if_re.c revision 214992
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 214992 2010-11-08 19:15:31Z yongari $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/sysctl.h>
127#include <sys/taskqueue.h>
128
129#include <net/if.h>
130#include <net/if_arp.h>
131#include <net/ethernet.h>
132#include <net/if_dl.h>
133#include <net/if_media.h>
134#include <net/if_types.h>
135#include <net/if_vlan_var.h>
136
137#include <net/bpf.h>
138
139#include <machine/bus.h>
140#include <machine/resource.h>
141#include <sys/bus.h>
142#include <sys/rman.h>
143
144#include <dev/mii/mii.h>
145#include <dev/mii/miivar.h>
146
147#include <dev/pci/pcireg.h>
148#include <dev/pci/pcivar.h>
149
150#include <pci/if_rlreg.h>
151
152MODULE_DEPEND(re, pci, 1, 1, 1);
153MODULE_DEPEND(re, ether, 1, 1, 1);
154MODULE_DEPEND(re, miibus, 1, 1, 1);
155
156/* "device miibus" required.  See GENERIC if you get errors here. */
157#include "miibus_if.h"
158
159/* Tunables. */
160static int msi_disable = 0;
161TUNABLE_INT("hw.re.msi_disable", &msi_disable);
162static int prefer_iomap = 0;
163TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
164
165#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
166
167/*
168 * Various supported device vendors/types and their names.
169 */
170static struct rl_type re_devs[] = {
171	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
172	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
173	{ RT_VENDORID, RT_DEVICEID_8139, 0,
174	    "RealTek 8139C+ 10/100BaseTX" },
175	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
176	    "RealTek 8101E/8102E/8102EL/8103E PCIe 10/100baseTX" },
177	{ RT_VENDORID, RT_DEVICEID_8168, 0,
178	    "RealTek 8168/8111 B/C/CP/D/DP/E PCIe Gigabit Ethernet" },
179	{ RT_VENDORID, RT_DEVICEID_8169, 0,
180	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
181	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
182	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
183	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
184	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
185	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
186	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
187	{ USR_VENDORID, USR_DEVICEID_997902, 0,
188	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
189};
190
191static struct rl_hwrev re_hwrevs[] = {
192	{ RL_HWREV_8139, RL_8139,  "" },
193	{ RL_HWREV_8139A, RL_8139, "A" },
194	{ RL_HWREV_8139AG, RL_8139, "A-G" },
195	{ RL_HWREV_8139B, RL_8139, "B" },
196	{ RL_HWREV_8130, RL_8139, "8130" },
197	{ RL_HWREV_8139C, RL_8139, "C" },
198	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
199	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
200	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
201	{ RL_HWREV_8169, RL_8169, "8169"},
202	{ RL_HWREV_8169S, RL_8169, "8169S"},
203	{ RL_HWREV_8110S, RL_8169, "8110S"},
204	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB"},
205	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC"},
206	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL"},
207	{ RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC"},
208	{ RL_HWREV_8100, RL_8139, "8100"},
209	{ RL_HWREV_8101, RL_8139, "8101"},
210	{ RL_HWREV_8100E, RL_8169, "8100E"},
211	{ RL_HWREV_8101E, RL_8169, "8101E"},
212	{ RL_HWREV_8102E, RL_8169, "8102E"},
213	{ RL_HWREV_8102EL, RL_8169, "8102EL"},
214	{ RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL"},
215	{ RL_HWREV_8103E, RL_8169, "8103E"},
216	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
217	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
218	{ RL_HWREV_8168C, RL_8169, "8168C/8111C"},
219	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"},
220	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"},
221	{ RL_HWREV_8168D, RL_8169, "8168D/8111D"},
222	{ RL_HWREV_8168DP, RL_8169, "8168DP/8111DP"},
223	{ RL_HWREV_8168E, RL_8169, "8168E/8111E"},
224	{ 0, 0, NULL }
225};
226
227static int re_probe		(device_t);
228static int re_attach		(device_t);
229static int re_detach		(device_t);
230
231static int re_encap		(struct rl_softc *, struct mbuf **);
232
233static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
234static int re_allocmem		(device_t, struct rl_softc *);
235static __inline void re_discard_rxbuf
236				(struct rl_softc *, int);
237static int re_newbuf		(struct rl_softc *, int);
238static int re_rx_list_init	(struct rl_softc *);
239static int re_tx_list_init	(struct rl_softc *);
240#ifdef RE_FIXUP_RX
241static __inline void re_fixup_rx
242				(struct mbuf *);
243#endif
244static int re_rxeof		(struct rl_softc *, int *);
245static void re_txeof		(struct rl_softc *);
246#ifdef DEVICE_POLLING
247static int re_poll		(struct ifnet *, enum poll_cmd, int);
248static int re_poll_locked	(struct ifnet *, enum poll_cmd, int);
249#endif
250static int re_intr		(void *);
251static void re_tick		(void *);
252static void re_tx_task		(void *, int);
253static void re_int_task		(void *, int);
254static void re_start		(struct ifnet *);
255static int re_ioctl		(struct ifnet *, u_long, caddr_t);
256static void re_init		(void *);
257static void re_init_locked	(struct rl_softc *);
258static void re_stop		(struct rl_softc *);
259static void re_watchdog		(struct rl_softc *);
260static int re_suspend		(device_t);
261static int re_resume		(device_t);
262static int re_shutdown		(device_t);
263static int re_ifmedia_upd	(struct ifnet *);
264static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
265
266static void re_eeprom_putbyte	(struct rl_softc *, int);
267static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
268static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
269static int re_gmii_readreg	(device_t, int, int);
270static int re_gmii_writereg	(device_t, int, int, int);
271
272static int re_miibus_readreg	(device_t, int, int);
273static int re_miibus_writereg	(device_t, int, int, int);
274static void re_miibus_statchg	(device_t);
275
276static void re_set_rxmode		(struct rl_softc *);
277static void re_reset		(struct rl_softc *);
278static void re_setwol		(struct rl_softc *);
279static void re_clrwol		(struct rl_softc *);
280
281#ifdef RE_DIAG
282static int re_diag		(struct rl_softc *);
283#endif
284
285static void re_add_sysctls	(struct rl_softc *);
286static int re_sysctl_stats	(SYSCTL_HANDLER_ARGS);
287
288static device_method_t re_methods[] = {
289	/* Device interface */
290	DEVMETHOD(device_probe,		re_probe),
291	DEVMETHOD(device_attach,	re_attach),
292	DEVMETHOD(device_detach,	re_detach),
293	DEVMETHOD(device_suspend,	re_suspend),
294	DEVMETHOD(device_resume,	re_resume),
295	DEVMETHOD(device_shutdown,	re_shutdown),
296
297	/* bus interface */
298	DEVMETHOD(bus_print_child,	bus_generic_print_child),
299	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
300
301	/* MII interface */
302	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
303	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
304	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
305
306	{ 0, 0 }
307};
308
309static driver_t re_driver = {
310	"re",
311	re_methods,
312	sizeof(struct rl_softc)
313};
314
315static devclass_t re_devclass;
316
317DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
318DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
319
320#define EE_SET(x)					\
321	CSR_WRITE_1(sc, RL_EECMD,			\
322		CSR_READ_1(sc, RL_EECMD) | x)
323
324#define EE_CLR(x)					\
325	CSR_WRITE_1(sc, RL_EECMD,			\
326		CSR_READ_1(sc, RL_EECMD) & ~x)
327
328/*
329 * Send a read command and address to the EEPROM, check for ACK.
330 */
331static void
332re_eeprom_putbyte(struct rl_softc *sc, int addr)
333{
334	int			d, i;
335
336	d = addr | (RL_9346_READ << sc->rl_eewidth);
337
338	/*
339	 * Feed in each bit and strobe the clock.
340	 */
341
342	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
343		if (d & i) {
344			EE_SET(RL_EE_DATAIN);
345		} else {
346			EE_CLR(RL_EE_DATAIN);
347		}
348		DELAY(100);
349		EE_SET(RL_EE_CLK);
350		DELAY(150);
351		EE_CLR(RL_EE_CLK);
352		DELAY(100);
353	}
354}
355
356/*
357 * Read a word of data stored in the EEPROM at address 'addr.'
358 */
359static void
360re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
361{
362	int			i;
363	u_int16_t		word = 0;
364
365	/*
366	 * Send address of word we want to read.
367	 */
368	re_eeprom_putbyte(sc, addr);
369
370	/*
371	 * Start reading bits from EEPROM.
372	 */
373	for (i = 0x8000; i; i >>= 1) {
374		EE_SET(RL_EE_CLK);
375		DELAY(100);
376		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
377			word |= i;
378		EE_CLR(RL_EE_CLK);
379		DELAY(100);
380	}
381
382	*dest = word;
383}
384
385/*
386 * Read a sequence of words from the EEPROM.
387 */
388static void
389re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
390{
391	int			i;
392	u_int16_t		word = 0, *ptr;
393
394	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
395
396        DELAY(100);
397
398	for (i = 0; i < cnt; i++) {
399		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
400		re_eeprom_getword(sc, off + i, &word);
401		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
402		ptr = (u_int16_t *)(dest + (i * 2));
403                *ptr = word;
404	}
405
406	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
407}
408
409static int
410re_gmii_readreg(device_t dev, int phy, int reg)
411{
412	struct rl_softc		*sc;
413	u_int32_t		rval;
414	int			i;
415
416	sc = device_get_softc(dev);
417
418	/* Let the rgephy driver read the GMEDIASTAT register */
419
420	if (reg == RL_GMEDIASTAT) {
421		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
422		return (rval);
423	}
424
425	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
426
427	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
428		rval = CSR_READ_4(sc, RL_PHYAR);
429		if (rval & RL_PHYAR_BUSY)
430			break;
431		DELAY(25);
432	}
433
434	if (i == RL_PHY_TIMEOUT) {
435		device_printf(sc->rl_dev, "PHY read failed\n");
436		return (0);
437	}
438
439	/*
440	 * Controller requires a 20us delay to process next MDIO request.
441	 */
442	DELAY(20);
443
444	return (rval & RL_PHYAR_PHYDATA);
445}
446
447static int
448re_gmii_writereg(device_t dev, int phy, int reg, int data)
449{
450	struct rl_softc		*sc;
451	u_int32_t		rval;
452	int			i;
453
454	sc = device_get_softc(dev);
455
456	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
457	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
458
459	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
460		rval = CSR_READ_4(sc, RL_PHYAR);
461		if (!(rval & RL_PHYAR_BUSY))
462			break;
463		DELAY(25);
464	}
465
466	if (i == RL_PHY_TIMEOUT) {
467		device_printf(sc->rl_dev, "PHY write failed\n");
468		return (0);
469	}
470
471	/*
472	 * Controller requires a 20us delay to process next MDIO request.
473	 */
474	DELAY(20);
475
476	return (0);
477}
478
479static int
480re_miibus_readreg(device_t dev, int phy, int reg)
481{
482	struct rl_softc		*sc;
483	u_int16_t		rval = 0;
484	u_int16_t		re8139_reg = 0;
485
486	sc = device_get_softc(dev);
487
488	if (sc->rl_type == RL_8169) {
489		rval = re_gmii_readreg(dev, phy, reg);
490		return (rval);
491	}
492
493	switch (reg) {
494	case MII_BMCR:
495		re8139_reg = RL_BMCR;
496		break;
497	case MII_BMSR:
498		re8139_reg = RL_BMSR;
499		break;
500	case MII_ANAR:
501		re8139_reg = RL_ANAR;
502		break;
503	case MII_ANER:
504		re8139_reg = RL_ANER;
505		break;
506	case MII_ANLPAR:
507		re8139_reg = RL_LPAR;
508		break;
509	case MII_PHYIDR1:
510	case MII_PHYIDR2:
511		return (0);
512	/*
513	 * Allow the rlphy driver to read the media status
514	 * register. If we have a link partner which does not
515	 * support NWAY, this is the register which will tell
516	 * us the results of parallel detection.
