg);
2645		/* Disable interrupt mitigation. */
2646		CSR_WRITE_2(sc, 0xe2, 0);
2647	}
2648	/*
2649	 * Disable TSO if interface MTU size is greater than MSS
2650	 * allowed in controller.
2651	 */
2652	if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
2653		ifp->if_capenable &= ~IFCAP_TSO4;
2654		ifp->if_hwassist &= ~CSUM_TSO;
2655	}
2656
2657	/*
2658	 * Init our MAC address.  Even though the chipset
2659	 * documentation doesn't mention it, we need to enter "Config
2660	 * register write enable" mode to modify the ID registers.
2661	 */
2662	/* Copy MAC address on stack to align. */
2663	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2664	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2665	CSR_WRITE_4(sc, RL_IDR0,
2666	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2667	CSR_WRITE_4(sc, RL_IDR4,
2668	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2669	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2670
2671	/*
2672	 * For C+ mode, initialize the RX descriptors and mbufs.
2673	 */
2674	re_rx_list_init(sc);
2675	re_tx_list_init(sc);
2676
2677	/*
2678	 * Load the addresses of the RX and TX lists into the chip.
2679	 */
2680
2681	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2682	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2683	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2684	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2685
2686	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2687	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2688	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2689	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2690
2691	/*
2692	 * Enable transmit and receive.
2693	 */
2694	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2695
2696	/*
2697	 * Set the initial TX configuration.
2698	 */
2699	if (sc->rl_testmode) {
2700		if (sc->rl_type == RL_8169)
2701			CSR_WRITE_4(sc, RL_TXCFG,
2702			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2703		else
2704			CSR_WRITE_4(sc, RL_TXCFG,
2705			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2706	} else
2707		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2708
2709	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2710
2711	/*
2712	 * Set the initial RX configuration.
2713	 */
2714	re_set_rxmode(sc);
2715
2716	/* Configure interrupt moderation. */
2717	if (sc->rl_type == RL_8169) {
2718		switch (sc->rl_hwrev) {
2719		case RL_HWREV_8100E:
2720		case RL_HWREV_8101E:
2721		case RL_HWREV_8102E:
2722		case RL_HWREV_8102EL:
2723		case RL_HWREV_8102EL_SPIN1:
2724		case RL_HWREV_8103E:
2725			CSR_WRITE_2(sc, RL_INTRMOD, 0);
2726			break;
2727		default:
2728			/* Magic from vendor. */
2729			CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
2730			break;
2731		}
2732	}
2733
2734#ifdef DEVICE_POLLING
2735	/*
2736	 * Disable interrupts if we are polling.
2737	 */
2738	if (ifp->if_capenable & IFCAP_POLLING)
2739		CSR_WRITE_2(sc, RL_IMR, 0);
2740	else	/* otherwise ... */
2741#endif
2742
2743	/*
2744	 * Enable interrupts.
2745	 */
2746	if (sc->rl_testmode)
2747		CSR_WRITE_2(sc, RL_IMR, 0);
2748	else
2749		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2750	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2751
2752	/* Set initial TX threshold */
2753	sc->rl_txthresh = RL_TX_THRESH_INIT;
2754
2755	/* Start RX/TX process. */
2756	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2757#ifdef notdef
2758	/* Enable receiver and transmitter. */
2759	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2760#endif
2761
2762#ifdef RE_TX_MODERATION
2763	/*
2764	 * Initialize the timer interrupt register so that
2765	 * a timer interrupt will be generated once the timer
2766	 * reaches a certain number of ticks. The timer is
2767	 * reloaded on each transmit. This gives us TX interrupt
2768	 * moderation, which dramatically improves TX frame rate.
2769	 */
2770	if (sc->rl_type == RL_8169)
2771		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2772	else
2773		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2774#endif
2775
2776	/*
2777	 * For 8169 gigE NICs, set the max allowed RX packet
2778	 * size so we can receive jumbo frames.
