if_re.c revision 189555
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 189555 2009-03-09 06:02:55Z yongari $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/taskqueue.h>
127
128#include <net/if.h>
129#include <net/if_arp.h>
130#include <net/ethernet.h>
131#include <net/if_dl.h>
132#include <net/if_media.h>
133#include <net/if_types.h>
134#include <net/if_vlan_var.h>
135
136#include <net/bpf.h>
137
138#include <machine/bus.h>
139#include <machine/resource.h>
140#include <sys/bus.h>
141#include <sys/rman.h>
142
143#include <dev/mii/mii.h>
144#include <dev/mii/miivar.h>
145
146#include <dev/pci/pcireg.h>
147#include <dev/pci/pcivar.h>
148
149#include <pci/if_rlreg.h>
150
151MODULE_DEPEND(re, pci, 1, 1, 1);
152MODULE_DEPEND(re, ether, 1, 1, 1);
153MODULE_DEPEND(re, miibus, 1, 1, 1);
154
155/* "device miibus" required.  See GENERIC if you get errors here. */
156#include "miibus_if.h"
157
158/* Tunables. */
159static int msi_disable = 0;
160TUNABLE_INT("hw.re.msi_disable", &msi_disable);
161static int prefer_iomap = 0;
162TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
163
164#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
165
166/*
167 * Various supported device vendors/types and their names.
168 */
169static struct rl_type re_devs[] = {
170	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
171	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
172	{ RT_VENDORID, RT_DEVICEID_8139, 0,
173	    "RealTek 8139C+ 10/100BaseTX" },
174	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
175	    "RealTek 8101E/8102E/8102EL PCIe 10/100baseTX" },
176	{ RT_VENDORID, RT_DEVICEID_8168, 0,
177	    "RealTek 8168/8168B/8168C/8168CP/8168D/8111B/8111C/8111CP PCIe "
178	    "Gigabit Ethernet" },
179	{ RT_VENDORID, RT_DEVICEID_8169, 0,
180	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
181	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
182	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
183	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
184	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
185	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
186	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
187	{ USR_VENDORID, USR_DEVICEID_997902, 0,
188	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
189};
190
191static struct rl_hwrev re_hwrevs[] = {
192	{ RL_HWREV_8139, RL_8139,  "" },
193	{ RL_HWREV_8139A, RL_8139, "A" },
194	{ RL_HWREV_8139AG, RL_8139, "A-G" },
195	{ RL_HWREV_8139B, RL_8139, "B" },
196	{ RL_HWREV_8130, RL_8139, "8130" },
197	{ RL_HWREV_8139C, RL_8139, "C" },
198	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
199	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
200	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
201	{ RL_HWREV_8169, RL_8169, "8169"},
202	{ RL_HWREV_8169S, RL_8169, "8169S"},
203	{ RL_HWREV_8110S, RL_8169, "8110S"},
204	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB"},
205	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC"},
206	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL"},
207	{ RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC"},
208	{ RL_HWREV_8100, RL_8139, "8100"},
209	{ RL_HWREV_8101, RL_8139, "8101"},
210	{ RL_HWREV_8100E, RL_8169, "8100E"},
211	{ RL_HWREV_8101E, RL_8169, "8101E"},
212	{ RL_HWREV_8102E, RL_8169, "8102E"},
213	{ RL_HWREV_8102EL, RL_8169, "8102EL"},
214	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
215	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
216	{ RL_HWREV_8168C, RL_8169, "8168C/8111C"},
217	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"},
218	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"},
219	{ RL_HWREV_8168D, RL_8169, "8168D"},
220	{ 0, 0, NULL }
221};
222
223static int re_probe		(device_t);
224static int re_attach		(device_t);
225static int re_detach		(device_t);
226
227static int re_encap		(struct rl_softc *, struct mbuf **);
228
229static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
230static int re_allocmem		(device_t, struct rl_softc *);
231static __inline void re_discard_rxbuf
232				(struct rl_softc *, int);
233static int re_newbuf		(struct rl_softc *, int);
234static int re_rx_list_init	(struct rl_softc *);
235static int re_tx_list_init	(struct rl_softc *);
236#ifdef RE_FIXUP_RX
237static __inline void re_fixup_rx
238				(struct mbuf *);
239#endif
240static int re_rxeof		(struct rl_softc *);
241static void re_txeof		(struct rl_softc *);
242#ifdef DEVICE_POLLING
243static void re_poll		(struct ifnet *, enum poll_cmd, int);
244static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
245#endif
246static int re_intr		(void *);
247static void re_tick		(void *);
248static void re_tx_task		(void *, int);
249static void re_int_task		(void *, int);
250static void re_start		(struct ifnet *);
251static int re_ioctl		(struct ifnet *, u_long, caddr_t);
252static void re_init		(void *);
253static void re_init_locked	(struct rl_softc *);
254static void re_stop		(struct rl_softc *);
255static void re_watchdog		(struct rl_softc *);
256static int re_suspend		(device_t);
257static int re_resume		(device_t);
258static int re_shutdown		(device_t);
259static int re_ifmedia_upd	(struct ifnet *);
260static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
261
262static void re_eeprom_putbyte	(struct rl_softc *, int);
263static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
264static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
265static int re_gmii_readreg	(device_t, int, int);
266static int re_gmii_writereg	(device_t, int, int, int);
267
268static int re_miibus_readreg	(device_t, int, int);
269static int re_miibus_writereg	(device_t, int, int, int);
270static void re_miibus_statchg	(device_t);
271
272static void re_set_rxmode		(struct rl_softc *);
273static void re_reset		(struct rl_softc *);
274static void re_setwol		(struct rl_softc *);
275static void re_clrwol		(struct rl_softc *);
276
277#ifdef RE_DIAG
278static int re_diag		(struct rl_softc *);
279#endif
280
281static device_method_t re_methods[] = {
282	/* Device interface */
283	DEVMETHOD(device_probe,		re_probe),
284	DEVMETHOD(device_attach,	re_attach),
285	DEVMETHOD(device_detach,	re_detach),
286	DEVMETHOD(device_suspend,	re_suspend),
287	DEVMETHOD(device_resume,	re_resume),
288	DEVMETHOD(device_shutdown,	re_shutdown),
289
290	/* bus interface */
291	DEVMETHOD(bus_print_child,	bus_generic_print_child),
292	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
293
294	/* MII interface */
295	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
296	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
297	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
298
299	{ 0, 0 }
300};
301
302static driver_t re_driver = {
303	"re",
304	re_methods,
305	sizeof(struct rl_softc)
306};
307
308static devclass_t re_devclass;
309
310DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
311DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
312DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
313
314#define EE_SET(x)					\
315	CSR_WRITE_1(sc, RL_EECMD,			\
316		CSR_READ_1(sc, RL_EECMD) | x)
317
318#define EE_CLR(x)					\
319	CSR_WRITE_1(sc, RL_EECMD,			\
320		CSR_READ_1(sc, RL_EECMD) & ~x)
321
322/*
323 * Send a read command and address to the EEPROM, check for ACK.
324 */
325static void
326re_eeprom_putbyte(struct rl_softc *sc, int addr)
327{
328	int			d, i;
329
330	d = addr | (RL_9346_READ << sc->rl_eewidth);
331
332	/*
333	 * Feed in each bit and strobe the clock.
334	 */
335
336	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
337		if (d & i) {
338			EE_SET(RL_EE_DATAIN);
339		} else {
340			EE_CLR(RL_EE_DATAIN);
341		}
342		DELAY(100);
343		EE_SET(RL_EE_CLK);
344		DELAY(150);
345		EE_CLR(RL_EE_CLK);
346		DELAY(100);
347	}
348}
349
350/*
351 * Read a word of data stored in the EEPROM at address 'addr.'
352 */
353static void
354re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
355{
356	int			i;
357	u_int16_t		word = 0;
358
359	/*
360	 * Send address of word we want to read.
361	 */
362	re_eeprom_putbyte(sc, addr);
363
364	/*
365	 * Start reading bits from EEPROM.
366	 */
367	for (i = 0x8000; i; i >>= 1) {
368		EE_SET(RL_EE_CLK);
369		DELAY(100);
370		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
371			word |= i;
372		EE_CLR(RL_EE_CLK);
373		DELAY(100);
374	}
375
376	*dest = word;
377}
378
379/*
380 * Read a sequence of words from the EEPROM.
381 */
382static void
383re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
384{
385	int			i;
386	u_int16_t		word = 0, *ptr;
387
388	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
389
390        DELAY(100);
391
392	for (i = 0; i < cnt; i++) {
393		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
394		re_eeprom_getword(sc, off + i, &word);
395		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
396		ptr = (u_int16_t *)(dest + (i * 2));
397                *ptr = word;
398	}
399
400	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
401}
402
403static int
404re_gmii_readreg(device_t dev, int phy, int reg)
405{
406	struct rl_softc		*sc;
407	u_int32_t		rval;
408	int			i;
409
410	if (phy != 1)
411		return (0);
412
413	sc = device_get_softc(dev);
414
415	/* Let the rgephy driver read the GMEDIASTAT register */
416
417	if (reg == RL_GMEDIASTAT) {
418		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
419		return (rval);
420	}
421
422	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
423
424	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
425		rval = CSR_READ_4(sc, RL_PHYAR);
426		if (rval & RL_PHYAR_BUSY)
427			break;
428		DELAY(100);
429	}
430
431	if (i == RL_PHY_TIMEOUT) {
432		device_printf(sc->rl_dev, "PHY read failed\n");
433		return (0);
434	}
435
436	return (rval & RL_PHYAR_PHYDATA);
437}
438
439static int
440re_gmii_writereg(device_t dev, int phy, int reg, int data)
441{
442	struct rl_softc		*sc;
443	u_int32_t		rval;
444	int			i;
445
446	sc = device_get_softc(dev);
447
448	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
449	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
450
451	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
452		rval = CSR_READ_4(sc, RL_PHYAR);
453		if (!(rval & RL_PHYAR_BUSY))
454			break;
455		DELAY(100);
456	}
457
458	if (i == RL_PHY_TIMEOUT) {
459		device_printf(sc->rl_dev, "PHY write failed\n");
460		return (0);
461	}
462
463	return (0);
464}
465
466static int
467re_miibus_readreg(device_t dev, int phy, int reg)
468{
469	struct rl_softc		*sc;
470	u_int16_t		rval = 0;
471	u_int16_t		re8139_reg = 0;
472
473	sc = device_get_softc(dev);
474
475	if (sc->rl_type == RL_8169) {
476		rval = re_gmii_readreg(dev, phy, reg);
477		return (rval);
478	}
479
480	/* Pretend the internal PHY is only at address 0 */
481	if (phy) {
482		return (0);
483	}
484	switch (reg) {
485	case MII_BMCR:
486		re8139_reg = RL_BMCR;
487		break;
488	case MII_BMSR:
489		re8139_reg = RL_BMSR;
490		break;
491	case MII_ANAR:
492		re8139_reg = RL_ANAR;
493		break;
494	case MII_ANER:
495		re8139_reg = RL_ANER;
496		break;
497	case MII_ANLPAR:
498		re8139_reg = RL_LPAR;
499		break;
500	case MII_PHYIDR1:
501	case MII_PHYIDR2:
502		return (0);
503	/*
504	 * Allow the rlphy driver to read the media status
505	 * register. If we have a link partner which does not
506	 * support NWAY, this is the register which will tell
507	 * us the results of parallel detection.