517	 */
518	case RL_MEDIASTAT:
519		rval = CSR_READ_1(sc, RL_MEDIASTAT);
520		return (rval);
521	default:
522		device_printf(sc->rl_dev, "bad phy register\n");
523		return (0);
524	}
525	rval = CSR_READ_2(sc, re8139_reg);
526	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
527		/* 8139C+ has different bit layout. */
528		rval &= ~(BMCR_LOOP | BMCR_ISO);
529	}
530	return (rval);
531}
532
533static int
534re_miibus_writereg(device_t dev, int phy, int reg, int data)
535{
536	struct rl_softc		*sc;
537	u_int16_t		re8139_reg = 0;
538	int			rval = 0;
539
540	sc = device_get_softc(dev);
541
542	if (sc->rl_type == RL_8169) {
543		rval = re_gmii_writereg(dev, phy, reg, data);
544		return (rval);
545	}
546
547	switch (reg) {
548	case MII_BMCR:
549		re8139_reg = RL_BMCR;
550		if (sc->rl_type == RL_8139CPLUS) {
551			/* 8139C+ has different bit layout. */
552			data &= ~(BMCR_LOOP | BMCR_ISO);
553		}
554		break;
555	case MII_BMSR:
556		re8139_reg = RL_BMSR;
557		break;
558	case MII_ANAR:
559		re8139_reg = RL_ANAR;
560		break;
561	case MII_ANER:
562		re8139_reg = RL_ANER;
563		break;
564	case MII_ANLPAR:
565		re8139_reg = RL_LPAR;
566		break;
567	case MII_PHYIDR1:
568	case MII_PHYIDR2:
569		return (0);
570		break;
571	default:
572		device_printf(sc->rl_dev, "bad phy register\n");
573		return (0);
574	}
575	CSR_WRITE_2(sc, re8139_reg, data);
576	return (0);
577}
578
579static void
580re_miibus_statchg(device_t dev)
581{
582	struct rl_softc		*sc;
583	struct ifnet		*ifp;
584	struct mii_data		*mii;
585
586	sc = device_get_softc(dev);
587	mii = device_get_softc(sc->rl_miibus);
588	ifp = sc->rl_ifp;
589	if (mii == NULL || ifp == NULL ||
590	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
591		return;
592
593	sc->rl_flags &= ~RL_FLAG_LINK;
594	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
595	    (IFM_ACTIVE | IFM_AVALID)) {
596		switch (IFM_SUBTYPE(mii->mii_media_active)) {
597		case IFM_10_T:
598		case IFM_100_TX:
599			sc->rl_flags |= RL_FLAG_LINK;
600			break;
601		case IFM_1000_T:
602			if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
603				break;
604			sc->rl_flags |= RL_FLAG_LINK;
605			break;
606		default:
607			break;
608		}
609	}
610	/*
611	 * RealTek controllers does not provide any interface to
612	 * Tx/Rx MACs for resolved speed, duplex and flow-control
613	 * parameters.
614	 */
615}
616
617/*
618 * Set the RX configuration and 64-bit multicast hash filter.
619 */
620static void
621re_set_rxmode(struct rl_softc *sc)
622{
623	struct ifnet		*ifp;
624	struct ifmultiaddr	*ifma;
625	uint32_t		hashes[2] = { 0, 0 };
626	uint32_t		h, rxfilt;
627
628	RL_LOCK_ASSERT(sc);
629
630	ifp = sc->rl_ifp;
631
632	rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
633
634	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
635		if (ifp->if_flags & IFF_PROMISC)
636			rxfilt |= RL_RXCFG_RX_ALLPHYS;
637		/*
638		 * Unlike other hardwares, we have to explicitly set
639		 * RL_RXCFG_RX_MULTI to receive multicast frames in
640		 * promiscuous mode.
641		 */
642		rxfilt |= RL_RXCFG_RX_MULTI;
643		hashes[0] = hashes[1] = 0xffffffff;
644		goto done;
645	}
646
647	if_maddr_rlock(ifp);
648	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
649		if (ifma->ifma_addr->sa_family != AF_LINK)
650			continue;
651		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
652		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
653		if (h < 32)
654			hashes[0] |= (1 << h);
655		else
656			hashes[1] |= (1 << (h - 32));
657	}
658	if_maddr_runlock(ifp);
659
660	if (hashes[0] != 0 || hashes[1] != 0) {
661		/*
662		 * For some unfathomable reason, RealTek decided to
663		 * reverse the order of the multicast hash registers
664		 * in the PCI Express parts.  This means we have to
665		 * write the hash pattern in reverse order for those
666		 * devices.
667		 */
668		if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
669			h = bswap32(hashes[0]);
670			hashes[0] = bswap32(hashes[1]);
671			hashes[1] = h;
672		}
673		rxfilt |= RL_RXCFG_RX_MULTI;
674	}
675
676done:
677	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
678	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
679	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
680}
681
682static void
683re_reset(struct rl_softc *sc)
684{
685	int			i;
686
687	RL_LOCK_ASSERT(sc);
688
689	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
690
691	for (i = 0; i < RL_TIMEOUT; i++) {
692		DELAY(10);
693		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
694			break;
695	}
696	if (i == RL_TIMEOUT)
697		device_printf(sc->rl_dev, "reset never completed!\n");
698
699	if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
700		CSR_WRITE_1(sc, 0x82, 1);
701	if (sc->rl_hwrev == RL_HWREV_8169S)
702		re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
703}
704
705#ifdef RE_DIAG
706
707/*
708 * The following routine is designed to test for a defect on some
709 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
710 * lines connected to the bus, however for a 32-bit only card, they
711 * should be pulled high. The result of this defect is that the
712 * NIC will not work right if you plug it into a 64-bit slot: DMA
713 * operations will be done with 64-bit transfers, which will fail
714 * because the 64-bit data lines aren't connected.
715 *
716 * There's no way to work around this (short of talking a soldering
717 * iron to the board), however we can detect it. The method we use
718 * here is to put the NIC into digital loopback mode, set the receiver
719 * to promiscuous mode, and then try to send a frame. We then compare
720 * the frame data we sent to what was received. If the data matches,
721 * then the NIC is working correctly, otherwise we know the user has
722 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
723 * slot. In the latter case, there's no way the NIC can work correctly,
724 * so we print out a message on the console and abort the device attach.
725 */
726
727static int
728re_diag(struct rl_softc *sc)
729{
730	struct ifnet		*ifp = sc->rl_ifp;
731	struct mbuf		*m0;
732	struct ether_header	*eh;
733	struct rl_desc		*cur_rx;
734	u_int16_t		status;
735	u_int32_t		rxstat;
736	int			total_len, i, error = 0, phyaddr;
737	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
738	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
739
740	/* Allocate a single mbuf */
741	MGETHDR(m0, M_DONTWAIT, MT_DATA);
742	if (m0 == NULL)
743		return (ENOBUFS);
744
745	RL_LOCK(sc);
746
747	/*
748	 * Initialize the NIC in test mode. This sets the chip up
749	 * so that it can send and receive frames, but performs the
750	 * following special functions:
751	 * - Puts receiver in promiscuous mode
752	 * - Enables digital loopback mode
753	 * - Leaves interrupts turned off
754	 */
755
756	ifp->if_flags |= IFF_PROMISC;
757	sc->rl_testmode = 1;
758	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
759	re_init_locked(sc);
760	sc->rl_flags |= RL_FLAG_LINK;
761	if (sc->rl_type == RL_8169)
762		phyaddr = 1;
763	else
764		phyaddr = 0;
765
766	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
767	for (i = 0; i < RL_TIMEOUT; i++) {
768		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
769		if (!(status & BMCR_RESET))
770			break;
771	}
772
773	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
774	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
775
776	DELAY(100000);
777
778	/* Put some data in the mbuf */
779
780	eh = mtod(m0, struct ether_header *);
781	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
782	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
783	eh->ether_type = htons(ETHERTYPE_IP);
784	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
785
786	/*
787	 * Queue the packet, start transmission.
788	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
789	 */
790
791	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
792	RL_UNLOCK(sc);
793	/* XXX: re_diag must not be called when in ALTQ mode */
794	IF_HANDOFF(&ifp->if_snd, m0, ifp);
795	RL_LOCK(sc);
796	m0 = NULL;
797
798	/* Wait for it to propagate through the chip */
799
800	DELAY(100000);
801	for (i = 0; i < RL_TIMEOUT; i++) {
802		status = CSR_READ_2(sc, RL_ISR);
803		CSR_WRITE_2(sc, RL_ISR, status);
804		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
805		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
806			break;
807		DELAY(10);
808	}
809
810	if (i == RL_TIMEOUT) {
811		device_printf(sc->rl_dev,
812		    "diagnostic failed, failed to receive packet in"
813		    " loopback mode\n");
814		error = EIO;
815		goto done;
816	}
817
818	/*
819	 * The packet should have been dumped into the first
820	 * entry in the RX DMA ring. Grab it from there.
821	 */
822
823	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
824	    sc->rl_ldata.rl_rx_list_map,
825	    BUS_DMASYNC_POSTREAD);
826	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
827	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
828	    BUS_DMASYNC_POSTREAD);
829	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
830	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
831
832	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
833	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
834	eh = mtod(m0, struct ether_header *);
835
836	cur_rx = &sc->rl_ldata.rl_rx_list[0];
837	total_len = RL_RXBYTES(cur_rx);
838	rxstat = le32toh(cur_rx->rl_cmdstat);
839
840	if (total_len != ETHER_MIN_LEN) {
841		device_printf(sc->rl_dev,
842		    "diagnostic failed, received short packet\n");
843		error = EIO;
844		goto done;
845	}
846
847	/* Test that the received packet data matches what we sent. */
848
849	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
850	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
851	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
852		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
853		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
854		    dst, ":", src, ":", ETHERTYPE_IP);
855		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
856		    eh->ether_dhost, ":",  eh->ether_shost, ":",
857		    ntohs(eh->ether_type));
858		device_printf(sc->rl_dev, "You may have a defective 32-bit "
859		    "NIC plugged into a 64-bit PCI slot.\n");
860		device_printf(sc->rl_dev, "Please re-install the NIC in a "
861		    "32-bit slot for proper operation.\n");
862		device_printf(sc->rl_dev, "Read the re(4) man page for more "
863		    "details.\n");
864		error = EIO;
865	}
866
867done:
868	/* Turn interface off, release resources */
869
870	sc->rl_testmode = 0;
871	sc->rl_flags &= ~RL_FLAG_LINK;
872	ifp->if_flags &= ~IFF_PROMISC;
873	re_stop(sc);
874	if (m0 != NULL)
875		m_freem(m0);
876
877	RL_UNLOCK(sc);
878
879	return (error);
880}
881
882#endif
883
884/*
885 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
886 * IDs against our list and return a device name if we find a match.
887 */
888static int
889re_probe(device_t dev)
890{
891	struct rl_type		*t;
892	uint16_t		devid, vendor;
893	uint16_t		revid, sdevid;
894	int			i;
895
896	vendor = pci_get_vendor(dev);
897	devid = pci_get_device(dev);
898	revid = pci_get_revid(dev);
899	sdevid = pci_get_subdevice(dev);
900
901	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
902		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
903			/*
904			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
905			 * Rev. 2 is supported by sk(4).
906			 */
907			return (ENXIO);
908		}
909	}
910
911	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
912		if (revid != 0x20) {
913			/* 8139, let rl(4) take care of this device. */
914			return (ENXIO);
915		}
916	}
917
918	t = re_devs;
919	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
920		if (vendor == t->rl_vid && devid == t->rl_did) {
921			device_set_desc(dev, t->rl_name);
922			return (BUS_PROBE_DEFAULT);
923		}
924	}
925
926	return (ENXIO);
927}
928
929/*
930 * Map a single buffer address.