2779	 */
2780	if (sc->rl_type == RL_8169)
2781		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2782
2783	if (sc->rl_testmode)
2784		return;
2785
2786	mii_mediachg(mii);
2787
2788	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2789
2790	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2791	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2792
2793	sc->rl_flags &= ~RL_FLAG_LINK;
2794	sc->rl_watchdog_timer = 0;
2795	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2796}
2797
2798/*
2799 * Set media options.
2800 */
2801static int
2802re_ifmedia_upd(struct ifnet *ifp)
2803{
2804	struct rl_softc		*sc;
2805	struct mii_data		*mii;
2806	int			error;
2807
2808	sc = ifp->if_softc;
2809	mii = device_get_softc(sc->rl_miibus);
2810	RL_LOCK(sc);
2811	error = mii_mediachg(mii);
2812	RL_UNLOCK(sc);
2813
2814	return (error);
2815}
2816
2817/*
2818 * Report current media status.
2819 */
2820static void
2821re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2822{
2823	struct rl_softc		*sc;
2824	struct mii_data		*mii;
2825
2826	sc = ifp->if_softc;
2827	mii = device_get_softc(sc->rl_miibus);
2828
2829	RL_LOCK(sc);
2830	mii_pollstat(mii);
2831	RL_UNLOCK(sc);
2832	ifmr->ifm_active = mii->mii_media_active;
2833	ifmr->ifm_status = mii->mii_media_status;
2834}
2835
2836static int
2837re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2838{
2839	struct rl_softc		*sc = ifp->if_softc;
2840	struct ifreq		*ifr = (struct ifreq *) data;
2841	struct mii_data		*mii;
2842	int			error = 0;
2843
2844	switch (command) {
2845	case SIOCSIFMTU:
2846		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2847			error = EINVAL;
2848			break;
2849		}
2850		if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 &&
2851		    ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2852			error = EINVAL;
2853			break;
2854		}
2855		RL_LOCK(sc);
2856		if (ifp->if_mtu != ifr->ifr_mtu)
2857			ifp->if_mtu = ifr->ifr_mtu;
2858		if (ifp->if_mtu > RL_TSO_MTU &&
2859		    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2860			ifp->if_capenable &= ~IFCAP_TSO4;
2861			ifp->if_hwassist &= ~CSUM_TSO;
2862			VLAN_CAPABILITIES(ifp);
2863		}
2864		RL_UNLOCK(sc);
2865		break;
2866	case SIOCSIFFLAGS:
2867		RL_LOCK(sc);
2868		if ((ifp->if_flags & IFF_UP) != 0) {
2869			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2870				if (((ifp->if_flags ^ sc->rl_if_flags)
2871				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2872					re_set_rxmode(sc);
2873			} else
2874				re_init_locked(sc);
2875		} else {
2876			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2877				re_stop(sc);
2878		}
2879		sc->rl_if_flags = ifp->if_flags;
2880		RL_UNLOCK(sc);
2881		break;
2882	case SIOCADDMULTI:
2883	case SIOCDELMULTI:
2884		RL_LOCK(sc);
2885		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2886			re_set_rxmode(sc);
2887		RL_UNLOCK(sc);
2888		break;
2889	case SIOCGIFMEDIA:
2890	case SIOCSIFMEDIA:
2891		mii = device_get_softc(sc->rl_miibus);
2892		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2893		break;
2894	case SIOCSIFCAP:
2895	    {
2896		int mask, reinit;
2897
2898		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2899		reinit = 0;
2900#ifdef DEVICE_POLLING
2901		if (mask & IFCAP_POLLING) {
2902			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2903				error = ether_poll_register(re_poll, ifp);
2904				if (error)
2905					return (error);
2906				RL_LOCK(sc);
2907				/* Disable interrupts */
2908				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2909				ifp->if_capenable |= IFCAP_POLLING;
2910				RL_UNLOCK(sc);
2911			} else {
2912				error = ether_poll_deregister(ifp);
2913				/* Enable interrupts. */
2914				RL_LOCK(sc);
2915				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2916				ifp->if_capenable &= ~IFCAP_POLLING;
2917				RL_UNLOCK(sc);
2918			}
2919		}
2920#endif /* DEVICE_POLLING */
2921		if (mask & IFCAP_HWCSUM) {
2922			ifp->if_capenable ^= IFCAP_HWCSUM;
2923			if (ifp->if_capenable & IFCAP_TXCSUM)
2924				ifp->if_hwassist |= RE_CSUM_FEATURES;
2925			else
2926				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2927			reinit = 1;
2928		}
2929		if ((mask & IFCAP_TSO4) != 0 &&
2930		    (ifp->if_capabilities & IFCAP_TSO) != 0) {
2931			ifp->if_capenable ^= IFCAP_TSO4;
2932			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
2933				ifp->if_hwassist |= CSUM_TSO;