508	 */
509	case RL_MEDIASTAT:
510		rval = CSR_READ_1(sc, RL_MEDIASTAT);
511		return (rval);
512	default:
513		device_printf(sc->rl_dev, "bad phy register\n");
514		return (0);
515	}
516	rval = CSR_READ_2(sc, re8139_reg);
517	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
518		/* 8139C+ has different bit layout. */
519		rval &= ~(BMCR_LOOP | BMCR_ISO);
520	}
521	return (rval);
522}
523
524static int
525re_miibus_writereg(device_t dev, int phy, int reg, int data)
526{
527	struct rl_softc		*sc;
528	u_int16_t		re8139_reg = 0;
529	int			rval = 0;
530
531	sc = device_get_softc(dev);
532
533	if (sc->rl_type == RL_8169) {
534		rval = re_gmii_writereg(dev, phy, reg, data);
535		return (rval);
536	}
537
538	/* Pretend the internal PHY is only at address 0 */
539	if (phy)
540		return (0);
541
542	switch (reg) {
543	case MII_BMCR:
544		re8139_reg = RL_BMCR;
545		if (sc->rl_type == RL_8139CPLUS) {
546			/* 8139C+ has different bit layout. */
547			data &= ~(BMCR_LOOP | BMCR_ISO);
548		}
549		break;
550	case MII_BMSR:
551		re8139_reg = RL_BMSR;
552		break;
553	case MII_ANAR:
554		re8139_reg = RL_ANAR;
555		break;
556	case MII_ANER:
557		re8139_reg = RL_ANER;
558		break;
559	case MII_ANLPAR:
560		re8139_reg = RL_LPAR;
561		break;
562	case MII_PHYIDR1:
563	case MII_PHYIDR2:
564		return (0);
565		break;
566	default:
567		device_printf(sc->rl_dev, "bad phy register\n");
568		return (0);
569	}
570	CSR_WRITE_2(sc, re8139_reg, data);
571	return (0);
572}
573
574static void
575re_miibus_statchg(device_t dev)
576{
577	struct rl_softc		*sc;
578	struct ifnet		*ifp;
579	struct mii_data		*mii;
580
581	sc = device_get_softc(dev);
582	mii = device_get_softc(sc->rl_miibus);
583	ifp = sc->rl_ifp;
584	if (mii == NULL || ifp == NULL ||
585	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
586		return;
587
588	sc->rl_flags &= ~RL_FLAG_LINK;
589	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
590	    (IFM_ACTIVE | IFM_AVALID)) {
591		switch (IFM_SUBTYPE(mii->mii_media_active)) {
592		case IFM_10_T:
593		case IFM_100_TX:
594			sc->rl_flags |= RL_FLAG_LINK;
595			break;
596		case IFM_1000_T:
597			if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
598				break;
599			sc->rl_flags |= RL_FLAG_LINK;
600			break;
601		default:
602			break;
603		}
604	}
605	/*
606	 * RealTek controllers does not provide any interface to
607	 * Tx/Rx MACs for resolved speed, duplex and flow-control
608	 * parameters.
609	 */
610}
611
612/*
613 * Set the RX configuration and 64-bit multicast hash filter.
614 */
615static void
616re_set_rxmode(struct rl_softc *sc)
617{
618	struct ifnet		*ifp;
619	struct ifmultiaddr	*ifma;
620	uint32_t		hashes[2] = { 0, 0 };
621	uint32_t		h, rxfilt;
622
623	RL_LOCK_ASSERT(sc);
624
625	ifp = sc->rl_ifp;
626
627	rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
628
629	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
630		if (ifp->if_flags & IFF_PROMISC)
631			rxfilt |= RL_RXCFG_RX_ALLPHYS;
632		/*
633		 * Unlike other hardwares, we have to explicitly set
634		 * RL_RXCFG_RX_MULTI to receive multicast frames in
635		 * promiscuous mode.
636		 */
637		rxfilt |= RL_RXCFG_RX_MULTI;
638		hashes[0] = hashes[1] = 0xffffffff;
639		goto done;
640	}
641
642	IF_ADDR_LOCK(ifp);
643	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
644		if (ifma->ifma_addr->sa_family != AF_LINK)
645			continue;
646		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
647		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
648		if (h < 32)
649			hashes[0] |= (1 << h);
650		else
651			hashes[1] |= (1 << (h - 32));
652	}
653	IF_ADDR_UNLOCK(ifp);
654
655	if (hashes[0] != 0 || hashes[1] != 0) {
656		/*
657		 * For some unfathomable reason, RealTek decided to
658		 * reverse the order of the multicast hash registers
659		 * in the PCI Express parts.  This means we have to
660		 * write the hash pattern in reverse order for those
661		 * devices.
662		 */
663		if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
664			h = bswap32(hashes[0]);
665			hashes[0] = bswap32(hashes[1]);
666			hashes[1] = h;
667		}
668		rxfilt |= RL_RXCFG_RX_MULTI;
669	}
670
671done:
672	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
673	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
674	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
675}
676
677static void
678re_reset(struct rl_softc *sc)
679{
680	int			i;
681
682	RL_LOCK_ASSERT(sc);
683
684	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
685
686	for (i = 0; i < RL_TIMEOUT; i++) {
687		DELAY(10);
688		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
689			break;
690	}
691	if (i == RL_TIMEOUT)
692		device_printf(sc->rl_dev, "reset never completed!\n");
693
694	if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
695		CSR_WRITE_1(sc, 0x82, 1);
696	if (sc->rl_hwrev == RL_HWREV_8169S)
697		re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
698}
699
700#ifdef RE_DIAG
701
702/*
703 * The following routine is designed to test for a defect on some
704 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
705 * lines connected to the bus, however for a 32-bit only card, they
706 * should be pulled high. The result of this defect is that the
707 * NIC will not work right if you plug it into a 64-bit slot: DMA
708 * operations will be done with 64-bit transfers, which will fail
709 * because the 64-bit data lines aren't connected.
710 *
711 * There's no way to work around this (short of talking a soldering
712 * iron to the board), however we can detect it. The method we use
713 * here is to put the NIC into digital loopback mode, set the receiver
714 * to promiscuous mode, and then try to send a frame. We then compare
715 * the frame data we sent to what was received. If the data matches,
716 * then the NIC is working correctly, otherwise we know the user has
717 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
718 * slot. In the latter case, there's no way the NIC can work correctly,
719 * so we print out a message on the console and abort the device attach.
720 */
721
722static int
723re_diag(struct rl_softc *sc)
724{
725	struct ifnet		*ifp = sc->rl_ifp;
726	struct mbuf		*m0;
727	struct ether_header	*eh;
728	struct rl_desc		*cur_rx;
729	u_int16_t		status;
730	u_int32_t		rxstat;
731	int			total_len, i, error = 0, phyaddr;
732	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
733	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
734
735	/* Allocate a single mbuf */
736	MGETHDR(m0, M_DONTWAIT, MT_DATA);
737	if (m0 == NULL)
738		return (ENOBUFS);
739
740	RL_LOCK(sc);
741
742	/*
743	 * Initialize the NIC in test mode. This sets the chip up
744	 * so that it can send and receive frames, but performs the
745	 * following special functions:
746	 * - Puts receiver in promiscuous mode
747	 * - Enables digital loopback mode
748	 * - Leaves interrupts turned off
749	 */
750
751	ifp->if_flags |= IFF_PROMISC;
752	sc->rl_testmode = 1;
753	re_init_locked(sc);
754	sc->rl_flags |= RL_FLAG_LINK;
755	if (sc->rl_type == RL_8169)
756		phyaddr = 1;
757	else
758		phyaddr = 0;
759
760	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
761	for (i = 0; i < RL_TIMEOUT; i++) {
762		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
763		if (!(status & BMCR_RESET))
764			break;
765	}
766
767	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
768	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
769
770	DELAY(100000);
771
772	/* Put some data in the mbuf */
773
774	eh = mtod(m0, struct ether_header *);
775	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
776	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
777	eh->ether_type = htons(ETHERTYPE_IP);
778	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
779
780	/*
781	 * Queue the packet, start transmission.
782	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
783	 */
784
785	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
786	RL_UNLOCK(sc);
787	/* XXX: re_diag must not be called when in ALTQ mode */
788	IF_HANDOFF(&ifp->if_snd, m0, ifp);
789	RL_LOCK(sc);
790	m0 = NULL;
791
792	/* Wait for it to propagate through the chip */
793
794	DELAY(100000);
795	for (i = 0; i < RL_TIMEOUT; i++) {
796		status = CSR_READ_2(sc, RL_ISR);
797		CSR_WRITE_2(sc, RL_ISR, status);
798		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
799		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
800			break;
801		DELAY(10);
802	}
803
804	if (i == RL_TIMEOUT) {
805		device_printf(sc->rl_dev,
806		    "diagnostic failed, failed to receive packet in"
807		    " loopback mode\n");
808		error = EIO;
809		goto done;
810	}
811
812	/*
813	 * The packet should have been dumped into the first
814	 * entry in the RX DMA ring. Grab it from there.
815	 */
816
817	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
818	    sc->rl_ldata.rl_rx_list_map,
819	    BUS_DMASYNC_POSTREAD);
820	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
821	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
822	    BUS_DMASYNC_POSTREAD);
823	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
824	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
825
826	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
827	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
828	eh = mtod(m0, struct ether_header *);
829
830	cur_rx = &sc->rl_ldata.rl_rx_list[0];
831	total_len = RL_RXBYTES(cur_rx);
832	rxstat = le32toh(cur_rx->rl_cmdstat);
833
834	if (total_len != ETHER_MIN_LEN) {
835		device_printf(sc->rl_dev,
836		    "diagnostic failed, received short packet\n");
837		error = EIO;
838		goto done;
839	}
840
841	/* Test that the received packet data matches what we sent. */
842
843	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
844	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
845	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
846		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
847		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
848		    dst, ":", src, ":", ETHERTYPE_IP);
849		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
850		    eh->ether_dhost, ":",  eh->ether_shost, ":",
851		    ntohs(eh->ether_type));
852		device_printf(sc->rl_dev, "You may have a defective 32-bit "
853		    "NIC plugged into a 64-bit PCI slot.\n");
854		device_printf(sc->rl_dev, "Please re-install the NIC in a "
855		    "32-bit slot for proper operation.\n");
856		device_printf(sc->rl_dev, "Read the re(4) man page for more "
857		    "details.\n");
858		error = EIO;
859	}
860
861done:
862	/* Turn interface off, release resources */
863
864	sc->rl_testmode = 0;
865	sc->rl_flags &= ~RL_FLAG_LINK;
866	ifp->if_flags &= ~IFF_PROMISC;
867	re_stop(sc);
868	if (m0 != NULL)
869		m_freem(m0);
870
871	RL_UNLOCK(sc);
872
873	return (error);
874}
875
876#endif
877
878/*
879 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
880 * IDs against our list and return a device name if we find a match.