931 */
932
933static void
934re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
935{
936	bus_addr_t		*addr;
937
938	if (error)
939		return;
940
941	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
942	addr = arg;
943	*addr = segs->ds_addr;
944}
945
946static int
947re_allocmem(device_t dev, struct rl_softc *sc)
948{
949	bus_addr_t		lowaddr;
950	bus_size_t		rx_list_size, tx_list_size;
951	int			error;
952	int			i;
953
954	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
955	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
956
957	/*
958	 * Allocate the parent bus DMA tag appropriate for PCI.
959	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
960	 * register should be set. However some RealTek chips are known
961	 * to be buggy on DAC handling, therefore disable DAC by limiting
962	 * DMA address space to 32bit. PCIe variants of RealTek chips
963	 * may not have the limitation.
964	 */
965	lowaddr = BUS_SPACE_MAXADDR;
966	if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
967		lowaddr = BUS_SPACE_MAXADDR_32BIT;
968	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
969	    lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
970	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
971	    NULL, NULL, &sc->rl_parent_tag);
972	if (error) {
973		device_printf(dev, "could not allocate parent DMA tag\n");
974		return (error);
975	}
976
977	/*
978	 * Allocate map for TX mbufs.
979	 */
980	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
981	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
982	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
983	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
984	if (error) {
985		device_printf(dev, "could not allocate TX DMA tag\n");
986		return (error);
987	}
988
989	/*
990	 * Allocate map for RX mbufs.
991	 */
992
993	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
994	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
995	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
996	if (error) {
997		device_printf(dev, "could not allocate RX DMA tag\n");
998		return (error);
999	}
1000
1001	/*
1002	 * Allocate map for TX descriptor list.
1003	 */
1004	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1005	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1006	    NULL, tx_list_size, 1, tx_list_size, 0,
1007	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1008	if (error) {
1009		device_printf(dev, "could not allocate TX DMA ring tag\n");
1010		return (error);
1011	}
1012
1013	/* Allocate DMA'able memory for the TX ring */
1014
1015	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1016	    (void **)&sc->rl_ldata.rl_tx_list,
1017	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1018	    &sc->rl_ldata.rl_tx_list_map);
1019	if (error) {
1020		device_printf(dev, "could not allocate TX DMA ring\n");
1021		return (error);
1022	}
1023
1024	/* Load the map for the TX ring. */
1025
1026	sc->rl_ldata.rl_tx_list_addr = 0;
1027	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1028	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1029	     tx_list_size, re_dma_map_addr,
1030	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1031	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1032		device_printf(dev, "could not load TX DMA ring\n");
1033		return (ENOMEM);
1034	}
1035
1036	/* Create DMA maps for TX buffers */
1037
1038	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1039		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1040		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1041		if (error) {
1042			device_printf(dev, "could not create DMA map for TX\n");
1043			return (error);
1044		}
1045	}
1046
1047	/*
1048	 * Allocate map for RX descriptor list.
1049	 */
1050	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1051	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1052	    NULL, rx_list_size, 1, rx_list_size, 0,
1053	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1054	if (error) {
1055		device_printf(dev, "could not create RX DMA ring tag\n");
1056		return (error);
1057	}
1058
1059	/* Allocate DMA'able memory for the RX ring */
1060
1061	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1062	    (void **)&sc->rl_ldata.rl_rx_list,
1063	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1064	    &sc->rl_ldata.rl_rx_list_map);
1065	if (error) {
1066		device_printf(dev, "could not allocate RX DMA ring\n");
1067		return (error);
1068	}
1069
1070	/* Load the map for the RX ring. */
1071
1072	sc->rl_ldata.rl_rx_list_addr = 0;
1073	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1074	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1075	     rx_list_size, re_dma_map_addr,
1076	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1077	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1078		device_printf(dev, "could not load RX DMA ring\n");
1079		return (ENOMEM);
1080	}
1081
1082	/* Create DMA maps for RX buffers */
1083
1084	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1085	    &sc->rl_ldata.rl_rx_sparemap);
1086	if (error) {
1087		device_printf(dev, "could not create spare DMA map for RX\n");
1088		return (error);
1089	}
1090	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1091		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1092		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1093		if (error) {
1094			device_printf(dev, "could not create DMA map for RX\n");
1095			return (error);
1096		}
1097	}
1098
1099	/* Create DMA map for statistics. */
1100	error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1101	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1102	    sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1103	    &sc->rl_ldata.rl_stag);
1104	if (error) {
1105		device_printf(dev, "could not create statistics DMA tag\n");
1106		return (error);
1107	}
1108	/* Allocate DMA'able memory for statistics. */
1109	error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1110	    (void **)&sc->rl_ldata.rl_stats,
1111	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1112	    &sc->rl_ldata.rl_smap);
1113	if (error) {
1114		device_printf(dev,
1115		    "could not allocate statistics DMA memory\n");
1116		return (error);
1117	}
1118	/* Load the map for statistics. */
1119	sc->rl_ldata.rl_stats_addr = 0;
1120	error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1121	    sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1122	     &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1123	if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1124		device_printf(dev, "could not load statistics DMA memory\n");
1125		return (ENOMEM);
1126	}
1127
1128	return (0);
1129}
1130
1131/*
1132 * Attach the interface. Allocate softc structures, do ifmedia
1133 * setup and ethernet/BPF attach.
1134 */
1135static int
1136re_attach(device_t dev)
1137{
1138	u_char			eaddr[ETHER_ADDR_LEN];
1139	u_int16_t		as[ETHER_ADDR_LEN / 2];
1140	struct rl_softc		*sc;
1141	struct ifnet		*ifp;
1142	struct rl_hwrev		*hw_rev;
1143	int			hwrev;
1144	u_int16_t		devid, re_did = 0;
1145	int			error = 0, i, phy, rid;
1146	int			msic, reg;
1147	uint8_t			cfg;
1148
1149	sc = device_get_softc(dev);
1150	sc->rl_dev = dev;
1151
1152	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1153	    MTX_DEF);
1154	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1155
1156	/*
1157	 * Map control/status registers.
1158	 */
1159	pci_enable_busmaster(dev);
1160
1161	devid = pci_get_device(dev);
1162	/*
1163	 * Prefer memory space register mapping over IO space.
1164	 * Because RTL8169SC does not seem to work when memory mapping
1165	 * is used always activate io mapping.
1166	 */
1167	if (devid == RT_DEVICEID_8169SC)
1168		prefer_iomap = 1;
1169	if (prefer_iomap == 0) {
1170		sc->rl_res_id = PCIR_BAR(1);
1171		sc->rl_res_type = SYS_RES_MEMORY;
1172		/* RTL8168/8101E seems to use different BARs. */
1173		if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1174			sc->rl_res_id = PCIR_BAR(2);
1175	} else {
1176		sc->rl_res_id = PCIR_BAR(0);
1177		sc->rl_res_type = SYS_RES_IOPORT;
1178	}
1179	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1180	    &sc->rl_res_id, RF_ACTIVE);
1181	if (sc->rl_res == NULL && prefer_iomap == 0) {
1182		sc->rl_res_id = PCIR_BAR(0);
1183		sc->rl_res_type = SYS_RES_IOPORT;
1184		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1185		    &sc->rl_res_id, RF_ACTIVE);
1186	}
1187	if (sc->rl_res == NULL) {
1188		device_printf(dev, "couldn't map ports/memory\n");
1189		error = ENXIO;
1190		goto fail;
1191	}
1192
1193	sc->rl_btag = rman_get_bustag(sc->rl_res);
1194	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1195
1196	msic = 0;
1197	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1198		sc->rl_flags |= RL_FLAG_PCIE;
1199		if (devid != RT_DEVICEID_8101E) {
1200			/* Set PCIe maximum read request size to 2048. */
1201			if (pci_get_max_read_req(dev) < 2048)
1202				pci_set_max_read_req(dev, 2048);
1203		}
1204		msic = pci_msi_count(dev);
1205		if (bootverbose)
1206			device_printf(dev, "MSI count : %d\n", msic);
1207	}
1208	if (msic > 0 && msi_disable == 0) {
1209		msic = 1;
1210		if (pci_alloc_msi(dev, &msic) == 0) {
1211			if (msic == RL_MSI_MESSAGES) {
1212				device_printf(dev, "Using %d MSI messages\n",
1213				    msic);
1214				sc->rl_flags |= RL_FLAG_MSI;
1215				/* Explicitly set MSI enable bit. */
1216				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1217				cfg = CSR_READ_1(sc, RL_CFG2);
1218				cfg |= RL_CFG2_MSI;
1219				CSR_WRITE_1(sc, RL_CFG2, cfg);
1220				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1221			} else
1222				pci_release_msi(dev);
1223		}
1224	}
1225
1226	/* Allocate interrupt */
1227	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1228		rid = 0;
1229		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1230		    RF_SHAREABLE | RF_ACTIVE);
1231		if (sc->rl_irq[0] == NULL) {
1232			device_printf(dev, "couldn't allocate IRQ resources\n");
1233			error = ENXIO;
1234			goto fail;
1235		}
1236	} else {
1237		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1238			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1239			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1240			if (sc->rl_irq[i] == NULL) {
1241				device_printf(dev,
1242				    "couldn't llocate IRQ resources for "
1243				    "message %d\n", rid);
1244				error = ENXIO;
1245				goto fail;
1246			}
1247		}
1248	}
1249
1250	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1251		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1252		cfg = CSR_READ_1(sc, RL_CFG2);
1253		if ((cfg & RL_CFG2_MSI) != 0) {
1254			device_printf(dev, "turning off MSI enable bit.\n");
1255			cfg &= ~RL_CFG2_MSI;
1256			CSR_WRITE_1(sc, RL_CFG2, cfg);
1257		}
1258		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1259	}
1260
1261	/* Reset the adapter. */
1262	RL_LOCK(sc);
1263	re_reset(sc);
1264	RL_UNLOCK(sc);
1265
1266	hw_rev = re_hwrevs;
1267	hwrev = CSR_READ_4(sc, RL_TXCFG);
1268	switch (hwrev & 0x70000000) {
1269	case 0x00000000:
1270	case 0x10000000:
1271		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1272		hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1273		break;
1274	default:
1275		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1276		hwrev &= RL_TXCFG_HWREV;
1277		break;
1278	}
1279	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1280	while (hw_rev->rl_desc != NULL) {
1281		if (hw_rev->rl_rev == hwrev) {
1282			sc->rl_type = hw_rev->rl_type;
1283			sc->rl_hwrev = hw_rev->rl_rev;
1284			break;
1285		}
1286		hw_rev++;
1287	}
1288	if (hw_rev->rl_desc == NULL) {
1289		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1290		error = ENXIO;
1291		goto fail;
1292	}
1293
1294	switch (hw_rev->rl_rev) {
1295	case RL_HWREV_8139CPLUS:
1296		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_FASTETHER |
1297		    RL_FLAG_AUTOPAD;
1298		break;
1299	case RL_HWREV_8100E:
1300	case RL_HWREV_8101E:
1301		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE |
1302		    RL_FLAG_FASTETHER;
1303		break;
1304	case RL_HWREV_8102E:
1305	case RL_HWREV_8102EL:
1306	case RL_HWREV_8102EL_SPIN1:
1307		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE |
1308		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1309		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1310		break;
1311	case RL_HWREV_8103E:
1312		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE |
1313		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1314		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1315		    RL_FLAG_MACSLEEP;
1316		break;
1317	case RL_HWREV_8168_SPIN1:
1318	case RL_HWREV_8168_SPIN2:
1319		sc->rl_flags |= RL_FLAG_WOLRXENB;
1320		/* FALLTHROUGH */
1321	case RL_HWREV_8168_SPIN3:
1322		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1323		break;
1324	case RL_HWREV_8168C_SPIN2:
1325		sc->rl_flags |= RL_FLAG_MACSLEEP;
1326		/* FALLTHROUGH */
1327	case RL_HWREV_8168C:
1328		if ((hwrev & 0x00700000) == 0x00200000)
1329			sc->rl_flags |= RL_FLAG_MACSLEEP;
1330		/* FALLTHROUGH */
1331	case RL_HWREV_8168CP:
1332	case RL_HWREV_8168D:
1333	case RL_HWREV_8168DP:
1334		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1335		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1336		    RL_FLAG_AUTOPAD;
1337		/*
1338		 * These controllers support jumbo frame but it seems
1339		 * that enabling it requires touching additional magic
1340		 * registers. Depending on MAC revisions some
1341		 * controllers need to disable checksum offload. So
1342		 * disable jumbo frame until I have better idea what
1343		 * it really requires to make it support.