2934			else
2935				ifp->if_hwassist &= ~CSUM_TSO;
2936			if (ifp->if_mtu > RL_TSO_MTU &&
2937			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2938				ifp->if_capenable &= ~IFCAP_TSO4;
2939				ifp->if_hwassist &= ~CSUM_TSO;
2940			}
2941		}
2942		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2943		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2944			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2945		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2946		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2947			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2948			/* TSO over VLAN requires VLAN hardware tagging. */
2949			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2950				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2951			reinit = 1;
2952		}
2953		if ((mask & IFCAP_WOL) != 0 &&
2954		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2955			if ((mask & IFCAP_WOL_UCAST) != 0)
2956				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2957			if ((mask & IFCAP_WOL_MCAST) != 0)
2958				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2959			if ((mask & IFCAP_WOL_MAGIC) != 0)
2960				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2961		}
2962		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
2963			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2964			re_init(sc);
2965		}
2966		VLAN_CAPABILITIES(ifp);
2967	    }
2968		break;
2969	default:
2970		error = ether_ioctl(ifp, command, data);
2971		break;
2972	}
2973
2974	return (error);
2975}
2976
2977static void
2978re_watchdog(struct rl_softc *sc)
2979{
2980	struct ifnet		*ifp;
2981
2982	RL_LOCK_ASSERT(sc);
2983
2984	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2985		return;
2986
2987	ifp = sc->rl_ifp;
2988	re_txeof(sc);
2989	if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
2990		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2991		    "-- recovering\n");
2992		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2993			taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2994		return;
2995	}
2996
2997	if_printf(ifp, "watchdog timeout\n");
2998	ifp->if_oerrors++;
2999
3000	re_rxeof(sc, NULL);
3001	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3002	re_init_locked(sc);
3003	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3004		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
3005}
3006
3007/*
3008 * Stop the adapter and free any mbufs allocated to the
3009 * RX and TX lists.
3010 */
3011static void
3012re_stop(struct rl_softc *sc)
3013{
3014	int			i;
3015	struct ifnet		*ifp;
3016	struct rl_txdesc	*txd;
3017	struct rl_rxdesc	*rxd;
3018
3019	RL_LOCK_ASSERT(sc);
3020
3021	ifp = sc->rl_ifp;
3022
3023	sc->rl_watchdog_timer = 0;
3024	callout_stop(&sc->rl_stat_callout);
3025	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3026
3027	if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0)
3028		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3029		    RL_CMD_RX_ENB);
3030	else
3031		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3032	DELAY(1000);
3033	CSR_WRITE_2(sc, RL_IMR, 0x0000);
3034	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3035
3036	if (sc->rl_head != NULL) {
3037		m_freem(sc->rl_head);
3038		sc->rl_head = sc->rl_tail = NULL;
3039	}
3040
3041	/* Free the TX list buffers. */
3042
3043	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3044		txd = &sc->rl_ldata.rl_tx_desc[i];
3045		if (txd->tx_m != NULL) {
3046			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3047			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3048			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3049			    txd->tx_dmamap);
3050			m_freem(txd->tx_m);
3051			txd->tx_m = NULL;
3052		}
3053	}
3054
3055	/* Free the RX list buffers. */
3056
3057	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3058		rxd = &sc->rl_ldata.rl_rx_desc[i];
3059		if (rxd->rx_m != NULL) {
3060			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3061			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3062			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3063			    rxd->rx_dmamap);
3064			m_freem(rxd->rx_m);
3065			rxd->rx_m = NULL;
3066		}
3067	}
3068}
3069
3070/*
3071 * Device suspend routine.  Stop the interface and save some PCI
3072 * settings in case the BIOS doesn't restore them properly on
3073 * resume.