881 */
882static int
883re_probe(device_t dev)
884{
885	struct rl_type		*t;
886	uint16_t		devid, vendor;
887	uint16_t		revid, sdevid;
888	int			i;
889
890	vendor = pci_get_vendor(dev);
891	devid = pci_get_device(dev);
892	revid = pci_get_revid(dev);
893	sdevid = pci_get_subdevice(dev);
894
895	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
896		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
897			/*
898			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
899			 * Rev. 2 is supported by sk(4).
900			 */
901			return (ENXIO);
902		}
903	}
904
905	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
906		if (revid != 0x20) {
907			/* 8139, let rl(4) take care of this device. */
908			return (ENXIO);
909		}
910	}
911
912	t = re_devs;
913	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
914		if (vendor == t->rl_vid && devid == t->rl_did) {
915			device_set_desc(dev, t->rl_name);
916			return (BUS_PROBE_DEFAULT);
917		}
918	}
919
920	return (ENXIO);
921}
922
923/*
924 * Map a single buffer address.
925 */
926
927static void
928re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
929{
930	bus_addr_t		*addr;
931
932	if (error)
933		return;
934
935	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
936	addr = arg;
937	*addr = segs->ds_addr;
938}
939
940static int
941re_allocmem(device_t dev, struct rl_softc *sc)
942{
943	bus_size_t		rx_list_size, tx_list_size;
944	int			error;
945	int			i;
946
947	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
948	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
949
950	/*
951	 * Allocate the parent bus DMA tag appropriate for PCI.
952	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
953	 * register should be set. However some RealTek chips are known
954	 * to be buggy on DAC handling, therefore disable DAC by limiting
955	 * DMA address space to 32bit. PCIe variants of RealTek chips
956	 * may not have the limitation but I took safer path.
957	 */
958	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
959	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
960	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
961	    NULL, NULL, &sc->rl_parent_tag);
962	if (error) {
963		device_printf(dev, "could not allocate parent DMA tag\n");
964		return (error);
965	}
966
967	/*
968	 * Allocate map for TX mbufs.
969	 */
970	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
971	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
972	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
973	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
974	if (error) {
975		device_printf(dev, "could not allocate TX DMA tag\n");
976		return (error);
977	}
978
979	/*
980	 * Allocate map for RX mbufs.
981	 */
982
983	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
984	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
985	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
986	if (error) {
987		device_printf(dev, "could not allocate RX DMA tag\n");
988		return (error);
989	}
990
991	/*
992	 * Allocate map for TX descriptor list.
993	 */
994	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
995	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
996	    NULL, tx_list_size, 1, tx_list_size, 0,
997	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
998	if (error) {
999		device_printf(dev, "could not allocate TX DMA ring tag\n");
1000		return (error);
1001	}
1002
1003	/* Allocate DMA'able memory for the TX ring */
1004
1005	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1006	    (void **)&sc->rl_ldata.rl_tx_list,
1007	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1008	    &sc->rl_ldata.rl_tx_list_map);
1009	if (error) {
1010		device_printf(dev, "could not allocate TX DMA ring\n");
1011		return (error);
1012	}
1013
1014	/* Load the map for the TX ring. */
1015
1016	sc->rl_ldata.rl_tx_list_addr = 0;
1017	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1018	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1019	     tx_list_size, re_dma_map_addr,
1020	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1021	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1022		device_printf(dev, "could not load TX DMA ring\n");
1023		return (ENOMEM);
1024	}
1025
1026	/* Create DMA maps for TX buffers */
1027
1028	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1029		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1030		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1031		if (error) {
1032			device_printf(dev, "could not create DMA map for TX\n");
1033			return (error);
1034		}
1035	}
1036
1037	/*
1038	 * Allocate map for RX descriptor list.
1039	 */
1040	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1041	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1042	    NULL, rx_list_size, 1, rx_list_size, 0,
1043	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1044	if (error) {
1045		device_printf(dev, "could not create RX DMA ring tag\n");
1046		return (error);
1047	}
1048
1049	/* Allocate DMA'able memory for the RX ring */
1050
1051	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1052	    (void **)&sc->rl_ldata.rl_rx_list,
1053	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1054	    &sc->rl_ldata.rl_rx_list_map);
1055	if (error) {
1056		device_printf(dev, "could not allocate RX DMA ring\n");
1057		return (error);
1058	}
1059
1060	/* Load the map for the RX ring. */
1061
1062	sc->rl_ldata.rl_rx_list_addr = 0;
1063	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1064	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1065	     rx_list_size, re_dma_map_addr,
1066	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1067	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1068		device_printf(dev, "could not load RX DMA ring\n");
1069		return (ENOMEM);
1070	}
1071
1072	/* Create DMA maps for RX buffers */
1073
1074	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1075	    &sc->rl_ldata.rl_rx_sparemap);
1076	if (error) {
1077		device_printf(dev, "could not create spare DMA map for RX\n");
1078		return (error);
1079	}
1080	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1081		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1082		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1083		if (error) {
1084			device_printf(dev, "could not create DMA map for RX\n");
1085			return (error);
1086		}
1087	}
1088
1089	return (0);
1090}
1091
1092/*
1093 * Attach the interface. Allocate softc structures, do ifmedia
1094 * setup and ethernet/BPF attach.
1095 */
1096static int
1097re_attach(device_t dev)
1098{
1099	u_char			eaddr[ETHER_ADDR_LEN];
1100	u_int16_t		as[ETHER_ADDR_LEN / 2];
1101	struct rl_softc		*sc;
1102	struct ifnet		*ifp;
1103	struct rl_hwrev		*hw_rev;
1104	int			hwrev;
1105	u_int16_t		devid, re_did = 0;
1106	int			error = 0, rid, i;
1107	int			msic, reg;
1108	uint8_t			cfg;
1109
1110	sc = device_get_softc(dev);
1111	sc->rl_dev = dev;
1112
1113	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1114	    MTX_DEF);
1115	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1116
1117	/*
1118	 * Map control/status registers.
1119	 */
1120	pci_enable_busmaster(dev);
1121
1122	devid = pci_get_device(dev);
1123	/*
1124	 * Prefer memory space register mapping over IO space.
1125	 * Because RTL8169SC does not seem to work when memory mapping
1126	 * is used always activate io mapping.
1127	 */
1128	if (devid == RT_DEVICEID_8169SC)
1129		prefer_iomap = 1;
1130	if (prefer_iomap == 0) {
1131		sc->rl_res_id = PCIR_BAR(1);
1132		sc->rl_res_type = SYS_RES_MEMORY;
1133		/* RTL8168/8101E seems to use different BARs. */
1134		if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1135			sc->rl_res_id = PCIR_BAR(2);
1136	} else {
1137		sc->rl_res_id = PCIR_BAR(0);
1138		sc->rl_res_type = SYS_RES_IOPORT;
1139	}
1140	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1141	    &sc->rl_res_id, RF_ACTIVE);
1142	if (sc->rl_res == NULL && prefer_iomap == 0) {
1143		sc->rl_res_id = PCIR_BAR(0);
1144		sc->rl_res_type = SYS_RES_IOPORT;
1145		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1146		    &sc->rl_res_id, RF_ACTIVE);
1147	}
1148	if (sc->rl_res == NULL) {
1149		device_printf(dev, "couldn't map ports/memory\n");
1150		error = ENXIO;
1151		goto fail;
1152	}
1153
1154	sc->rl_btag = rman_get_bustag(sc->rl_res);
1155	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1156
1157	msic = 0;
1158	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1159		sc->rl_flags |= RL_FLAG_PCIE;
1160		msic = pci_msi_count(dev);
1161		if (bootverbose)
1162			device_printf(dev, "MSI count : %d\n", msic);
1163	}
1164	if (msic > 0 && msi_disable == 0) {
1165		msic = 1;
1166		if (pci_alloc_msi(dev, &msic) == 0) {
1167			if (msic == RL_MSI_MESSAGES) {
1168				device_printf(dev, "Using %d MSI messages\n",
1169				    msic);
1170				sc->rl_flags |= RL_FLAG_MSI;
1171				/* Explicitly set MSI enable bit. */
1172				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1173				cfg = CSR_READ_1(sc, RL_CFG2);
1174				cfg |= RL_CFG2_MSI;
1175				CSR_WRITE_1(sc, RL_CFG2, cfg);
1176				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1177			} else
1178				pci_release_msi(dev);
1179		}
1180	}
1181
1182	/* Allocate interrupt */
1183	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1184		rid = 0;
1185		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1186		    RF_SHAREABLE | RF_ACTIVE);
1187		if (sc->rl_irq[0] == NULL) {
1188			device_printf(dev, "couldn't allocate IRQ resources\n");
1189			error = ENXIO;
1190			goto fail;
1191		}
1192	} else {
1193		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1194			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1195			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1196			if (sc->rl_irq[i] == NULL) {
1197				device_printf(dev,
1198				    "couldn't llocate IRQ resources for "
1199				    "message %d\n", rid);
1200				error = ENXIO;
1201				goto fail;
1202			}
1203		}
1204	}
1205
1206	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1207		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1208		cfg = CSR_READ_1(sc, RL_CFG2);
1209		if ((cfg & RL_CFG2_MSI) != 0) {
1210			device_printf(dev, "turning off MSI enable bit.\n");
1211			cfg &= ~RL_CFG2_MSI;
1212			CSR_WRITE_1(sc, RL_CFG2, cfg);
1213		}
1214		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1215	}
1216
1217	/* Reset the adapter. */
1218	RL_LOCK(sc);
1219	re_reset(sc);
1220	RL_UNLOCK(sc);
1221
1222	hw_rev = re_hwrevs;
1223	hwrev = CSR_READ_4(sc, RL_TXCFG);
1224	switch (hwrev & 0x70000000) {
1225	case 0x00000000:
1226	case 0x10000000:
1227		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1228		hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1229		break;
1230	default:
1231		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1232		hwrev &= RL_TXCFG_HWREV;
1233		break;
1234	}
1235	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1236	while (hw_rev->rl_desc != NULL) {
1237		if (hw_rev->rl_rev == hwrev) {
1238			sc->rl_type = hw_rev->rl_type;
1239			sc->rl_hwrev = hw_rev->rl_rev;
1240			break;
1241		}
1242		hw_rev++;
1243	}
1244	if (hw_rev->rl_desc == NULL) {
1245		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1246		error = ENXIO;
1247		goto fail;
1248	}
1249
1250	switch (hw_rev->rl_rev) {
1251	case RL_HWREV_8139CPLUS:
1252		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_FASTETHER;
1253		break;
1254	case RL_HWREV_8100E:
1255	case RL_HWREV_8101E:
1256		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE |
1257		    RL_FLAG_FASTETHER;
1258		break;
1259	case RL_HWREV_8102E:
1260	case RL_HWREV_8102EL:
1261		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE |
1262		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1263		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP;
1264		break;
1265	case RL_HWREV_8168_SPIN1:
1266	case RL_HWREV_8168_SPIN2:
1267		sc->rl_flags |= RL_FLAG_WOLRXENB;
1268		/* FALLTHROUGH */
1269	case RL_HWREV_8168_SPIN3:
1270		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1271		break;
1272	case RL_HWREV_8168C_SPIN2:
1273		sc->rl_flags |= RL_FLAG_MACSLEEP;
1274		/* FALLTHROUGH */
1275	case RL_HWREV_8168C:
1276		if ((hwrev & 0x00700000) == 0x00200000)
1277			sc->rl_flags |= RL_FLAG_MACSLEEP;
1278		/* FALLTHROUGH */
1279	case RL_HWREV_8168CP:
1280	case RL_HWREV_8168D:
1281		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1282		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP;
1283		/*
1284		 * These controllers support jumbo frame but it seems
1285		 * that enabling it requires touching additional magic
1286		 * registers. Depending on MAC revisions some
1287		 * controllers need to disable checksum offload. So
1288		 * disable jumbo frame until I have better idea what
1289		 * it really requires to make it support.