1344		 * RTL8168C/CP : supports up to 6KB jumbo frame.
1345		 * RTL8111C/CP : supports up to 9KB jumbo frame.
1346		 */
1347		sc->rl_flags |= RL_FLAG_NOJUMBO;
1348		break;
1349	case RL_HWREV_8168E:
1350		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1351		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1352		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_NOJUMBO;
1353		break;
1354	case RL_HWREV_8169_8110SB:
1355	case RL_HWREV_8169_8110SBL:
1356	case RL_HWREV_8169_8110SC:
1357	case RL_HWREV_8169_8110SCE:
1358		sc->rl_flags |= RL_FLAG_PHYWAKE;
1359		/* FALLTHROUGH */
1360	case RL_HWREV_8169:
1361	case RL_HWREV_8169S:
1362	case RL_HWREV_8110S:
1363		sc->rl_flags |= RL_FLAG_MACRESET;
1364		break;
1365	default:
1366		break;
1367	}
1368
1369	/* Enable PME. */
1370	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1371	cfg = CSR_READ_1(sc, RL_CFG1);
1372	cfg |= RL_CFG1_PME;
1373	CSR_WRITE_1(sc, RL_CFG1, cfg);
1374	cfg = CSR_READ_1(sc, RL_CFG5);
1375	cfg &= RL_CFG5_PME_STS;
1376	CSR_WRITE_1(sc, RL_CFG5, cfg);
1377	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1378
1379	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1380		/*
1381		 * XXX Should have a better way to extract station
1382		 * address from EEPROM.
1383		 */
1384		for (i = 0; i < ETHER_ADDR_LEN; i++)
1385			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1386	} else {
1387		sc->rl_eewidth = RL_9356_ADDR_LEN;
1388		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1389		if (re_did != 0x8129)
1390			sc->rl_eewidth = RL_9346_ADDR_LEN;
1391
1392		/*
1393		 * Get station address from the EEPROM.
1394		 */
1395		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1396		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1397			as[i] = le16toh(as[i]);
1398		bcopy(as, eaddr, sizeof(eaddr));
1399	}
1400
1401	if (sc->rl_type == RL_8169) {
1402		/* Set RX length mask and number of descriptors. */
1403		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1404		sc->rl_txstart = RL_GTXSTART;
1405		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1406		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1407	} else {
1408		/* Set RX length mask and number of descriptors. */
1409		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1410		sc->rl_txstart = RL_TXSTART;
1411		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1412		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1413	}
1414
1415	error = re_allocmem(dev, sc);
1416	if (error)
1417		goto fail;
1418	re_add_sysctls(sc);
1419
1420	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1421	if (ifp == NULL) {
1422		device_printf(dev, "can not if_alloc()\n");
1423		error = ENOSPC;
1424		goto fail;
1425	}
1426
1427	/* Take controller out of deep sleep mode. */
1428	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1429		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1430			CSR_WRITE_1(sc, RL_GPIO,
1431			    CSR_READ_1(sc, RL_GPIO) | 0x01);
1432		else
1433			CSR_WRITE_1(sc, RL_GPIO,
1434			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
1435	}
1436
1437	/* Take PHY out of power down mode. */
1438	if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
1439		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1440	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1441		re_gmii_writereg(dev, 1, 0x1f, 0);
1442		re_gmii_writereg(dev, 1, 0x0e, 0);
1443	}
1444
1445#define	RE_PHYAD_INTERNAL	 0
1446
1447	/* Do MII setup. */
1448	phy = RE_PHYAD_INTERNAL;
1449	if (sc->rl_type == RL_8169)
1450		phy = 1;
1451	error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1452	    re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1453	if (error != 0) {
1454		device_printf(dev, "attaching PHYs failed\n");
1455		goto fail;
1456	}
1457
1458	ifp->if_softc = sc;
1459	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1460	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1461	ifp->if_ioctl = re_ioctl;
1462	ifp->if_start = re_start;
1463	ifp->if_hwassist = RE_CSUM_FEATURES;
1464	ifp->if_capabilities = IFCAP_HWCSUM;
1465	ifp->if_capenable = ifp->if_capabilities;
1466	ifp->if_init = re_init;
1467	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1468	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1469	IFQ_SET_READY(&ifp->if_snd);
1470
1471	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1472	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1473
1474	/*
1475	 * XXX
1476	 * Still have no idea how to make TSO work on 8168C, 8168CP,
1477	 * 8111C and 8111CP.
1478	 */
1479	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1480		ifp->if_hwassist |= CSUM_TSO;
1481		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
1482	}
1483
1484	/*
1485	 * Call MI attach routine.
1486	 */
1487	ether_ifattach(ifp, eaddr);
1488
1489	/* VLAN capability setup */
1490	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1491	if (ifp->if_capabilities & IFCAP_HWCSUM)
1492		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1493	/* Enable WOL if PM is supported. */
1494	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1495		ifp->if_capabilities |= IFCAP_WOL;
1496	ifp->if_capenable = ifp->if_capabilities;
1497	/*
1498	 * Don't enable TSO by default. Under certain
1499	 * circumtances the controller generated corrupted
1500	 * packets in TSO size.
1501	 */
1502	ifp->if_hwassist &= ~CSUM_TSO;
1503	ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1504#ifdef DEVICE_POLLING
1505	ifp->if_capabilities |= IFCAP_POLLING;
1506#endif
1507	/*
1508	 * Tell the upper layer(s) we support long frames.
1509	 * Must appear after the call to ether_ifattach() because
1510	 * ether_ifattach() sets ifi_hdrlen to the default value.
1511	 */
1512	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1513
1514#ifdef RE_DIAG
1515	/*
1516	 * Perform hardware diagnostic on the original RTL8169.
1517	 * Some 32-bit cards were incorrectly wired and would
1518	 * malfunction if plugged into a 64-bit slot.
1519	 */
1520
1521	if (hwrev == RL_HWREV_8169) {
1522		error = re_diag(sc);
1523		if (error) {
1524			device_printf(dev,
1525		    	"attach aborted due to hardware diag failure\n");
1526			ether_ifdetach(ifp);
1527			goto fail;
1528		}
1529	}
1530#endif
1531
1532	/* Hook interrupt last to avoid having to lock softc */
1533	if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1534		error = bus_setup_intr(dev, sc->rl_irq[0],
1535		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1536		    &sc->rl_intrhand[0]);
1537	else {
1538		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1539			error = bus_setup_intr(dev, sc->rl_irq[i],
1540			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1541		    	    &sc->rl_intrhand[i]);
1542			if (error != 0)
1543				break;
1544		}
1545	}
1546	if (error) {
1547		device_printf(dev, "couldn't set up irq\n");
1548		ether_ifdetach(ifp);
1549	}
1550
1551fail:
1552
1553	if (error)
1554		re_detach(dev);
1555
1556	return (error);
1557}
1558
1559/*
1560 * Shutdown hardware and free up resources. This can be called any
1561 * time after the mutex has been initialized. It is called in both
1562 * the error case in attach and the normal detach case so it needs
1563 * to be careful about only freeing resources that have actually been
1564 * allocated.
1565 */
1566static int
1567re_detach(device_t dev)
1568{
1569	struct rl_softc		*sc;
1570	struct ifnet		*ifp;
1571	int			i, rid;
1572
1573	sc = device_get_softc(dev);
1574	ifp = sc->rl_ifp;
1575	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1576
1577	/* These should only be active if attach succeeded */
1578	if (device_is_attached(dev)) {
1579#ifdef DEVICE_POLLING
1580		if (ifp->if_capenable & IFCAP_POLLING)
1581			ether_poll_deregister(ifp);
1582#endif
1583		RL_LOCK(sc);
1584#if 0
1585		sc->suspended = 1;
1586#endif
1587		re_stop(sc);
1588		RL_UNLOCK(sc);
1589		callout_drain(&sc->rl_stat_callout);
1590		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1591		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1592		/*
1593		 * Force off the IFF_UP flag here, in case someone
1594		 * still had a BPF descriptor attached to this
1595		 * interface. If they do, ether_ifdetach() will cause
1596		 * the BPF code to try and clear the promisc mode
1597		 * flag, which will bubble down to re_ioctl(),
1598		 * which will try to call re_init() again. This will
1599		 * turn the NIC back on and restart the MII ticker,
1600		 * which will panic the system when the kernel tries
1601		 * to invoke the re_tick() function that isn't there
1602		 * anymore.
1603		 */
1604		ifp->if_flags &= ~IFF_UP;
1605		ether_ifdetach(ifp);
1606	}
1607	if (sc->rl_miibus)
1608		device_delete_child(dev, sc->rl_miibus);
1609	bus_generic_detach(dev);
1610
1611	/*
1612	 * The rest is resource deallocation, so we should already be
1613	 * stopped here.
1614	 */
1615
1616	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1617		if (sc->rl_intrhand[i] != NULL) {
1618			bus_teardown_intr(dev, sc->rl_irq[i],
1619			    sc->rl_intrhand[i]);
1620			sc->rl_intrhand[i] = NULL;
1621		}
1622	}
1623	if (ifp != NULL)
1624		if_free(ifp);
1625	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1626		if (sc->rl_irq[0] != NULL) {
1627			bus_release_resource(dev, SYS_RES_IRQ, 0,
1628			    sc->rl_irq[0]);
1629			sc->rl_irq[0] = NULL;
1630		}
1631	} else {
1632		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1633			if (sc->rl_irq[i] != NULL) {
1634				bus_release_resource(dev, SYS_RES_IRQ, rid,
1635				    sc->rl_irq[i]);
1636				sc->rl_irq[i] = NULL;
1637			}
1638		}
1639		pci_release_msi(dev);
1640	}
1641	if (sc->rl_res)
1642		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1643		    sc->rl_res);
1644
1645	/* Unload and free the RX DMA ring memory and map */
1646
1647	if (sc->rl_ldata.rl_rx_list_tag) {
1648		if (sc->rl_ldata.rl_rx_list_map)
1649			bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1650			    sc->rl_ldata.rl_rx_list_map);
1651		if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
1652			bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1653			    sc->rl_ldata.rl_rx_list,
1654			    sc->rl_ldata.rl_rx_list_map);
1655		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1656	}
1657
1658	/* Unload and free the TX DMA ring memory and map */
1659
1660	if (sc->rl_ldata.rl_tx_list_tag) {
1661		if (sc->rl_ldata.rl_tx_list_map)
1662			bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1663			    sc->rl_ldata.rl_tx_list_map);
1664		if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
1665			bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1666			    sc->rl_ldata.rl_tx_list,
1667			    sc->rl_ldata.rl_tx_list_map);
1668		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1669	}
1670
1671	/* Destroy all the RX and TX buffer maps */
1672
1673	if (sc->rl_ldata.rl_tx_mtag) {
1674		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1675			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1676			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1677		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1678	}
1679	if (sc->rl_ldata.rl_rx_mtag) {
1680		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1681			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1682			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1683		if (sc->rl_ldata.rl_rx_sparemap)
1684			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1685			    sc->rl_ldata.rl_rx_sparemap);
1686		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1687	}
1688
1689	/* Unload and free the stats buffer and map */
1690
1691	if (sc->rl_ldata.rl_stag) {
1692		if (sc->rl_ldata.rl_smap)
1693			bus_dmamap_unload(sc->rl_ldata.rl_stag,
1694			    sc->rl_ldata.rl_smap);
1695		if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
1696			bus_dmamem_free(sc->rl_ldata.rl_stag,
1697			    sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1698		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1699	}
1700
1701	if (sc->rl_parent_tag)
1702		bus_dma_tag_destroy(sc->rl_parent_tag);
1703
1704	mtx_destroy(&sc->rl_mtx);
1705
1706	return (0);
1707}
1708
1709static __inline void
1710re_discard_rxbuf(struct rl_softc *sc, int idx)
1711{
1712	struct rl_desc		*desc;
1713	struct rl_rxdesc	*rxd;
1714	uint32_t		cmdstat;
1715
1716	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1717	desc = &sc->rl_ldata.rl_rx_list[idx];
1718	desc->rl_vlanctl = 0;
1719	cmdstat = rxd->rx_size;
1720	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1721		cmdstat |= RL_RDESC_CMD_EOR;
1722	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1723}
1724
1725static int
1726re_newbuf(struct rl_softc *sc, int idx)
1727{
1728	struct mbuf		*m;
1729	struct rl_rxdesc	*rxd;
1730	bus_dma_segment_t	segs[1];
1731	bus_dmamap_t		map;
1732	struct rl_desc		*desc;
1733	uint32_t		cmdstat;
1734	int			error, nsegs;
1735
1736	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1737	if (m == NULL)
1738		return (ENOBUFS);
1739
1740	m->m_len = m->m_pkthdr.len = MCLBYTES;
1741#ifdef RE_FIXUP_RX
1742	/*
1743	 * This is part of an evil trick to deal with non-x86 platforms.