3074 */
3075static int
3076re_suspend(device_t dev)
3077{
3078	struct rl_softc		*sc;
3079
3080	sc = device_get_softc(dev);
3081
3082	RL_LOCK(sc);
3083	re_stop(sc);
3084	re_setwol(sc);
3085	sc->suspended = 1;
3086	RL_UNLOCK(sc);
3087
3088	return (0);
3089}
3090
3091/*
3092 * Device resume routine.  Restore some PCI settings in case the BIOS
3093 * doesn't, re-enable busmastering, and restart the interface if
3094 * appropriate.
3095 */
3096static int
3097re_resume(device_t dev)
3098{
3099	struct rl_softc		*sc;
3100	struct ifnet		*ifp;
3101
3102	sc = device_get_softc(dev);
3103
3104	RL_LOCK(sc);
3105
3106	ifp = sc->rl_ifp;
3107	/* Take controller out of sleep mode. */
3108	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3109		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3110			CSR_WRITE_1(sc, RL_GPIO,
3111			    CSR_READ_1(sc, RL_GPIO) | 0x01);
3112	}
3113
3114	/*
3115	 * Clear WOL matching such that normal Rx filtering
3116	 * wouldn't interfere with WOL patterns.
3117	 */
3118	re_clrwol(sc);
3119
3120	/* reinitialize interface if necessary */
3121	if (ifp->if_flags & IFF_UP)
3122		re_init_locked(sc);
3123
3124	sc->suspended = 0;
3125	RL_UNLOCK(sc);
3126
3127	return (0);
3128}
3129
3130/*
3131 * Stop all chip I/O so that the kernel's probe routines don't
3132 * get confused by errant DMAs when rebooting.
3133 */
3134static int
3135re_shutdown(device_t dev)
3136{
3137	struct rl_softc		*sc;
3138
3139	sc = device_get_softc(dev);
3140
3141	RL_LOCK(sc);
3142	re_stop(sc);
3143	/*
3144	 * Mark interface as down since otherwise we will panic if
3145	 * interrupt comes in later on, which can happen in some
3146	 * cases.
3147	 */
3148	sc->rl_ifp->if_flags &= ~IFF_UP;
3149	re_setwol(sc);
3150	RL_UNLOCK(sc);
3151
3152	return (0);
3153}
3154
3155static void
3156re_setwol(struct rl_softc *sc)
3157{
3158	struct ifnet		*ifp;
3159	int			pmc;
3160	uint16_t		pmstat;
3161	uint8_t			v;
3162
3163	RL_LOCK_ASSERT(sc);
3164
3165	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3166		return;
3167
3168	ifp = sc->rl_ifp;
3169	/* Put controller into sleep mode. */
3170	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3171		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3172			CSR_WRITE_1(sc, RL_GPIO,
3173			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
3174	}
3175	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3176	    (sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3177		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3178	/* Enable config register write. */
3179	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3180
3181	/* Enable PME. */
3182	v = CSR_READ_1(sc, RL_CFG1);
3183	v &= ~RL_CFG1_PME;
3184	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3185		v |= RL_CFG1_PME;
3186	CSR_WRITE_1(sc, RL_CFG1, v);
3187
3188	v = CSR_READ_1(sc, RL_CFG3);
3189	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3190	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3191		v |= RL_CFG3_WOL_MAGIC;
3192	CSR_WRITE_1(sc, RL_CFG3, v);
3193
3194	/* Config register write done. */
3195	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3196
3197	v = CSR_READ_1(sc, RL_CFG5);
3198	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3199	v &= ~RL_CFG5_WOL_LANWAKE;
3200	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3201		v |= RL_CFG5_WOL_UCAST;
3202	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3203		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3204	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3205		v |= RL_CFG5_WOL_LANWAKE;
3206	CSR_WRITE_1(sc, RL_CFG5, v);
3207
3208	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3209	    (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3210		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3211	/*
3212	 * It seems that hardware resets its link speed to 100Mbps in
3213	 * power down mode so switching to 100Mbps in driver is not
3214	 * needed.