1290		 * RTL8168C/CP : supports up to 6KB jumbo frame.
1291		 * RTL8111C/CP : supports up to 9KB jumbo frame.
1292		 */
1293		sc->rl_flags |= RL_FLAG_NOJUMBO;
1294		break;
1295	case RL_HWREV_8169_8110SB:
1296	case RL_HWREV_8169_8110SBL:
1297	case RL_HWREV_8169_8110SC:
1298	case RL_HWREV_8169_8110SCE:
1299		sc->rl_flags |= RL_FLAG_PHYWAKE;
1300		/* FALLTHROUGH */
1301	case RL_HWREV_8169:
1302	case RL_HWREV_8169S:
1303	case RL_HWREV_8110S:
1304		sc->rl_flags |= RL_FLAG_MACRESET;
1305		break;
1306	default:
1307		break;
1308	}
1309
1310	/* Enable PME. */
1311	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1312	cfg = CSR_READ_1(sc, RL_CFG1);
1313	cfg |= RL_CFG1_PME;
1314	CSR_WRITE_1(sc, RL_CFG1, cfg);
1315	cfg = CSR_READ_1(sc, RL_CFG5);
1316	cfg &= RL_CFG5_PME_STS;
1317	CSR_WRITE_1(sc, RL_CFG5, cfg);
1318	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1319
1320	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1321		/*
1322		 * XXX Should have a better way to extract station
1323		 * address from EEPROM.
1324		 */
1325		for (i = 0; i < ETHER_ADDR_LEN; i++)
1326			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1327	} else {
1328		sc->rl_eewidth = RL_9356_ADDR_LEN;
1329		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1330		if (re_did != 0x8129)
1331			sc->rl_eewidth = RL_9346_ADDR_LEN;
1332
1333		/*
1334		 * Get station address from the EEPROM.
1335		 */
1336		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1337		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1338			as[i] = le16toh(as[i]);
1339		bcopy(as, eaddr, sizeof(eaddr));
1340	}
1341
1342	if (sc->rl_type == RL_8169) {
1343		/* Set RX length mask and number of descriptors. */
1344		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1345		sc->rl_txstart = RL_GTXSTART;
1346		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1347		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1348	} else {
1349		/* Set RX length mask and number of descriptors. */
1350		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1351		sc->rl_txstart = RL_TXSTART;
1352		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1353		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1354	}
1355
1356	error = re_allocmem(dev, sc);
1357	if (error)
1358		goto fail;
1359
1360	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1361	if (ifp == NULL) {
1362		device_printf(dev, "can not if_alloc()\n");
1363		error = ENOSPC;
1364		goto fail;
1365	}
1366
1367	/* Take controller out of deep sleep mode. */
1368	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1369		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1370			CSR_WRITE_1(sc, RL_GPIO,
1371			    CSR_READ_1(sc, RL_GPIO) | 0x01);
1372		else
1373			CSR_WRITE_1(sc, RL_GPIO,
1374			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
1375	}
1376
1377	/* Take PHY out of power down mode. */
1378	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1379		re_gmii_writereg(dev, 1, 0x1f, 0);
1380		re_gmii_writereg(dev, 1, 0x0e, 0);
1381	}
1382
1383	/* Do MII setup */
1384	if (mii_phy_probe(dev, &sc->rl_miibus,
1385	    re_ifmedia_upd, re_ifmedia_sts)) {
1386		device_printf(dev, "MII without any phy!\n");
1387		error = ENXIO;
1388		goto fail;
1389	}
1390
1391	ifp->if_softc = sc;
1392	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1393	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1394	ifp->if_ioctl = re_ioctl;
1395	ifp->if_start = re_start;
1396	ifp->if_hwassist = RE_CSUM_FEATURES;
1397	ifp->if_capabilities = IFCAP_HWCSUM;
1398	ifp->if_capenable = ifp->if_capabilities;
1399	ifp->if_init = re_init;
1400	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1401	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1402	IFQ_SET_READY(&ifp->if_snd);
1403
1404	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1405	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1406
1407	/*
1408	 * XXX
1409	 * Still have no idea how to make TSO work on 8168C, 8168CP,
1410	 * 8111C and 8111CP.
1411	 */
1412	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1413		ifp->if_hwassist |= CSUM_TSO;
1414		ifp->if_capabilities |= IFCAP_TSO4;
1415	}
1416
1417	/*
1418	 * Call MI attach routine.
1419	 */
1420	ether_ifattach(ifp, eaddr);
1421
1422	/* VLAN capability setup */
1423	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1424	if (ifp->if_capabilities & IFCAP_HWCSUM)
1425		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1426	/* Enable WOL if PM is supported. */
1427	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1428		ifp->if_capabilities |= IFCAP_WOL;
1429	ifp->if_capenable = ifp->if_capabilities;
1430	/*
1431	 * Don't enable TSO by default. Under certain
1432	 * circumtances the controller generated corrupted
1433	 * packets in TSO size.
1434	 */
1435	ifp->if_hwassist &= ~CSUM_TSO;
1436	ifp->if_capenable &= ~IFCAP_TSO4;
1437#ifdef DEVICE_POLLING
1438	ifp->if_capabilities |= IFCAP_POLLING;
1439#endif
1440	/*
1441	 * Tell the upper layer(s) we support long frames.
1442	 * Must appear after the call to ether_ifattach() because
1443	 * ether_ifattach() sets ifi_hdrlen to the default value.
1444	 */
1445	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1446
1447#ifdef RE_DIAG
1448	/*
1449	 * Perform hardware diagnostic on the original RTL8169.
1450	 * Some 32-bit cards were incorrectly wired and would
1451	 * malfunction if plugged into a 64-bit slot.
1452	 */
1453
1454	if (hwrev == RL_HWREV_8169) {
1455		error = re_diag(sc);
1456		if (error) {
1457			device_printf(dev,
1458		    	"attach aborted due to hardware diag failure\n");
1459			ether_ifdetach(ifp);
1460			goto fail;
1461		}
1462	}
1463#endif
1464
1465	/* Hook interrupt last to avoid having to lock softc */
1466	if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1467		error = bus_setup_intr(dev, sc->rl_irq[0],
1468		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1469		    &sc->rl_intrhand[0]);
1470	else {
1471		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1472			error = bus_setup_intr(dev, sc->rl_irq[i],
1473			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1474		    	    &sc->rl_intrhand[i]);
1475			if (error != 0)
1476				break;
1477		}
1478	}
1479	if (error) {
1480		device_printf(dev, "couldn't set up irq\n");
1481		ether_ifdetach(ifp);
1482	}
1483
1484fail:
1485
1486	if (error)
1487		re_detach(dev);
1488
1489	return (error);
1490}
1491
1492/*
1493 * Shutdown hardware and free up resources. This can be called any
1494 * time after the mutex has been initialized. It is called in both
1495 * the error case in attach and the normal detach case so it needs
1496 * to be careful about only freeing resources that have actually been
1497 * allocated.
1498 */
1499static int
1500re_detach(device_t dev)
1501{
1502	struct rl_softc		*sc;
1503	struct ifnet		*ifp;
1504	int			i, rid;
1505
1506	sc = device_get_softc(dev);
1507	ifp = sc->rl_ifp;
1508	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1509
1510	/* These should only be active if attach succeeded */
1511	if (device_is_attached(dev)) {
1512#ifdef DEVICE_POLLING
1513		if (ifp->if_capenable & IFCAP_POLLING)
1514			ether_poll_deregister(ifp);
1515#endif
1516		RL_LOCK(sc);
1517#if 0
1518		sc->suspended = 1;
1519#endif
1520		re_stop(sc);
1521		RL_UNLOCK(sc);
1522		callout_drain(&sc->rl_stat_callout);
1523		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1524		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1525		/*
1526		 * Force off the IFF_UP flag here, in case someone
1527		 * still had a BPF descriptor attached to this
1528		 * interface. If they do, ether_ifdetach() will cause
1529		 * the BPF code to try and clear the promisc mode
1530		 * flag, which will bubble down to re_ioctl(),
1531		 * which will try to call re_init() again. This will
1532		 * turn the NIC back on and restart the MII ticker,
1533		 * which will panic the system when the kernel tries
1534		 * to invoke the re_tick() function that isn't there
1535		 * anymore.
1536		 */
1537		ifp->if_flags &= ~IFF_UP;
1538		ether_ifdetach(ifp);
1539	}
1540	if (sc->rl_miibus)
1541		device_delete_child(dev, sc->rl_miibus);
1542	bus_generic_detach(dev);
1543
1544	/*
1545	 * The rest is resource deallocation, so we should already be
1546	 * stopped here.
1547	 */
1548
1549	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1550		if (sc->rl_intrhand[i] != NULL) {
1551			bus_teardown_intr(dev, sc->rl_irq[i],
1552			    sc->rl_intrhand[i]);
1553			sc->rl_intrhand[i] = NULL;
1554		}
1555	}
1556	if (ifp != NULL)
1557		if_free(ifp);
1558	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1559		if (sc->rl_irq[0] != NULL) {
1560			bus_release_resource(dev, SYS_RES_IRQ, 0,
1561			    sc->rl_irq[0]);
1562			sc->rl_irq[0] = NULL;
1563		}
1564	} else {
1565		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1566			if (sc->rl_irq[i] != NULL) {
1567				bus_release_resource(dev, SYS_RES_IRQ, rid,
1568				    sc->rl_irq[i]);
1569				sc->rl_irq[i] = NULL;
1570			}
1571		}
1572		pci_release_msi(dev);
1573	}
1574	if (sc->rl_res)
1575		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1576		    sc->rl_res);
1577
1578	/* Unload and free the RX DMA ring memory and map */
1579
1580	if (sc->rl_ldata.rl_rx_list_tag) {
1581		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1582		    sc->rl_ldata.rl_rx_list_map);
1583		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1584		    sc->rl_ldata.rl_rx_list,
1585		    sc->rl_ldata.rl_rx_list_map);
1586		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1587	}
1588
1589	/* Unload and free the TX DMA ring memory and map */
1590
1591	if (sc->rl_ldata.rl_tx_list_tag) {
1592		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1593		    sc->rl_ldata.rl_tx_list_map);
1594		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1595		    sc->rl_ldata.rl_tx_list,
1596		    sc->rl_ldata.rl_tx_list_map);
1597		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1598	}
1599
1600	/* Destroy all the RX and TX buffer maps */
1601
1602	if (sc->rl_ldata.rl_tx_mtag) {
1603		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1604			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1605			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1606		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1607	}
1608	if (sc->rl_ldata.rl_rx_mtag) {
1609		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1610			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1611			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1612		if (sc->rl_ldata.rl_rx_sparemap)
1613			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1614			    sc->rl_ldata.rl_rx_sparemap);
1615		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1616	}
1617
1618	/* Unload and free the stats buffer and map */
1619
1620	if (sc->rl_ldata.rl_stag) {
1621		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1622		    sc->rl_ldata.rl_rx_list_map);
1623		bus_dmamem_free(sc->rl_ldata.rl_stag,
1624		    sc->rl_ldata.rl_stats,
1625		    sc->rl_ldata.rl_smap);
1626		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1627	}
1628
1629	if (sc->rl_parent_tag)
1630		bus_dma_tag_destroy(sc->rl_parent_tag);
1631
1632	mtx_destroy(&sc->rl_mtx);
1633
1634	return (0);
1635}
1636
1637static __inline void
1638re_discard_rxbuf(struct rl_softc *sc, int idx)
1639{
1640	struct rl_desc		*desc;
1641	struct rl_rxdesc	*rxd;
1642	uint32_t		cmdstat;
1643
1644	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1645	desc = &sc->rl_ldata.rl_rx_list[idx];
1646	desc->rl_vlanctl = 0;
1647	cmdstat = rxd->rx_size;
1648	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1649		cmdstat |= RL_RDESC_CMD_EOR;
1650	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1651}
1652
1653static int
1654re_newbuf(struct rl_softc *sc, int idx)
1655{
1656	struct mbuf		*m;
1657	struct rl_rxdesc	*rxd;
1658	bus_dma_segment_t	segs[1];
1659	bus_dmamap_t		map;
1660	struct rl_desc		*desc;
1661	uint32_t		cmdstat;
1662	int			error, nsegs;
1663
1664	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1665	if (m == NULL)
1666		return (ENOBUFS);
1667
1668	m->m_len = m->m_pkthdr.len = MCLBYTES;
1669#ifdef RE_FIXUP_RX
1670	/*
1671	 * This is part of an evil trick to deal with non-x86 platforms.