1744	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1745	 * boundaries, but that will hose non-x86 machines. To get around
1746	 * this, we leave some empty space at the start of each buffer
1747	 * and for non-x86 hosts, we copy the buffer back six bytes
1748	 * to achieve word alignment. This is slightly more efficient
1749	 * than allocating a new buffer, copying the contents, and
1750	 * discarding the old buffer.
1751	 */
1752	m_adj(m, RE_ETHER_ALIGN);
1753#endif
1754	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1755	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1756	if (error != 0) {
1757		m_freem(m);
1758		return (ENOBUFS);
1759	}
1760	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1761
1762	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1763	if (rxd->rx_m != NULL) {
1764		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1765		    BUS_DMASYNC_POSTREAD);
1766		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1767	}
1768
1769	rxd->rx_m = m;
1770	map = rxd->rx_dmamap;
1771	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1772	rxd->rx_size = segs[0].ds_len;
1773	sc->rl_ldata.rl_rx_sparemap = map;
1774	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1775	    BUS_DMASYNC_PREREAD);
1776
1777	desc = &sc->rl_ldata.rl_rx_list[idx];
1778	desc->rl_vlanctl = 0;
1779	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1780	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1781	cmdstat = segs[0].ds_len;
1782	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1783		cmdstat |= RL_RDESC_CMD_EOR;
1784	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1785
1786	return (0);
1787}
1788
1789#ifdef RE_FIXUP_RX
1790static __inline void
1791re_fixup_rx(struct mbuf *m)
1792{
1793	int                     i;
1794	uint16_t                *src, *dst;
1795
1796	src = mtod(m, uint16_t *);
1797	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1798
1799	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1800		*dst++ = *src++;
1801
1802	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1803}
1804#endif
1805
1806static int
1807re_tx_list_init(struct rl_softc *sc)
1808{
1809	struct rl_desc		*desc;
1810	int			i;
1811
1812	RL_LOCK_ASSERT(sc);
1813
1814	bzero(sc->rl_ldata.rl_tx_list,
1815	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1816	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1817		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1818	/* Set EOR. */
1819	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1820	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1821
1822	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1823	    sc->rl_ldata.rl_tx_list_map,
1824	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1825
1826	sc->rl_ldata.rl_tx_prodidx = 0;
1827	sc->rl_ldata.rl_tx_considx = 0;
1828	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1829
1830	return (0);
1831}
1832
1833static int
1834re_rx_list_init(struct rl_softc *sc)
1835{
1836	int			error, i;
1837
1838	bzero(sc->rl_ldata.rl_rx_list,
1839	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1840	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1841		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1842		if ((error = re_newbuf(sc, i)) != 0)
1843			return (error);
1844	}
1845
1846	/* Flush the RX descriptors */
1847
1848	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1849	    sc->rl_ldata.rl_rx_list_map,
1850	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1851
1852	sc->rl_ldata.rl_rx_prodidx = 0;
1853	sc->rl_head = sc->rl_tail = NULL;
1854
1855	return (0);
1856}
1857
1858/*
1859 * RX handler for C+ and 8169. For the gigE chips, we support
1860 * the reception of jumbo frames that have been fragmented
1861 * across multiple 2K mbuf cluster buffers.
1862 */
1863static int
1864re_rxeof(struct rl_softc *sc, int *rx_npktsp)
1865{
1866	struct mbuf		*m;
1867	struct ifnet		*ifp;
1868	int			i, total_len;
1869	struct rl_desc		*cur_rx;
1870	u_int32_t		rxstat, rxvlan;
1871	int			maxpkt = 16, rx_npkts = 0;
1872
1873	RL_LOCK_ASSERT(sc);
1874
1875	ifp = sc->rl_ifp;
1876
1877	/* Invalidate the descriptor memory */
1878
1879	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1880	    sc->rl_ldata.rl_rx_list_map,
1881	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1882
1883	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1884	    i = RL_RX_DESC_NXT(sc, i)) {
1885		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1886			break;
1887		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1888		rxstat = le32toh(cur_rx->rl_cmdstat);
1889		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1890			break;
1891		total_len = rxstat & sc->rl_rxlenmask;
1892		rxvlan = le32toh(cur_rx->rl_vlanctl);
1893		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1894
1895		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1896			if (re_newbuf(sc, i) != 0) {
1897				/*
1898				 * If this is part of a multi-fragment packet,
1899				 * discard all the pieces.
1900				 */
1901				if (sc->rl_head != NULL) {
1902					m_freem(sc->rl_head);
1903					sc->rl_head = sc->rl_tail = NULL;
1904				}
1905				re_discard_rxbuf(sc, i);
1906				continue;
1907			}
1908			m->m_len = RE_RX_DESC_BUFLEN;
1909			if (sc->rl_head == NULL)
1910				sc->rl_head = sc->rl_tail = m;
1911			else {
1912				m->m_flags &= ~M_PKTHDR;
1913				sc->rl_tail->m_next = m;
1914				sc->rl_tail = m;
1915			}
1916			continue;
1917		}
1918
1919		/*
1920		 * NOTE: for the 8139C+, the frame length field
1921		 * is always 12 bits in size, but for the gigE chips,
1922		 * it is 13 bits (since the max RX frame length is 16K).
1923		 * Unfortunately, all 32 bits in the status word
1924		 * were already used, so to make room for the extra
1925		 * length bit, RealTek took out the 'frame alignment
1926		 * error' bit and shifted the other status bits
1927		 * over one slot. The OWN, EOR, FS and LS bits are
1928		 * still in the same places. We have already extracted
1929		 * the frame length and checked the OWN bit, so rather
1930		 * than using an alternate bit mapping, we shift the
1931		 * status bits one space to the right so we can evaluate
1932		 * them using the 8169 status as though it was in the
1933		 * same format as that of the 8139C+.
1934		 */
1935		if (sc->rl_type == RL_8169)
1936			rxstat >>= 1;
1937
1938		/*
1939		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1940		 * set, but if CRC is clear, it will still be a valid frame.
1941		 */
1942		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1943		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1944			ifp->if_ierrors++;
1945			/*
1946			 * If this is part of a multi-fragment packet,
1947			 * discard all the pieces.
1948			 */
1949			if (sc->rl_head != NULL) {
1950				m_freem(sc->rl_head);
1951				sc->rl_head = sc->rl_tail = NULL;
1952			}
1953			re_discard_rxbuf(sc, i);
1954			continue;
1955		}
1956
1957		/*
1958		 * If allocating a replacement mbuf fails,
1959		 * reload the current one.
1960		 */
1961
1962		if (re_newbuf(sc, i) != 0) {
1963			ifp->if_iqdrops++;
1964			if (sc->rl_head != NULL) {
1965				m_freem(sc->rl_head);
1966				sc->rl_head = sc->rl_tail = NULL;
1967			}
1968			re_discard_rxbuf(sc, i);
1969			continue;
1970		}
1971
1972		if (sc->rl_head != NULL) {
1973			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1974			if (m->m_len == 0)
1975				m->m_len = RE_RX_DESC_BUFLEN;
1976			/*
1977			 * Special case: if there's 4 bytes or less
1978			 * in this buffer, the mbuf can be discarded:
1979			 * the last 4 bytes is the CRC, which we don't
1980			 * care about anyway.
1981			 */
1982			if (m->m_len <= ETHER_CRC_LEN) {
1983				sc->rl_tail->m_len -=
1984				    (ETHER_CRC_LEN - m->m_len);
1985				m_freem(m);
1986			} else {
1987				m->m_len -= ETHER_CRC_LEN;
1988				m->m_flags &= ~M_PKTHDR;
1989				sc->rl_tail->m_next = m;
1990			}
1991			m = sc->rl_head;
1992			sc->rl_head = sc->rl_tail = NULL;
1993			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1994		} else
1995			m->m_pkthdr.len = m->m_len =
1996			    (total_len - ETHER_CRC_LEN);
1997
1998#ifdef RE_FIXUP_RX
1999		re_fixup_rx(m);
2000#endif
2001		ifp->if_ipackets++;
2002		m->m_pkthdr.rcvif = ifp;
2003
2004		/* Do RX checksumming if enabled */
2005
2006		if (ifp->if_capenable & IFCAP_RXCSUM) {
2007			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2008				/* Check IP header checksum */
2009				if (rxstat & RL_RDESC_STAT_PROTOID)
2010					m->m_pkthdr.csum_flags |=
2011					    CSUM_IP_CHECKED;
2012				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2013					m->m_pkthdr.csum_flags |=
2014					    CSUM_IP_VALID;
2015
2016				/* Check TCP/UDP checksum */
2017				if ((RL_TCPPKT(rxstat) &&
2018				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2019				    (RL_UDPPKT(rxstat) &&
2020				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2021					m->m_pkthdr.csum_flags |=
2022						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2023					m->m_pkthdr.csum_data = 0xffff;
2024				}
2025			} else {
2026				/*
2027				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2028				 */
2029				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2030				    (rxvlan & RL_RDESC_IPV4))
2031					m->m_pkthdr.csum_flags |=
2032					    CSUM_IP_CHECKED;
2033				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2034				    (rxvlan & RL_RDESC_IPV4))
2035					m->m_pkthdr.csum_flags |=
2036					    CSUM_IP_VALID;
2037				if (((rxstat & RL_RDESC_STAT_TCP) &&
2038				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2039				    ((rxstat & RL_RDESC_STAT_UDP) &&
2040				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2041					m->m_pkthdr.csum_flags |=
2042						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2043					m->m_pkthdr.csum_data = 0xffff;
2044				}
2045			}
2046		}
2047		maxpkt--;
2048		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2049			m->m_pkthdr.ether_vtag =
2050			    bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2051			m->m_flags |= M_VLANTAG;
2052		}
2053		RL_UNLOCK(sc);
2054		(*ifp->if_input)(ifp, m);
2055		RL_LOCK(sc);
2056		rx_npkts++;
2057	}
2058
2059	/* Flush the RX DMA ring */
2060
2061	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2062	    sc->rl_ldata.rl_rx_list_map,
2063	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2064
2065	sc->rl_ldata.rl_rx_prodidx = i;
2066
2067	if (rx_npktsp != NULL)
2068		*rx_npktsp = rx_npkts;
2069	if (maxpkt)
2070		return (EAGAIN);
2071
2072	return (0);
2073}
2074
2075static void
2076re_txeof(struct rl_softc *sc)
2077{
2078	struct ifnet		*ifp;
2079	struct rl_txdesc	*txd;
2080	u_int32_t		txstat;
2081	int			cons;
2082
2083	cons = sc->rl_ldata.rl_tx_considx;
2084	if (cons == sc->rl_ldata.rl_tx_prodidx)
2085		return;
2086
2087	ifp = sc->rl_ifp;
2088	/* Invalidate the TX descriptor list */
2089	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2090	    sc->rl_ldata.rl_tx_list_map,
2091	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2092
2093	for (; cons != sc->rl_ldata.rl_tx_prodidx;
2094	    cons = RL_TX_DESC_NXT(sc, cons)) {
2095		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2096		if (txstat & RL_TDESC_STAT_OWN)
2097			break;
2098		/*
2099		 * We only stash mbufs in the last descriptor
2100		 * in a fragment chain, which also happens to
2101		 * be the only place where the TX status bits
2102		 * are valid.