3215	 */
3216
3217	/* Request PME if WOL is requested. */
3218	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3219	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3220	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3221		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3222	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3223}
3224
3225static void
3226re_clrwol(struct rl_softc *sc)
3227{
3228	int			pmc;
3229	uint8_t			v;
3230
3231	RL_LOCK_ASSERT(sc);
3232
3233	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3234		return;
3235
3236	/* Enable config register write. */
3237	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3238
3239	v = CSR_READ_1(sc, RL_CFG3);
3240	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3241	CSR_WRITE_1(sc, RL_CFG3, v);
3242
3243	/* Config register write done. */
3244	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3245
3246	v = CSR_READ_1(sc, RL_CFG5);
3247	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3248	v &= ~RL_CFG5_WOL_LANWAKE;
3249	CSR_WRITE_1(sc, RL_CFG5, v);
3250}
3251
3252static void
3253re_add_sysctls(struct rl_softc *sc)
3254{
3255	struct sysctl_ctx_list	*ctx;
3256	struct sysctl_oid_list	*children;
3257
3258	ctx = device_get_sysctl_ctx(sc->rl_dev);
3259	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3260
3261	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3262	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3263	    "Statistics Information");
3264}
3265
3266static int
3267re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3268{
3269	struct rl_softc		*sc;
3270	struct rl_stats		*stats;
3271	int			error, i, result;
3272
3273	result = -1;
3274	error = sysctl_handle_int(oidp, &result, 0, req);
3275	if (error || req->newptr == NULL)
3276		return (error);
3277
3278	if (result == 1) {
3279		sc = (struct rl_softc *)arg1;
3280		RL_LOCK(sc);
3281		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3282		    sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3283		CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3284		    RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3285		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3286		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3287		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3288		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3289		    RL_DUMPSTATS_START));
3290		for (i = RL_TIMEOUT; i > 0; i--) {
3291			if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3292			    RL_DUMPSTATS_START) == 0)
3293				break;
3294			DELAY(1000);
3295		}
3296		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3297		    sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3298		RL_UNLOCK(sc);
3299		if (i == 0) {
3300			device_printf(sc->rl_dev,
3301			    "DUMP statistics request timedout\n");
3302			return (ETIMEDOUT);
3303		}
3304		stats = sc->rl_ldata.rl_stats;
3305		printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3306		printf("Tx frames : %ju\n",
3307		    (uintmax_t)le64toh(stats->rl_tx_pkts));
3308		printf("Rx frames : %ju\n",
3309		    (uintmax_t)le64toh(stats->rl_rx_pkts));
3310		printf("Tx errors : %ju\n",
3311		    (uintmax_t)le64toh(stats->rl_tx_errs));
3312		printf("Rx errors : %u\n",
3313		    le32toh(stats->rl_rx_errs));
3314		printf("Rx missed frames : %u\n",
3315		    (uint32_t)le16toh(stats->rl_missed_pkts));
3316		printf("Rx frame alignment errs : %u\n",
3317		    (uint32_t)le16toh(stats->rl_rx_framealign_errs));
3318		printf("Tx single collisions : %u\n",
3319		    le32toh(stats->rl_tx_onecoll));
3320		printf("Tx multiple collisions : %u\n",
3321		    le32toh(stats->rl_tx_multicolls));
3322		printf("Rx unicast frames : %ju\n",
3323		    (uintmax_t)le64toh(stats->rl_rx_ucasts));
3324		printf("Rx broadcast frames : %ju\n",
3325		    (uintmax_t)le64toh(stats->rl_rx_bcasts));
3326		printf("Rx multicast frames : %u\n",
3327		    le32toh(stats->rl_rx_mcasts));
3328		printf("Tx aborts : %u\n",
3329		    (uint32_t)le16toh(stats->rl_tx_aborts));
3330		printf("Tx underruns : %u\n",
3331		    (uint32_t)le16toh(stats->rl_rx_underruns));
3332	}
3333
3334	return (error);
3335}
3336