1672	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1673	 * boundaries, but that will hose non-x86 machines. To get around
1674	 * this, we leave some empty space at the start of each buffer
1675	 * and for non-x86 hosts, we copy the buffer back six bytes
1676	 * to achieve word alignment. This is slightly more efficient
1677	 * than allocating a new buffer, copying the contents, and
1678	 * discarding the old buffer.
1679	 */
1680	m_adj(m, RE_ETHER_ALIGN);
1681#endif
1682	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1683	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1684	if (error != 0) {
1685		m_freem(m);
1686		return (ENOBUFS);
1687	}
1688	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1689
1690	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1691	if (rxd->rx_m != NULL) {
1692		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1693		    BUS_DMASYNC_POSTREAD);
1694		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1695	}
1696
1697	rxd->rx_m = m;
1698	map = rxd->rx_dmamap;
1699	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1700	rxd->rx_size = segs[0].ds_len;
1701	sc->rl_ldata.rl_rx_sparemap = map;
1702	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1703	    BUS_DMASYNC_PREREAD);
1704
1705	desc = &sc->rl_ldata.rl_rx_list[idx];
1706	desc->rl_vlanctl = 0;
1707	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1708	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1709	cmdstat = segs[0].ds_len;
1710	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1711		cmdstat |= RL_RDESC_CMD_EOR;
1712	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1713
1714	return (0);
1715}
1716
1717#ifdef RE_FIXUP_RX
1718static __inline void
1719re_fixup_rx(struct mbuf *m)
1720{
1721	int                     i;
1722	uint16_t                *src, *dst;
1723
1724	src = mtod(m, uint16_t *);
1725	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1726
1727	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1728		*dst++ = *src++;
1729
1730	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1731}
1732#endif
1733
1734static int
1735re_tx_list_init(struct rl_softc *sc)
1736{
1737	struct rl_desc		*desc;
1738	int			i;
1739
1740	RL_LOCK_ASSERT(sc);
1741
1742	bzero(sc->rl_ldata.rl_tx_list,
1743	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1744	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1745		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1746	/* Set EOR. */
1747	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1748	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1749
1750	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1751	    sc->rl_ldata.rl_tx_list_map,
1752	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1753
1754	sc->rl_ldata.rl_tx_prodidx = 0;
1755	sc->rl_ldata.rl_tx_considx = 0;
1756	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1757
1758	return (0);
1759}
1760
1761static int
1762re_rx_list_init(struct rl_softc *sc)
1763{
1764	int			error, i;
1765
1766	bzero(sc->rl_ldata.rl_rx_list,
1767	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1768	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1769		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1770		if ((error = re_newbuf(sc, i)) != 0)
1771			return (error);
1772	}
1773
1774	/* Flush the RX descriptors */
1775
1776	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1777	    sc->rl_ldata.rl_rx_list_map,
1778	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1779
1780	sc->rl_ldata.rl_rx_prodidx = 0;
1781	sc->rl_head = sc->rl_tail = NULL;
1782
1783	return (0);
1784}
1785
1786/*
1787 * RX handler for C+ and 8169. For the gigE chips, we support
1788 * the reception of jumbo frames that have been fragmented
1789 * across multiple 2K mbuf cluster buffers.
1790 */
1791static int
1792re_rxeof(struct rl_softc *sc)
1793{
1794	struct mbuf		*m;
1795	struct ifnet		*ifp;
1796	int			i, total_len;
1797	struct rl_desc		*cur_rx;
1798	u_int32_t		rxstat, rxvlan;
1799	int			maxpkt = 16;
1800
1801	RL_LOCK_ASSERT(sc);
1802
1803	ifp = sc->rl_ifp;
1804
1805	/* Invalidate the descriptor memory */
1806
1807	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1808	    sc->rl_ldata.rl_rx_list_map,
1809	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1810
1811	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1812	    i = RL_RX_DESC_NXT(sc, i)) {
1813		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1814		rxstat = le32toh(cur_rx->rl_cmdstat);
1815		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1816			break;
1817		total_len = rxstat & sc->rl_rxlenmask;
1818		rxvlan = le32toh(cur_rx->rl_vlanctl);
1819		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1820
1821		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1822			if (re_newbuf(sc, i) != 0) {
1823				/*
1824				 * If this is part of a multi-fragment packet,
1825				 * discard all the pieces.
1826				 */
1827				if (sc->rl_head != NULL) {
1828					m_freem(sc->rl_head);
1829					sc->rl_head = sc->rl_tail = NULL;
1830				}
1831				re_discard_rxbuf(sc, i);
1832				continue;
1833			}
1834			m->m_len = RE_RX_DESC_BUFLEN;
1835			if (sc->rl_head == NULL)
1836				sc->rl_head = sc->rl_tail = m;
1837			else {
1838				m->m_flags &= ~M_PKTHDR;
1839				sc->rl_tail->m_next = m;
1840				sc->rl_tail = m;
1841			}
1842			continue;
1843		}
1844
1845		/*
1846		 * NOTE: for the 8139C+, the frame length field
1847		 * is always 12 bits in size, but for the gigE chips,
1848		 * it is 13 bits (since the max RX frame length is 16K).
1849		 * Unfortunately, all 32 bits in the status word
1850		 * were already used, so to make room for the extra
1851		 * length bit, RealTek took out the 'frame alignment
1852		 * error' bit and shifted the other status bits
1853		 * over one slot. The OWN, EOR, FS and LS bits are
1854		 * still in the same places. We have already extracted
1855		 * the frame length and checked the OWN bit, so rather
1856		 * than using an alternate bit mapping, we shift the
1857		 * status bits one space to the right so we can evaluate
1858		 * them using the 8169 status as though it was in the
1859		 * same format as that of the 8139C+.
1860		 */
1861		if (sc->rl_type == RL_8169)
1862			rxstat >>= 1;
1863
1864		/*
1865		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1866		 * set, but if CRC is clear, it will still be a valid frame.
1867		 */
1868		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1869		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1870			ifp->if_ierrors++;
1871			/*
1872			 * If this is part of a multi-fragment packet,
1873			 * discard all the pieces.
1874			 */
1875			if (sc->rl_head != NULL) {
1876				m_freem(sc->rl_head);
1877				sc->rl_head = sc->rl_tail = NULL;
1878			}
1879			re_discard_rxbuf(sc, i);
1880			continue;
1881		}
1882
1883		/*
1884		 * If allocating a replacement mbuf fails,
1885		 * reload the current one.
1886		 */
1887
1888		if (re_newbuf(sc, i) != 0) {
1889			ifp->if_iqdrops++;
1890			if (sc->rl_head != NULL) {
1891				m_freem(sc->rl_head);
1892				sc->rl_head = sc->rl_tail = NULL;
1893			}
1894			re_discard_rxbuf(sc, i);
1895			continue;
1896		}
1897
1898		if (sc->rl_head != NULL) {
1899			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1900			if (m->m_len == 0)
1901				m->m_len = RE_RX_DESC_BUFLEN;
1902			/*
1903			 * Special case: if there's 4 bytes or less
1904			 * in this buffer, the mbuf can be discarded:
1905			 * the last 4 bytes is the CRC, which we don't
1906			 * care about anyway.
1907			 */
1908			if (m->m_len <= ETHER_CRC_LEN) {
1909				sc->rl_tail->m_len -=
1910				    (ETHER_CRC_LEN - m->m_len);
1911				m_freem(m);
1912			} else {
1913				m->m_len -= ETHER_CRC_LEN;
1914				m->m_flags &= ~M_PKTHDR;
1915				sc->rl_tail->m_next = m;
1916			}
1917			m = sc->rl_head;
1918			sc->rl_head = sc->rl_tail = NULL;
1919			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1920		} else
1921			m->m_pkthdr.len = m->m_len =
1922			    (total_len - ETHER_CRC_LEN);
1923
1924#ifdef RE_FIXUP_RX
1925		re_fixup_rx(m);
1926#endif
1927		ifp->if_ipackets++;
1928		m->m_pkthdr.rcvif = ifp;
1929
1930		/* Do RX checksumming if enabled */
1931
1932		if (ifp->if_capenable & IFCAP_RXCSUM) {
1933			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1934				/* Check IP header checksum */
1935				if (rxstat & RL_RDESC_STAT_PROTOID)
1936					m->m_pkthdr.csum_flags |=
1937					    CSUM_IP_CHECKED;
1938				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1939					m->m_pkthdr.csum_flags |=
1940					    CSUM_IP_VALID;
1941
1942				/* Check TCP/UDP checksum */
1943				if ((RL_TCPPKT(rxstat) &&
1944				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1945				    (RL_UDPPKT(rxstat) &&
1946				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1947					m->m_pkthdr.csum_flags |=
1948						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1949					m->m_pkthdr.csum_data = 0xffff;
1950				}
1951			} else {
1952				/*
1953				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
1954				 */
1955				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
1956				    (rxvlan & RL_RDESC_IPV4))
1957					m->m_pkthdr.csum_flags |=
1958					    CSUM_IP_CHECKED;
1959				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
1960				    (rxvlan & RL_RDESC_IPV4))
1961					m->m_pkthdr.csum_flags |=
1962					    CSUM_IP_VALID;
1963				if (((rxstat & RL_RDESC_STAT_TCP) &&
1964				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1965				    ((rxstat & RL_RDESC_STAT_UDP) &&
1966				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1967					m->m_pkthdr.csum_flags |=
1968						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1969					m->m_pkthdr.csum_data = 0xffff;
1970				}
1971			}
1972		}
1973		maxpkt--;
1974		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1975			m->m_pkthdr.ether_vtag =
1976			    bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
1977			m->m_flags |= M_VLANTAG;
1978		}
1979		RL_UNLOCK(sc);
1980		(*ifp->if_input)(ifp, m);
1981		RL_LOCK(sc);
1982	}
1983
1984	/* Flush the RX DMA ring */
1985
1986	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1987	    sc->rl_ldata.rl_rx_list_map,
1988	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1989
1990	sc->rl_ldata.rl_rx_prodidx = i;
1991
1992	if (maxpkt)
1993		return(EAGAIN);
1994
1995	return(0);
1996}
1997
1998static void
1999re_txeof(struct rl_softc *sc)
2000{
2001	struct ifnet		*ifp;
2002	struct rl_txdesc	*txd;
2003	u_int32_t		txstat;
2004	int			cons;
2005
2006	cons = sc->rl_ldata.rl_tx_considx;
2007	if (cons == sc->rl_ldata.rl_tx_prodidx)
2008		return;
2009
2010	ifp = sc->rl_ifp;
2011	/* Invalidate the TX descriptor list */
2012	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2013	    sc->rl_ldata.rl_tx_list_map,
2014	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2015
2016	for (; cons != sc->rl_ldata.rl_tx_prodidx;
2017	    cons = RL_TX_DESC_NXT(sc, cons)) {
2018		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2019		if (txstat & RL_TDESC_STAT_OWN)
2020			break;
2021		/*
2022		 * We only stash mbufs in the last descriptor
2023		 * in a fragment chain, which also happens to
2024		 * be the only place where the TX status bits
2025		 * are valid.