2103		 */
2104		if (txstat & RL_TDESC_CMD_EOF) {
2105			txd = &sc->rl_ldata.rl_tx_desc[cons];
2106			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2107			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2108			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2109			    txd->tx_dmamap);
2110			KASSERT(txd->tx_m != NULL,
2111			    ("%s: freeing NULL mbufs!", __func__));
2112			m_freem(txd->tx_m);
2113			txd->tx_m = NULL;
2114			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2115			    RL_TDESC_STAT_COLCNT))
2116				ifp->if_collisions++;
2117			if (txstat & RL_TDESC_STAT_TXERRSUM)
2118				ifp->if_oerrors++;
2119			else
2120				ifp->if_opackets++;
2121		}
2122		sc->rl_ldata.rl_tx_free++;
2123		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2124	}
2125	sc->rl_ldata.rl_tx_considx = cons;
2126
2127	/* No changes made to the TX ring, so no flush needed */
2128
2129	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2130#ifdef RE_TX_MODERATION
2131		/*
2132		 * If not all descriptors have been reaped yet, reload
2133		 * the timer so that we will eventually get another
2134		 * interrupt that will cause us to re-enter this routine.
2135		 * This is done in case the transmitter has gone idle.
2136		 */
2137		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2138#endif
2139	} else
2140		sc->rl_watchdog_timer = 0;
2141}
2142
2143static void
2144re_tick(void *xsc)
2145{
2146	struct rl_softc		*sc;
2147	struct mii_data		*mii;
2148
2149	sc = xsc;
2150
2151	RL_LOCK_ASSERT(sc);
2152
2153	mii = device_get_softc(sc->rl_miibus);
2154	mii_tick(mii);
2155	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2156		re_miibus_statchg(sc->rl_dev);
2157	/*
2158	 * Reclaim transmitted frames here. Technically it is not
2159	 * necessary to do here but it ensures periodic reclamation
2160	 * regardless of Tx completion interrupt which seems to be
2161	 * lost on PCIe based controllers under certain situations.
2162	 */
2163	re_txeof(sc);
2164	re_watchdog(sc);
2165	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2166}
2167
2168#ifdef DEVICE_POLLING
2169static int
2170re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2171{
2172	struct rl_softc *sc = ifp->if_softc;
2173	int rx_npkts = 0;
2174
2175	RL_LOCK(sc);
2176	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2177		rx_npkts = re_poll_locked(ifp, cmd, count);
2178	RL_UNLOCK(sc);
2179	return (rx_npkts);
2180}
2181
2182static int
2183re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2184{
2185	struct rl_softc *sc = ifp->if_softc;
2186	int rx_npkts;
2187
2188	RL_LOCK_ASSERT(sc);
2189
2190	sc->rxcycles = count;
2191	re_rxeof(sc, &rx_npkts);
2192	re_txeof(sc);
2193
2194	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2195		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2196
2197	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2198		u_int16_t       status;
2199
2200		status = CSR_READ_2(sc, RL_ISR);
2201		if (status == 0xffff)
2202			return (rx_npkts);
2203		if (status)
2204			CSR_WRITE_2(sc, RL_ISR, status);
2205		if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2206		    (sc->rl_flags & RL_FLAG_PCIE))
2207			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2208
2209		/*
2210		 * XXX check behaviour on receiver stalls.
2211		 */
2212
2213		if (status & RL_ISR_SYSTEM_ERR) {
2214			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2215			re_init_locked(sc);
2216		}
2217	}
2218	return (rx_npkts);
2219}
2220#endif /* DEVICE_POLLING */
2221
2222static int
2223re_intr(void *arg)
2224{
2225	struct rl_softc		*sc;
2226	uint16_t		status;
2227
2228	sc = arg;
2229
2230	status = CSR_READ_2(sc, RL_ISR);
2231	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2232                return (FILTER_STRAY);
2233	CSR_WRITE_2(sc, RL_IMR, 0);
2234
2235	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2236
2237	return (FILTER_HANDLED);
2238}
2239
2240static void
2241re_int_task(void *arg, int npending)
2242{
2243	struct rl_softc		*sc;
2244	struct ifnet		*ifp;
2245	u_int16_t		status;
2246	int			rval = 0;
2247
2248	sc = arg;
2249	ifp = sc->rl_ifp;
2250
2251	RL_LOCK(sc);
2252
2253	status = CSR_READ_2(sc, RL_ISR);
2254        CSR_WRITE_2(sc, RL_ISR, status);
2255
2256	if (sc->suspended ||
2257	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2258		RL_UNLOCK(sc);
2259		return;
2260	}
2261
2262#ifdef DEVICE_POLLING
2263	if  (ifp->if_capenable & IFCAP_POLLING) {
2264		RL_UNLOCK(sc);
2265		return;
2266	}
2267#endif
2268
2269	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2270		rval = re_rxeof(sc, NULL);
2271
2272	/*
2273	 * Some chips will ignore a second TX request issued
2274	 * while an existing transmission is in progress. If
2275	 * the transmitter goes idle but there are still
2276	 * packets waiting to be sent, we need to restart the
2277	 * channel here to flush them out. This only seems to
2278	 * be required with the PCIe devices.
2279	 */
2280	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2281	    (sc->rl_flags & RL_FLAG_PCIE))
2282		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2283	if (status & (
2284#ifdef RE_TX_MODERATION
2285	    RL_ISR_TIMEOUT_EXPIRED|
2286#else
2287	    RL_ISR_TX_OK|
2288#endif
2289	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2290		re_txeof(sc);
2291
2292	if (status & RL_ISR_SYSTEM_ERR) {
2293		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2294		re_init_locked(sc);
2295	}
2296
2297	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2298		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2299
2300	RL_UNLOCK(sc);
2301
2302        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2303		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2304		return;
2305	}
2306
2307	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2308}
2309
2310static int
2311re_encap(struct rl_softc *sc, struct mbuf **m_head)
2312{
2313	struct rl_txdesc	*txd, *txd_last;
2314	bus_dma_segment_t	segs[RL_NTXSEGS];
2315	bus_dmamap_t		map;
2316	struct mbuf		*m_new;
2317	struct rl_desc		*desc;
2318	int			nsegs, prod;
2319	int			i, error, ei, si;
2320	int			padlen;
2321	uint32_t		cmdstat, csum_flags, vlanctl;
2322
2323	RL_LOCK_ASSERT(sc);
2324	M_ASSERTPKTHDR((*m_head));
2325
2326	/*
2327	 * With some of the RealTek chips, using the checksum offload
2328	 * support in conjunction with the autopadding feature results
2329	 * in the transmission of corrupt frames. For example, if we
2330	 * need to send a really small IP fragment that's less than 60
2331	 * bytes in size, and IP header checksumming is enabled, the
2332	 * resulting ethernet frame that appears on the wire will
2333	 * have garbled payload. To work around this, if TX IP checksum
2334	 * offload is enabled, we always manually pad short frames out
2335	 * to the minimum ethernet frame size.
2336	 */
2337	if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2338	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2339	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2340		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2341		if (M_WRITABLE(*m_head) == 0) {
2342			/* Get a writable copy. */
2343			m_new = m_dup(*m_head, M_DONTWAIT);
2344			m_freem(*m_head);
2345			if (m_new == NULL) {
2346				*m_head = NULL;
2347				return (ENOBUFS);
2348			}
2349			*m_head = m_new;
2350		}
2351		if ((*m_head)->m_next != NULL ||
2352		    M_TRAILINGSPACE(*m_head) < padlen) {
2353			m_new = m_defrag(*m_head, M_DONTWAIT);
2354			if (m_new == NULL) {
2355				m_freem(*m_head);
2356				*m_head = NULL;
2357				return (ENOBUFS);
2358			}
2359		} else
2360			m_new = *m_head;
2361
2362		/*
2363		 * Manually pad short frames, and zero the pad space
2364		 * to avoid leaking data.
2365		 */
2366		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2367		m_new->m_pkthdr.len += padlen;
2368		m_new->m_len = m_new->m_pkthdr.len;
2369		*m_head = m_new;
2370	}
2371
2372	prod = sc->rl_ldata.rl_tx_prodidx;
2373	txd = &sc->rl_ldata.rl_tx_desc[prod];
2374	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2375	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2376	if (error == EFBIG) {
2377		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2378		if (m_new == NULL) {
2379			m_freem(*m_head);
2380			*m_head = NULL;
2381			return (ENOBUFS);
2382		}
2383		*m_head = m_new;
2384		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2385		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2386		if (error != 0) {
2387			m_freem(*m_head);
2388			*m_head = NULL;
2389			return (error);
2390		}
2391	} else if (error != 0)
2392		return (error);
2393	if (nsegs == 0) {
2394		m_freem(*m_head);
2395		*m_head = NULL;
2396		return (EIO);
2397	}
2398
2399	/* Check for number of available descriptors. */
2400	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2401		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2402		return (ENOBUFS);
2403	}
2404
2405	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2406	    BUS_DMASYNC_PREWRITE);
2407
2408	/*
2409	 * Set up checksum offload. Note: checksum offload bits must
2410	 * appear in all descriptors of a multi-descriptor transmit
2411	 * attempt. This is according to testing done with an 8169
2412	 * chip. This is a requirement.
2413	 */
2414	vlanctl = 0;
2415	csum_flags = 0;
2416	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2417		csum_flags = RL_TDESC_CMD_LGSEND |
2418		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2419		    RL_TDESC_CMD_MSSVAL_SHIFT);
2420	else {
2421		/*
2422		 * Unconditionally enable IP checksum if TCP or UDP
2423		 * checksum is required. Otherwise, TCP/UDP checksum
2424		 * does't make effects.
2425		 */
2426		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2427			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2428				csum_flags |= RL_TDESC_CMD_IPCSUM;
2429				if (((*m_head)->m_pkthdr.csum_flags &
2430				    CSUM_TCP) != 0)
2431					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2432				if (((*m_head)->m_pkthdr.csum_flags &
2433				    CSUM_UDP) != 0)
2434					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2435			} else {
2436				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2437				if (((*m_head)->m_pkthdr.csum_flags &
2438				    CSUM_TCP) != 0)
2439					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2440				if (((*m_head)->m_pkthdr.csum_flags &
2441				    CSUM_UDP) != 0)
2442					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2443			}
2444		}
2445	}
2446
2447	/*
2448	 * Set up hardware VLAN tagging. Note: vlan tag info must
2449	 * appear in all descriptors of a multi-descriptor
2450	 * transmission attempt.
2451	 */
2452	if ((*m_head)->m_flags & M_VLANTAG)
2453		vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2454		    RL_TDESC_VLANCTL_TAG;
2455
2456	si = prod;
2457	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2458		desc = &sc->rl_ldata.rl_tx_list[prod];
2459		desc->rl_vlanctl = htole32(vlanctl);
2460		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2461		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2462		cmdstat = segs[i].ds_len;
2463		if (i != 0)
2464			cmdstat |= RL_TDESC_CMD_OWN;
2465		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2466			cmdstat |= RL_TDESC_CMD_EOR;
2467		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2468		sc->rl_ldata.rl_tx_free--;
2469	}
2470	/* Update producer index. */
2471	sc->rl_ldata.rl_tx_prodidx = prod;
2472
2473	/* Set EOF on the last descriptor. */
2474	ei = RL_TX_DESC_PRV(sc, prod);
2475	desc = &sc->rl_ldata.rl_tx_list[ei];
2476	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2477
2478	desc = &sc->rl_ldata.rl_tx_list[si];
2479	/* Set SOF and transfer ownership of packet to the chip. */
2480	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2481
2482	/*
2483	 * Insure that the map for this transmission
2484	 * is placed at the array index of the last descriptor
2485	 * in this chain.  (Swap last and first dmamaps.)