2026		 */
2027		if (txstat & RL_TDESC_CMD_EOF) {
2028			txd = &sc->rl_ldata.rl_tx_desc[cons];
2029			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2030			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2031			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2032			    txd->tx_dmamap);
2033			KASSERT(txd->tx_m != NULL,
2034			    ("%s: freeing NULL mbufs!", __func__));
2035			m_freem(txd->tx_m);
2036			txd->tx_m = NULL;
2037			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2038			    RL_TDESC_STAT_COLCNT))
2039				ifp->if_collisions++;
2040			if (txstat & RL_TDESC_STAT_TXERRSUM)
2041				ifp->if_oerrors++;
2042			else
2043				ifp->if_opackets++;
2044		}
2045		sc->rl_ldata.rl_tx_free++;
2046		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2047	}
2048	sc->rl_ldata.rl_tx_considx = cons;
2049
2050	/* No changes made to the TX ring, so no flush needed */
2051
2052	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2053#ifdef RE_TX_MODERATION
2054		/*
2055		 * If not all descriptors have been reaped yet, reload
2056		 * the timer so that we will eventually get another
2057		 * interrupt that will cause us to re-enter this routine.
2058		 * This is done in case the transmitter has gone idle.
2059		 */
2060		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2061#endif
2062	} else
2063		sc->rl_watchdog_timer = 0;
2064}
2065
2066static void
2067re_tick(void *xsc)
2068{
2069	struct rl_softc		*sc;
2070	struct mii_data		*mii;
2071
2072	sc = xsc;
2073
2074	RL_LOCK_ASSERT(sc);
2075
2076	mii = device_get_softc(sc->rl_miibus);
2077	mii_tick(mii);
2078	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2079		re_miibus_statchg(sc->rl_dev);
2080	/*
2081	 * Reclaim transmitted frames here. Technically it is not
2082	 * necessary to do here but it ensures periodic reclamation
2083	 * regardless of Tx completion interrupt which seems to be
2084	 * lost on PCIe based controllers under certain situations.
2085	 */
2086	re_txeof(sc);
2087	re_watchdog(sc);
2088	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2089}
2090
2091#ifdef DEVICE_POLLING
2092static void
2093re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2094{
2095	struct rl_softc *sc = ifp->if_softc;
2096
2097	RL_LOCK(sc);
2098	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2099		re_poll_locked(ifp, cmd, count);
2100	RL_UNLOCK(sc);
2101}
2102
2103static void
2104re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2105{
2106	struct rl_softc *sc = ifp->if_softc;
2107
2108	RL_LOCK_ASSERT(sc);
2109
2110	sc->rxcycles = count;
2111	re_rxeof(sc);
2112	re_txeof(sc);
2113
2114	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2115		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2116
2117	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2118		u_int16_t       status;
2119
2120		status = CSR_READ_2(sc, RL_ISR);
2121		if (status == 0xffff)
2122			return;
2123		if (status)
2124			CSR_WRITE_2(sc, RL_ISR, status);
2125		if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2126		    (sc->rl_flags & RL_FLAG_PCIE))
2127			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2128
2129		/*
2130		 * XXX check behaviour on receiver stalls.
2131		 */
2132
2133		if (status & RL_ISR_SYSTEM_ERR)
2134			re_init_locked(sc);
2135	}
2136}
2137#endif /* DEVICE_POLLING */
2138
2139static int
2140re_intr(void *arg)
2141{
2142	struct rl_softc		*sc;
2143	uint16_t		status;
2144
2145	sc = arg;
2146
2147	status = CSR_READ_2(sc, RL_ISR);
2148	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2149                return (FILTER_STRAY);
2150	CSR_WRITE_2(sc, RL_IMR, 0);
2151
2152	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2153
2154	return (FILTER_HANDLED);
2155}
2156
2157static void
2158re_int_task(void *arg, int npending)
2159{
2160	struct rl_softc		*sc;
2161	struct ifnet		*ifp;
2162	u_int16_t		status;
2163	int			rval = 0;
2164
2165	sc = arg;
2166	ifp = sc->rl_ifp;
2167
2168	RL_LOCK(sc);
2169
2170	status = CSR_READ_2(sc, RL_ISR);
2171        CSR_WRITE_2(sc, RL_ISR, status);
2172
2173	if (sc->suspended ||
2174	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2175		RL_UNLOCK(sc);
2176		return;
2177	}
2178
2179#ifdef DEVICE_POLLING
2180	if  (ifp->if_capenable & IFCAP_POLLING) {
2181		RL_UNLOCK(sc);
2182		return;
2183	}
2184#endif
2185
2186	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2187		rval = re_rxeof(sc);
2188
2189	/*
2190	 * Some chips will ignore a second TX request issued
2191	 * while an existing transmission is in progress. If
2192	 * the transmitter goes idle but there are still
2193	 * packets waiting to be sent, we need to restart the
2194	 * channel here to flush them out. This only seems to
2195	 * be required with the PCIe devices.
2196	 */
2197	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2198	    (sc->rl_flags & RL_FLAG_PCIE))
2199		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2200	if (status & (
2201#ifdef RE_TX_MODERATION
2202	    RL_ISR_TIMEOUT_EXPIRED|
2203#else
2204	    RL_ISR_TX_OK|
2205#endif
2206	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2207		re_txeof(sc);
2208
2209	if (status & RL_ISR_SYSTEM_ERR)
2210		re_init_locked(sc);
2211
2212	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2213		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2214
2215	RL_UNLOCK(sc);
2216
2217        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2218		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2219		return;
2220	}
2221
2222	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2223}
2224
2225static int
2226re_encap(struct rl_softc *sc, struct mbuf **m_head)
2227{
2228	struct rl_txdesc	*txd, *txd_last;
2229	bus_dma_segment_t	segs[RL_NTXSEGS];
2230	bus_dmamap_t		map;
2231	struct mbuf		*m_new;
2232	struct rl_desc		*desc;
2233	int			nsegs, prod;
2234	int			i, error, ei, si;
2235	int			padlen;
2236	uint32_t		cmdstat, csum_flags, vlanctl;
2237
2238	RL_LOCK_ASSERT(sc);
2239	M_ASSERTPKTHDR((*m_head));
2240
2241	/*
2242	 * With some of the RealTek chips, using the checksum offload
2243	 * support in conjunction with the autopadding feature results
2244	 * in the transmission of corrupt frames. For example, if we
2245	 * need to send a really small IP fragment that's less than 60
2246	 * bytes in size, and IP header checksumming is enabled, the
2247	 * resulting ethernet frame that appears on the wire will
2248	 * have garbled payload. To work around this, if TX IP checksum
2249	 * offload is enabled, we always manually pad short frames out
2250	 * to the minimum ethernet frame size.
2251	 */
2252	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0 &&
2253	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2254	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2255		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2256		if (M_WRITABLE(*m_head) == 0) {
2257			/* Get a writable copy. */
2258			m_new = m_dup(*m_head, M_DONTWAIT);
2259			m_freem(*m_head);
2260			if (m_new == NULL) {
2261				*m_head = NULL;
2262				return (ENOBUFS);
2263			}
2264			*m_head = m_new;
2265		}
2266		if ((*m_head)->m_next != NULL ||
2267		    M_TRAILINGSPACE(*m_head) < padlen) {
2268			m_new = m_defrag(*m_head, M_DONTWAIT);
2269			if (m_new == NULL) {
2270				m_freem(*m_head);
2271				*m_head = NULL;
2272				return (ENOBUFS);
2273			}
2274		} else
2275			m_new = *m_head;
2276
2277		/*
2278		 * Manually pad short frames, and zero the pad space
2279		 * to avoid leaking data.
2280		 */
2281		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2282		m_new->m_pkthdr.len += padlen;
2283		m_new->m_len = m_new->m_pkthdr.len;
2284		*m_head = m_new;
2285	}
2286
2287	prod = sc->rl_ldata.rl_tx_prodidx;
2288	txd = &sc->rl_ldata.rl_tx_desc[prod];
2289	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2290	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2291	if (error == EFBIG) {
2292		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2293		if (m_new == NULL) {
2294			m_freem(*m_head);
2295			*m_head = NULL;
2296			return (ENOBUFS);
2297		}
2298		*m_head = m_new;
2299		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2300		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2301		if (error != 0) {
2302			m_freem(*m_head);
2303			*m_head = NULL;
2304			return (error);
2305		}
2306	} else if (error != 0)
2307		return (error);
2308	if (nsegs == 0) {
2309		m_freem(*m_head);
2310		*m_head = NULL;
2311		return (EIO);
2312	}
2313
2314	/* Check for number of available descriptors. */
2315	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2316		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2317		return (ENOBUFS);
2318	}
2319
2320	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2321	    BUS_DMASYNC_PREWRITE);
2322
2323	/*
2324	 * Set up checksum offload. Note: checksum offload bits must
2325	 * appear in all descriptors of a multi-descriptor transmit
2326	 * attempt. This is according to testing done with an 8169
2327	 * chip. This is a requirement.
2328	 */
2329	vlanctl = 0;
2330	csum_flags = 0;
2331	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2332		csum_flags = RL_TDESC_CMD_LGSEND |
2333		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2334		    RL_TDESC_CMD_MSSVAL_SHIFT);
2335	else {
2336		/*
2337		 * Unconditionally enable IP checksum if TCP or UDP
2338		 * checksum is required. Otherwise, TCP/UDP checksum
2339		 * does't make effects.
2340		 */
2341		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2342			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2343				csum_flags |= RL_TDESC_CMD_IPCSUM;
2344				if (((*m_head)->m_pkthdr.csum_flags &
2345				    CSUM_TCP) != 0)
2346					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2347				if (((*m_head)->m_pkthdr.csum_flags &
2348				    CSUM_UDP) != 0)
2349					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2350			} else {
2351				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2352				if (((*m_head)->m_pkthdr.csum_flags &
2353				    CSUM_TCP) != 0)
2354					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2355				if (((*m_head)->m_pkthdr.csum_flags &
2356				    CSUM_UDP) != 0)
2357					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2358			}
2359		}
2360	}
2361
2362	/*
2363	 * Set up hardware VLAN tagging. Note: vlan tag info must
2364	 * appear in all descriptors of a multi-descriptor
2365	 * transmission attempt.
2366	 */
2367	if ((*m_head)->m_flags & M_VLANTAG)
2368		vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2369		    RL_TDESC_VLANCTL_TAG;
2370
2371	si = prod;
2372	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2373		desc = &sc->rl_ldata.rl_tx_list[prod];
2374		desc->rl_vlanctl = htole32(vlanctl);
2375		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2376		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2377		cmdstat = segs[i].ds_len;
2378		if (i != 0)
2379			cmdstat |= RL_TDESC_CMD_OWN;
2380		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2381			cmdstat |= RL_TDESC_CMD_EOR;
2382		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2383		sc->rl_ldata.rl_tx_free--;
2384	}
2385	/* Update producer index. */
2386	sc->rl_ldata.rl_tx_prodidx = prod;
2387
2388	/* Set EOF on the last descriptor. */
2389	ei = RL_TX_DESC_PRV(sc, prod);
2390	desc = &sc->rl_ldata.rl_tx_list[ei];
2391	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2392
2393	desc = &sc->rl_ldata.rl_tx_list[si];
2394	/* Set SOF and transfer ownership of packet to the chip. */
2395	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2396
2397	/*
2398	 * Insure that the map for this transmission
2399	 * is placed at the array index of the last descriptor
2400	 * in this chain.  (Swap last and first dmamaps.)
2401	 */
2402	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2403	map = txd->tx_dmamap;
2404	txd->tx_dmamap = txd_last->tx_dmamap;
2405	txd_last->tx_dmamap = map;
2406	txd_last->tx_m = *m_head;
2407
2408	return (0);
2409}
2410
2411static void
2412re_tx_task(void *arg, int npending)
2413{
2414	struct ifnet		*ifp;
2415
2416	ifp = arg;
2417	re_start(ifp);
2418}
2419
2420/*
2421 * Main transmit routine for C+ and gigE NICs.
2422 */
2423static void
2424re_start(struct ifnet *ifp)
2425{
2426	struct rl_softc		*sc;
2427	struct mbuf		*m_head;
2428	int			queued;
2429
2430	sc = ifp->if_softc;
2431
2432	RL_LOCK(sc);
2433
2434	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2435	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) {
2436		RL_UNLOCK(sc);
2437		return;
2438	}
2439
2440	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2441	    sc->rl_ldata.rl_tx_free > 1;) {
2442		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2443		if (m_head == NULL)
2444			break;
2445
2446		if (re_encap(sc, &m_head) != 0) {
2447			if (m_head == NULL)
2448				break;
2449			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2450			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2451			break;
2452		}
2453
2454		/*
2455		 * If there's a BPF listener, bounce a copy of this frame
2456		 * to him.
2457		 */
2458		ETHER_BPF_MTAP(ifp, m_head);
2459
2460		queued++;
2461	}
2462
2463	if (queued == 0) {
2464#ifdef RE_TX_MODERATION
2465		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2466			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2467#endif
2468		RL_UNLOCK(sc);
2469		return;
2470	}
2471
2472	/* Flush the TX descriptors */
2473
2474	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2475	    sc->rl_ldata.rl_tx_list_map,
2476	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2477
2478	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2479
2480#ifdef RE_TX_MODERATION
2481	/*
2482	 * Use the countdown timer for interrupt moderation.
2483	 * 'TX done' interrupts are disabled. Instead, we reset the
2484	 * countdown timer, which will begin counting until it hits
2485	 * the value in the TIMERINT register, and then trigger an
2486	 * interrupt. Each time we write to the TIMERCNT register,
2487	 * the timer count is reset to 0.
2488	 */
2489	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2490#endif
2491
2492	/*
2493	 * Set a timeout in case the chip goes out to lunch.
2494	 */
2495	sc->rl_watchdog_timer = 5;
2496
2497	RL_UNLOCK(sc);
2498}
2499
2500static void
2501re_init(void *xsc)
2502{
2503	struct rl_softc		*sc = xsc;
2504
2505	RL_LOCK(sc);
2506	re_init_locked(sc);
2507	RL_UNLOCK(sc);
2508}
2509
2510static void
2511re_init_locked(struct rl_softc *sc)
2512{
2513	struct ifnet		*ifp = sc->rl_ifp;
2514	struct mii_data		*mii;
2515	uint32_t		reg;
2516	uint16_t		cfg;
2517	union {
2518		uint32_t align_dummy;
2519		u_char eaddr[ETHER_ADDR_LEN];
2520        } eaddr;
2521
2522	RL_LOCK_ASSERT(sc);
2523
2524	mii = device_get_softc(sc->rl_miibus);
2525
2526	/*
2527	 * Cancel pending I/O and free all RX/TX buffers.
2528	 */
2529	re_stop(sc);
2530
2531	/* Put controller into known state. */
2532	re_reset(sc);
2533
2534	/*
2535	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2536	 * RX checksum offload. We must configure the C+ register
2537	 * before all others.
2538	 */
2539	cfg = RL_CPLUSCMD_PCI_MRW;
2540	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2541		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2542	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2543		cfg |= RL_CPLUSCMD_VLANSTRIP;
2544	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
2545		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
2546		/* XXX magic. */
2547		cfg |= 0x0001;
2548	} else
2549		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
2550	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
2551	if (sc->rl_hwrev == RL_HWREV_8169_8110SC ||
2552	    sc->rl_hwrev == RL_HWREV_8169_8110SCE) {
2553		reg = 0x000fff00;
2554		if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0)
2555			reg |= 0x000000ff;
2556		if (sc->rl_hwrev == RL_HWREV_8169_8110SCE)
2557			reg |= 0x00f00000;
2558		CSR_WRITE_4(sc, 0x7c, reg);
2559		/* Disable interrupt mitigation. */
2560		CSR_WRITE_2(sc, 0xe2, 0);
2561	}
2562	/*
2563	 * Disable TSO if interface MTU size is greater than MSS
2564	 * allowed in controller.
2565	 */
2566	if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
2567		ifp->if_capenable &= ~IFCAP_TSO4;
2568		ifp->if_hwassist &= ~CSUM_TSO;
2569	}
2570
2571	/*
2572	 * Init our MAC address.  Even though the chipset
2573	 * documentation doesn't mention it, we need to enter "Config
2574	 * register write enable" mode to modify the ID registers.
2575	 */
2576	/* Copy MAC address on stack to align. */
2577	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2578	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2579	CSR_WRITE_4(sc, RL_IDR0,
2580	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2581	CSR_WRITE_4(sc, RL_IDR4,
2582	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2583	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2584
2585	/*
2586	 * For C+ mode, initialize the RX descriptors and mbufs.
2587	 */
2588	re_rx_list_init(sc);
2589	re_tx_list_init(sc);
2590
2591	/*
2592	 * Load the addresses of the RX and TX lists into the chip.
2593	 */
2594
2595	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2596	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2597	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2598	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2599
2600	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2601	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2602	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2603	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2604
2605	/*
2606	 * Enable transmit and receive.
2607	 */
2608	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2609
2610	/*
2611	 * Set the initial TX configuration.
2612	 */
2613	if (sc->rl_testmode) {
2614		if (sc->rl_type == RL_8169)
2615			CSR_WRITE_4(sc, RL_TXCFG,
2616			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2617		else
2618			CSR_WRITE_4(sc, RL_TXCFG,
2619			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2620	} else
2621		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2622
2623	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2624
2625	/*
2626	 * Set the initial RX configuration.
2627	 */
2628	re_set_rxmode(sc);
2629
2630#ifdef DEVICE_POLLING
2631	/*
2632	 * Disable interrupts if we are polling.
2633	 */
2634	if (ifp->if_capenable & IFCAP_POLLING)
2635		CSR_WRITE_2(sc, RL_IMR, 0);
2636	else	/* otherwise ... */
2637#endif
2638
2639	/*
2640	 * Enable interrupts.
2641	 */
2642	if (sc->rl_testmode)
2643		CSR_WRITE_2(sc, RL_IMR, 0);
2644	else
2645		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2646	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2647
2648	/* Set initial TX threshold */
2649	sc->rl_txthresh = RL_TX_THRESH_INIT;
2650
2651	/* Start RX/TX process. */
2652	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2653#ifdef notdef
2654	/* Enable receiver and transmitter. */
2655	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2656#endif
2657
2658#ifdef RE_TX_MODERATION
2659	/*
2660	 * Initialize the timer interrupt register so that
2661	 * a timer interrupt will be generated once the timer
2662	 * reaches a certain number of ticks. The timer is
2663	 * reloaded on each transmit. This gives us TX interrupt
2664	 * moderation, which dramatically improves TX frame rate.
2665	 */
2666	if (sc->rl_type == RL_8169)
2667		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2668	else
2669		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2670#endif
2671
2672	/*
2673	 * For 8169 gigE NICs, set the max allowed RX packet
2674	 * size so we can receive jumbo frames.
2675	 */
2676	if (sc->rl_type == RL_8169)
2677		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2678
2679	if (sc->rl_testmode)
2680		return;
2681
2682	mii_mediachg(mii);
2683
2684	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2685
2686	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2687	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2688
2689	sc->rl_flags &= ~RL_FLAG_LINK;
2690	sc->rl_watchdog_timer = 0;
2691	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2692}
2693
2694/*
2695 * Set media options.
2696 */
2697static int
2698re_ifmedia_upd(struct ifnet *ifp)
2699{
2700	struct rl_softc		*sc;
2701	struct mii_data		*mii;
2702	int			error;
2703
2704	sc = ifp->if_softc;
2705	mii = device_get_softc(sc->rl_miibus);
2706	RL_LOCK(sc);
2707	error = mii_mediachg(mii);
2708	RL_UNLOCK(sc);
2709
2710	return (error);
2711}
2712
2713/*
2714 * Report current media status.