2486	 */
2487	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2488	map = txd->tx_dmamap;
2489	txd->tx_dmamap = txd_last->tx_dmamap;
2490	txd_last->tx_dmamap = map;
2491	txd_last->tx_m = *m_head;
2492
2493	return (0);
2494}
2495
2496static void
2497re_tx_task(void *arg, int npending)
2498{
2499	struct ifnet		*ifp;
2500
2501	ifp = arg;
2502	re_start(ifp);
2503}
2504
2505/*
2506 * Main transmit routine for C+ and gigE NICs.
2507 */
2508static void
2509re_start(struct ifnet *ifp)
2510{
2511	struct rl_softc		*sc;
2512	struct mbuf		*m_head;
2513	int			queued;
2514
2515	sc = ifp->if_softc;
2516
2517	RL_LOCK(sc);
2518
2519	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2520	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) {
2521		RL_UNLOCK(sc);
2522		return;
2523	}
2524
2525	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2526	    sc->rl_ldata.rl_tx_free > 1;) {
2527		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2528		if (m_head == NULL)
2529			break;
2530
2531		if (re_encap(sc, &m_head) != 0) {
2532			if (m_head == NULL)
2533				break;
2534			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2535			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2536			break;
2537		}
2538
2539		/*
2540		 * If there's a BPF listener, bounce a copy of this frame
2541		 * to him.
2542		 */
2543		ETHER_BPF_MTAP(ifp, m_head);
2544
2545		queued++;
2546	}
2547
2548	if (queued == 0) {
2549#ifdef RE_TX_MODERATION
2550		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2551			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2552#endif
2553		RL_UNLOCK(sc);
2554		return;
2555	}
2556
2557	/* Flush the TX descriptors */
2558
2559	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2560	    sc->rl_ldata.rl_tx_list_map,
2561	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2562
2563	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2564
2565#ifdef RE_TX_MODERATION
2566	/*
2567	 * Use the countdown timer for interrupt moderation.
2568	 * 'TX done' interrupts are disabled. Instead, we reset the
2569	 * countdown timer, which will begin counting until it hits
2570	 * the value in the TIMERINT register, and then trigger an
2571	 * interrupt. Each time we write to the TIMERCNT register,
2572	 * the timer count is reset to 0.
2573	 */
2574	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2575#endif
2576
2577	/*
2578	 * Set a timeout in case the chip goes out to lunch.
2579	 */
2580	sc->rl_watchdog_timer = 5;
2581
2582	RL_UNLOCK(sc);
2583}
2584
2585static void
2586re_init(void *xsc)
2587{
2588	struct rl_softc		*sc = xsc;
2589
2590	RL_LOCK(sc);
2591	re_init_locked(sc);
2592	RL_UNLOCK(sc);
2593}
2594
2595static void
2596re_init_locked(struct rl_softc *sc)
2597{
2598	struct ifnet		*ifp = sc->rl_ifp;
2599	struct mii_data		*mii;
2600	uint32_t		reg;
2601	uint16_t		cfg;
2602	union {
2603		uint32_t align_dummy;
2604		u_char eaddr[ETHER_ADDR_LEN];
2605        } eaddr;
2606
2607	RL_LOCK_ASSERT(sc);
2608
2609	mii = device_get_softc(sc->rl_miibus);
2610
2611	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2612		return;
2613
2614	/*
2615	 * Cancel pending I/O and free all RX/TX buffers.
2616	 */
2617	re_stop(sc);
2618
2619	/* Put controller into known state. */
2620	re_reset(sc);
2621
2622	/*
2623	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2624	 * RX checksum offload. We must configure the C+ register
2625	 * before all others.
2626	 */
2627	cfg = RL_CPLUSCMD_PCI_MRW;
2628	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2629		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2630	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2631		cfg |= RL_CPLUSCMD_VLANSTRIP;
2632	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
2633		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
2634		/* XXX magic. */
2635		cfg |= 0x0001;
2636	} else
2637		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
2638	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
2639	if (sc->rl_hwrev == RL_HWREV_8169_8110SC ||
2640	    sc->rl_hwrev == RL_HWREV_8169_8110SCE) {
2641		reg = 0x000fff00;
2642		if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0)
2643			reg |= 0x000000ff;
2644		if (sc->rl_hwrev == RL_HWREV_8169_8110SCE)
2645			reg |= 0x00f00000;
2646		CSR_WRITE_4(sc, 0x7c, reg);
2647		/* Disable interrupt mitigation. */
2648		CSR_WRITE_2(sc, 0xe2, 0);
2649	}
2650	/*
2651	 * Disable TSO if interface MTU size is greater than MSS
2652	 * allowed in controller.
2653	 */
2654	if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
2655		ifp->if_capenable &= ~IFCAP_TSO4;
2656		ifp->if_hwassist &= ~CSUM_TSO;
2657	}
2658
2659	/*
2660	 * Init our MAC address.  Even though the chipset
2661	 * documentation doesn't mention it, we need to enter "Config
2662	 * register write enable" mode to modify the ID registers.
2663	 */
2664	/* Copy MAC address on stack to align. */
2665	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2666	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2667	CSR_WRITE_4(sc, RL_IDR0,
2668	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2669	CSR_WRITE_4(sc, RL_IDR4,
2670	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2671	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2672
2673	/*
2674	 * For C+ mode, initialize the RX descriptors and mbufs.
2675	 */
2676	re_rx_list_init(sc);
2677	re_tx_list_init(sc);
2678
2679	/*
2680	 * Load the addresses of the RX and TX lists into the chip.
2681	 */
2682
2683	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2684	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2685	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2686	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2687
2688	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2689	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2690	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2691	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2692
2693	/*
2694	 * Enable transmit and receive.
2695	 */
2696	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2697
2698	/*
2699	 * Set the initial TX configuration.
2700	 */
2701	if (sc->rl_testmode) {
2702		if (sc->rl_type == RL_8169)
2703			CSR_WRITE_4(sc, RL_TXCFG,
2704			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2705		else
2706			CSR_WRITE_4(sc, RL_TXCFG,
2707			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2708	} else
2709		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2710
2711	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2712
2713	/*
2714	 * Set the initial RX configuration.
2715	 */
2716	re_set_rxmode(sc);
2717
2718#ifdef DEVICE_POLLING
2719	/*
2720	 * Disable interrupts if we are polling.
2721	 */
2722	if (ifp->if_capenable & IFCAP_POLLING)
2723		CSR_WRITE_2(sc, RL_IMR, 0);
2724	else	/* otherwise ... */
2725#endif
2726
2727	/*
2728	 * Enable interrupts.
2729	 */
2730	if (sc->rl_testmode)
2731		CSR_WRITE_2(sc, RL_IMR, 0);
2732	else
2733		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2734	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2735
2736	/* Set initial TX threshold */
2737	sc->rl_txthresh = RL_TX_THRESH_INIT;
2738
2739	/* Start RX/TX process. */
2740	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2741#ifdef notdef
2742	/* Enable receiver and transmitter. */
2743	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2744#endif
2745
2746#ifdef RE_TX_MODERATION
2747	/*
2748	 * Initialize the timer interrupt register so that
2749	 * a timer interrupt will be generated once the timer
2750	 * reaches a certain number of ticks. The timer is
2751	 * reloaded on each transmit. This gives us TX interrupt
2752	 * moderation, which dramatically improves TX frame rate.
2753	 */
2754	if (sc->rl_type == RL_8169)
2755		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2756	else
2757		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2758#endif
2759
2760	/*
2761	 * For 8169 gigE NICs, set the max allowed RX packet
2762	 * size so we can receive jumbo frames.
2763	 */
2764	if (sc->rl_type == RL_8169)
2765		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2766
2767	if (sc->rl_testmode)
2768		return;
2769
2770	mii_mediachg(mii);
2771
2772	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2773
2774	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2775	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2776
2777	sc->rl_flags &= ~RL_FLAG_LINK;
2778	sc->rl_watchdog_timer = 0;
2779	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2780}
2781
2782/*
2783 * Set media options.
2784 */
2785static int
2786re_ifmedia_upd(struct ifnet *ifp)
2787{
2788	struct rl_softc		*sc;
2789	struct mii_data		*mii;
2790	int			error;
2791
2792	sc = ifp->if_softc;
2793	mii = device_get_softc(sc->rl_miibus);
2794	RL_LOCK(sc);
2795	error = mii_mediachg(mii);
2796	RL_UNLOCK(sc);
2797
2798	return (error);
2799}
2800
2801/*
2802 * Report current media status.
2803 */
2804static void
2805re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2806{
2807	struct rl_softc		*sc;
2808	struct mii_data		*mii;
2809
2810	sc = ifp->if_softc;
2811	mii = device_get_softc(sc->rl_miibus);
2812
2813	RL_LOCK(sc);
2814	mii_pollstat(mii);
2815	RL_UNLOCK(sc);
2816	ifmr->ifm_active = mii->mii_media_active;
2817	ifmr->ifm_status = mii->mii_media_status;
2818}
2819
2820static int
2821re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2822{
2823	struct rl_softc		*sc = ifp->if_softc;
2824	struct ifreq		*ifr = (struct ifreq *) data;
2825	struct mii_data		*mii;
2826	int			error = 0;
2827
2828	switch (command) {
2829	case SIOCSIFMTU:
2830		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2831			error = EINVAL;
2832			break;
2833		}
2834		if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 &&
2835		    ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2836			error = EINVAL;
2837			break;
2838		}
2839		RL_LOCK(sc);
2840		if (ifp->if_mtu != ifr->ifr_mtu)
2841			ifp->if_mtu = ifr->ifr_mtu;
2842		if (ifp->if_mtu > RL_TSO_MTU &&
2843		    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2844			ifp->if_capenable &= ~IFCAP_TSO4;
2845			ifp->if_hwassist &= ~CSUM_TSO;
2846			VLAN_CAPABILITIES(ifp);
2847		}
2848		RL_UNLOCK(sc);
2849		break;
2850	case SIOCSIFFLAGS:
2851		RL_LOCK(sc);
2852		if ((ifp->if_flags & IFF_UP) != 0) {
2853			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2854				if (((ifp->if_flags ^ sc->rl_if_flags)
2855				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2856					re_set_rxmode(sc);
2857			} else
2858				re_init_locked(sc);
2859		} else {
2860			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2861				re_stop(sc);
2862		}
2863		sc->rl_if_flags = ifp->if_flags;
2864		RL_UNLOCK(sc);
2865		break;
2866	case SIOCADDMULTI:
2867	case SIOCDELMULTI:
2868		RL_LOCK(sc);
2869		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2870			re_set_rxmode(sc);
2871		RL_UNLOCK(sc);
2872		break;
2873	case SIOCGIFMEDIA:
2874	case SIOCSIFMEDIA:
2875		mii = device_get_softc(sc->rl_miibus);
2876		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2877		break;
2878	case SIOCSIFCAP:
2879	    {
2880		int mask, reinit;
2881
2882		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2883		reinit = 0;
2884#ifdef DEVICE_POLLING
2885		if (mask & IFCAP_POLLING) {
2886			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2887				error = ether_poll_register(re_poll, ifp);
2888				if (error)
2889					return (error);
2890				RL_LOCK(sc);
2891				/* Disable interrupts */
2892				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2893				ifp->if_capenable |= IFCAP_POLLING;
2894				RL_UNLOCK(sc);
2895			} else {
2896				error = ether_poll_deregister(ifp);
2897				/* Enable interrupts. */
2898				RL_LOCK(sc);
2899				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2900				ifp->if_capenable &= ~IFCAP_POLLING;
2901				RL_UNLOCK(sc);
2902			}
2903		}
2904#endif /* DEVICE_POLLING */
2905		if (mask & IFCAP_HWCSUM) {
2906			ifp->if_capenable ^= IFCAP_HWCSUM;
2907			if (ifp->if_capenable & IFCAP_TXCSUM)
2908				ifp->if_hwassist |= RE_CSUM_FEATURES;
2909			else
2910				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2911			reinit = 1;
2912		}
2913		if ((mask & IFCAP_TSO4) != 0 &&
2914		    (ifp->if_capabilities & IFCAP_TSO) != 0) {
2915			ifp->if_capenable ^= IFCAP_TSO4;
2916			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
2917				ifp->if_hwassist |= CSUM_TSO;
2918			else
2919				ifp->if_hwassist &= ~CSUM_TSO;
2920			if (ifp->if_mtu > RL_TSO_MTU &&
2921			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2922				ifp->if_capenable &= ~IFCAP_TSO4;
2923				ifp->if_hwassist &= ~CSUM_TSO;
2924			}
2925		}
2926		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2927		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2928			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2929		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2930		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2931			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2932			/* TSO over VLAN requires VLAN hardware tagging. */
2933			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2934				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2935			reinit = 1;
2936		}
2937		if ((mask & IFCAP_WOL) != 0 &&
2938		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2939			if ((mask & IFCAP_WOL_UCAST) != 0)
2940				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2941			if ((mask & IFCAP_WOL_MCAST) != 0)
2942				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2943			if ((mask & IFCAP_WOL_MAGIC) != 0)
2944				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2945		}
2946		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
2947			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2948			re_init(sc);
2949		}
2950		VLAN_CAPABILITIES(ifp);
2951	    }
2952		break;
2953	default:
2954		error = ether_ioctl(ifp, command, data);
2955		break;
2956	}
2957
2958	return (error);
2959}
2960
2961static void
2962re_watchdog(struct rl_softc *sc)
2963{
2964	struct ifnet		*ifp;
2965
2966	RL_LOCK_ASSERT(sc);
2967
2968	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2969		return;
2970
2971	ifp = sc->rl_ifp;
2972	re_txeof(sc);
2973	if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
2974		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2975		    "-- recovering\n");
2976		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2977			taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2978		return;
2979	}
2980
2981	if_printf(ifp, "watchdog timeout\n");
2982	ifp->if_oerrors++;
2983
2984	re_rxeof(sc, NULL);
2985	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2986	re_init_locked(sc);
2987	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2988		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2989}
2990
2991/*
2992 * Stop the adapter and free any mbufs allocated to the
2993 * RX and TX lists.