2715 */
2716static void
2717re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2718{
2719	struct rl_softc		*sc;
2720	struct mii_data		*mii;
2721
2722	sc = ifp->if_softc;
2723	mii = device_get_softc(sc->rl_miibus);
2724
2725	RL_LOCK(sc);
2726	mii_pollstat(mii);
2727	RL_UNLOCK(sc);
2728	ifmr->ifm_active = mii->mii_media_active;
2729	ifmr->ifm_status = mii->mii_media_status;
2730}
2731
2732static int
2733re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2734{
2735	struct rl_softc		*sc = ifp->if_softc;
2736	struct ifreq		*ifr = (struct ifreq *) data;
2737	struct mii_data		*mii;
2738	int			error = 0;
2739
2740	switch (command) {
2741	case SIOCSIFMTU:
2742		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2743			error = EINVAL;
2744			break;
2745		}
2746		if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 &&
2747		    ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2748			error = EINVAL;
2749			break;
2750		}
2751		RL_LOCK(sc);
2752		if (ifp->if_mtu != ifr->ifr_mtu)
2753			ifp->if_mtu = ifr->ifr_mtu;
2754		if (ifp->if_mtu > RL_TSO_MTU &&
2755		    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2756			ifp->if_capenable &= ~IFCAP_TSO4;
2757			ifp->if_hwassist &= ~CSUM_TSO;
2758		}
2759		RL_UNLOCK(sc);
2760		break;
2761	case SIOCSIFFLAGS:
2762		RL_LOCK(sc);
2763		if ((ifp->if_flags & IFF_UP) != 0) {
2764			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2765				if (((ifp->if_flags ^ sc->rl_if_flags)
2766				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2767					re_set_rxmode(sc);
2768			} else
2769				re_init_locked(sc);
2770		} else {
2771			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2772				re_stop(sc);
2773		}
2774		sc->rl_if_flags = ifp->if_flags;
2775		RL_UNLOCK(sc);
2776		break;
2777	case SIOCADDMULTI:
2778	case SIOCDELMULTI:
2779		RL_LOCK(sc);
2780		re_set_rxmode(sc);
2781		RL_UNLOCK(sc);
2782		break;
2783	case SIOCGIFMEDIA:
2784	case SIOCSIFMEDIA:
2785		mii = device_get_softc(sc->rl_miibus);
2786		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2787		break;
2788	case SIOCSIFCAP:
2789	    {
2790		int mask, reinit;
2791
2792		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2793		reinit = 0;
2794#ifdef DEVICE_POLLING
2795		if (mask & IFCAP_POLLING) {
2796			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2797				error = ether_poll_register(re_poll, ifp);
2798				if (error)
2799					return(error);
2800				RL_LOCK(sc);
2801				/* Disable interrupts */
2802				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2803				ifp->if_capenable |= IFCAP_POLLING;
2804				RL_UNLOCK(sc);
2805			} else {
2806				error = ether_poll_deregister(ifp);
2807				/* Enable interrupts. */
2808				RL_LOCK(sc);
2809				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2810				ifp->if_capenable &= ~IFCAP_POLLING;
2811				RL_UNLOCK(sc);
2812			}
2813		}
2814#endif /* DEVICE_POLLING */
2815		if (mask & IFCAP_HWCSUM) {
2816			ifp->if_capenable ^= IFCAP_HWCSUM;
2817			if (ifp->if_capenable & IFCAP_TXCSUM)
2818				ifp->if_hwassist |= RE_CSUM_FEATURES;
2819			else
2820				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2821			reinit = 1;
2822		}
2823		if (mask & IFCAP_VLAN_HWTAGGING) {
2824			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2825			reinit = 1;
2826		}
2827		if (mask & IFCAP_TSO4) {
2828			ifp->if_capenable ^= IFCAP_TSO4;
2829			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2830			    (IFCAP_TSO4 & ifp->if_capabilities))
2831				ifp->if_hwassist |= CSUM_TSO;
2832			else
2833				ifp->if_hwassist &= ~CSUM_TSO;
2834			if (ifp->if_mtu > RL_TSO_MTU &&
2835			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2836				ifp->if_capenable &= ~IFCAP_TSO4;
2837				ifp->if_hwassist &= ~CSUM_TSO;
2838			}
2839		}
2840		if ((mask & IFCAP_WOL) != 0 &&
2841		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2842			if ((mask & IFCAP_WOL_UCAST) != 0)
2843				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2844			if ((mask & IFCAP_WOL_MCAST) != 0)
2845				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2846			if ((mask & IFCAP_WOL_MAGIC) != 0)
2847				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2848		}
2849		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2850			re_init(sc);
2851		VLAN_CAPABILITIES(ifp);
2852	    }
2853		break;
2854	default:
2855		error = ether_ioctl(ifp, command, data);
2856		break;
2857	}
2858
2859	return (error);
2860}
2861
2862static void
2863re_watchdog(struct rl_softc *sc)
2864{
2865	struct ifnet		*ifp;
2866
2867	RL_LOCK_ASSERT(sc);
2868
2869	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2870		return;
2871
2872	ifp = sc->rl_ifp;
2873	re_txeof(sc);
2874	if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
2875		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2876		    "-- recovering\n");
2877		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2878			taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2879		return;
2880	}
2881
2882	if_printf(ifp, "watchdog timeout\n");
2883	ifp->if_oerrors++;
2884
2885	re_rxeof(sc);
2886	re_init_locked(sc);
2887	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2888		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2889}
2890
2891/*
2892 * Stop the adapter and free any mbufs allocated to the
2893 * RX and TX lists.
2894 */
2895static void
2896re_stop(struct rl_softc *sc)
2897{
2898	int			i;
2899	struct ifnet		*ifp;
2900	struct rl_txdesc	*txd;
2901	struct rl_rxdesc	*rxd;
2902
2903	RL_LOCK_ASSERT(sc);
2904
2905	ifp = sc->rl_ifp;
2906
2907	sc->rl_watchdog_timer = 0;
2908	callout_stop(&sc->rl_stat_callout);
2909	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2910
2911	if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0)
2912		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
2913		    RL_CMD_RX_ENB);
2914	else
2915		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2916	DELAY(1000);
2917	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2918	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2919
2920	if (sc->rl_head != NULL) {
2921		m_freem(sc->rl_head);
2922		sc->rl_head = sc->rl_tail = NULL;
2923	}
2924
2925	/* Free the TX list buffers. */
2926
2927	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2928		txd = &sc->rl_ldata.rl_tx_desc[i];
2929		if (txd->tx_m != NULL) {
2930			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2931			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2932			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2933			    txd->tx_dmamap);
2934			m_freem(txd->tx_m);
2935			txd->tx_m = NULL;
2936		}
2937	}
2938
2939	/* Free the RX list buffers. */
2940
2941	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2942		rxd = &sc->rl_ldata.rl_rx_desc[i];
2943		if (rxd->rx_m != NULL) {
2944			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2945			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2946			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
2947			    rxd->rx_dmamap);
2948			m_freem(rxd->rx_m);
2949			rxd->rx_m = NULL;
2950		}
2951	}
2952}
2953
2954/*
2955 * Device suspend routine.  Stop the interface and save some PCI
2956 * settings in case the BIOS doesn't restore them properly on
2957 * resume.
2958 */
2959static int
2960re_suspend(device_t dev)
2961{
2962	struct rl_softc		*sc;
2963
2964	sc = device_get_softc(dev);
2965
2966	RL_LOCK(sc);
2967	re_stop(sc);
2968	re_setwol(sc);
2969	sc->suspended = 1;
2970	RL_UNLOCK(sc);
2971
2972	return (0);
2973}
2974
2975/*
2976 * Device resume routine.  Restore some PCI settings in case the BIOS
2977 * doesn't, re-enable busmastering, and restart the interface if
2978 * appropriate.
2979 */
2980static int
2981re_resume(device_t dev)
2982{
2983	struct rl_softc		*sc;
2984	struct ifnet		*ifp;
2985
2986	sc = device_get_softc(dev);
2987
2988	RL_LOCK(sc);
2989
2990	ifp = sc->rl_ifp;
2991	/* Take controller out of sleep mode. */
2992	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
2993		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
2994			CSR_WRITE_1(sc, RL_GPIO,
2995			    CSR_READ_1(sc, RL_GPIO) | 0x01);
2996	}
2997
2998	/* reinitialize interface if necessary */
2999	if (ifp->if_flags & IFF_UP)
3000		re_init_locked(sc);
3001
3002	/*
3003	 * Clear WOL matching such that normal Rx filtering
3004	 * wouldn't interfere with WOL patterns.
3005	 */
3006	re_clrwol(sc);
3007	sc->suspended = 0;
3008	RL_UNLOCK(sc);
3009
3010	return (0);
3011}
3012
3013/*
3014 * Stop all chip I/O so that the kernel's probe routines don't
3015 * get confused by errant DMAs when rebooting.
3016 */
3017static int
3018re_shutdown(device_t dev)
3019{
3020	struct rl_softc		*sc;
3021
3022	sc = device_get_softc(dev);
3023
3024	RL_LOCK(sc);
3025	re_stop(sc);
3026	/*
3027	 * Mark interface as down since otherwise we will panic if
3028	 * interrupt comes in later on, which can happen in some
3029	 * cases.
3030	 */
3031	sc->rl_ifp->if_flags &= ~IFF_UP;
3032	re_setwol(sc);
3033	RL_UNLOCK(sc);
3034
3035	return (0);
3036}
3037
3038static void
3039re_setwol(struct rl_softc *sc)
3040{
3041	struct ifnet		*ifp;
3042	int			pmc;
3043	uint16_t		pmstat;
3044	uint8_t			v;
3045
3046	RL_LOCK_ASSERT(sc);
3047
3048	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3049		return;
3050
3051	ifp = sc->rl_ifp;
3052	/* Put controller into sleep mode. */
3053	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3054		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3055			CSR_WRITE_1(sc, RL_GPIO,
3056			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
3057	}
3058	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3059	    (sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3060		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3061	/* Enable config register write. */
3062	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3063
3064	/* Enable PME. */
3065	v = CSR_READ_1(sc, RL_CFG1);
3066	v &= ~RL_CFG1_PME;
3067	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3068		v |= RL_CFG1_PME;
3069	CSR_WRITE_1(sc, RL_CFG1, v);
3070
3071	v = CSR_READ_1(sc, RL_CFG3);
3072	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3073	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3074		v |= RL_CFG3_WOL_MAGIC;
3075	CSR_WRITE_1(sc, RL_CFG3, v);
3076
3077	/* Config register write done. */
3078	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3079
3080	v = CSR_READ_1(sc, RL_CFG5);
3081	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3082	v &= ~RL_CFG5_WOL_LANWAKE;
3083	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3084		v |= RL_CFG5_WOL_UCAST;
3085	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3086		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3087	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3088		v |= RL_CFG5_WOL_LANWAKE;
3089	CSR_WRITE_1(sc, RL_CFG5, v);
3090
3091	/*
3092	 * It seems that hardware resets its link speed to 100Mbps in
3093	 * power down mode so switching to 100Mbps in driver is not
3094	 * needed.
3095	 */
3096
3097	/* Request PME if WOL is requested. */
3098	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3099	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3100	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3101		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3102	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3103}
3104
3105static void
3106re_clrwol(struct rl_softc *sc)
3107{
3108	int			pmc;
3109	uint8_t			v;
3110
3111	RL_LOCK_ASSERT(sc);
3112
3113	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3114		return;
3115
3116	/* Enable config register write. */
3117	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3118
3119	v = CSR_READ_1(sc, RL_CFG3);
3120	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3121	CSR_WRITE_1(sc, RL_CFG3, v);
3122
3123	/* Config register write done. */
3124	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3125
3126	v = CSR_READ_1(sc, RL_CFG5);
3127	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3128	v &= ~RL_CFG5_WOL_LANWAKE;
3129	CSR_WRITE_1(sc, RL_CFG5, v);
3130}
3131