2994 */
2995static void
2996re_stop(struct rl_softc *sc)
2997{
2998	int			i;
2999	struct ifnet		*ifp;
3000	struct rl_txdesc	*txd;
3001	struct rl_rxdesc	*rxd;
3002
3003	RL_LOCK_ASSERT(sc);
3004
3005	ifp = sc->rl_ifp;
3006
3007	sc->rl_watchdog_timer = 0;
3008	callout_stop(&sc->rl_stat_callout);
3009	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3010
3011	if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0)
3012		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3013		    RL_CMD_RX_ENB);
3014	else
3015		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3016	DELAY(1000);
3017	CSR_WRITE_2(sc, RL_IMR, 0x0000);
3018	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3019
3020	if (sc->rl_head != NULL) {
3021		m_freem(sc->rl_head);
3022		sc->rl_head = sc->rl_tail = NULL;
3023	}
3024
3025	/* Free the TX list buffers. */
3026
3027	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3028		txd = &sc->rl_ldata.rl_tx_desc[i];
3029		if (txd->tx_m != NULL) {
3030			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3031			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3032			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3033			    txd->tx_dmamap);
3034			m_freem(txd->tx_m);
3035			txd->tx_m = NULL;
3036		}
3037	}
3038
3039	/* Free the RX list buffers. */
3040
3041	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3042		rxd = &sc->rl_ldata.rl_rx_desc[i];
3043		if (rxd->rx_m != NULL) {
3044			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3045			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3046			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3047			    rxd->rx_dmamap);
3048			m_freem(rxd->rx_m);
3049			rxd->rx_m = NULL;
3050		}
3051	}
3052}
3053
3054/*
3055 * Device suspend routine.  Stop the interface and save some PCI
3056 * settings in case the BIOS doesn't restore them properly on
3057 * resume.
3058 */
3059static int
3060re_suspend(device_t dev)
3061{
3062	struct rl_softc		*sc;
3063
3064	sc = device_get_softc(dev);
3065
3066	RL_LOCK(sc);
3067	re_stop(sc);
3068	re_setwol(sc);
3069	sc->suspended = 1;
3070	RL_UNLOCK(sc);
3071
3072	return (0);
3073}
3074
3075/*
3076 * Device resume routine.  Restore some PCI settings in case the BIOS
3077 * doesn't, re-enable busmastering, and restart the interface if
3078 * appropriate.
3079 */
3080static int
3081re_resume(device_t dev)
3082{
3083	struct rl_softc		*sc;
3084	struct ifnet		*ifp;
3085
3086	sc = device_get_softc(dev);
3087
3088	RL_LOCK(sc);
3089
3090	ifp = sc->rl_ifp;
3091	/* Take controller out of sleep mode. */
3092	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3093		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3094			CSR_WRITE_1(sc, RL_GPIO,
3095			    CSR_READ_1(sc, RL_GPIO) | 0x01);
3096	}
3097
3098	/*
3099	 * Clear WOL matching such that normal Rx filtering
3100	 * wouldn't interfere with WOL patterns.
3101	 */
3102	re_clrwol(sc);
3103
3104	/* reinitialize interface if necessary */
3105	if (ifp->if_flags & IFF_UP)
3106		re_init_locked(sc);
3107
3108	sc->suspended = 0;
3109	RL_UNLOCK(sc);
3110
3111	return (0);
3112}
3113
3114/*
3115 * Stop all chip I/O so that the kernel's probe routines don't
3116 * get confused by errant DMAs when rebooting.
3117 */
3118static int
3119re_shutdown(device_t dev)
3120{
3121	struct rl_softc		*sc;
3122
3123	sc = device_get_softc(dev);
3124
3125	RL_LOCK(sc);
3126	re_stop(sc);
3127	/*
3128	 * Mark interface as down since otherwise we will panic if
3129	 * interrupt comes in later on, which can happen in some
3130	 * cases.
3131	 */
3132	sc->rl_ifp->if_flags &= ~IFF_UP;
3133	re_setwol(sc);
3134	RL_UNLOCK(sc);
3135
3136	return (0);
3137}
3138
3139static void
3140re_setwol(struct rl_softc *sc)
3141{
3142	struct ifnet		*ifp;
3143	int			pmc;
3144	uint16_t		pmstat;
3145	uint8_t			v;
3146
3147	RL_LOCK_ASSERT(sc);
3148
3149	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3150		return;
3151
3152	ifp = sc->rl_ifp;
3153	/* Put controller into sleep mode. */
3154	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3155		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3156			CSR_WRITE_1(sc, RL_GPIO,
3157			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
3158	}
3159	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3160	    (sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3161		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3162	/* Enable config register write. */
3163	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3164
3165	/* Enable PME. */
3166	v = CSR_READ_1(sc, RL_CFG1);
3167	v &= ~RL_CFG1_PME;
3168	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3169		v |= RL_CFG1_PME;
3170	CSR_WRITE_1(sc, RL_CFG1, v);
3171
3172	v = CSR_READ_1(sc, RL_CFG3);
3173	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3174	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3175		v |= RL_CFG3_WOL_MAGIC;
3176	CSR_WRITE_1(sc, RL_CFG3, v);
3177
3178	/* Config register write done. */
3179	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3180
3181	v = CSR_READ_1(sc, RL_CFG5);
3182	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3183	v &= ~RL_CFG5_WOL_LANWAKE;
3184	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3185		v |= RL_CFG5_WOL_UCAST;
3186	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3187		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3188	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3189		v |= RL_CFG5_WOL_LANWAKE;
3190	CSR_WRITE_1(sc, RL_CFG5, v);
3191
3192	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3193	    (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3194		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3195	/*
3196	 * It seems that hardware resets its link speed to 100Mbps in
3197	 * power down mode so switching to 100Mbps in driver is not
3198	 * needed.
3199	 */
3200
3201	/* Request PME if WOL is requested. */
3202	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3203	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3204	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3205		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3206	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3207}
3208
3209static void
3210re_clrwol(struct rl_softc *sc)
3211{
3212	int			pmc;
3213	uint8_t			v;
3214
3215	RL_LOCK_ASSERT(sc);
3216
3217	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3218		return;
3219
3220	/* Enable config register write. */
3221	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3222
3223	v = CSR_READ_1(sc, RL_CFG3);
3224	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3225	CSR_WRITE_1(sc, RL_CFG3, v);
3226
3227	/* Config register write done. */
3228	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3229
3230	v = CSR_READ_1(sc, RL_CFG5);
3231	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3232	v &= ~RL_CFG5_WOL_LANWAKE;
3233	CSR_WRITE_1(sc, RL_CFG5, v);
3234}
3235
3236static void
3237re_add_sysctls(struct rl_softc *sc)
3238{
3239	struct sysctl_ctx_list	*ctx;
3240	struct sysctl_oid_list	*children;
3241
3242	ctx = device_get_sysctl_ctx(sc->rl_dev);
3243	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3244
3245	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3246	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3247	    "Statistics Information");
3248}
3249
3250static int
3251re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3252{
3253	struct rl_softc		*sc;
3254	struct rl_stats		*stats;
3255	int			error, i, result;
3256
3257	result = -1;
3258	error = sysctl_handle_int(oidp, &result, 0, req);
3259	if (error || req->newptr == NULL)
3260		return (error);
3261
3262	if (result == 1) {
3263		sc = (struct rl_softc *)arg1;
3264		RL_LOCK(sc);
3265		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3266		    sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3267		CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3268		    RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3269		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3270		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3271		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3272		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3273		    RL_DUMPSTATS_START));
3274		for (i = RL_TIMEOUT; i > 0; i--) {
3275			if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3276			    RL_DUMPSTATS_START) == 0)
3277				break;
3278			DELAY(1000);
3279		}
3280		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3281		    sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3282		RL_UNLOCK(sc);
3283		if (i == 0) {
3284			device_printf(sc->rl_dev,
3285			    "DUMP statistics request timedout\n");
3286			return (ETIMEDOUT);
3287		}
3288		stats = sc->rl_ldata.rl_stats;
3289		printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3290		printf("Tx frames : %ju\n",
3291		    (uintmax_t)le64toh(stats->rl_tx_pkts));
3292		printf("Rx frames : %ju\n",
3293		    (uintmax_t)le64toh(stats->rl_rx_pkts));
3294		printf("Tx errors : %ju\n",
3295		    (uintmax_t)le64toh(stats->rl_tx_errs));
3296		printf("Rx errors : %u\n",
3297		    le32toh(stats->rl_rx_errs));
3298		printf("Rx missed frames : %u\n",
3299		    (uint32_t)le16toh(stats->rl_missed_pkts));
3300		printf("Rx frame alignment errs : %u\n",
3301		    (uint32_t)le16toh(stats->rl_rx_framealign_errs));
3302		printf("Tx single collisions : %u\n",
3303		    le32toh(stats->rl_tx_onecoll));
3304		printf("Tx multiple collisions : %u\n",
3305		    le32toh(stats->rl_tx_multicolls));
3306		printf("Rx unicast frames : %ju\n",
3307		    (uintmax_t)le64toh(stats->rl_rx_ucasts));
3308		printf("Rx broadcast frames : %ju\n",
3309		    (uintmax_t)le64toh(stats->rl_rx_bcasts));
3310		printf("Rx multicast frames : %u\n",
3311		    le32toh(stats->rl_rx_mcasts));
3312		printf("Tx aborts : %u\n",
3313		    (uint32_t)le16toh(stats->rl_tx_aborts));
3314		printf("Tx underruns : %u\n",
3315		    (uint32_t)le16toh(stats->rl_rx_underruns));
3316	}
3317
3318	return (error);
3319}
3320